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A NEW STABILITY AND CONVERGENCE PROOF OF THE
FOURIER--GALERKIN SPECTRAL METHOD FOR THE SPATIALLY

HOMOGENEOUS BOLTZMANN EQUATION\ast 

JINGWEI HU\dagger , KUNLUN QI\ddagger , AND TONG YANG\ddagger 

Abstract. Numerical approximation of the Boltzmann equation is a challenging problem due to
its high-dimensional, nonlocal, and nonlinear collision integral. Over the past decade, the Fourier--
Galerkin spectral method [L. Pareschi and G. Russo, SIAM J. Numer. Anal., 37 (2000), pp. 1217--
1245] has become a popular deterministic method for solving the Boltzmann equation, manifested by
its high accuracy and potential of being further accelerated by the fast Fourier transform. Despite its
practical success, the stability of the method was only recently proved in [F. Filbet and C. Mouhot,
Trans. Amer. Math. Soc., 363 (2011), pp. 1947--1980] by utilizing the ``spreading"" property of the
collision operator. In this work, we provide a new proof based on a careful L2 estimate of the negative
part of the solution. We also discuss the applicability of the result to various initial data, including
both continuous and discontinuous functions.
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convergence, discontinuous, filter
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1. Introduction. The Boltzmann equation is one of the fundamental equations
in kinetic theory and serves as a basic building block to connect microscopic Newtonian
mechanics and macroscopic continuum mechanics [4, 22]. Despite its wide applica-
bility, numerical approximation of the Boltzmann equation is a challenging scientific
problem due to the complicated structure of the equation (high-dimensional, nonlin-
ear, and nonlocal). As such, the particle based direct simulation Monte Carlo method
[2] has been widely used in various applications for its simplicity and low computa-
tional cost. Nevertheless, the stochastic method suffers from slow convergence and
becomes extremely expensive when simulating nonsteady and low-speed flows.

Since the pioneering work [18, 19], it has been realized that the Fourier--Galerkin
spectral method offers a suitable framework to approximate the Boltzmann colli-
sion operator. First of all, it is a deterministic method and provides very accurate
results compared with stochastic method. Secondly, the Boltzmann collision oper-
ator is translation-invariant, and the Fourier basis exactly leverages this structure.
Thirdly, after the Galerkin projection, the collision operator presents a convolution-
like structure, which opens the possibility to further accelerate the method by the
fast Fourier transform [16, 9]. Because of the above reasons, over the past decade, the
Fourier spectral method has become a very popular deterministic method for solv-
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614 JINGWEI HU, KUNLUN QI, AND TONG YANG

ing the Boltzmann equation and related collisional kinetic models; see, for instance,
[21, 8, 7, 14, 15] or the recent review article [5].

As opposed to its practical success, the theoretical study of the Fourier spectral
method is quite limited, largely because the spectral approximation destroys the pos-
itivity of the solution, yet the positivity is one of the key properties to study the
well-posedness of the equation. In [20], a positivity-preserving filter was applied to
the equation to enforce the positivity of the solution. As a result, the stability of the
method can be easily proved. However, the filter often comes with the price of sig-
nificantly smearing the solution (hence destroying the spectral accuracy) and should
be used only when the solution contains discontinuities (to suppress the oscillations
caused by the Gibbs phenomenon). Recently, a stability proof for the original Fourier
spectral method was established in [6], where the authors provide a quite complete
study of the method including both finite and long time behavior. The key strategy
in [6] is to use the ``spreading"" or ``mixing"" property of the collision operator to show
that the solution will become everywhere positive after a small time. Motivated by
this work, we present in this paper a different well-posedness and stability proof. The
main difference from [6] lies in that, instead of requiring the solution to be positive
everywhere, which is a stronger condition to achieve, we show that the L2 norm of
the negative part of the solution can be controlled as long as it is small initially. In
other words, the solution is allowed to be negative for the method to remain stable.
Therefore, our strategy does not rely on any sophisticated property of the collision op-
erator and provides a simpler proof. In addition, we quantify clearly the requirement
on the initial condition for the method to be stable, which includes both continuous
and discontinuous functions.

We mention another line of research which develops the conservative-spectral ap-
proximation for the Boltzmann equation [10]. Apart from apparent differences (the
Fourier--Galerkin method considered in this paper is based on domain truncation and
periodization, while the method [10] is based on Fourier transform, and no periodiza-
tion is performed), a conservation subroutine is added to restore the mass, momen-
tum, and energy conservation. As a consequence, the method is able to preserve the
Maxwellian distribution as time goes to infinity. The stability and convergence of the
method were recently established in [1], where the Fourier projection is only applied
to the gain part of the collision operator. In contrast, both gain and loss terms are
projected in our method; hence the loss term does not possess a definite sign.

The paper is essentially self-contained. In section 2, we briefly review the Fourier--
Galerkin spectral method for the spatially homogeneous Boltzmann equation. After
that, we discuss the basic assumptions (e.g., the collision kernel and truncation pa-
rameters) used throughout the paper. The assumptions on the initial condition are
addressed in section 2.1, which will play an important role in proving the main re-
sult. In section 3 (and the appendix), we provide some preliminary estimates on the
truncated collision operator. These are known results in the whole space, but some
subtle differences appear in the torus. Section 4 presents our main result. We first
conduct a L2 estimate of the negative part of the solution and then prove a local
existence/uniqueness result. Finally, the well-posedness and stability of the method
on an arbitrary bounded time interval are established in section 4.3 (Theorem 4.4).
Facilitated with the stability result, the paper is concluded in section 5 with a straight-
forward convergence and spectral accuracy proof of the method.

2. Fourier--Galerkin spectral method for the spatially homogeneous
Boltzmann equation. In this section, we review the Fourier--Galerkin spectral
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STABILITY OF SPECTRAL METHOD FOR BOLTZMANN EQUATION 615

method for the spatially homogeneous Boltzmann equation. The presentation follows
the formulation originally proposed in [19] which is the basis for many fast algorithms
developed recently [9, 12, 13]. Here we limit the description to the extent that is
sufficient for the following proof. At the end of the section, we discuss the basic as-
sumptions used throughout the rest of the paper, in particular, the assumptions on
the initial condition.

The spatially homogeneous Boltzmann equation reads

(2.1) \partial tf = Q(f, f), t > 0, v \in Rd, d \geq 2,

where f = f(t, v) is the probability density function of time t and velocity v, and Q is
the collision operator describing the binary collisions among particles, whose bilinear
form is given by

(2.2) Q(g, f)(v) =

\int 
Rd

\int 
Sd - 1

B(| v  - v\ast | , cos \theta )[g(v\prime \ast )f(v\prime ) - g(v\ast )f(v)] d\sigma dv\ast .

In (2.2), \sigma is a vector varying over the unit sphere Sd - 1, v\prime and v\prime \ast are defined as

(2.3) v\prime =
v + v\ast 

2
+

| v  - v\ast | 
2

\sigma , v\prime \ast =
v + v\ast 

2
 - | v  - v\ast | 

2
\sigma ,

and B \geq 0 is the collision kernel. In this paper we will consider the kernel of the form

(2.4) B(| v  - v\ast | , cos \theta ) = \Phi (| v  - v\ast | )b(cos \theta ), cos \theta =
\sigma \cdot (v  - v\ast )

| v  - v\ast | 
,

whose kinetic part \Phi is a nonnegative function and whose angular part b satisfies
Grad's cut-off assumption

(2.5)

\int 
Sd - 1

b(cos \theta ) d\sigma < \infty .

To apply the Fourier--Galerkin spectral method, we consider an approximated
problem of (2.1) on a torus \scrD L = [ - L,L]d:

(2.6)

\Biggl\{ 
\partial tf = QR(f, f), t > 0, v \in \scrD L,

f(0, v) = f0(v),

where the initial condition f0 is a nonnegative periodic function and QR is the trun-
cated collision operator defined by

QR(g, f)(v) =

\int 
\scrB R

\int 
Sd - 1

\Phi (| q| )b(\sigma \cdot \^q) [g(v\prime \ast )f(v\prime ) - g(v  - q)f(v)] d\sigma dq

=

\int 
Rd

\int 
Sd - 1

1| q| \leq R\Phi (| q| )b(\sigma \cdot \^q) [g(v\prime \ast )f(v\prime ) - g(v  - q)f(v)] d\sigma dq,

(2.7)

where a change of variable v\ast \rightarrow q = v  - v\ast is applied and the new variable q is
truncated to a ball \scrB R with radius R centered at the origin. We write q = | q| \^q with
| q| being the magnitude and \^q being the direction. Accordingly,

(2.8) v\prime = v  - q  - | q| \sigma 
2

, v\prime \ast = v  - q + | q| \sigma 
2

.
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616 JINGWEI HU, KUNLUN QI, AND TONG YANG

In practice, the values of L and R are often chosen by an antialiasing argument [19]:
assume that Supp(f0(v)) \subset \scrB S ; then one can take

(2.9) R = 2S, L \geq 3 +
\surd 
2

2
S.

Given an integer N \geq 0, we then seek a truncated Fourier series expansion of f
as

(2.10) f(t, v) \approx fN (t, v) =

N/2\sum 
k= - N/2

fk(t)e
i \pi Lk\cdot v \in PN ,

where

(2.11) PN = span
\Bigl\{ 
ei

\pi 
Lk\cdot v

\bigm| \bigm| \bigm|  - N/2 \leq k \leq N/2
\Bigr\} 
, 1

equipped with inner product

(2.12) \langle f, g\rangle = 1

(2L)d

\int 
\scrD L

f\=g dv.

