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Abstract. Numerical approximation of the Boltzmann equation is a challenging problem due to
its high-dimensional, nonlocal, and nonlinear collision integral. Over the past decade, the Fourier—
Galerkin spectral method [L. Pareschi and G. Russo, STAM J. Numer. Anal., 37 (2000), pp. 1217—
1245] has become a popular deterministic method for solving the Boltzmann equation, manifested by
its high accuracy and potential of being further accelerated by the fast Fourier transform. Despite its
practical success, the stability of the method was only recently proved in [F. Filbet and C. Mouhot,
Trans. Amer. Math. Soc., 363 (2011), pp. 1947-1980] by utilizing the “spreading” property of the
collision operator. In this work, we provide a new proof based on a careful L2 estimate of the negative
part of the solution. We also discuss the applicability of the result to various initial data, including
both continuous and discontinuous functions.
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1. Introduction. The Boltzmann equation is one of the fundamental equations
in kinetic theory and serves as a basic building block to connect microscopic Newtonian
mechanics and macroscopic continuum mechanics [4, 22]. Despite its wide applica-
bility, numerical approximation of the Boltzmann equation is a challenging scientific
problem due to the complicated structure of the equation (high-dimensional, nonlin-
ear, and nonlocal). As such, the particle based direct simulation Monte Carlo method
[2] has been widely used in various applications for its simplicity and low computa-
tional cost. Nevertheless, the stochastic method suffers from slow convergence and
becomes extremely expensive when simulating nonsteady and low-speed flows.

Since the pioneering work [18, 19], it has been realized that the Fourier—Galerkin
spectral method offers a suitable framework to approximate the Boltzmann colli-
sion operator. First of all, it is a deterministic method and provides very accurate
results compared with stochastic method. Secondly, the Boltzmann collision oper-
ator is translation-invariant, and the Fourier basis exactly leverages this structure.
Thirdly, after the Galerkin projection, the collision operator presents a convolution-
like structure, which opens the possibility to further accelerate the method by the
fast Fourier transform [16, 9]. Because of the above reasons, over the past decade, the
Fourier spectral method has become a very popular deterministic method for solv-
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ing the Boltzmann equation and related collisional kinetic models; see, for instance,
[21, 8, 7, 14, 15] or the recent review article [5].

As opposed to its practical success, the theoretical study of the Fourier spectral
method is quite limited, largely because the spectral approximation destroys the pos-
itivity of the solution, yet the positivity is one of the key properties to study the
well-posedness of the equation. In [20], a positivity-preserving filter was applied to
the equation to enforce the positivity of the solution. As a result, the stability of the
method can be easily proved. However, the filter often comes with the price of sig-
nificantly smearing the solution (hence destroying the spectral accuracy) and should
be used only when the solution contains discontinuities (to suppress the oscillations
caused by the Gibbs phenomenon). Recently, a stability proof for the original Fourier
spectral method was established in [6], where the authors provide a quite complete
study of the method including both finite and long time behavior. The key strategy
in [6] is to use the “spreading” or “mixing” property of the collision operator to show
that the solution will become everywhere positive after a small time. Motivated by
this work, we present in this paper a different well-posedness and stability proof. The
main difference from [6] lies in that, instead of requiring the solution to be positive
everywhere, which is a stronger condition to achieve, we show that the L? norm of
the negative part of the solution can be controlled as long as it is small initially. In
other words, the solution is allowed to be negative for the method to remain stable.
Therefore, our strategy does not rely on any sophisticated property of the collision op-
erator and provides a simpler proof. In addition, we quantify clearly the requirement
on the initial condition for the method to be stable, which includes both continuous
and discontinuous functions.

We mention another line of research which develops the conservative-spectral ap-
proximation for the Boltzmann equation [10]. Apart from apparent differences (the
Fourier—Galerkin method considered in this paper is based on domain truncation and
periodization, while the method [10] is based on Fourier transform, and no periodiza-
tion is performed), a conservation subroutine is added to restore the mass, momen-
tum, and energy conservation. As a consequence, the method is able to preserve the
Maxwellian distribution as time goes to infinity. The stability and convergence of the
method were recently established in [1], where the Fourier projection is only applied
to the gain part of the collision operator. In contrast, both gain and loss terms are
projected in our method; hence the loss term does not possess a definite sign.

The paper is essentially self-contained. In section 2, we briefly review the Fourier—
Galerkin spectral method for the spatially homogeneous Boltzmann equation. After
that, we discuss the basic assumptions (e.g., the collision kernel and truncation pa-
rameters) used throughout the paper. The assumptions on the initial condition are
addressed in section 2.1, which will play an important role in proving the main re-
sult. In section 3 (and the appendix), we provide some preliminary estimates on the
truncated collision operator. These are known results in the whole space, but some
subtle differences appear in the torus. Section 4 presents our main result. We first
conduct a L? estimate of the negative part of the solution and then prove a local
existence/uniqueness result. Finally, the well-posedness and stability of the method
on an arbitrary bounded time interval are established in section 4.3 (Theorem 4.4).
Facilitated with the stability result, the paper is concluded in section 5 with a straight-
forward convergence and spectral accuracy proof of the method.

2. Fourier—Galerkin spectral method for the spatially homogeneous
Boltzmann equation. In this section, we review the Fourier—Galerkin spectral
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method for the spatially homogeneous Boltzmann equation. The presentation follows
the formulation originally proposed in [19] which is the basis for many fast algorithms
developed recently [9, 12, 13]. Here we limit the description to the extent that is
sufficient for the following proof. At the end of the section, we discuss the basic as-
sumptions used throughout the rest of the paper, in particular, the assumptions on
the initial condition.

