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Abstract

Many hyperbolic and kinetic equations contain a non-stiff convection/transport part and a stiff
relaxation/collision part (characterized by the relaxation or mean free time ¢). To solve this type of
problems, implicit-explicit (IMEX) multistep methods have been widely used and their performance
is understood well in the non-stiff regime (¢ = O(1)) and limiting regime (¢ — 0). However, in
the intermediate regime (say, ¢ = O(At)), uniform accuracy has been reported numerically without
a complete theoretical justification (except some asymptotic or stability analysis). In this work,
we prove the uniform accuracy — an optimal a priori error bound — of a class of IMEX multistep
methods, IMEX backward differentiation formulas (IMEX-BDF), for linear hyperbolic systems with
stiff relaxation. The proof is based on the energy estimate with a new multiplier technique. For
nonlinear hyperbolic and kinetic equations, we numerically verify the same property using a series of

examples.
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1 Introduction

Many hyperbolic and kinetic equations contain a non-stiff convection/transport part and a stiff re-
laxation/collision part. For example, a simple linear hyperbolic system with stiff relaxation (cf. [14])

reads:
3tu + az'U = 0,
1 (1.1)
Opv + Ozu = —(bu — v),
€
where u = u(t, z), v = v(t,x) are the unknown functions of time ¢ > 0 and position z € R or T = [0, 27]
(a torus), b is a constant such that |b] < 1, and € > 0 is the relaxation parameter. Depending on the

application, ¢ could take any value between 0 and O(1), leading to non-stiff regime (¢ = O(1)), stiff
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regime (¢ < 1), or intermediate regime (0 < ¢ < 1, neither too small nor too big). In particular, when

g — 0, the second equation of (1.1) formally implies v — bu. Substituting it into the first equation yields
Opu + 0, (bu) = 0, (1.2)

which is the so-called zero relaxation limit. When 0 < ¢ <« 1, via the Chapman-Enskog expansion, one

can derive the next order approximation:
Oy + g (bu) = e(1 — b%) et (1.3)

which is a convection-diffusion equation.

Due to the multiscale nature of the problem (1.1) (or hyperbolic/kinetic equations of a similar kind),
a popular numerical method for time discretization is the so-called implicit-explicit (IMEX) schemes,
being either multistage (Runge-Kutta type) [25, 27, 4, 33, 19, 17] or multistep [15, 5, 23, 18, 3]. In
these schemes, the non-stiff convection part is treated explicitly, while the stiff relaxation part is treated
implicitly. In this way, the schemes are expected to be stable for £ ranging between 0 and O(1), provided
the time step At only satisfies the CFL condition from the convection part. Furthermore, the high order
accuracy of the schemes can often be guaranteed when ¢ = O(1) (being the order of the full IMEX
schemes) and when ¢ — 0 (being the order of the explicit part of the IMEX schemes). The latter is
a direct consequence of the schemes being asymptotic-preserving (AP) [26]. In the intermediate regime
(say, € = O(At)), many IMEX-RK schemes would suffer from order reduction [8] and special schemes
can be designed to alleviate this by imposing additional order conditions [9, 11, 10]. On the other hand,
the IMEX multistep schemes can often maintain the uniform accuracy for a wide range of ¢ as suggested
by strong numerical evidence [23, 18, 3].

Motivated by the above observation, we study in this paper the stability and accuracy of a class
of IMEX multistep schemes, IMEX backward differentiation formulas (IMEX-BDF), for (1.1) and its
generalization to the variable coefficient case. We rigorously prove the uniform stability and accuracy of
the IMEX-BDF schemes up to fourth order when coupled with spectral discretization in space. Simply

speaking, our main result implies the following;:
(T, ) = U(T, )|z + (T, ) = V(T )|l > < CALY, (1.4)

where U and V are the numerical solutions at time T, ¢ is the order of the scheme, and C' is a constant
depending on T, ¢, etc., but independent of €. Note that (1.4) is an optimal a priori error bound that
holds regardless of the value of €, hence the accuracy of the scheme is guaranteed in all regimes! This is
especially useful when ¢ is neither too small nor too big. For instance, if we are interested in capturing
the behavior of the solution at O(g), or in other words, the solution to the limiting equation (1.3), all we
need is to resolve the O(¢e) term in the sense that At? < O(e). Here the advantage of using high order (at
least second order) schemes should be clear: first order schemes are not able to capture O(g) information
since At is generally bigger than O(e) when ¢ is small.