Substituting fN into (2.6) and conducting the Galerkin projection onto the space PN

yields

(2.13)

\Biggl\{ 
\partial tfN = \scrP NQR(fN , fN ), t > 0, v \in \scrD L,

fN (0, v) = f0
N (v),

where \scrP N is the projection operator: for any function g,

(2.14) \scrP Ng =

N/2\sum 
k= - N/2

\^gke
i \pi Lk\cdot v, \^gk = \langle g, ei \pi Lk\cdot v\rangle ,

f0
N \in PN is the initial condition to the numerical system and should be a reason-
able approximation to f0. More discussion on the initial condition will be given in
section 2.1, which in fact plays an important role in the following proof.

Writing out each Fourier mode of (2.13), we obtain

(2.15)

\left\{   
dfk
dt

= QR
k ,  - N/2 \leq k \leq N/2,

fk(0) = f0
k

with

(2.16) QR
k := \langle QR(fN , fN ), ei

\pi 
Lk\cdot v\rangle , f0

k := \langle f0
N , ei

\pi 
Lk\cdot v\rangle .

Using the definition in (2.7) and orthogonality of the Fourier basis, we can derive that

(2.17) QR
k =

N/2\sum 
l,m= - N/2
l+m=k

G(l,m)flfm,

1Note here k = (k1, . . . , kd) is a vector,  - N/2 \leq k \leq N/2 means  - N/2 \leq kj \leq N/2, j = 1, . . . , d,

and
\sum N/2

k= - N/2
:=

\sum N/2
k1= - N/2

\cdot \cdot \cdot 
\sum N/2

kd= - N/2
.
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STABILITY OF SPECTRAL METHOD FOR BOLTZMANN EQUATION 617

where the weight G is given by

G(l,m) =

\int 
\scrB R

\int 
Sd - 1

\Phi (| q| )b(\sigma \cdot \^q)
\Bigl[ 
e - i \pi 

2L (l+m)\cdot q+i \pi 
2L | q| (l - m)\cdot \sigma  - e - i \pi Lm\cdot q

\Bigr] 
d\sigma dq

=

\int 
\scrB R

e - i \pi Lm\cdot q
\biggl[ \int 

Sd - 1

\Phi (| q| )b(\sigma \cdot \^q)(ei \pi 
2L (l+m)\cdot (q - | q| \sigma )  - 1) d\sigma 

\biggr] 
dq.

(2.18)

The second equality above is obtained by switching two variables \sigma \updownarrow \^q in the gain
part of G(l,m). In the direct Fourier spectral method, G(l,m) is precomputed since
it is independent of the solution. Then in the online computation, the sum (2.17) is
evaluated directly.

Note that the solution f to the original problem (2.6) is always nonnegative which
is the key to many stability estimates. However, the solution fN to the numerical
system (2.13) is not necessarily nonnegative due to the spectral projection which
constitutes the main difficulty in the numerical analysis. Luckily, by virtue of the
Fourier spectral method, mass is always conserved which provides some control of the
solution. Precisely, we have the following lemma.

Lemma 2.1. The numerical system (2.13) preserves mass, that is,

(2.19)

\int 
\scrD L

fN (t, v) dv =

\int 
\scrD L

f0
N (v) dv.

Proof. Note that

(2.20)

\int 
\scrD L

fN (t, v) dv =

N/2\sum 
k= - N/2

fk(t)

\int 
\scrD L

ei
\pi 
Lk\cdot v dv = (2L)df0(t),

where f0 is the zeroth mode of the numerical solution and is governed by

(2.21) \partial tf0 = QR
0 .

From (2.17), it is clear that QR
0 \equiv 0 since G(l,m) \equiv 0 when l +m = 0. This implies

f0 remains constant in time, whose value is the zeroth Fourier mode of the initial
condition f0

N (v).

We now introduce some assumptions and notations that will be used throughout
the rest of this paper.

Basic assumptions on the truncation parameters and the collision
kernel.

(1) The truncation parameters L and R in (2.6) satisfy

(2.22) L \geq R > 0.

Note that the choice (2.9) implies L \geq (3+
\surd 
2)R/4; hence the above condition

is satisfied.
(2) The kinetic part of the collision kernel (2.4) satisfies

(2.23)
\bigm\| \bigm\| 1| v| \leq R\Phi (| v| )

\bigm\| \bigm\| 
L\infty (\scrD L)

< \infty .

Note that all power law hard potentials \Phi (| v| ) = | v| \gamma (0 \leq \gamma \leq 1) as well as
the ``modified"" soft potentials \Phi (| v| ) = (1 + | v| )\gamma ( - d < \gamma < 0) satisfy this
condition.
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618 JINGWEI HU, KUNLUN QI, AND TONG YANG

(3) The angular part of the collision kernel (2.4) has been replaced by its sym-
metrized version,2

(2.24) [b(cos \theta ) + b(cos (\pi  - \theta ))]10\leq \theta \leq \pi /2,

and satisfies the cut-off assumption (2.5).
Some notation. For a periodic function f(v) in \scrD L, we define its Lebesgue norm

and Sobolev norm as follows:

\| f\| Lp
per(\scrD L) =

\biggl( \int 
\scrD L

| f(v)| p dv
\biggr) 1/p

, \| f\| Hk
per(\scrD L) =

\left(  \sum 
| \nu | \leq k

\| \partial \nu 
v f\| 2L2

per(\scrD L)

\right)  1/2

,

(2.25)

where k \geq 0 is an integer and \nu is a multi-index. ``per"" indicates the function is
periodic and will not be included in the following for simplicity.

Except in section 3, we do not track explicitly the dependence of constants on
the truncation parameters R, L, dimension d, and the collision kernel B.

For a function f(v) in \scrD L, we define its positive and negative parts as

(2.26) f+(v) = max
v\in \scrD L

\{ f(v), 0\} , f - (v) = max
v\in \scrD L

\{  - f(v), 0\} 

so that f = f+  - f - and | f | = f+ + f - .

2.1. Assumptions on the initial condition. To prove our main well-posedness
and stability result, Theorem 4.4, we will assume that the initial condition f0(v) to
the original problem (2.6) is periodic and nonnegative and belongs to L1\cap H1(\scrD L) (in
fact L1 can be removed since L2(\scrD L) \subset L1(\scrD L) due to boundedness of the domain).
For the initial condition f0

N (v) to the numerical system (2.13), we will require it to
lie in the space PN and satisfy the following:

(a) Mass conservation:

(2.27)

\int 
\scrD L

f0
N (v) dv =

\int 
\scrD L

f0(v) dv.

(b) Control of L2 and H1 norms: for any integer N \geq 0,

(2.28) \| f0
N\| L2(\scrD L) \leq \| f0\| L2(\scrD L), \| f0

N\| H1(\scrD L) \leq \| f0\| H1(\scrD L).

(c) Control of L1 norm: there exists an integer N0 such that for all N > N0,

(2.29) \| f0
N\| L1(\scrD L) \leq C\| f0\| L1(\scrD L),

where C > 1 is some constant whose value is of no essential importance. In
the following proof, we will take C = 2 for simplicity.

(d) L2 norm of f0, - 
N can be made arbitrarily small: for any \varepsilon > 0, there exists an

integer N0 such that for all N > N0,

(2.30) \| f0, - 
N \| L2(\scrD L) < \varepsilon .

2This symmetrization can readily reduce the computational cost by a half (integration over the
whole sphere is reduced to half sphere) so it also has important implications for numerical purpose;
see [9].
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Remark 2.2. An obvious choice is to take f0
N = \scrP Nf0. Condition (a) is satisfied

since it is equivalent to preserving the zeroth Fourier mode of the function. Condition
(b) is a direct consequence of Parseval's identity. Condition (c) can be obtained by the
L2 convergence of the Fourier series and by the fact that the L1 norm can be controlled
by L2 norm. Condition (d) can be proved at least when the uniform convergence of
the Fourier series is guaranteed, for which one may require additional continuity on
f0. For instance, f0 is H\"older continuous, or continuous plus bounded variation (in
fact BV can be removed since H1(\scrD L) \subset W 1,1(\scrD L) \subset BV (\scrD L)).

Remark 2.3. Sometimes the initial condition f0 may contain discontinuities; then
simply taking the Fourier projection of f0 will generate undesirable oscillations (Gibbs
phenomenon). Hence a reasonable choice is to take a filtered version f0

N = \scrS Nf0,
where \scrS N is defined as the following: for any function g,

(2.31) \scrS Ng =

N/2\sum 
k= - N/2

\sigma N (k)\^gke
i \pi Lk\cdot v, \^gk = \langle g, ei \pi Lk\cdot v\rangle ,

with \sigma N being the filter function; see, for instance, [11, Chapter 9]. Typically, the filter
won't change the zeroth Fourier mode of the function and won't amplify the remaining
Fourier modes; hence conditions (a) and (b) would be satisfied automatically. For
conditions (c) and (d) to hold, one needs some kind of convergence which depends
on the property of the actual filter. Without going into details, let us just mention
that there is a class of positive filters (e.g., the Fej\'er or Jackson filter [23]) which can
preserve the positivity of the function so that the condition (d) is trivially satisfied.
Condition (c) can be satisfied as well by using Young's inequality and the fact that
the L1 norm of the filter is exactly 1. However, the positivity-preserving filters may
come with the price of slower convergence (away from the discontinuity) compared
with other high order filters (e.g., the exponential filter [11]). Therefore, one could
take nonpositive high order filters, as long as they satisfy the conditions (c) and (d).
It is worth emphasizing that the purpose of applying the filter here is merely to fix
the initial condition when f0 is discontinuous so that our well-posedness and stability
proof still holds. This is in stark contrast to the filtering method used in [20] and [3],
where the filter is applied to the equation to preserve the positivity of the solution.