The spatially homogeneous Boltzmann equation reads

(2.1) Wf=Q(f,f), t>0,veR? d>2

where f = f(¢,v) is the probability density function of time ¢ and velocity v, and @ is
the collision operator describing the binary collisions among particles, whose bilinear
form is given by

22 Qi = [ [ Bo=vdeostlat) ) - g(w) f(0)dodo.

In (2.2), o is a vector varying over the unit sphere S¢~1, v/ and v/ are defined as

V4. v — vy Vv v — vy
2.3 "= I = -
(23) vt ol vt oo,

and B > 0 is the collision kernel. In this paper we will consider the kernel of the form
(2.4) B(Jv — v.], cos0) = ®([v — v.|)b(cos ), cosh =2

whose kinetic part ® is a nonnegative function and whose angular part b satisfies
Grad’s cut-off assumption

(2.5) /Sdil b(cosf) do < 0.

To apply the Fourier—Galerkin spectral method, we consider an approximated
problem of (2.1) on a torus Dy, = [-L, L]%:

{8tf:QR<f7f)a t>0a UEDLM

(26) F(0.0) = (),

where the initial condition fO is a nonnegative periodic function and Q% is the trun-
cated collision operator defined by

Q™(g. )(v) = / / B(lq)b(o - @) [g(w) () — g(v — @) f ()] dordg
(2.7) Br /847

- /R /S 1ig1<r®(la)b(o - §) [9(v)) f(v') = g(v = q) f(v)] do dg,

where a change of variable v, — ¢ = v — v, is applied and the new variable ¢ is
truncated to a ball Br with radius R centered at the origin. We write ¢ = |q|¢ with
lg| being the magnitude and ¢ being the direction. Accordingly,

(2.8) o =y 119 —2\q|0, v, =v— g+ 9 +2IQ|U.
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In practice, the values of L and R are often chosen by an antialiasing argument [19]:
assume that Supp(f°(v)) C Bs; then one can take

3442

(2.9) R=25 L>>3"5
Given an integer N > 0, we then seek a truncated Fourier series expansion of f
as
N/2
(2.10) ftv) = fnlto)= > fr(t)eEFY e Py,
k=—N/2
where
(2.11) Py = span {ei%“ ~N/2<k< N/z} !

equipped with inner product

1 N
(2.12) (1.9 = G /D fgav

Substituting fy into (2.6) and conducting the Galerkin projection onto the space Py
yields

(2.13) {3th =PnQ (fn, fn), t>0, veEDr,

fN(O’U) = f]%(v)7

where Py is the projection operator: for any function g,

N/2

(214) 7)J\fg = Z gkei%k.’u7 gk = <g7elLk.’U>7
k=—N/2

f¥ € Py is the initial condition to the numerical system and should be a reason-
able approximation to f°. More discussion on the initial condition will be given in
section 2.1, which in fact plays an important role in the following proof.

Writing out each Fourier mode of (2.13), we obtain

dfk R

— = —N/2<k<N/2
(215) dt Qk) / = h = / 5

fx(0) = 17
with
(2.16) Qi = (Q(fn, fn) @ TEY), = (fR, ' EM).
Using the definition in (2.7) and orthogonality of the Fourier basis, we can derive that

N/2
(2.17) Q= > GUmM)fifm,
I,m=—N/2
l+m=k

!Note here k = (k1,...,kq) is a vector, —N/2 < k < N/2 means —N/2 < k; < N/2,j=1,...,d,

N/2 _ —N/2 N/2
and 3307 Ny T Dk — Ny 2k = N/2°
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where the weight G is given by

(2.18)

G(1,m) :/ / ®(|q|)b(o - §) {e*iﬁ(um)-qﬂﬁ\q\(lfm)-o fefi%m-q} do dg
Br JSd—1

_ / e—iEma [/ O(|g)b(o - q)(eiﬁ(lﬁ-m)‘(q—\qw) —1) do':| dg.
BR Sd—l

The second equality above is obtained by switching two variables ¢ <+ ¢ in the gain
part of G(I,m). In the direct Fourier spectral method, G(I,m) is precomputed since
it is independent of the solution. Then in the online computation, the sum (2.17) is
evaluated directly.

Note that the solution f to the original problem (2.6) is always nonnegative which
is the key to many stability estimates. However, the solution fy to the numerical
system (2.13) is not necessarily nonnegative due to the spectral projection which
constitutes the main difficulty in the numerical analysis. Luckily, by virtue of the
Fourier spectral method, mass is always conserved which provides some control of the
solution. Precisely, we have the following lemma.

LEMMA 2.1. The numerical system (2.13) preserves mass, that is,

(2.19) fn(t,v)dv = / I3 () do.
Dr, DL
Proof. Note that
N/2
(2.20) In(t,v) Z fult / TR du = (20)%fo (1),
Dr k=—N/2

where fj is the zeroth mode of the numerical solution and is governed by

(2.21) & fo = Q.

From (2.17), it is clear that Q{ = 0 since G(I,m) = 0 when [ + m = 0. This implies
fo remains constant in time, whose value is the zeroth Fourier mode of the initial
condition f$(v). 0

We now introduce some assumptions and notations that will be used throughout
the rest of this paper.

Basic assumptions on the truncation parameters and the collision
kernel.
(1) The truncation parameters L and R in (2.6) satisfy

(2.22) L>R>0.

Note that the choice (2.9) implies L > (3++1/2)R/4; hence the above condition
is satisfied.
(2) The kinetic part of the collision kernel (2.4) satisfies

(2.23) 11101 <R (VD] oo, ) < 00

Note that all power law hard potentials ®(Jv]) = |v|7 (0 < v < 1) as well as
the “modified” soft potentials ®(|v|) = (1 + |[v])Y (—d < v < 0) satisfy this
condition.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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(3) The angular part of the collision kernel (2.4) has been replaced by its sym-
metrized version,?