Our proof is based on the energy estimate along with a new multiplier technique. Although the
multiplier technique for studying the stability of multistep methods for ODEs traces back to [16, 32], it has
only recently been used in the numerical analysis of parabolic problems, see for instance [30, 2, 1]. Existing
multipliers cannot be applied to study our problem (1.1) due to its special convection-relaxation structure.
Therefore, a new class of multipliers needs to be invented to prove the stability which constitutes one
of our main contributions of this work. The uniform stability, combined with the consistency of the

IMEX-BDF schemes which is a consequence of the uniform-in-¢ regularity of (1.1), finally yields the



desired uniform accuracy. To the best of our knowledge, this is the first rigorous high order uniform-in-¢
accuracy result established for stiff hyperbolic type equations.

Although we used the linear system (1.1) as a prototype problem to prove the main result, we expect
similar conclusion holds for more general nonlinear hyperbolic equations, among which a very important

class of equations in multiscale modeling is the following kinetic equation (cf. [37]):

Ouf +v:Vuf = 20U (1.5)

Here f = f(t,x,v) is the probability density function (PDF) of time ¢t > 0, position z € R?, and
velocity v € R%. Q is the collision operator modeling the interaction between particles: Q could be
the Boltzmann collision operator which is a nonlinear integral operator [12], or some simplified version
mimicking the properties of the full Boltzmann operator, e.g., BGK [7], ES-BGK [22], or Shakov models
[34]. In this context, € is the so-called Knudsen number defined as the ratio of the mean free path and
characteristic length. In practice, the value of e characterizes the flow regime [36]: 1) e — 0, Euler regime
(the flow is well described by the compressible Euler equations, analogue of (1.2)); 2) 0 < ¢ < 0.01,
Navier-Stokes regime (the flow is well described by the Navier-Stokes-Fourier (NSF) equations, analogue
of (1.3)); 3) 0.01 < ¢
macroscopic models or the original equation (1.5)). Since (1.1) and (1.5) share a common structure (non-

< 1, transition regime (NSF equations fail, and one has to resort to extended
stiff convection/transport plus stiff relaxation/collision), we conjecture on a uniform error bound similar
to (1.4) for smooth solutions, which implies that the IMEX-BDF schemes could capture the Navier-Stokes
regime or even the transition regime with uniform accuracy. While proving this rigorously is currently
out of reach due to the complexity of the problem, we demonstrate it numerically in the paper using the
kinetic BGK equation.

To close this section, we mention that a parallel direction to our work is to design uniformly accurate
methods for highly oscillatory equations, see the recent work [13] and references therein. Although some
ideas involved are of a similar flavor, the structure of equations in both fields are very different: our
problem is of dissipative nature (endowed with an entropy), while the highly oscillatory problem is often
conservative (endowed with a Hamiltonian).

The rest of the paper is organized as follows. In Section 2, we briefly introduce the IMEX-BDF
schemes employed in this paper. In Section 3, we establish our main result for the linear system (1.1).
To this end, we first study the regularity of the solution in time, then introduce the fully discrete scheme
by adopting a Fourier spectral method in space. With these preparations, we prove in Section 3.3 the
uniform stability of the schemes which is facilitated by a newly introduced multiplier technique, and
then in Section 3.4 the uniform accuracy of the schemes by combining the stability and consistency
results. In Section 4, we extend our analysis to the variable coefficient case. In Section 5, we present
several numerical studies including the verification of our theoretical results for the linear problem and

investigation of some nonlinear hyperbolic and kinetic equations. The paper is concluded in Section 6.

2 IMEX-BDF schemes for (1.1)

In this section, we briefly describe the IMEX-BDF schemes for the prototype problem (1.1) and fix
the notations for the following discussion.

Let U™, V™ denote the numerical solutions at time t,, = Ty + nAt, where Ty is the initial time, n is a
non-negative integer, and At is the time step size, then the ¢-th order IMEX-BDF scheme for the system



(1.1) reads

q—1
Za UM+ ALY 7,0,V =0,
=0 =0

At
Za Yt Atz% 9, U™ = 6 E=punta — yrta),

where the coefficients a = («g, ..., aq), ¥ = (70, --,74—1) and 3 are given by
1 ol
B=—=r71 BZ ~¢rI(¢ - 1) Zazc W) =B = (=) =% (22)
Jj=1lj i=0

The coeflicients of IMEX-BDF schemes up to fourth order are provided in Table 1. Note that IMEX-BDF1

is just the forward-backward Euler scheme.

q a 0 B
1 (—1,1) 1 1
2| (o4 SENE
; §_7176ﬁ3:6_ 7?4781) (1]2.671 74g7§)7]2.7§ )48 g
4 (g5 a5 1) | (038,95 —%.38) | 28

Table 1: Coefficients of IMEX-BDF schemes up to fourth order (cf. [23]).