3. Some preliminary estimates on the truncated collision operator \bfitQ \bfitR .
In this section, we prove some important estimates for the truncated collision operator
(2.7). Since its gain term and loss term possess quite different properties, we consider

QR,+(g, f)(v) :=

\int 
Rd

\int 
Sd - 1

1| q| \leq R\Phi (| q| )b(\sigma \cdot \^q)g(v\prime \ast )f(v\prime ) d\sigma dq,

QR, - (g, f)(v) :=

\int 
Rd

\int 
Sd - 1

1| q| \leq R\Phi (| q| )b(\sigma \cdot \^q)g(v  - q)f(v) d\sigma dq

(3.1)

separately whenever appropriate.

Proposition 3.1. Let the collision kernel B and truncation parameters R and L
satisfy the assumptions (2.22), (2.23), (2.24), and (2.5); then the truncated collision
operators QR,\pm (g, f) satisfy the following estimates: for 1 \leq p \leq \infty ,

(3.2)
\bigm\| \bigm\| QR,+(g, f)

\bigm\| \bigm\| 
Lp(\scrD L)

\leq C+
R,L,d,p(B) \| g\| L1(\scrD L) \| f\| Lp(\scrD L) ,

where the constant C+
R,L,d,p(B) = C1/p\| b\| L1(Sd - 1)\| 1| v| \leq R\Phi (| v| )\| L\infty (\scrD L), and
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(3.3)
\bigm\| \bigm\| QR, - (g, f)

\bigm\| \bigm\| 
Lp(\scrD L)

\leq C - 
R,L,d(B) \| g\| L1(\scrD L) \| f\| Lp(\scrD L) ,

where the constant C - 
R,L,d(B) = C\| b\| L1(Sd - 1)

\bigm\| \bigm\| 1| v| \leq R\Phi (| v| )
\bigm\| \bigm\| 
L\infty (\scrD L)

.

In particular, for the whole collision operator QR(g, f), we have

(3.4)
\bigm\| \bigm\| QR(g, f)

\bigm\| \bigm\| 
Lp(\scrD L)

\leq CR,L,d,p(B) \| g\| L1(\scrD L) \| f\| Lp(\scrD L) .

Proof. The proof of the truncated gain term \scrQ R,+(g, f) is similar to the usual
Boltzmann operator \scrQ +(g, f) on Rd. However, the right-hand side is not entirely
obvious as we need to restrict back to a bounded domain. Therefore, we follow [17,
Theorem 2.1] to give a complete proof of (3.2) (see the appendix). In fact, by carrying
out this carefully, one can see that the condition (2.22) is needed.

For the loss term, we write it as

(3.5) QR, - (g, f)(v) = LR(g)(v)f(v),

where LR is a convolution given by

(3.6)

LR(g)(v) = \| b\| L1(Sd - 1)

\int 
Rd

1| q| \leq R\Phi (| q| )g(v - q) dq = \| b\| L1(Sd - 1)

\bigl( 
1| v| \leq R\Phi (| v| )

\bigr) 
\ast g(v).

Then

\| QR, - (g, f)\| Lp(\scrD L) \leq 
\bigm\| \bigm\| LR(g)

\bigm\| \bigm\| 
L\infty (\scrD L)

\| f\| Lp(\scrD L)

= \| b\| L1(Sd - 1)

\bigm\| \bigm\| \bigl( 1| v| \leq R\Phi (| v| )
\bigr) 
\ast g(v)

\bigm\| \bigm\| 
L\infty (\scrD L)

\| f\| Lp(\scrD L)

\leq \| b\| L1(Sd - 1)

\bigm\| \bigm\| 1| v| \leq R\Phi (| v| )
\bigm\| \bigm\| 
L\infty (\scrD L)

\| g\| L1(\scrB \surd 
2L+R) \| f\| Lp(\scrD L)

\leq C\| b\| L1(Sd - 1)

\bigm\| \bigm\| 1| v| \leq R\Phi (| v| )
\bigm\| \bigm\| 
L\infty (\scrD L)

\| g\| L1(\scrD L)\| f\| Lp(\scrD L)

= C - 
R,L,d(B) \| g\| L1(\scrD L) \| f\| Lp(\scrD L) ,

(3.7)

where we used R \leq L in the third line and the fact that g is a periodic function on
\scrD L in the fourth line.

Proposition 3.2. Let the collision kernel B and truncation parameters R and L
satisfy the assumptions (2.22), (2.23), (2.24), and (2.5); then the truncated collision
operator QR(g, f) satisfies the following estimate: for integer k \geq 0,

(3.8)
\bigm\| \bigm\| QR(g, f)

\bigm\| \bigm\| 
Hk(\scrD L)

\leq C \prime 
R,L,d,k(B) \| g\| Hk(\scrD L) \| f\| Hk(\scrD L) .

Proof. First of all, (3.8) when k = 0 is a direct consequence of (3.4) by taking
p = 2 and noting that \| g\| L1(\scrD L) \leq (2L)d/2 \| g\| L2(\scrD L).

To prove (3.8) for k > 0, note that the collision operator satisfies the Leibniz rule:

(3.9) \partial \nu 
vQ

R(g, f) =
\sum 
\mu \leq \nu 

\biggl( 
\nu 

\mu 

\biggr) 
QR(\partial \mu 

v g, \partial 
\nu  - \mu 
v f),

which is a consequence of the bilinearity and the Galilean invariance of the truncated
collision operator QR(g, f)(v  - h) = QR(g(v  - h), f(v  - h)). Then we have
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 QR(g,f) 2Hk( L)(3.10)

=
 

    k

 
   vQ

R(g,f)
 
 2
L2( L)

=
 

    k

 
 
 
 
 
 

 

   

 
 

 

 

QR(  vg, 
   
v f)

 
 
 
 
 
 

2

L2( L)

 
 

    k

 

   

 
 

 

 2 

   

 
 QR(  vg, 

   
v f)

 
 2
L2( L)

 C 2R,L,d,0(B)
 

    k

 

   

 
 

 

 2 

   

   vg 
2
L2( L)

 
     v f

 
 2
L2( L)

 C 2R,L,d,k(B) g 
2
Hk( L)

 f 
2
Hk( L)

,

whereweusedtheCauchy--Schwarzinequalityinthesecondline.

4. Mainresult: Well--posednessandstabilityofthe method.Inthis
section,weestablishthewell--posednessandstabilityoftheFourier--Galerkinspectral
method(2.13)onanarbitraryboundedtimeinterval[0,T].Themainstrategyofthe
proofisasfollows:Insection4.1weprovesomeL2andHkestimatesofthesolution
undertheaprioriL1boundoffN,amongwhichthekeyresultistheL

2estimateof
thenegativepartofthesolution(Proposition4.2).Proposition4.3isalocalexistence
anduniquenessresultoverasmalltimeinterval[t0,t0+ ].Finally,themainresultis
presentedinTheorem4.4,whereweshowthatwhenNislargeenoughthenegative
partofthesolutioncanbecontrolledovertime[0, ].Duetomassconservation,this
consequentlyimpliesthattheinitialL1boundofthesolutioncanberestoredattime
 .Therefore,wecanrepeattheprocedureiterativelytobuildthesolutionuptoinal
timeT(theestimatesonN and aredonecarefullyatthebeginningsothatthe
samevaluescanbeusedinthefollowingiteration).

4.1. Propagationofthe  estimateof   undertheapriori 
 bound

of  .Weirstestablishthe L
2andHkestimatesoffN undertheaprioriL

1bound
offN.Thisresultisnotnew,andtheproofissimilarto[6,Lemma4.2].Themain
diferenceisthatwecloselytrackthedependenceinthecaseofH1whichwillbe
usefulinthefollowingestimate.

Proposition4.1.LetthecollisionkernelBandtruncationparametersRandL
satisfytheassumptions(2.22),(2.23),(2.24),and(2.5). Forthenumericalsystem
(2.13),assumethattheinitialconditionf0N  H

k( L)forsomeintegerk 0and
thatthesolutionfN hasaL

1bounduptosometimet0:

(4.1)  t [0,t0],  fN(t) L1( L) M;

thenthereexistsaconstantKkdependingont0,M,and f
0
N Hk( L)suchthat

(4.2)  t [0,t0],  fN(t) Hk( L) Kk
 
t0,M, f

0
N Hk( L)

 
.

Inparticular,fork=0andk=1,wehave

(4.3) K0=e
t0D0M

 
 f0N
 
 
L2( L)

, K1=e
t0D1(M+K0)

  
 f0N
 
 
H1( L)

+D2

 
,

whereD0,D1,D2areconstantsdependingonlyonthetruncationparametersR,L,
dimensiond,andthecollisionkernelB
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Proof. The proof is based on mathematical induction.
Step (i): We first prove (4.2) holds for k = 0. Multiplying both sides of (2.13) by

fN and integrating over \scrD L yields

1

2

d

dt
\| fN\| 2L2(\scrD L) =

\int 
\scrD L

\scrP NQR(fN , fN )fN dv \leq 
\bigm\| \bigm\| \scrP NQR(fN , fN )

\bigm\| \bigm\| 
L2(\scrD L)

\| fN\| L2(\scrD L)

\leq 
\bigm\| \bigm\| QR(fN , fN )

\bigm\| \bigm\| 
L2(\scrD L)

\| fN\| L2(\scrD L) \leq D0 \| fN\| L1(\scrD L) \| fN\| 2L2(\scrD L)

\leq D0M \| fN\| 2L2(\scrD L) ,

(4.4)

where we used (3.4) and the assumption (4.1). Thus we have

(4.5)
d

dt
\| fN\| L2(\scrD L) \leq D0M \| fN\| L2(\scrD L) .