(2.24) [b(cos 8) + b(cos (7 — 0))] Lo<g<r /2

and satisfies the cut-off assumption (2.5).
Some notation. For a periodic function f(v) in D, we define its Lebesgue norm
and Sobolev norm as follows:

(2.25)

1/2

1/p
lesoon = ([ 1@0Pa) " Wlagon = | X 0000, |

lv|<k

where k£ > 0 is an integer and v is a multi-index. “per” indicates the function is

periodic and will not be included in the following for simplicity.

Except in section 3, we do not track explicitly the dependence of constants on
the truncation parameters R, L, dimension d, and the collision kernel B.

For a function f(v) in Dy, we define its positive and negative parts as

(2.26) frv) = max{f(v),0}, /7 (v) = max{—f(v),0}

vED],

sothat f=fT— f~and |f|=fT+ .

2.1. Assumptions on the initial condition. To prove our main well-posedness
and stability result, Theorem 4.4, we will assume that the initial condition f°(v) to
the original problem (2.6) is periodic and nonnegative and belongs to LN H(Dy) (in
fact L' can be removed since L*(Dr) C L'(Dy) due to boundedness of the domain).
For the initial condition f$(v) to the numerical system (2.13), we will require it to
lie in the space P and satisfy the following:

(a) Mass conservation:

(2.27) Iy () dov = f(v) do.
DL DL

(b) Control of L? and H! norms: for any integer N > 0,

(2.28) I3z < N0 cerys R laony < NN oy

(c) Control of L' norm: there exists an integer Ny such that for all N > Np,

(2.29) 1F R z2 oy < I NLr oLy

where C' > 1 is some constant whose value is of no essential importance. In
the following proof, we will take C' = 2 for simplicity.

(d) L? norm of fj(i,’f can be made arbitrarily small: for any ¢ > 0, there exists an
integer Ny such that for all N > Ny,

(2.30) £ Ne2epsy <&

2This symmetrization can readily reduce the computational cost by a half (integration over the
whole sphere is reduced to half sphere) so it also has important implications for numerical purpose;
see [9].
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Remark 2.2. An obvious choice is to take fy = Py f°. Condition (a) is satisfied
since it is equivalent to preserving the zeroth Fourier mode of the function. Condition
(b) is a direct consequence of Parseval’s identity. Condition (c¢) can be obtained by the
L? convergence of the Fourier series and by the fact that the L' norm can be controlled
by L? norm. Condition (d) can be proved at least when the uniform convergence of
the Fourier series is guaranteed, for which one may require additional continuity on
f°. For instance, f° is Holder continuous, or continuous plus bounded variation (in

fact BV can be removed since H'(Dy) c WH(Dy) Cc BV(Dy)).

Remark 2.3. Sometimes the initial condition f° may contain discontinuities; then
simply taking the Fourier projection of f° will generate undesirable oscillations (Gibbs
phenomenon). Hence a reasonable choice is to take a filtered version f$ = Sn f°,
where Sy is defined as the following: for any function g,

N/2

(2.31) Svg= > on(k)gre' ", g = (g, TFY),
k=—N/2

with o being the filter function; see, for instance, [11, Chapter 9]. Typically, the filter
won’t change the zeroth Fourier mode of the function and won’t amplify the remaining
Fourier modes; hence conditions (a) and (b) would be satisfied automatically. For
conditions (c) and (d) to hold, one needs some kind of convergence which depends
on the property of the actual filter. Without going into details, let us just mention
that there is a class of positive filters (e.g., the Fejér or Jackson filter [23]) which can
preserve the positivity of the function so that the condition (d) is trivially satisfied.
Condition (c) can be satisfied as well by using Young’s inequality and the fact that
the L' norm of the filter is exactly 1. However, the positivity-preserving filters may
come with the price of slower convergence (away from the discontinuity) compared
with other high order filters (e.g., the exponential filter [11]). Therefore, one could
take nonpositive high order filters, as long as they satisfy the conditions (¢) and (d).
It is worth emphasizing that the purpose of applying the filter here is merely to fix
the initial condition when f° is discontinuous so that our well-posedness and stability
proof still holds. This is in stark contrast to the filtering method used in [20] and [3],
where the filter is applied to the equation to preserve the positivity of the solution.

3. Some preliminary estimates on the truncated collision operator QF.
In this section, we prove some important estimates for the truncated collision operator
(2.7). Since its gain term and loss term possess quite different properties, we consider

Rt v) 1= < o-§)g(vl)f(v')dodg,
IRLACED L [ taer®lahbio - Do) /) do da

Q" (0.N0) = [ [ Naer® (o Dol - 0)f(0) dodg

separately whenever appropriate.

PROPOSITION 3.1. Let the collision kernel B and truncation parameters R and L
satisfy the assumptions (2.22), (2.23), (2.24), and (2.5); then the truncated collision
operators Q% (g, f) satisfy the following estimates: for 1 < p < oo,

(3.2) HQR’+(97 f)HLp(DL) < CE,L,d,p(B) ||g||L1(DL) Hf”LP(DL) )

where the constant CE7L7d7p(B) = Cl/p”b”Ll(Sd—l)||1|U‘SR@(‘UD||LM(DL), and
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(3.3) 197 (9, Nl oy < CrtrdB) 1912y 1 s

where the constant Cy 1 4(B) = C||b]| 1 (ge-1) Hl‘v|§R(I>(|v|)HLOO(DL).

In particular, for the whole collision operator QF(g, f), we have
(3.4 1Q™(9. Il ooy < CoatnB) gl cony 1 ooy -

Proof. The proof of the truncated gain term Q% (g, f) is similar to the usual
Boltzmann operator Q% (g, f) on RY. However, the right-hand side is not entirely
obvious as we need to restrict back to a bounded domain. Therefore, we follow [17,
Theorem 2.1] to give a complete proof of (3.2) (see the appendix). In fact, by carrying
out this carefully, one can see that the condition (2.22) is needed.