To initiate the scheme (2.1), one needs 2q starting values: U°,..., U1 VO . V4=l TIn practice,
they can be obtained using IMEX-RK schemes. With the proper starting values, the scheme can proceed
by first solving for U™*4 from the first equation of (2.1) and then solving for V"¢ from the second
equation.

The above IMEX-BDF scheme is AP in the sense that, for initial data satisfying V? = bU?, i =
0,...,q — 1, it captures the asymptotic limit (1.2) when ¢ — 0 with fixed A¢. Indeed, as ¢ — 0, the
second equation of (2.1) formally implies V"t = bU™T9 for n > 0, hence V¢ = bU® for all i > 0.
Substituting this into the first equation of (2.1) yields

Za Ut +At2% L (BU ) = 0, (2.3)

i.e., in the limit & — 0, the scheme becomes a consistent g-th order explicit multistep scheme for (1.2).

Remark 2.1. Here for simplicity we only present the scheme for the linear problem (1.1). If the relazation
term is nonlinear, e.g., bu on the right-hand side of (1.1) is replaced by a nonlinear function f(u), the
scheme works equally. In fact, due to the special structure of the equation, one can still obtain U™4
first and then V"4, and no iteration is needed, i.e., a monlinear implicit scheme can be implemented
explicitly. Similar idea applies to the nonlinear kinetic equations, for instance, the BGK equation, see

Appendiz A for a brief description.

3 Uniform accuracy of the IMEX-BDF schemes

In this section, we prove the uniform accuracy of the IMEX-BDF schemes for the linear hyperbolic

relaxation system (1.1). To this end, we need to employ the spatial discretization as well. For simplicity,



we assume that the spatial domain is [0, 27] with periodic boundary condition and adopt the Fourier-
Galerkin spectral method.

The proof of uniform accuracy consists of three steps. First, we study the regularity of (1.1), especially
for high order time derivatives of u and v, which is necessary for high order consistency of the numerical
scheme. Next, we establish the uniform stability of the fully discrete scheme by using energy estimates
with the multiplier technique. A new class of multipliers is introduced to overcome the difficulty coming
from the special structure of (1.1). Finally, we prove the uniform accuracy by combining the consistency
and stability results.

In the following, all the integrals without range refer to fo% - dz; function norms || - || without subscript

refer to L? norm in z; and C' denotes a generic constant independent of .

3.1 Regularity estimate

Hyperbolic relaxation systems, especially the nonlinear ones, have been studied throughly in the 90’s,
where the main concern is to justify rigorously the convergence to the zero relaxation limit (see [31] for
a survey). Here our purpose is different as we need the uniform-in-¢ regularity in time to prove the
consistency of high order time discretization. Therefore, we give a self-contained proof in this subsection.

To study the regularity of (1.1), we first reformulate it into a new form, similar to the micro-macro
decomposition in kinetic theory [29, 6]. Introducing a new variable w = v — bu, one can rewrite (1.1) as

O+ Oz (bu +w) =0,
1 (3.1)
Opw 4 0, ((1 — b*)u — bw) = —ow.

Multiplying the two equations of (3.1) by u and w respectively and integrating in =, we get

1
8t§||uH2 + /uazw dz =0, (3.2)
and ) .
8t§||w||2+(17b2)/w8mudx: fg||w||2. (3.3)
Then a linear combination of the above two relations gives the energy estimate
1 1
05 (1= 6*)[ull” + wl*) = = [Jwl* <0, (3.4)
which implies
1 1
(=)@ + [w@®*) < 5 (1 = )OI + [[w(O)]). (3.5)

Notice that the condition |b| < 1 guarantees the equivalence of ||u|?* + |Jw||? and the Lyapunov functional
(1 =) ul® + fJw]l*.
The regularity estimate for (3.1) is stated as follows.

Theorem 3.1. For any integer s > 0, assume
[u(0)][7 + lw(0)[[ = Eo < cc. (3.6)
Then for all t > selog(1/e), the solution to (3.1) satisfies

lu(®) |7 + lw(®)Z: < CEo, (3.7)



also
107 02 u(®)|” + (107 2w () [|* < CEo, 71472 <'s, (3.8)

and
107 052w (t)||* < CEoe®, ri+71o<s—1. (3.9)

Proof. First of all, for any integer s > 0, (03u, 05w) satisfies the same system (3.1), thus also has the
energy estimate (3.5). This implies (3.7).