By Gr\"onwall's inequality, we further conclude that

(4.6) \| fN (t)\| L2(\scrD L) \leq eD0Mt0
\bigm\| \bigm\| f0

N

\bigm\| \bigm\| 
L2(\scrD L)

\forall t \in [0, t0].

Step (ii): We then assume that (4.2) holds for some k \geq 0 and proceed to prove
that it holds also for k + 1. First of all, taking the \nu th derivative w.r.t. v on both
sides of (2.13) gives

(4.7) \partial t(\partial 
\nu 
v fN ) = \partial \nu 

v\scrP NQR(fN , fN ) = \scrP N\partial \nu 
vQ

R(fN , fN ).

Multiplying (4.7) by \partial \nu 
v fN and integrating over \scrD L then yields

1

2

d

dt
\| \partial \nu 

v fN\| 2L2(\scrD L) =

\int 
\scrD L

\scrP N\partial \nu 
vQ

R(fN , fN )\partial \nu 
v fN dv(4.8)

\leq 
\bigm\| \bigm\| \partial \nu 

vQ
R(fN , fN )

\bigm\| \bigm\| 
L2(\scrD L)

\| \partial \nu 
v fN\| L2(\scrD L) .

By adding (4.8) with | \nu | \leq k+1 altogether and using the Cauchy--Schwarz inequality,
we find that

(4.9)
1

2

d

dt
\| fN\| 2Hk+1(\scrD L) \leq 

\bigm\| \bigm\| QR(fN , fN )
\bigm\| \bigm\| 
Hk+1(\scrD L)

\| fN\| Hk+1(\scrD L) ,

i.e.,

(4.10)
d

dt
\| fN\| Hk+1(\scrD L) \leq 

\bigm\| \bigm\| QR(fN , fN )
\bigm\| \bigm\| 
Hk+1(\scrD L)

.

On the other hand,

\bigm\| \bigm\| QR(fN , fN )
\bigm\| \bigm\| 2
Hk+1(\scrD L)

=
\bigm\| \bigm\| QR(fN , fN )

\bigm\| \bigm\| 2
Hk(\scrD L)

+
\sum 

| \nu | =k+1

\bigm\| \bigm\| \partial \nu 
vQ

R(fN , fN )
\bigm\| \bigm\| 2
L2(\scrD L)

(4.11)

=
\bigm\| \bigm\| QR(fN , fN )

\bigm\| \bigm\| 2
Hk(\scrD L)

+
\sum 

| \nu | =k+1

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
\sum 
\mu \leq \nu 

\biggl( 
\nu 

\mu 

\biggr) 
QR(\partial \mu 

v fN , \partial \nu  - \mu 
v fN )

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
2

L2(\scrD L)

\leq 
\bigm\| \bigm\| QR(fN , fN )

\bigm\| \bigm\| 2
Hk(\scrD L)

+
\sum 

| \nu | =k+1

C2
0

\sum 
\mu \leq \nu 

\bigm\| \bigm\| QR(\partial \mu 
v fN , \partial \nu  - \mu 

v fN )
\bigm\| \bigm\| 2
L2(\scrD L)
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=
\bigm\| \bigm\| QR(fN , fN )

\bigm\| \bigm\| 2
Hk(\scrD L)

+
\sum 

| \nu | =k+1

C2
0

\Biggl( \sum 
0<\mu <\nu 

\bigm\| \bigm\| QR(\partial \mu 
v fN , \partial \nu  - \mu 

v fN )
\bigm\| \bigm\| 2
L2(\scrD L)

+
\bigm\| \bigm\| QR(fN , \partial \nu 

v fN )
\bigm\| \bigm\| 2
L2(\scrD L)

+
\bigm\| \bigm\| QR(\partial \nu 

v fN , fN )
\bigm\| \bigm\| 2
L2(\scrD L)

\Biggr) 

\leq C2
1 \| fN\| 2Hk(\scrD L) +

\sum 
| \nu | =k+1

C2
0

\Biggl( \sum 
0<\mu <\nu 

C2
2\| \partial \mu 

v fN\| 2L2(\scrD L)\| \partial 
\nu  - \mu 
v fN\| 2L2(\scrD L)

+ C2
3\| fN\| 2L1(\scrD L) \| \partial 

\nu 
v fN\| 2L2(\scrD L) + C2

4\| \partial \nu 
v fN\| 2L1(\scrD L) \| fN\| 2L2(\scrD L)

\Biggr) 
\leq C2

5 \| fN\| 2Hk(\scrD L) + C2
6 (\| fN\| 2L1(\scrD L) + \| fN\| 2L2(\scrD L)) \| fN\| 2Hk+1(\scrD L)

\leq C2
5K

2
k + C2

6 (M
2 +K2

0 ) \| fN\| 2Hk+1(\scrD L) ,

where in the third-to-last inequality, we used (3.8) in the first line and (3.4) in the
second line. In the last inequality, we used the induction hypothesis.

Then (4.10) becomes

(4.12)
d

dt
\| fN\| Hk+1(\scrD L) \leq C6(M +K0) \| fN\| Hk+1(\scrD L) + C5Kk.

By Gr\"onwall's inequality, we have

\| fN (t)\| Hk+1(\scrD L) \leq eC6(M+K0)t0

\biggl( \bigm\| \bigm\| f0
N

\bigm\| \bigm\| 
Hk+1(\scrD L)

+
C5Kk

C6(M +K0)

\biggr) 
:= Kk+1(4.13)

\forall t \in [0, t0].

This completes the induction argument for k + 1.
In particular, the explicit formula of K0 is given in (4.6), and the formula of K1

is implied by (4.13) when k = 0.

We now proceed to estimate the negative part of the solution, which relies on a
careful estimate of both gain and loss terms of the collision operator. This estimate
will play a key role in the main theorem.

Proposition 4.2. Let the collision kernel B and truncation parameters R and L
satisfy the assumptions (2.22), (2.23), (2.24), and (2.5). For the numerical system
(2.13), assume that the initial condition f0

N \in H1(\scrD L) and that the solution fN has
a L1 bound up to some time t0:

(4.14) \forall t \in [0, t0], \| fN (t)\| L1(\scrD L) \leq M ;

then

(4.15) \forall t \in [0, t0], \| fN (t)\| L2(\scrD L) \leq K0, \| fN (t)\| H1(\scrD L) \leq K1,

and f - 
N , the negative part of fN , satisfies

(4.16) \forall t \in [0, t0],
\bigm\| \bigm\| f - 

N (t)
\bigm\| \bigm\| 
L2(\scrD L)

\leq et0D3(M+K0)

\biggl( \bigm\| \bigm\| \bigm\| f0, - 
N

\bigm\| \bigm\| \bigm\| 
L2(\scrD L)

+
D4K

2
1

MN

\biggr) 
,

where K0, K1 are given in (4.3), and D3 and D4 are constants depending only on the
truncation parameters R, L, dimension d, and the collision kernel B.
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Proof. First of all, since f0
N \in H1(\scrD L), Proposition 4.1 (when k = 1) directly

yields (4.15).
Equipped with this regularity, we now estimate the negative part of fN . Note

that fN = f+
N  - f - 

N , | fN | = f+
N + f - 

N . We first rewrite (2.13) as

(4.17) \partial tfN = QR,+(fN , fN ) - QR, - (fN , fN ) + EN (fN )

with

(4.18) EN (fN ) := \scrP NQR(fN , fN ) - QR(fN , fN ).

For the gain term, we have

QR,+(fN , fN )fN1\{ fN\leq 0\} = QR,+(f+
N  - f - 

N , f+
N  - f - 

N )fN1\{ fN\leq 0\} 

=
\bigl[ 
QR,+(f+

N , f+
N ) - QR,+(f+

N , f - 
N ) - QR,+(f - 

N , f+
N ) +QR,+(f - 

N , f - 
N )
\bigr] 
fN1\{ fN\leq 0\} 

=
\bigl[ 
 - QR,+(f+

N , f+
N ) +QR,+(f+

N , f - 
N ) +QR,+(f - 

N , f+
N ) - QR,+(f - 

N , f - 
N )
\bigr] 
f - 
N

\leq 
\bigl[ 
QR,+(f+

N , f - 
N ) +QR,+(f - 

N , f+
N )
\bigr] 
f - 
N .