For the loss term, we write it as

(3.5) Q" (9. /)(w) = L (g)(v) f(v),
where L% is a convolution given by
(3.6)

L¥(g)(v) = b1 sa-1) /Rd Lig<r®(|a)g(v—q) dg = [1bll L1 (ga-1) (Ljo1<r®(JV]) * g(v).

Then

(3.7)
||QR’_(g,f)||Lp(DL) < ||LR(9)||Lx(DL) ||f||LP(DL)

= 1]l 1 ga-1) [[ (Lo <r®(0]) * 9| o o,y [l 20 D)
<[l L1 (sa-1) H1|’U|SR(I)(|U|)HLOO(DL) ||9||L1(BﬁL+R) Iflle DLy
< ClIbllpr g1 [ 1101 r®AOD]] oo, 9l 22 00y 1 e (D2

= CI;,L,d(B) ”gHLl(’DL) ”f“Lp(DL) )

where we used R < L in the third line and the fact that g is a periodic function on
Dy, in the fourth line. ad

PROPOSITION 3.2. Let the collision kernel B and truncation parameters R and L
satisfy the assumptions (2.22), (2.23), (2.24), and (2.5); then the truncated collision
operator QR (g, f) satisfies the following estimate: for integer k > 0,

(3.8) 1@ (9. M rp,) < CrranB) gl o,y 1l ieoy) -

Proof. First of all, (3.8) when k& = 0 is a direct consequence of (3.4) by taking
p = 2 and noting that ||g[[;1(p,) < (2L)%/? l9llr2(py)-
To prove (3.8) for k > 0, note that the collision operator satisfies the Leibniz rule:

(3.9) Qg ) =Y (:)QR(ﬁﬁgﬁZ‘“ )

n<v

which is a consequence of the bilinearity and the Galilean invariance of the truncated
collision operator Q% (g, f)(v — h) = Q®(g(v — h), f(v — h)). Then we have
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(3.10) Q% (g: NiFx(py)

2
v 2 v v
= > 185Q%(9. Nzaony = 2 |22 (“)QR(%,&” “f)
v|<k v|<k ||n<v L*(Dy)
2
v _ 2
<3 (1) Tl Nlinp,
lv|<k p<v <y
2
v S
= CgsLsd:U(B) Z Z (u) Z Ilagg”i%l),;) ”81: 'uf”Lz(DL)
|v|<ku<v <y
/2 2 2
< Cr L,ax(B) lgllze ) 1 f ey ) -
where we used the Cauchy—Schwarz inequality in the second line. a

4. Main result: Well-posedness and stability of the method. In this
section, we establish the well-posedness and stability of the Fourier—Galerkin spectral
method (2.13) on an arbitrary bounded time interval [0,T]. The main strategy of the
proof is as follows: In section 4.1 we prove some L2 and H* estimates of the solution
under the a priori L! bound of fy, among which the key result is the L? estimate of
the negative part of the solution (Proposition 4.2). Proposition 4.3 is a local existence
and uniqueness result over a small time interval [tg, tp +7]. Finally, the main result is
presented in Theorem 4.4, where we show that when N is large enough the negative
part of the solution can be controlled over time [0,7]. Due to mass conservation, this
consequently implies that the initial L' bound of the solution can be restored at time
7. Therefore, we can repeat the procedure iteratively to build the solution up to final
time T (the estimates on N and 7 are done carefully at the beginning so that the
same values can be used in the following iteration).

4.1. Propagation of the L? estimate of f,, under the a priori L! bound
of fn. We first establish the L? and H* estimates of fy under the a priori L' bound
of fy. This result is not new, and the proof is similar to [6, Lemma 4.2]. The main
difference is that we closely track the dependence in the case of H! which will be
useful in the following estimate.

PROPOSITION 4.1. Let the collision kernel B and truncation parameters R and L
satisfy the assumptions (2.22), (2.23), (2.24), and (2.5). For the numerical system
(2.13), assume that the initial condition f € H*(Dy) for some integer k > 0 and
that the solution fy has a L' bound up to some time to:

(1) vie 0t 1wl < M:
then there exists a constant K, depending on ty, M, and ||er||Hk(DL) such that
(12) Veetod i@l oy, < K (tor M, 15 o)

In particular, for k=0 and k = 1, we have

(43) KO _ etuDoM’ ||f1%||L2(DL) , Kl = etuDl(M’—i-Ko) (||er||H1(DL) —+ Dg) s

where Dy, D1, Dy are constants depending only on the truncation parameters R, L,
dimension d, and the collision kernel B.
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Proof. The proof is based on mathematical induction.
Step (i): We first prove (4.2) holds for £ = 0. Multiplying both sides of (2.13) by
fn and integrating over Dy, yields

(4.4)

33 e = [ PNQ G ) o < [Pa@ U, 1) oy I 2o
< Q% (n. I3 ooy 15l 22oy) < Dollfwllza oy 1N 172(o,)
< D()MHfNHiz(DL)’

where we used (3.4) and the assumption (4.1). Thus we have

d
(4.5) at ||fN||L2(DL) < DoMHfN”m(DL) :
By Gronwall’s inequality, we further conclude that
(4.6) 1 Ol ony < %M [ oy V€ 0.t

Step (ii): We then assume that (4.2) holds for some k& > 0 and proceed to prove
that it holds also for k + 1. First of all, taking the vth derivative w.r.t. v on both
sides of (2.13) gives

(4.7) 0 (04 fn) = Oy PNQT(fn, fn) = POy Q™ (fn, f)-
Multiplying (4.7) by 0% fx and integrating over Dy, then yields

1d

iolliamy = [ PrOQ (. f)0% iy do
L
< HaZQR(vafN)HL?('DL) ||6zl)/fNHLZ(DL) .