We then prove that (3.6) implies (3.8) by induction on s. The case s = 0 clearly follows from (3.7).
Now assume (3.6) implies (3.8) with s replaced by s — 1 in both equations. We aim to prove that (3.6)
implies (3.8) in the case of s. Since for any 0 <r < s—1, (0;0Lu, 0;0Lw) satisfies the same system (3.1),
by (3.4) one has

1 . 1
5t§ (1 =0 0:05ul® + (| 0:05w|]*) = —g||(9t8;w||2

: , (3.10)
== — (L= )19:07ull” + 0,05 w]|*) + Z(1 = b*) [0,y
Notice that 9;07u = —bd- 1u — 9 1w. Thus by (3.7),
10 05u(t)||* < CEp. (3.11)
Similarly, from 0,07w = —(1 — b*)95 ™ u + b w — L0%w one has
1
005w (t)||> < gCEO. (3.12)
Then by (3.10),
1
5 (=) 007u(®)|* + 005 w(®)]|*)
— 1 T T 1 ‘ — —T T
=e Z)t/gg((l = ) 10:0;u(0)|* + 9:0;w(0)*) + — (1 — 52)/0 e 20 Opu(n) P AT (3.13)
1
< (6_%/562 + 1) CEO
This implies
10:0u(t1)]|* + [18:05w(t1)||* < CEo, 1 = elog(1/e). (3.14)
Define
a(t) = dwu(t+t1), w(t) = w(t+t1). (3.15)
Then (@, w) also satisfies (3.1), and (3.14) means
1(0) |3~ + 10 (0) |31 < CFo. (3.16)
By the induction hypothesis, we have the estimate
07 dz2a(t)|* + 107 Oprw(t)||* < CEo, 71 +12 <51, (3.17)

for all t > (s — 1)elog(1/e). In view of the definition of (@, @), this together with (3.7) implies (3.8).
Finally, (3.9) follows from (3.8) using the relation w = —&(9yw + 9, ((1 — b*)u — bw)). O



3.2 Spatial discretization and fully discrete scheme

For the spatial discretization, we apply the Fourier-Galerkin spectral method. Consider the space of

trigonometric polynomials of degree up to V:

Py = span{e’*®| — N <k < N}, (3.18)
equipped with inner product
1 _
(19) = 57 [ fo da. (319)
™
For a given function f(x), its projection Py f is defined as
N . .
Pxf(x)= Y fre™ €Pn, fu=(f,e*). (3.20)
k=—N

For the projection operator, we have the following basic facts, whose proof can be found in [21] for

instance.

Lemma 3.2. Py is self-adjoint, i.e., for any functions f(z) and g(x), there holds

(Pnf,g9) = {f,Png). (3.21)
Lemma 3.3. For any 2m-periodic function f(x) € H*[0, 2], there holds

(T =Pl < 55 I e (3.22)
Lemma 3.4. For any ¢(z) € Py, there holds
161 < N*ig]l. (3.23)
The Fourier-Galerkin spectral method for (3.1) seeks to approximate u, w as
N N
u(t,z) ~ Z up () = un(t,x), w(t,z)~ Z w (1)e™ = wy (t, ). (3.24)
k=—N k=—N

Substituting (3.24) into (3.1) and conducting the Galerkin projection yields

Oun + Oy (buy +wy) =0,
1 (3.25)
wy + 635((1 — b2)uN - wa) = —ng7
i.e., uy,wy still satisfy (3.1). It is worth mentioning that in the actual numerical method, the coefficients
ug(t) and w(t) are the sought after quantities. They satisfy the same equation (3.25) and the initial
condition ug(0) = Pyu(0,x), wg(0) = Pyw(0,z). Applying the ¢-th order IMEX-BDF scheme to (3.25),
similarly as (2.1), yields the fully discrete scheme

q g—1
D UG+ ALY 30, (bURT + W) =0,
=0 =0 (3.26)
BAt

n-+q
5 Wy,

q q—1
> aWRT + ALY 30 (1 - 0*)URT — bWRT) = —
=0 =0

where Uy, W§ are the fully discrete solutions. For the starting values, we assume they can be obtained
with very high accuracy (in time) using IMEX-RK schemes so that the error only comes from the spatial

discretization, i.e., we assume
Uk = Pyu(ti,z), Wi =Pyw(ti,z), i=0,...,q—1, (3.27)

where v and w are the exact solutions.