(4.19)

Hence

\int 
\scrD L

QR,+(fN , fN )fN1\{ fN\leq 0\} dv \leq 
\int 
\scrD L

\bigl[ 
QR,+(f+

N , f - 
N ) +QR,+(f - 

N , f+
N )
\bigr] 
f - 
N dv

\leq 
\bigm\| \bigm\| QR,+(f+

N , f - 
N ) +QR,+(f - 

N , f+
N )
\bigm\| \bigm\| 
L2(\scrD L)

\bigm\| \bigm\| f - 
N

\bigm\| \bigm\| 
L2(\scrD L)

\leq C0

\bigm\| \bigm\| f+
N

\bigm\| \bigm\| 
L1(\scrD L)

\bigm\| \bigm\| f - 
N

\bigm\| \bigm\| 2
L2(\scrD L)

+ C0

\bigm\| \bigm\| f - 
N

\bigm\| \bigm\| 
L1(\scrD L)

\bigm\| \bigm\| f+
N

\bigm\| \bigm\| 
L2(\scrD L)

\bigm\| \bigm\| f - 
N

\bigm\| \bigm\| 
L2(\scrD L)

\leq C0 \| fN\| L1(\scrD L)

\bigm\| \bigm\| f - 
N

\bigm\| \bigm\| 2
L2(\scrD L)

+ C \prime 
0 \| fN\| L2(\scrD L)

\bigm\| \bigm\| f - 
N

\bigm\| \bigm\| 2
L2(\scrD L)

,

(4.20)

where we used the estimate (3.2) for the gain term.
For the loss term, we have

 - QR, - (fN , fN )fN1\{ fN\leq 0\} =  - LR(fN )fNfN1\{ fN\leq 0\} =  - LR(fN )f - 
N f - 

N(4.21)

=  - QR, - (fN , f - 
N )f - 

N ,

where we used the structure of the loss term; see (3.5). Hence

 - 
\int 
\scrD L

QR, - (fN , fN )fN1\{ fN\leq 0\} dv =  - 
\int 
\scrD L

QR, - (fN , f - 
N )f - 

N dv

\leq \| QR, - (fN , f - 
N )\| L2(\scrD L)\| f - 

N\| L2(\scrD L)

\leq C1\| fN\| L1(\scrD L)

\bigm\| \bigm\| f - 
N

\bigm\| \bigm\| 2
L2(\scrD L)

,

(4.22)

where we used the estimate (3.3) for the loss term.
For the remainder EN , we have

\| EN (fN )\| L2(\scrD L) = \| \scrP NQR(fN , fN ) - QR(fN , fN )\| L2(\scrD L)

\leq C2

N
\| QR(fN , fN )\| H1(\scrD L)

\leq C2

N
\| fN\| 2H1(\scrD L),

(4.23)D
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where we used the well-known property of the projection operator and estimate (3.8).
Hence \int 

\scrD L

EN (fN )fN1\{ fN\leq 0\} dv =  - 
\int 
\scrD L

EN (fN )f - 
N dv

\leq \| EN (fN )\| L2(\scrD L)

\bigm\| \bigm\| f - 
N

\bigm\| \bigm\| 
L2(\scrD L)

\leq C2

N
\| fN\| 2H1(\scrD L)

\bigm\| \bigm\| f - 
N

\bigm\| \bigm\| 
L2(\scrD L)

.

(4.24)

For the left-hand side, we have

(4.25) fN1\{ fN\leq 0\} \partial tfN =  - f - 
N\partial t(f

+
N  - f - 

N ) =  - f - 
N (1\{ fN\geq 0\} \partial tfN  - \partial tf

 - 
N ) = f - 

N\partial tf
 - 
N .

Therefore, multiplying fN1\{ fN\leq 0\} to both sides of (4.17) and integrating over
\scrD L, together with (4.20), (4.22), and (4.24), yields

1

2

d

dt
\| f - 

N\| 2L2(\scrD L) \leq 
\Bigl[ 
(C0 + C1) \| fN\| L1(\scrD L) + C \prime 

0 \| fN\| L2(\scrD L)

\Bigr] \bigm\| \bigm\| f - 
N

\bigm\| \bigm\| 2
L2(\scrD L)

(4.26)

+
C2

N
\| fN\| 2H1(\scrD L)

\bigm\| \bigm\| f - 
N

\bigm\| \bigm\| 
L2(\scrD L)

,

i.e.,

d

dt
\| f - 

N\| L2(\scrD L) \leq 
\Bigl[ 
(C0 + C1) \| fN\| L1(\scrD L) + C \prime 

0 \| fN\| L2(\scrD L)

\Bigr] \bigm\| \bigm\| f - 
N

\bigm\| \bigm\| 
L2(\scrD L)

(4.27)

+
C2

N
\| fN\| 2H1(\scrD L)

\leq [(C0 + C1)M + C \prime 
0K0]

\bigm\| \bigm\| f - 
N

\bigm\| \bigm\| 
L2(\scrD L)

+
C2K

2
1

N
,

where we have taken into account the L1 bound and L2, H1 bounds of fN obtained
earlier. By Gr\"onwall's inequality, we finally obtain the desired estimate (4.16).

4.2. Local well-posedness of the solution \bfitf \bfitN on a small time interval
[\bfitt \bfzero , \bfitt \bfzero + \bfittau ]. To prepare for the main theorem, we establish a local existence and
uniqueness result and some stability bounds of the solution.

Proposition 4.3. Let the collision kernel B and truncation parameters R and
L satisfy the assumptions (2.22), (2.23), (2.24), and (2.5). Assume that the initial
condition f0(v) to the original problem (2.6) belongs to L1 \cap L2(\scrD L), and define

(4.28) Mf0,1 = \| f0\| L1(\scrD L), Mf0,2 =
\bigm\| \bigm\| f0
\bigm\| \bigm\| 
L2(\scrD L)

.

For the numerical system (2.13), assume that we evolve it starting at a certain time
t0 and that the initial condition satisfies

(4.29) \| fN (t0)\| L1(\scrD L) \leq 2Mf0,1, \| fN (t0)\| L2(\scrD L) \leq e2D0Mf0,1TMf0,2;

then there exists a local time \tau such that (2.13) admits a unique solution fN =
fN (t, \cdot ) \in L1 \cap L2(\scrD L) on [t0, t0 + \tau ]. In particular, one can choose

(4.30) \tau =
1

2(D5M2 +D6M1)
with M1 = 4Mf0,1, M2 = 2e2D0Mf0,1TMf0,2,
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626 JINGWEI HU, KUNLUN QI, AND TONG YANG

such that

(4.31) \forall t \in [t0, t0 + \tau ], \| fN (t)\| L1(\scrD L) \leq M1, \| fN (t)\| L2(\scrD L) \leq M2,

where T is the final prescribed time, D0 is the constant appearing in (4.3), and D5,
D6 are constants depending only on the truncation parameters R, L, dimension d,
and the collision kernel B.

Proof. We construct the solution by a fixed point argument.
Given M1,M2 > 0 and small enough time \tau > 0 to be specified later, we define

the space \chi by

\chi =

\biggl\{ 
f \in L\infty ([t0, t0 + \tau ];L1 \cap L2(\scrD L)) : sup

t\in [t0,t0+\tau ]

\| f(t, \cdot )\| L1(\scrD L) \leq M1,(4.32)

sup
t\in [t0,t0+\tau ]

\| f(t, \cdot )\| L2(\scrD L) \leq M2

\biggr\} 
,

which is a complete metric space with respect to the induced distance

(4.33) d(f, \~f) :=
\bigm\| \bigm\| \bigm\| f  - \~f

\bigm\| \bigm\| \bigm\| 
\chi 
= sup

t\in [t0,t0+\tau ]

\bigm\| \bigm\| \bigm\| f(t, \cdot ) - \~f(t, \cdot )
\bigm\| \bigm\| \bigm\| 
L2(\scrD L)

.

For any fN \in \chi , we define the operator \Phi as

(4.34) \Phi (fN )(t, v) = fN (t0, v) +

\int t

t0

\scrP NQR(fN , fN )(s, v) ds \forall t \in [t0, t0 + \tau ].

We proceed to show that the mapping \Phi has a unique fixed point in \chi .

Step (i): We first show that \Phi maps \chi into itself: \Phi (\chi ) \subset \chi . For any fN \in \chi and
t \in [t0, t0 + \tau ],

\| \Phi (fN )(t, \cdot )\| L1(\scrD L) \leq \| fN (t0)\| L1(\scrD L) +

\int t

t0

\bigm\| \bigm\| \scrP NQR(fN , fN )(s, \cdot )
\bigm\| \bigm\| 
L1(\scrD L)

ds

\leq \| fN (t0)\| L1(\scrD L) + \tau (2L)d/2 sup
t\in [t0,t0+\tau ]

\bigm\| \bigm\| \scrP NQR(fN , fN )(t, \cdot )
\bigm\| \bigm\| 
L2(\scrD L)

\leq \| fN (t0)\| L1(\scrD L)+\tau CR,L,d,2(B)(2L)d/2 sup
t\in [t0,t0+\tau ]

\Bigl( 
\| fN (t, \cdot )\| L1(\scrD L) \| fN (t, \cdot )\| L2(\scrD L)

\Bigr) 
\leq \| fN (t0)\| L1(\scrD L) + \tau CR,L,d,2(B)(2L)d/2M1M2,

(4.35)

where we used (3.4). Similarly,

\| \Phi (fN )(t, \cdot )\| L2(\scrD L) \leq \| fN (t0)\| L2(\scrD L) +

\int t

t0

\bigm\| \bigm\| \scrP NQR(fN , fN )(s, \cdot )
\bigm\| \bigm\| 
L2(\scrD L)

ds

\leq \| fN (t0)\| L2(\scrD L) + \tau sup
t\in [t0,t0+\tau ]

\bigm\| \bigm\| \scrP NQR(fN , fN )(t, \cdot )
\bigm\| \bigm\| 
L2(\scrD L)

\leq \| fN (t0)\| L2(\scrD L) + \tau CR,L,d,2(B) sup
t\in [t0,t0+\tau ]

\Bigl( 
\| fN (t, \cdot )\| L1(\scrD L) \| fN (t, \cdot )\| L2(\scrD L)

\Bigr) 
\leq \| fN (t0)\| L2(\scrD L) + \tau CR,L,d,2(B)M1M2.