By adding (4.8) with |v| < k+1 altogether and using the Cauchy—Schwarz inequality,
we find that

1d
(4.9) >q ||fNH§_Ik+1(DL) < HQR(fN’ fN)HHk+1(DL) HfN||Hk+1(DL) )
ie.,
d R
(4.10) & ||fNHHk+1('DL) < HQ (fN)fN)HHk+1(DL).

On the other hand,
(4.11)

1QR (s 1) s oy = QT I iy, + D QT ns 3 20,
|v|=k+1
2

= 1% (s i) oy + D Z(”)QR(aﬁfN,az*‘fN)

v|=k+1 ||p<v L2(DL)

< Q" Un i) ey + D CEDNQR@L w007 ),

lv|=k+1  p<v
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= Q7 (ns ) oy, + D c§< o Q™M@ v, 0 ) 2y

lv|=k+1 o<p<v

+ HQR(fN7811)/fN)Hi2(fDL) + HQR(ast7 fN)Hi2(DL)>

<l + 3 cg( S G20 ey 0" Fx o,

lv|=k+1 0<p<v

v 2 v 2
+ C3 Nl Fi oy 107 nllz2p,y + C310% Inll7epy) |fN||L2(DL)>

< C3 Nl fnl7nmy) + Ca NN (o, + 1N T2, ) 1 ks 0,
< CEK} + C§(M? + K7) HfN”iI’Hl(DL) )
where in the third-to-last inequality, we used (3.8) in the first line and (3.4) in the

second line. In the last inequality, we used the induction hypothesis.
Then (4.10) becomes

d
(4.12) T [N grnsrp,y < Co(M + Ko) ([Nl grisr(p,y + C5 K-
By Gronwall’s inequality, we have
CsK
Co(M+Ko)t 0 50k —
(113) vl < (R + cirs 7es) = B

vVt € [0, to].

This completes the induction argument for k£ + 1.
In particular, the explicit formula of Ky is given in (4.6), and the formula of K
is implied by (4.13) when k = 0. d

We now proceed to estimate the negative part of the solution, which relies on a
careful estimate of both gain and loss terms of the collision operator. This estimate
will play a key role in the main theorem.

PROPOSITION 4.2. Let the collision kernel B and truncation parameters R and L
satisfy the assumptions (2.22), (2.23), (2.24), and (2.5). For the numerical system
(2.13), assume that the initial condition f% € H'(DyL) and that the solution fn has
a L' bound up to some time ty:

(4.14) vt e [0,t0], [fNOpip,) < M;
then
(4.15) vt e [0,t0], N2,y < Ko, 1fNOlgip,) < K,

and fy, the negative part of fn, satisfies

DyK? )

- toD3(M+Ko) 0,—
(4.16) vt € [0, to], HfN(t)HLZ(DL) Set ’ (HfN ‘ 2(p)  MN

where Kg, Ky are given in (4.3), and D3 and Dy are constants depending only on the
truncation parameters R, L, dimension d, and the collision kernel B.
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Proof. First of all, since f% € H'(Dr), Proposition 4.1 (when k = 1) directly
yields (4.15).

Equipped with this regularity, we now estimate the negative part of fy. Note
that fx = f — fa [IN] = fi + fn- We first rewrite (2.13) as

(4.17) Oifn = Q™ (fn, fn) — Q™ (fv, fn) + En(fn)

with

(4.18) En(fn) = PnQ"(fn, In) — Q% (fn, fn)-
For the gain term, we have

(4.19)

QU (s In)InLign<oy = QT (N = fns 1§ = TN N L{sn<0)
= [QFT (5, ) — QF (SN fy) = QT (. £3) + QFF (fx f3)] Fnlsu<oy
= [—QFH (S, ) + QT (F4 fn) + QT (fn, F3) = Q7 (fn o f0)] [
< [QFF (i f3) + @ (fx f)] fy-

Hence
(4.20)

/D Q™ (fs ) fnLgy <oy dv < /D [QF (% f3) + Q@ (. £ £y dv
< QB fx3) + Q% (s S o ooy 18 | o0
< Co |15l s oy 15 2oy + Co 15 oy 15 oy 18 N 2y

< Collinllr oy 15 1520y + Co 1INy 15 2y -

where we used the estimate (3.2) for the gain term.
For the loss term, we have

(4.21)  =Q"™ (fn, fn)fnLipy<oy = —LE(fN) N fnlipy <oy = —LR(fN) i fx
=—Q" (N, fn)In>

where we used the structure of the loss term; see (3.5). Hence

= | QP Un N Loy do = = | QI (s fy) i dv

(4.22) < 1Q™ (fn Fi)ll 2o | v |l 220

< Cillfnln 1x e, ) -

where we used the estimate (3.3) for the loss term.
For the remainder E, we have

||EN(fN)||L2(DL) = ”,PNQR(vafN) - QR(fNafN)HLZ(’DL)

C
S 1QFUn, i) s s

Co
< HfN”Hl(’DL)?