3.3 Uniform stability

To analyze the stability of (3.26), we adopt the multiplier technique. We mention that this technique
appeared already in early works [16, 32] but it was only recently used in the analysis of BDF schemes for
parabolic equations, see for instance [30, 2]. When it comes to our problem (1.1), the existing multipliers,
including the recently proposed ones [1], cannot be applied due to the special convection-relaxation

structure of the equation. Therefore, we invent a new multiplier as stated in the following lemma.

Lemma 3.5. Forq = 1,2,3,4, there exist positive-definite Hermitian form G(uy, ..., uq) = Z;{j:l Giju;iUj,
semi-positive-definite Hermitian form A(uy, ..., uq—1) = Zf;il a;juitij, linear forms qu;ll Nilis D oe ) Cilli,
where all coefficients involved are real, and real constants dy > 0 and ds, such that

q—1 q 2

q—1 q—1
§R (ﬂqunjﬂJZaiui :G(ul,...7uq)7G(U0,...,uq_1)+d1 uq—Zmui—dz Z’%Uz‘ s
=1 =0 =1 =0
(3.28)
and
q—1 q 2
R ((uq — Zmui)uq> = Alug, ..., uq) — Alug, ..., ug—1) + Zciui , (3.29)
i=1 i=1
hold for any ug,u1,...,uq € C, where R denotes the real part of a complex number.

Proof. First of all, it is easy to see that to prove (3.28) and (3.29) it suffices to show the following

equalities hold for any real numbers ug, u1, ..., uq:

q— 2

q—1 q g—1 1
(uq — Z’I]j'dj) Zaiui = G(ul, e ,Uq) — G(U(), ey uq,l) + d1 (Uq — Zmul - d2 Z’%j@) y
j=1 =0 i=1

=0
(3.30)

and

g—1 q 2
(uq —Zniui)uq = A(ug,...,uq) — A(u1, ..., uq—1) + <Zczul> . (3.31)
i=1 i=1

For ¢ = 1, the coefficients are given by

1 1
— Ll oa=1 a=1 =1 3.32
g11 27 1 27 2 ) C1 ( )
For ¢ = 2, the coefficients are given by
1 5 1 1 3
=0 == == =——, di==, dy=-= =0 =0 =1. 3.33
m y 911 6’ g22 6’ 912 3’ 1= 2= 5 aii , €1 y €2 ( )

For these two cases, (3.30), (3.31), as well as the (semi-)positive-definiteness of G and A can be checked
easily. In fact, these numbers are well-known, see for instance [20].

For ¢ = 3, the coefficients are given by irrational numbers’:

_ V30, 8 _ V30, 95 _ V30,7
IR Tagr 92T 3q Tagy BT g T v
3v30 24 330 24 6v30 9 -
J12 =~ — ooy 13= —o tooms g3 = — o — (3.34)
187 187 187 187 187 17
V30 9 2v30 18 N 1130 44
m=— "7 Mm=——5 +t= d=—F-+— d= + =7
7 17 7 17 2 11 102 51

IThese values are obtained by solving certain algebraic systems using the symbolic toolbox of MATLAB. They serve
as one admissible set of solutions and we do not claim their uniqueness and optimality. Same can be said for the values
provided in Appendix B for ¢ = 4.



ajl = ((5576634533850159812 — 1018149509409713088v/30) 25

+ (—827564175794699168 + 151091855378090876+/30) 2
+ (1317402834013463958 — 240523749880736072v/30) 22

+ (—150042582540986748 + 27393902345391585@))
/ (—1011078865344820767 + 184506900652059714v/30),
ayg = — ((20162952 — 35766641/30)28 + (—11669820 + 2036872+/30) 22
+ (9540978 — 1747158v/30) 22 + (—4604391 + 840294\/%)) / (—7213644 + 1314780v/30), (3.35)
ago =1 — 237
o1 = ((1454248 — 235824v/30)27 + (—268192 + 25432/30) 27
+ (312732 — 613361/30)23 + (—37632 + 6618\/%)z*)/(—106083 +19335v/30),
e :( — 3930427 + (28900 + 11561/30) 22
+ (8466 + 1904v/30)22 + (4617 — 819v/30)2. ) /(~3078 + 546V/30),