(4.36)
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Step (ii): We next show that \Phi is a contraction mapping on \chi . For any fN , \~fN \in \chi 
with the same initial datum fN (t0), we have

\bigm\| \bigm\| \bigm\| \Phi (fN ) - \Phi ( \~fN )
\bigm\| \bigm\| \bigm\| 
\chi 
= sup

t\in [t0,t0+\tau ]

\bigm\| \bigm\| \bigm\| \Phi (fN )(t, \cdot ) - \Phi ( \~fN )(t, \cdot )
\bigm\| \bigm\| \bigm\| 
L2(\scrD L)

\leq sup
t\in [t0,t0+\tau ]

\int t

t0

\bigm\| \bigm\| \bigm\| \scrP NQR(fN , fN )(s, \cdot ) - \scrP NQR( \~fN , \~fN )(s, \cdot )
\bigm\| \bigm\| \bigm\| 
L2(\scrD L)

ds

\leq \tau sup
t\in [t0,t0+\tau ]

\bigm\| \bigm\| \bigm\| QR(fN , fN )(t, \cdot ) - QR( \~fN , \~fN )(t, \cdot )
\bigm\| \bigm\| \bigm\| 
L2(\scrD L)

\leq \tau sup
t\in [t0,t0+\tau ]

\biggl( \bigm\| \bigm\| \bigm\| QR(fN  - \~fN , fN )(t, \cdot )
\bigm\| \bigm\| \bigm\| 
L2(\scrD L)

+
\bigm\| \bigm\| \bigm\| QR( \~fN , fN  - \~fN )(t, \cdot )

\bigm\| \bigm\| \bigm\| 
L2(\scrD L)

\biggr) 
\leq \tau CR,L,d,2(B) sup

t\in [t0,t0+\tau ]

\biggl( \bigm\| \bigm\| \bigm\| fN  - \~fN

\bigm\| \bigm\| \bigm\| 
L1(\scrD L)

\| fN\| L2(\scrD L) +
\bigm\| \bigm\| \bigm\| fN  - \~fN

\bigm\| \bigm\| \bigm\| 
L2(\scrD L)

\| \~fN\| L1(\scrD L)

\biggr) 

\leq \tau CR,L,d,2(B)((2L)d/2M2 +M1)

\Biggl( 
sup

t\in [t0,t0+\tau ]

\bigm\| \bigm\| \bigm\| fN (t, \cdot ) - \~fN (t, \cdot )
\bigm\| \bigm\| \bigm\| 
L2(\scrD L)

\Biggr) 
\leq \tau (CR,L,d,2(B)(2L)d/2M2 + CR,L,d,2(B)M1)

\bigm\| \bigm\| \bigm\| fN  - \~fN

\bigm\| \bigm\| \bigm\| 
\chi 
.

(4.37)

Therefore, if we define D5 = CR,L,d,2(B)(2L)d/2, D6 = CR,L,d,2(B) and choose
M1, M2 and \tau as given in (4.30), we have

\| fN (t0)\| L1 + \tau D5M1M2 \leq M1, \| fN (t0)\| L2 + \tau D6M1M2 \leq M2,(4.38)

\tau (D5M2 +D6M1) < 1.

So \Phi : \chi \rightarrow \chi is a contraction mapping. According to the Banach fixed point theorem,
(2.13) admits a unique solution on [t0, t0 + \tau ].

4.3. Well-posedness and stability of the solution \bfitf \bfitN on an arbitrary
bounded time interval [0, \bfitT ]. We are ready to present our main result.

Theorem 4.4. Let the collision kernel B and truncation parameters R and L
satisfy the assumptions (2.22), (2.23), (2.24), and (2.5). Let the initial condition
f0(v) to the original problem (2.6) and the numerical solution f0

N (v) to the numerical
system (2.13) satisfy the assumptions specified in section 2.1, i.e., f0(v) is periodic
and nonnegative and belongs to L1 \cap H1(\scrD L), and f0

N satisfies (2.27)--(2.30). Define

(4.39) Mf0,1 = \| f0\| L1(\scrD L), Mf0,2 =
\bigm\| \bigm\| f0
\bigm\| \bigm\| 
L2(\scrD L)

.

Then there exists an integer N0 depending on the final time T and initial condition
f0 such that for all N > N0, the numerical system (2.13) admits a unique solution
fN = fN (t, \cdot ) \in L1\cap H1(\scrD L) on the time interval [0, T ]. Furthermore, for all N > N0,
fN satisfies the following stability estimates:

(4.40) \forall t \in [0, T ], \| fN (t)\| L1(\scrD L) \leq 2Mf0,1, \| fN (t)\| L2(\scrD L) \leq e2D0Mf0,1TMf0,2,

where D0 is the constant appearing in (4.3).

Proof. The proof is based on iteration. Given T , Mf0,1, andMf0,2, we first choose
\tau according to (4.30). Then we define t = 0, \tau , 2\tau , . . . , n\tau , . . . until we cover the final
time T . Without loss of generality, we assume T is some integral multiple of \tau .
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628 JINGWEI HU, KUNLUN QI, AND TONG YANG

Step (i): At initial time t = 0, we first choose N such that

(4.41) \| f0
N\| L1(\scrD L) \leq 2Mf0,1,

which is possible due to the condition (2.29). Also we have \| f0
N\| L2(\scrD L) \leq \| f0\| L2(\scrD L) \leq 

e2D0Mf0,1TMf0,2 due to the condition (2.28). Then by Proposition 4.3, there exists a
unique solution fN (t, \cdot ) \in L1 \cap L2(\scrD L) over the time interval [0, \tau ], and

(4.42) \forall t \in [0, \tau ], \| fN (t)\| L1(\scrD L) \leq 4Mf0,1.

Using this L1 bound and that f0
N \in H1(\scrD L) (due to (2.28)), we can invoke Proposi-

tion 4.2 to derive that

(4.43) \forall t \in [0, \tau ], \| fN (t)\| L2(\scrD L) \leq K0(\tau ), \| fN (t)\| H1(\scrD L) \leq K1(\tau )

and
(4.44)

\forall t \in [0, \tau ],
\bigm\| \bigm\| f - 

N (t)
\bigm\| \bigm\| 
L2(\scrD L)

\leq e\tau D3(4Mf0,1+K0(\tau ))

\biggl( \bigm\| \bigm\| \bigm\| f0, - 
N

\bigm\| \bigm\| \bigm\| 
L2(\scrD L)

+
D4K

2
1 (\tau )

4Mf0,1N

\biggr) 
with
(4.45)

K0(\tau ) := e\tau D04Mf0,1Mf0,2, K1(\tau ) := e\tau D1(4Mf0,1+K0(\tau ))
\Bigl( \bigm\| \bigm\| f0

\bigm\| \bigm\| 
H1(\scrD L)

+D2

\Bigr) 
.

Note that we relaxed the bounds K0, K1 a bit (so that they depend only on f0 but
not f0

N ) using the condition (2.28) again.
On the other hand, noticing that | fN | = 2f - 

N + fN , we have

\| fN (t)\| L1(\scrD L) =

\int 
\scrD L

| fN (t, v)| dv = 2

\int 
\scrD L

f - 
N (t, v) dv +

\int 
\scrD L

fN (t, v) dv

= 2\| f - 
N (t)\| L1(\scrD L) +

\int 
\scrD L

f0(v) dv

\leq 2(2L)d/2\| f - 
N (t)\| L2(\scrD L) +Mf0,1,

(4.46)

where we used the important mass conservation property in Lemma 2.1 and (2.27) in
the second line.

Therefore, if we can control \| f - 
N (t)\| L2(\scrD L), then \| fN (t)\| L1(\scrD L) will be controlled.

Thanks to the estimate (4.44), we can simply choose N large enough such that the
following is satisfied:

(4.47) \scrK := eTD3(4Mf0,1+K0(T ))

\biggl( \bigm\| \bigm\| \bigm\| f0, - 
N

\bigm\| \bigm\| \bigm\| 
L2(\scrD L)

+
D4K

2
1 (T )

4Mf0,1N

\biggr) 
\leq 

Mf0,1

2(2L)d/2
;

then we have

(4.48) \forall t \in [0, \tau ], \| fN (t)\| L1(\scrD L) \leq 2Mf0,1.

Note that (4.47) is possible due to the condition (2.30). Also, it is easy to see that
the quantity \scrK is an increasing function in time. Hence, if T in (4.47) is replaced by
some t0 \leq T , (4.47) still holds.

Combining the above choice of N with the one at the beginning to satisfy (4.41),
we have found an integer N0, depending only on the final time T and initial condition
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f0, such that for all N > N0, (2.13) admits a unique solution fN (t, \cdot ) \in L1 \cap H1(\scrD L)
on [0, \tau ] which satisfies (4.48).

Step (ii): Generally at time t = n\tau (n \geq 1), we have

(4.49) \forall t \in [0, n\tau ], fN (t, \cdot ) \in L1 \cap H1(\scrD L), \| fN (t)\| L1(\scrD L) \leq 2Mf0,1.

Then by Proposition 4.1 (with k = 0), we have

(4.50) \forall t \in [0, n\tau ], \| fN (t)\| L2(\scrD L) \leq e2D0Mf0,1n\tau \| f0
N\| L2(\scrD L) \leq e2D0Mf0,1TMf0,2.