IA

(4.23)

A
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where we used the well-known property of the projection operator and estimate (3.8).
Hence

En(fn)fnlipy<oydv = — Ex(fn)fydv

DL DL

(4.24) < BN ()2, 18] 2o,

G

< § il on 15 2o,

For the left-hand side, we have

(4.25) fnlify<oyOifn = _f];at(f]t —fn) = —InQpy>0 00N —0i f ) = [nOefn-

Therefore, multiplying fn1s, <o} to both sides of (4.17) and integrating over
Dy, together with (4.20), (4.22), and (4.24), yields

1d, ._ 2
(426) 5313 3ams < [(Co+ D Iinllisoyy + Colnll iz 151152 co,)

C _
+ 3 130 o0 15 2y

ie.,

d ., _ _
427)  Zlfxllezo,) < {(Co +C) 1wl g o,y + Co ||fN||L2(DL):| 132,

Gy

+ N ”fN”?—Il(”DL)

CoK?
o T TN

< [(Co+ C1)M + CoKol || x| 1

where we have taken into account the L' bound and L2, H' bounds of fy obtained
earlier. By Gronwall’s inequality, we finally obtain the desired estimate (4.16). |

4.2. Local well-posedness of the solution fx on a small time interval
[to,to + T]. To prepare for the main theorem, we establish a local existence and
uniqueness result and some stability bounds of the solution.

PROPOSITION 4.3. Let the collision kernel B and truncation parameters R and
L satisfy the assumptions (2.22), (2.23), (2.24), and (2.5). Assume that the initial
condition fO(v) to the original problem (2.6) belongs to L* N L*(Dyr), and define

(4.28) Myo, = HfOHLl(DL)’ Myo .y = HfOHL?(DL)'

For the numerical system (2.13), assume that we evolve it starting at a certain time
to and that the initial condition satisfies

(4.29) 1N (to)lipy) < 2Mpo 1, |1 fn(to)llr2ipy) < €2P0MroaT Mo

then there exists a local time T such that (2.13) admits a unique solution fy =
fn(t,) € LY N L3(DL) on [to,to + 7). In particular, one can choose

1
~ 2(DsMsy + DgMy)

(4.30) T with My =4Mpo,, My = 2e*PoM0aT M po o,
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such that

(4.31) vt € [to, to+ 7], IfIN@Dlrpy) <My IIN@L2py) < M2,

where T 1is the final prescribed time, Dy is the constant appearing in (4.3), and Ds,
Dg are constants depending only on the truncation parameters R, L, dimension d,
and the collision kernel B.

Proof. We construct the solution by a fixed point argument.
Given My, Ms > 0 and small enough time 7 > 0 to be specified later, we define
the space x by

(4.32) x= {f € L= ([to,to + 7 L' N L*(Dr)) = sup | f (L) pap,) < M,
tE[to,to-‘rT]

sup (e < Mz},
tE[to,to-‘rT]

which is a complete metric space with respect to the induced distance

(4:33) df f)=||f -1

fit.) = ft. )|

= sup

X t€[to,to+7] L*(Dyr)

For any fy € x, we define the operator ® as
t
(4.34) O(fn)(t,v) = fn(to,v) + | PnQT(fn, fn)(s,v)ds Vit € [to,to + 7).
to
We proceed to show that the mapping ® has a unique fixed point in x.

Step (i): We first show that ® maps y into itself: ®(x) C x. For any fy € x and
te [to,to +T],

(4.35)
t
H‘I)(fN)(t»')HLl(DL) < HfN(tO)HLl(’DL) +/t ||PNQR(fN7fN)(57')HLl(DL)dS

< fnCo)llpr o,y + T(2L)%? te[tSIfser ] HPNQR(fN>fN)(t7 ')Hm(m)

<N ()l 1 (pyy +7CR L.a2(B)(2L)Y?  sup (”fN(tv')“Ll(DL)HfN(ta')||L2(DL))

tE[to,to+7]

< fnColllpip,) + 7Ch,1.4.2(B)(2L)"? My Mo,

where we used (3.4). Similarly,

(4.36)
90 ) < L),y + | [P@ 53005 2o, 0
< ||fN(t0)||L2(DL) +7 sSup HPNQR(fNafN)(tV')HL2(DL)

te(to,to+7]

< fn@o)llr2(p,) + TCR,La2(B)  sup (HfN(t7 Moy ”fN(ta')HL?(DL))

tE[to,to+7]

<fnCGo)ll2(p,) + TCR.L,a2(B) My Ms.
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Step (ii): We next show that ® is a contraction mapping on x. For any fy, fx € x
with the same initial datum fy(¢o), we have

(4.37)
[owm) -] = _sw e -edoe],,,

<o [ PeQ g it ) = PeQ (G o)

<7 sw QN ) - @ e,

S (ARSI LT AR SICET W

<7CR,r,42(B) sup <HfN _fN‘

t€(to,to+7]

e P A DN T ATy

LQ(DL)>

Therefore, if we define D5 = CRyL’dwg(B)(QL)d/2, D¢ = CRr,1,4,2(B) and choose
M, Ms and 7 as given in (4.30), we have

LY(Dr)

In(t) = F(t, )]

< 7Cr.1.a2(B)((2L)"? M + M) ( sup

t€(to,to+T]

< 7(Cr.1.a,2(B)(2L)"*Ms + Cr.1.a.2(B)M;)

-5,

(4.38) | fn(to)|lps +7DsMi Mo < My, | fn(to)l| 2 + 7D My Mo < Mo,
T(D5M2 + D6M1) < 1.

So @ : x — x is a contraction mapping. According to the Banach fixed point theorem,
(2.13) admits a unique solution on [tg, tg + 7]. O

4.3. Well-posedness and stability of the solution fn on an arbitrary
bounded time interval [0,T]. We are ready to present our main result.

THEOREM 4.4. Let the collision kernel B and truncation parameters R and L
satisfy the assumptions (2.22), (2.23), (2.24), and (2.5). Let the initial condition
fO(v) to the original problem (2.6) and the numerical solution f%(v) to the numerical
system (2.13) satisfy the assumptions specified in section 2.1, i.e., fO(v) is periodic
and nonnegative and belongs to L* N HY(Dy,), and f¥ satisfies (2.27)—(2.30). Define

(439) Mfo,l = HfOHLl(DL)a MfO,Q = Hf0||L2(DL) .