C3 =Zx,

where z, is the unique real root of the polynomial

B(2) =(—49444432 + 8018016+/30)2° — (—9118528 + 864688+/30)2° 4 (—10632888 + 2085424+/30)2*

— (—1279488 + 225012v/30) 2% + (—1534797 + 2800981/30)
(3.36)

that lies in the interval (0.106,0.107).2 (3.30) and (3.31) can be checked directly (by plugging in the
coefficients and comparing like terms on both hand sides). To check the positive-definiteness of G, we

compute the characteristic polynomial of G:

1 222 12 4 4
1530 >A2+<3 V30 533>A+< 5v/30 656 ) (3.37

187 34969 ' 69938 13078406 6539203

_ 13
XG(A)_AJr( 187 187

and it is clear that xg()\) < 0 for A < 0. Therefore ¢ has only positive roots.? Since A is a quadratic form
of two variables, to check the positive-definiteness of A, it suffices to check az > 0 and aj1a22 — a2y > 0,

for the root z, of ¢(z): the first fact is clear; to check the second fact, we compute

anram —a? = (161 26v/30) (96 . 53v30\ L (85, 16V30) 4 (112 20V30 0.
578 289 o510 )73 3 * 3 3 *
(3.38)
by using ¢(z.) = 0. Since 151 + 262‘8/50 > 0.77 and 12 + 2()3@ < 74, one has
aiagy — a3y > 0.77 = 74-0.107° > 0, (3.39)

2The approximate value of z. is given by

zx ~ 0.10618875349491630708729892823342.

3In fact, the smallest eigenvalue of G is approximately

A1(G) =~ 0.001064408628491745818998719988681.



by using 0.106 < z, < 0.107.4

For ¢ = 4, we list in Appendix B an approximate choice of coefficients which satisfy (3.30) and
(3.31) up to an error of 1073, with the quadratic forms G' and A being positive-definite. One can argue
rigorously as that for ¢ = 3. We omit the details. O

Remark 3.6. We did not consider the case with ¢ > 4 because for kinetic equations (1.5) that we are
mostly interested in, the spatial error often dominates even using high order methods such as the fifth
order WENO method [35] and usually up to third order accuracy in time would suffice (see also the

numerical results in Section 5.3).

Remark 3.7. Compared with the multipliers constructed in [32] for ¢ < 5, the main feature of Lemma 3.5
is a precise quantification of the last square term in (3.28): it is exactly the square of a linear combination
of the multiplier u, — Zf;ll n;u; and the explicit part Zg;ol Yiu; appearing in the IMEX-BDF scheme.
This will be essential to the proof of uniform stability, for handling the contribution from the convection
term.

Next we state our result on the uniform stability of the IMEX-BDF scheme (3.26):

Theorem 3.8 (Uniform stability of IMEX-BDF schemes). For g = 1,2,3,4, under the CFL condition
At < copr/N? for any constant copr, > 0, the IMEX-BDF scheme (3.26) is uniformly stable, in the
sense that

q—1
n n i At i3
JURIZ+ W32 < 0 Y (||UN||2 +(1+ S)HWNP) : (3.40)
i=0
for any n such that t,, = Ty + nAt < T, where C is a constant independent of €, N and At.

Proof. In this proof we follow the notations from Lemma 3.5. Denote

g:/G(UZ@,...,Ugﬂ*)dx, n :/G(Wﬁ,...,wgﬂ*l)dz,
(3.41)
no— /A(W;“,...,W}@*‘H)dx.

Multiplying the first equation of (3.26) by U;\L,Jrq — Zf;ll 7 UK,H, using Lemma 3.5 and integrating in

4In fact, the smallest eigenvalue of A is approximately

A1(A) = 0.78260015292507185414401336030175.

10



T gives

g—1 g—1 2
0=Gy" = Gf +dy UG =D iUy —dp Y UG
=1 =0
q—1 q—1
+ bALR / U= U7 | 0> vURT da
j=1 i=0
q—1 q—1
+ AR / ON = O | 02> W da
j=1 i=0
g—1 g—1 2
=G = GY +dy UG =D U™ —dp Y UG (3.42)
=1 =0

q—1 q—1 q—1
+ bALR / U= U7 —dy > U8 | 02> vURT da
j=1 j=0 i=0

q—1 q—1 q—1
+ AR / O3 =S 0,0 —dy S 2,05 ) 0,3 Wit da
j=1 j=0 i=0

q—1 qg—1
FaAR [ 3 U0, Y W da,
7=0 =0

where the new terms added in the last equality are actually zero due to an integration by parts and
periodic boundary condition. Similar treatment for the second equation of (3.26) gives