Then by Proposition 4.3, there exists a unique solution fN (t, \cdot ) \in L1 \cap L2(\scrD L) on
[n\tau , (n+ 1)\tau ] and

(4.51) \forall t \in [n\tau , (n+ 1)\tau ], \| fN (t)\| L1(\scrD L) \leq 4Mf0,1.

Using this L1 bound and that f0
N \in H1(\scrD L), we can invoke the Proposition 4.2 over

the interval [0, (n+ 1)\tau ] to derive that

(4.52)
\forall t \in [0, (n+ 1)\tau ], \| fN (t)\| L2(\scrD L) \leq K0((n+ 1)\tau ), \| fN (t)\| H1(\scrD L) \leq K1((n+ 1)\tau )

and

\forall t \in [0, (n+ 1)\tau ],
\bigm\| \bigm\| f - 

N (t)
\bigm\| \bigm\| 
L2(\scrD L)

(4.53)

\leq e(n+1)\tau D3(4Mf0,1+K0((n+1)\tau ))

\biggl( \bigm\| \bigm\| \bigm\| f0, - 
N

\bigm\| \bigm\| \bigm\| 
L2(\scrD L)

+
D4K

2
1 ((n+ 1)\tau )

4Mf0,1N

\biggr) 
\leq \scrK ,

i.e., the same choice of N chosen above would still make

(4.54) \forall t \in [0, (n+ 1)\tau ], \| fN (t)\| L1(\scrD L) \leq 2Mf0,1.

That is, at time t = (n+ 1)\tau , we are back to the situation (4.49) at t = n\tau .
Repeating step (ii) until t = T , we can show that there exists a unique solution

fN (t, \cdot ) \in L1 \cap H1(\scrD L) on [0, T ], and

(4.55) \forall t \in [0, T ], \| fN (t)\| L1(\scrD L) \leq 2Mf0,1.

Finally, by Proposition 4.1 (with k = 0) again, we obtain

(4.56) \forall t \in [0, T ], \| fN (t)\| L2(\scrD L) \leq e2D0Mf0,1TMf0,2.

5. Convergence and spectral accuracy of the method. With the well-
posedness and stability of the numerical solution established in the previous section,
the convergence of the method is straightforward.

In this section, we assume that the initial condition f0(v) to the original problem
(2.6) is periodic and nonnegative and belongs to L1\cap Hk(\scrD L) for some integer k \geq 1.
In fact, it has been proved in [6, Proposition 5.1] that there exists a unique global non-
negative solution f(t, \cdot ) \in Hk(\scrD L). Furthermore, \| f(t)\| Hk(\scrD L) \leq Ck(f

0) for all t \geq 0,
where Ck is a constant depending only on the initial condition.

For the numerical system (2.13), we consider the initial condition f0
N = \scrP Nf0 for

simplicity. According to the discussion in Remark 2.2, we further assume that f0 is,
say, H\"older continuous, so that the four conditions (2.27)--(2.30) are satisfied. Then
by Theorem 4.4, there exists a unique solution fN (t, \cdot ) \in L1 \cap H1(\scrD L) over the time
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interval [0, T ]. Furthermore, \| fN (t)\| L2(\scrD L) \leq C0(T, f
0) for all t \in [0, T ], where C0 is

a constant depending only on the final time T and initial condition f0.
Define the error function

(5.1) eN (t, v) = \scrP Nf(t, v) - fN (t, v).

We can show the following.

Theorem 5.1. Let the collision kernel B and truncation parameters R and L
satisfy the assumptions (2.22), (2.23), (2.24), and (2.5). Choose N0 such that it
satisfies the condition in Theorem 4.4; then the Fourier spectral method is convergent
for all N > N0 and exhibits spectral accuracy. In particular, we have

(5.2) \forall t \in [0, T ], \| eN (t)\| L2(\scrD L) \leq 
C(T, f0)

Nk
\forall N > N0,

where C is a constant depending only on the final time T and initial condition f0.

Proof. We first project the original problem (2.6) to obtain

(5.3)

\Biggl\{ 
\partial t\scrP Nf = \scrP NQR(f, f),

\scrP Nf(0, v) = \scrP Nf0.

Subtracting (2.13) from (5.3) and noting f0
N = \scrP Nf0, we have

(5.4)

\Biggl\{ 
\partial teN = \scrP N

\bigl( 
QR(f, f) - QR(fN , fN )

\bigr) 
,

eN (0, v) = 0.

Multiplying (5.4) by eN and integrating over \scrD L, we have

1

2

d

dt
\| eN\| 2L2(\scrD L) =

\int 
\scrD L

\scrP N

\bigl( 
QR(f, f) - QR(fN , fN )

\bigr) 
eN dv

\leq 
\bigm\| \bigm\| \scrP N

\bigl( 
QR(f, f) - QR(fN , fN )

\bigr) \bigm\| \bigm\| 
L2(\scrD L)

\| eN\| L2(\scrD L) ,

\Rightarrow d

dt
\| eN\| L2(\scrD L) \leq 

\bigm\| \bigm\| QR(f, f) - QR(fN , fN )
\bigm\| \bigm\| 
L2(\scrD L)

.

(5.5)

Note that \bigm\| \bigm\| QR(f, f) - QR(fN , fN )
\bigm\| \bigm\| 
L2(\scrD L)

\leq 
\bigm\| \bigm\| QR(f  - fN , f)

\bigm\| \bigm\| 
L2(\scrD L)

+
\bigm\| \bigm\| QR(fN , f  - fN )

\bigm\| \bigm\| 
L2(\scrD L)

\leq C1 \| f  - fN\| L2(\scrD L)

\Bigl( 
\| f\| L2(\scrD L) + \| fN\| L2(\scrD L)

\Bigr) 
\leq C1(T, f

0) \| f  - fN\| L2(\scrD L) .

(5.6)

Also

\| f  - fN\| L2(\scrD L) \leq \| f  - \scrP Nf\| L2(\scrD L) + \| \scrP Nf  - fN\| L2(\scrD L)

\leq 
C2\| f\| Hk(\scrD L)

Nk
+ \| eN\| L2(\scrD L)

\leq C2(f
0)

Nk
+ \| eN\| L2(\scrD L) .

(5.7)D
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Therefore, we have

(5.8)
d

dt
\| eN\| L2(\scrD L) \leq C1(T, f

0) \| eN\| L2(\scrD L) +
C3(T, f

0)

Nk
,

which implies

(5.9) \forall t \in [0, T ], \| eN (t)\| L2(\scrD L) \leq eC1(T,f0)T

\biggl( 
\| eN (0)\| L2(\scrD L) +

C3(T, f
0)

C1(T, f0)Nk

\biggr) 
.

Since eN (0, v) \equiv 0, we finally obtain the desired result in (5.2).

Appendix: Proof of estimate (3.2) for the truncated collision operator
\bfitQ \bfitR ,+ on a bounded domain. By duality,

(A.10)
\bigm\| \bigm\| QR,+(g, f)

\bigm\| \bigm\| 
Lp(\scrD L)

= sup

\biggl\{ \int 
\scrD L

QR,+(g, f)(v)\Psi (v) dv; \| \Psi \| Lp\prime (\scrD L) \leq 1

\biggr\} 
.

With the pre-post collisional change of variables, namely, (v, v\ast , \sigma ) \rightarrow (v\prime , v\prime \ast ,
v - v\ast 
| v - v\ast | ),

which has a unit Jacobian, we can obtain

\int 
\scrD L

QR,+(g, f)(v)\Psi (v) dv

=

\int 
\scrD L

\int 
Rd

\biggl( \int 
Sd - 1

1| v - v\ast | \leq R\Phi (| v  - v\ast | )b(\sigma \cdot ̂(v  - v\ast ))\Psi (v\prime ) d\sigma 

\biggr) 
g(v\ast )f(v) dv\ast dv

=

\int 
\scrD L

\int 
\scrB \surd 

2L+R

\biggl( \int 
Sd - 1

1| v - v\ast | \leq R\Phi (| v  - v\ast | )b(\sigma \cdot ̂(v - v\ast ))\Psi (v\prime ) d\sigma 

\biggr) 
g(v\ast )f(v) dv\ast dv,

(A.11)

where the second equality is obtained by noting that | v\ast | \leq | v| + | v  - v\ast | and that
v \in \scrD L and | v  - v\ast | \leq R.

Then, we define the linear operator S by

S\Psi (v) =

\int 
Sd - 1

1| v| \leq R\Phi (| v| )b(\sigma \cdot \^v)\Psi 
\biggl( 
v + | v| \sigma 

2

\biggr) 
d\sigma (A.12)

such that (A.11) can be written as

\int 
\scrD L

QR,+(g, f)(v)\Psi (v) dv =

\int 
\scrB \surd 

2L+R

g(v\ast )

\biggl( \int 
\scrD L

f(v)(\tau v\ast S(\tau  - v\ast \Psi ))(v) dv

\biggr) 
dv\ast ,

(A.13)

where \tau hf(v) := f(v  - h).

We shall study the operator S in L1 and L\infty norms. Denote v+ = v+| v| \sigma 
2 ; then

we have

(A.14)
\bigm| \bigm| v+\bigm| \bigm| \leq | v| .