Then there exists an integer Ny depending on the final time T and initial condition
f° such that for all N > Ny, the numerical system (2.13) admits a unique solution
fn = fn(t,-) € L'nHY(DL) on the time interval [0, T]. Furthermore, for all N > Ny,
fn satisfies the following stability estimates:

(4.40) vt € [0,T), IfinOllpi(py) < 2Mpoa, [N ) 2p, ) < 7M1 T Mo o,

where Dg is the constant appearing in (4.3).

Proof. The proof is based on iteration. Given T', Myo 1, and Mo o, we first choose
7 according to (4.30). Then we define t = 0,7,27,...,n7,... until we cover the final
time 7. Without loss of generality, we assume T is some integral multiple of 7.
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Step (1): At initial time ¢ = 0, we first choose N such that

(4.41) IF% 2y < 2Mjo s,

which is possible due to the condition (2.29). Also we have ||f$||r2(p,) < |1/l 2p,) <
eQDOMf"JTMfog due to the condition (2.28). Then by Proposition 4.3, there exists a
unique solution fy(t,-) € L' N L?(Dy) over the time interval [0, 7], and

(4.42) vte [0,7], |Ifn®)llerpy) < 4Myo .

Using this L' bound and that f$ € H'(Dy) (due to (2.28)), we can invoke Proposi-
tion 4.2 to derive that

(4.43) vte0,7], /N2,y < Ko(r), vl o) < KailT)
and
(4.44)
_ D,K3(7)
- TD3(4M ;0 1 +Ko(7)) , Haa\r)
Ve 0, [ Ollgam,, < P (157 gy * )

with
(4.45)

Ko(r) i= 72100 Myo 5, [y (7) = e D200t Ko 0) (0] D)

Note that we relaxed the bounds Ky, K7 a bit (so that they depend only on f° but
not f$) using the condition (2.28) again.
On the other hand, noticing that |fx| = 2fy + fn, we have

1N @Ol or) = /D IfN(tﬂf)|01U=2/D fnto)ydv+ [ fr(tv)do

Dr
4.46 _
(4.46) = 2|5 (O)llz () +/D £0(v) dv
L
< 22L)2| £ (1)l 2oy + Mio.r,

where we used the important mass conservation property in Lemma 2.1 and (2.27) in
the second line.

Therefore, if we can control || f5 (t)||L2(p, ), then || fx (t)| L1 (p,) Will be controlled.
Thanks to the estimate (4.44), we can simply choose N large enough such that the
following is satisfied:

(4'47) ]C = eTD3(4Mf0‘1+KO(T)) (Hf](\);’ D4K12(T)> < Mfo,l

L2py) | AMpo N ) = 2020y

then we have
(448) vVt € [O,T], HfN(t)HLl(DL) < 2Mf0)1.

Note that (4.47) is possible due to the condition (2.30). Also, it is easy to see that
the quantity K is an increasing function in time. Hence, if 7" in (4.47) is replaced by
some tg < T, (4.47) still holds.

Combining the above choice of N with the one at the beginning to satisfy (4.41),
we have found an integer Ny, depending only on the final time T and initial condition
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19, such that for all N > Np, (2.13) admits a unique solution fn(t,-) € L' N HY(Dy)
on [0, 7] which satisfies (4.48).
Step (ii): Generally at time ¢ = n7 (n > 1), we have

(4.49) vt e [0,n7], fn(t) € L'NHYDL), |fnE)lips) < 2Mjo ;.
Then by Proposition 4.1 (with k£ = 0), we have
(450) Vt € [07 m‘], HfN(t)”Lz(DL) S 62D0M.fo>1n‘r||f]%||L2('DL) S 62D0M.f0,1TMf072.

Then by Proposition 4.3, there exists a unique solution fy(t,-) € L' N L?(Dr) on
[nT, (n 4+ 1)7] and

(4.51) Vit € [m', (n-i—l)T], ||fN(t)||L1(DL) < 4Mf071.

Using this L' bound and that f$ € H'(Dy), we can invoke the Proposition 4.2 over
the interval [0, (n + 1)7] to derive that

(4.52)
vte[0,(n+1)7], [[fn@lle2oy) < Kol(n+1)7), vl ) < Kil(n+1)7)

and

(4.53) vt e [0, (n+1)7], R O] 12(p,

< o HDTDa(AM o+ Ko((n+1)7)) <“fﬁ_‘

DyK2((n+1)7) <K
L2(Dy) 4Mypo 1 N -7

i.e., the same choice of N chosen above would still make
(4.54) vte [0,(n+1)7], |[fn®)llzrpy) < 2Myo ;.

That is, at time ¢t = (n + 1)7, we are back to the situation (4.49) at ¢t = nr.
Repeating step (ii) until ¢ = T, we can show that there exists a unique solution
In(t,-) € LN HY(Dy) on [0,7T], and

(455) VEe0,T], Ifx(®)loi oy < 2Mos.
Finally, by Proposition 4.1 (with k& = 0) again, we obtain

(4.56) Vi€ [0,T],  [Ifn (0]l 2 (p,y < €PN Myo . 0

5. Convergence and spectral accuracy of the method. With the well-
posedness and stability of the numerical solution established in the previous section,
the convergence of the method is straightforward.

In this section, we assume that the initial condition f°(v) to the original problem
(2.6) is periodic and nonnegative and belongs to L' N H*(Dy,) for some integer k > 1.
In fact, it has been proved in [6, Proposition 5.1] that there exists a unique global non-
negative solution f(t,-) € H*(Dr). Furthermore, || f(t)|| zx(p,) < Cr(f°) for allt > 0,
where C}, is a constant depending only on the initial condition.