2
Gyt -Gy + dy

q—1 qg—1
e S 3

i=1 i=0
q—1 g—1 q—1
- bAt%/ Wy - Z Nj W;\lrﬂ —dy Z %W;\lﬁj O Z VW do
j=1 §=0 i=0
q—1 q—1 g—1
+ (1 - bH)AtR / WNTT =S W —do Y W 0, Y URT da (3.43)
j=1 j=0 i=0
q—1 q—1
+(1- bQ)dzAm/ D W0 > U da
§=0 i=0

2
At
::4'§g7 A%jlg’ %/+

q
E Cﬂyx+z

=1

Notice that for any x > 0, using Young’s inequality,

q—1 qg—1 q—1
s [ (030 = Ym0 — da Y405 | 0 3 Uyt da
j=1 §=0 i=0

2

g—1 _ g—1 _ 2 At2 qg—1 ‘
<K UJT\L[+11 _ Z niU]T\LrJrZ —dy Z%Uﬁﬁz + E R Z%U}\LTJM (3.44)
=1 =0 =0
q—1 _ q—1 _ 2 AL2 q-1 -
<n U =D U = d2 Y wUN™ |+ O [loU3]
=1 =0 =0
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and similarly for the other three integrals of this form in (3.42) and (3.43). Then we take (1 — b%) x
(3.42) + (3.43), and by estimating these integrals with x small (in terms of b and d; ), we may absorb the
terms with coefficient k£ by the two terms with coefficient d;, and obtain

(L =G + Gt = (1= )Gy + Giy)

q—1
<ea 3 (U3 " + oW |*) = 5= | A = A+ | Yo ewiT| |
i=0
where we used the fact that
q—1 . q—1 qg—1 . q—1
R / Z v UN 0, Z v Whttde + R / Z Wit o, Z U dz = 0. (3.46)
§=0 i=0 §=0 i=0
Therefore,
At At
(1= R)GE + Gy + P2 — (-6 + Gl + 220 ag)
qg—1 - - (347)
cary” ([o.u [ + 2w ")
i=0
Using Lemma 3.4 and the CFL condition, one has
n n CCFL
10.UR | < N|[UR| < 1UNII- (3.48)
The same estimate holds for W§;. Therefore,
At t
(1 - )GE + Gt + %A;’Jl) —((1 =*)G} + G} + B—A" ")
(3.49)

qg—1
<Cecrty. ([[O3+ + [wit*).
=0

On the other hand, the positive-definiteness of G' guarantees the existence of Apax(q) > Amin(g) > 0
such that
q—1 qg—1 q—1 q—1

Aarin D USRI < G < M S NUS]™ 0 Aewine D [WAT® < Gl < Aanae D [WATH| - (3.50)
1=0 =0 =0 =0

The semi-positive-definiteness of A guarantees the existence of nyax(q) > 0 such that

q—1
0< AYy < a3 W (3.51)
i=1
Define
E" = (1-10% ;}+G€V+B?At W (3.52)
then
q—1
(1= )i 3 (I3 + W37 < (1 - )G + iy < B, (3.59)
=0
ie.,
q—1
(o1 + [wi)1*) < cem. (3.54)
=0

12



Also

At = . . At .
(1 -G + Gy + %A% < Amax > (U] + W) + %nmxz [we+i|*,  (3.55)
i=1

=0
ie.,
= At
n n+i|2 =" n+i |2
E" < c; <||UN 12+ (1 + =) I > . (3.56)
Therefore, (3.49) implies
E"T < (14 CAHE™, (3.57)
which gives
E" < (1+CAH)"E® < exp(CT)E". (3.58)

Finally, the conclusion follows by noticing that
= At
ORI + R < oBn B0 <e Y (10ale+ (1+ 2wl (3.59)
i=0

O

Remark 3.9. For g = 1,2, the same estimate (3.40) holds with the &L term removed. In view of (3.52),

this is a consequence of the fact that for ¢ = 1,2, A can be taken as zero in Lemma 3.5.

Remark 3.10. The CFL condition At < CCFL/N2 is the standard stability condition one will obtain
when using the forward Euler coupled with Fourier spectral method to solve the hyperbolic system (1.1)
without relazation term [21].