Then

(A.15) \| S\Psi \| L\infty (\scrD L) \leq \| b\| L1(Sd - 1)\| 1| v| \leq R\Phi (| v| )\| L\infty (\scrD L)\| \Psi \| L\infty (\scrB \surd 
2L).
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Also

\| S\Psi \| L1(\scrD L) \leq \| 1| v| \leq R\Phi (| v| )\| L\infty (\scrD L)

\int 
\scrD L

\int 
Sd - 1

b(\sigma \cdot \^v)
\bigm| \bigm| \Psi (v+)

\bigm| \bigm| d\sigma dv

\leq \| 1| v| \leq R\Phi (| v| )\| L\infty (\scrD L)

\int 
\scrB \surd 

2L

\int 
Sd - 1

b(cos \theta )
\bigm| \bigm| \Psi \bigl( v+\bigr) \bigm| \bigm| 2d - 1

cos2 \theta /2
d\sigma dv+

\leq C\| b\| L1(Sd - 1)\| 1| v| \leq R\Phi (| v| )\| L\infty (\scrD L)\| \Psi \| L1(\scrB \surd 
2L).

(A.16)

By the Riesz--Thorin interpolation, we deduce

(A.17) \| S\Psi \| Lp(\scrD L) \leq C+
R,L,d,p\prime (B)\| \Psi \| Lp(\scrB \surd 

2L), 1 \leq p \leq \infty ,

where C+
R,L,d,p\prime (B) = C1/p\prime \| b\| L1(Sd - 1)\| 1| v| \leq R\Phi (| v| )\| L\infty (\scrD L). Using this inequality in

(A.13), we have

\bigm| \bigm| \bigm| \bigm| \int 
\scrD L

QR,+(g, f)(v)\Psi (v) dv

\bigm| \bigm| \bigm| \bigm| \leq \int 
\scrB \surd 

2L+R

| g(v\ast )| 
\biggl( \int 

\scrD L

| f(v)| | (\tau v\ast S(\tau  - v\ast \Psi ))(v)| dv
\biggr) 
dv\ast 

\leq 
\int 
\scrB \surd 

2L+R

| g(v\ast )| \| f\| Lp(\scrD L) \| \tau v\ast S(\tau  - v\ast \Psi )\| Lp\prime (\scrD L) dv\ast 

\leq 
\int 
\scrB \surd 

2L+R

| g(v\ast )| \| f\| Lp(\scrD L) \| \tau v\ast S(\tau  - v\ast \Psi )\| Lp\prime (Rd) dv\ast 

=

\int 
\scrB \surd 

2L+R

| g(v\ast )| \| f\| Lp(\scrD L) \| S(\tau  - v\ast \Psi )\| Lp\prime (Rd) dv\ast 

=

\int 
\scrB \surd 

2L+R

| g(v\ast )| \| f\| Lp(\scrD L) \| S(\tau  - v\ast \Psi )\| Lp\prime (\scrD L) dv\ast 

\leq C+
R,L,d,p(B)

\int 
\scrB \surd 

2L+R

| g(v\ast )| \| f\| Lp(\scrD L) \| \tau  - v\ast \Psi \| Lp\prime (\scrB \surd 
2L) dv\ast 

\leq C+
R,L,d,p(B)

\int 
\scrB \surd 

2L+R

| g(v\ast )| \| f\| Lp(\scrD L) \| \Psi \| Lp\prime (\scrB 2
\surd 

2L+R) dv\ast 

= C+
R,L,d,p(B) \| g\| L1(\scrB \surd 

2L+R) \| f\| Lp(\scrD L) \| \Psi \| Lp\prime (\scrB 2
\surd 

2L+R)

\leq C+
R,L,d,p(B) \| g\| L1(\scrD L) \| f\| Lp(\scrD L) \| \Psi \| Lp\prime (\scrD L)

\leq C+
R,L,d,p(B) \| g\| L1(\scrD L) \| f\| Lp(\scrD L) ,

(A.18)

where the second equality is obtained by noting Supp(S\Psi ) \subset \scrB R \subset \scrD L since R \leq L,
and the second last line is obtained by noting that both g and \Psi are periodic functions
on \scrD L.

Hence we proved the estimate (3.2).

Acknowledgments. The first author is grateful to F. Filbet and R. Alonso for
the helpful discussion.

D
ow

nl
oa

de
d 

03
/1

1/
21

 to
 1

28
.2

10
.1

26
.1

99
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

STABILITY OF SPECTRAL METHOD FOR BOLTZMANN EQUATION 633

REFERENCES

[1] R. Alonso, I. Gamba, and S. Tharkabhushanam, Convergence and error estimates for the
Lagrangian-based conservative spectral method for Boltzmann equations, SIAM J. Numer.
Anal., 56 (2018), pp. 3534--3579.

[2] G. A. Bird, Molecular Gas Dynamics and the Direct Simulation of Gas Flows, Clarendon
Press, Oxford, UK, 1994.

[3] Z. Cai, Y. Fan, and L. Ying, An entropic Fourier method for the Boltzmann equation, SIAM
J. Sci. Comput., 40 (2018), pp. A2858--A2882.

[4] C. Cercignani, The Boltzmann Equation and Its Applications, Springer-Verlag, New York,
1988.

[5] G. Dimarco and L. Pareschi, Numerical methods for kinetic equations, Acta Numer., 23
(2014), pp. 369--520.

[6] F. Filbet and C. Mouhot, Analysis of spectral methods for the homogeneous Boltzmann
equation, Trans. Amer. Math. Soc., 363 (2011), pp. 1947--1980.

[7] F. Filbet, C. Mouhot, and L. Pareschi, Solving the Boltzmann equation in N log2 N , SIAM
J. Sci. Comput., 28 (2006), pp. 1029--1053.

[8] F. Filbet and G. Russo, High order numerical methods for the space non-homogeneous Boltz-
mann equation, J. Comput. Phys., 186 (2003), pp. 457--480.

[9] I. Gamba, J. Haack, C. Hauck, and J. Hu, A fast spectral method for the Boltzmann collision
operator with general collision kernels, SIAM J. Sci. Comput., 39 (2017), pp. B658--B674.

[10] I. Gamba and S. Tharkabhushanam, Spectral-Lagrangian methods for collisional models of
non-equilibrium statistical states, J. Comput. Phys., 228 (2009), pp. 2012--2036.

[11] J. Hesthaven, S. Gottlieb, and D. Gottlieb, Spectral Methods for Time-Dependent Prob-
lems, Cambridge Monogr. Appl. Comput. Math., Cambridge University Press, Cambridge,
UK, 2007, https://doi.org/10.1017/CBO9780511618352.

[12] J. Hu and Z. Ma, A fast spectral method for the inelastic Boltzmann collision operator and
application to heated granular gases, J. Comput. Phys., 385 (2019), pp. 119--134.

[13] J. Hu and K. Qi, A fast Fourier spectral method for the homogeneous Boltzmann equation
with non-cutoff collision kernels, J. Comput. Phys., 423 (2020), 109806.

[14] J. Hu and L. Ying, A fast spectral algorithm for the quantum Boltzmann collision operator,
Commun. Math. Sci., 10 (2012), pp. 989--999.

[15] S. Jaiswal, A. Alexeenko, and J. Hu, A discontinuous Galerkin fast spectral method for
the full Boltzmann equation with general collision kernels, J. Comput. Phys., 378 (2019),
pp. 178--208.

[16] C. Mouhot and L. Pareschi, Fast algorithms for computing the Boltzmann collision operator,
Math. Comp., 75 (2006), pp. 1833--1852.

[17] C. Mouhot and C. Villani, Regularity theory for the spatially homogeneous Boltzmann equa-
tion with cut-off, Arch. Ration. Mech. Anal., 173 (2004), pp. 169--212.

[18] L. Pareschi and B. Perthame, A Fourier spectral method for homogeneous Boltzmann equa-
tions, Transport Theory Statist. Phys., 25 (1996), pp. 369--382.

[19] L. Pareschi and G. Russo, Numerical solution of the Boltzmann equation I: Spectrally accu-
rate approximation of the collision operator, SIAM J. Numer. Anal., 37 (2000), pp. 1217--
1245.

[20] L. Pareschi and G. Russo, On the stability of spectral methods for the homogeneous Boltz-
mann equation, Transport Theory Statist. Phys., 29 (2000), pp. 431--447.

[21] L. Pareschi, G. Russo, and G. Toscani, Fast spectral methods for the Fokker-Planck-Landau
collision operator, J. Comput. Phys., 165 (2000), pp. 216--236.

[22] C. Villani, A review of mathematical topics in collisional kinetic theory, in Handbook of
Mathematical Fluid Mechanics, S. Friedlander and D. Serre, eds., vol. I, North-Holland,
Amsterdam, 2002, pp. 71--305.

[23] A. Weibe, G. Wellein, A. Alvermann, and H. Fehske, The kernel polynomial method, Rev.
Modern Phys., 78 (2006), pp. 275--306.

D
ow

nl
oa

de
d 

03
/1

1/
21

 to
 1

28
.2

10
.1

26
.1

99
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

https://doi.org/10.1017/CBO9780511618352

	Introduction
	Fourier–Galerkin spectral method for the spatially homogeneous Boltzmann equation
	Assumptions on the initial condition

	Some preliminary estimates on the truncated collision operator QR
	Main result: Well-posedness and stability of the method
	Propagation of the L2 estimate of fN- under the a priori L1 bound of fN
	Local well-posedness of the solution fN on a small time interval  [t0,t0+]
	Well-posedness and stability of the solution fN on an arbitrary bounded time interval  [0,T] 

	Convergence and spectral accuracy of the method
	Appendix: Proof of estimate (3.2) for the truncated collision operator QR,+ on a bounded domain
	Acknowledgments
	References