For the numerical system (2.13), we consider the initial condition f = Py f° for
simplicity. According to the discussion in Remark 2.2, we further assume that fO is,
say, Holder continuous, so that the four conditions (2.27)—(2.30) are satisfied. Then
by Theorem 4.4, there exists a unique solution fxy(t,-) € L' N H*(Dy) over the time
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interval [0, 7. Furthermore, ||fn(t)|[z2(p,) < Co(T, f°) for all t € [0, T], where Cj is
a constant depending only on the final time 7" and initial condition f°.
Define the error function

(5.1) en(t,v) = Pnf(t,v) — fn(t,v).

We can show the following.

THEOREM b5.1. Let the collision kernel B and truncation parameters R and L
satisfy the assumptions (2.22), (2.23), (2.24), and (2.5). Choose Ng such that it
satisfies the condition in Theorem 4.4; then the Fourier spectral method is convergent
for all N > Ny and exhibits spectral accuracy. In particular, we have
C(T, f°)

N VN > Ny,

(5.2) vt € [0,T], llen(®)lr2(p,) <

where C is a constant depending only on the final time T and initial condition f°.

Proof. We first project the original problem (2.6) to obtain

(53) { OPnf =PnQE(f, f),

Pnf(0,0) = Pn f°.
Subtracting (2.13) from (5.3) and noting f$ = Py f°, we have

(5.4) {5t6N — Pu (QP(F. £) = Q" (. f))
en(0,v) =0.

Multiplying (5.4) by ey and integrating over Dy, we have

d
%E HeN||2Lz(DL) - /DL Py (Q(f, ) — QT (fn, fn)) en dv

(5.5) < || Py (QF(f, ) — Q% (fn, fN))HLz(DL) lenllzz(p,) -

d
= & H6N||L2(DL) < HQR(f7 f) - QR(fN7fN)||L2(DL) .

Note that
1Q%(f. 1) = Q%(ns ) 12y
56) < QU = s Dllzaoyy + Q7w f = 1)1,
<GS = Inllion (oo, + 1w 2o,
<SCUT, ) = Inlleepy) -
Also
1 = Inlliao, < I1F = Prfllia, + 1PN S = Inllia,)
(5.7) < % +llenllpzp,)
< Ga(f?)

S TNE + llenllzz(p, ) -
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Therefore, we have

d 03(T7 fO)
(5.8) a ||eN||L2(DL) < Cu(T, [°) HeN”Lz(DL) + T NE

which implies

) Cs(T, f°
69 ¥ e0.T) lenOllpy < T (len O, + g n o )

Since en(0,v) = 0, we finally obtain the desired result in (5.2). d

Appendix: Proof of estimate (3.2) for the truncated collision operator
Q™+ on a bounded domain. By duality,

(810) Q70D i,y =50 [ Q70 )T s 191, < 1}

With the pre-post collisional change of variables, namely, (v, v,,0) — (v, v
which has a unit Jacobian, we can obtain

I U=V )
*) Jo—wv,]/?

(A.11)
QR’+(g,f)( )¥(v) dv

/DL /R (/S Lo, j<n® (v — va)b(o - (v = w))\lf(v')da) 9(0)f(v) dv, dv
B /D /Bf(/g Lmvn <r® (0 = v blo - (1=0.)) () dU)g(v*)f(v) du, dv,

where the second equality is obtained by noting that |v.| < |v| 4+ |v — vs| and that
v € D, and |v — v, < R.
Then, we define the linear operator S by

(A12) s90) = [ Qa0 (1) do

such that (A.11) can be written as

(A.13)
/ Q™ (g, )(w) () dv = /
Dr

B\/§L+R

9(0) ( FOr S D)) o) o,

where 7, f(v) := f(v —h).
We shall study the operator S in L' and L*> norms. Denote v = ”H 7. then
we have

(A.14) [ot] < |vl.
Then
(A.15) [1S¥|| Lo (pr) < ([l sa-1) Lo <RV 2o (1) ¥ | Loe (55, ) -
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Also
(A.16)
[S¥L1(p,) < ||1|v\gR<I>(\v|)||Loe<DL>/ / b(o - )
Dy Jsd—1

\IJ(U+)‘ do dv
<1y <r®(v) Lo (0 )/ / b(cos 6) | W (v )| 2di_ldadﬁ
- = r By, Jsi-1 cos?6/2
< C[bll 1 sa-1) Lo <@ (V)| 2o (0 1) ¥ 218 s, ) -

By the Riesz—Thorin interpolation, we deduce

(A.17) 1S9 2o (1) < Cf gy (BT 1 1<p<oo,

B z1)

where CEL,d’p, (B) = Cl/p/||bHL1(Sd—1)||1‘U|§R¢(|U|)HLOO(DL). Using this inequality in
(A.13), we have

(A.18)
A Q" (g, f)(v)¥(v) dv

<[ et (f (7. S 9)0) @) av.

<[ 190 W ooy 70 S ), e
B\/EL-%—R
<[ 9 sy 70 ST D)l ey
B\/EL+R
= [ 100 1Ny IS D)l ey e
B zrir
— [ 1911y 18 W), o
B\/§L+R
<Chuan®) [ 9@ ancoyy 170 Wl 5, 0
B\/§L+R
<Chrap® [ 190y 15, 5,
B\/§L+R

= Chrap B 9l s 5, o) W o) ¥l s,
< Chi1ap B9 o) 1 ooy 191l 0,
< Chrap Bl o,) 1l Lo,y

where the second equality is obtained by noting Supp(S¥) C Br C Dy, since R < L,
and the second last line is obtained by noting that both g and ¥ are periodic functions
on Dy.

Hence we proved the estimate (3.2).
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