3.4 Uniform accuracy

In this subsection, we establish our main result on the uniform accuracy of the IMEX-BDF schemes.
To this end, we distinguish two kinds of initial conditions.
Case 1. For ¢ = 1,2, 3,4, if the initial data is consistent up to order ¢, in the sense that

1O ()l + 10 w0 (0) |1 < C,

(3.60)
10} w(0) |2 + 10w (0) | 2 < C,
then the IMEX-BDF scheme (3.26) is applied at any starting time Ty > 0.
Case 2. For ¢ = 1,2, 3,4, if the initial data satisfies
[u(O) 1 Fra+e + w(0)l[7ese < C, (3.61)

then the IMEX-BDF scheme (3.26) is applied at the starting time Ty > (g + 2)elog(1/¢).
The above treatment makes sure the initial layer is passed and the initial data is well prepared so

that we have the following:

Theorem 3.11 (Uniform accuracy of IMEX-BDF schemes). Under the conditions of either Case 1
or Case 2, the IMEX-BDF scheme (3.26) is uniformly g-th order accurate under the CFL condition
At < min{ccpr/N?,1} for any constant copr, > 0, that is,

lu(tn) = URI? + w(tn) = W < C(ALT + epry), (3.62)

13



for any n such that t, = Ty + nAt < T, where C is a constant independent of €, N and At, and

q—1

cor 1= 3 (I = Prgut)] + (1+ 217 = Pryute?). (3.63)

=0

The projection error epyo; is small if one assumes enough regularity of the initial data. To be precise,
we have

Corollary 3.12. Under the conditions of Theorem 3.11, if one further assumes

[w(To) || 22as1 + [[w(To) | 22011 < C,

) ) (3.64)
10cu(To) 7720 + [[0vw(To) |72 < C,
then there holds the error estimate
1
llu(ty) — UR|* + |Jw(t,) — WE|?> < C (Ath + N4‘1> , (3.65)
for any n such that t, = Ty + nAt < T, where C is a constant independent of €, N and At.
Proof. By Theorem 3.11, it suffices to prove that ep; < C/N*9. In fact, (3.4) implies
[u®)lFz0er + w20 < O, (3.66)
for all ¢t > T, since (O5u, O3w) satisfies the same system (3.1). Therefore, using Lemma 3.3,
1 C
I = PRI < sargllelinen < sries- (3.67)
Similar treatment for w, d,u, O, w, dyw gives
C
17 =Pr)wOI < Sz
c (3.68)
17 = Pw)eu(* + 17 = Pw)2w(®)* + (T = Pr)Orw(®)* < 55
The second line above implies
C
I(I = Pr)w(t)]® < 52ma (3.69)
since w = —&(0yw + 8, ((1 — b*)u — bw)). Then the conclusion follows. O

Proof of Theorem 3.11. We first prove the consistency of the IMEX-BDF schemes and then combine it
with the stability to achieve the uniform accuracy.
If (3.60) holds, then (3.4) implies
107 u(®) | s + 107 w(®)] < C,

(3.70)
10fu()|| 2 + [|0]w(t) | = < C,

for all ¢t > 0, since (0;'032u, 0;' 032w) satisfies the same system (3.1). If (3.61) holds, then Theorem 3.1
implies (3.70) for ¢ > Ty > (g + 2)elog(1/¢). Thus in both cases, using the Sobolev inequality,

1O ()2 + 107 w ()| e < NP u(®)]lan + |07 w(t)l| s < C,

(3.71)
10} 0zu(t) || Lo + 110} 0w (t) | < |0} Ozu(®) || 2 + [|0f O ()| < C.
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For the exact solution wu(t, z) there holds the consistency error (pointwise in x):

— BAtu" | < CAT max |9t ),

=0 te[To,T]
et (3.72)
ALY " yidpu™t — BAt,u" | < CALTT! max
i=0 telTo,T
where u™ := u(ty, x). Hence,
q q
|| Z au Tt — BAt@tu”JrqH < C’H Z au Tt — 5At8tu"+q|’po < CAtIHL,
’:OH =0 - (3.73)
ALY " yidau™ — BALO,u" || < C||ALY " 7i0pu™™ — BALOu"T|, o < CALIT
i=0 =0

Similar estimates hold for the exact solution w(t, x).
Let S; and Sj}, be the truncation errors of the scheme, i.e., the remainders obtained by inserting the

exact solutions u(t, z) and w(t, ) into (3.26):

q

>

=0

au" 4+ At Z ~i 0z (bu

q—1
n—+1 + wn+z) — SZ}?
=0

q a—1 A (3.74)
: : t
S a4 A (1 - R bt = P2y g
=0 =0 <
Then using the estimates in (3.73), we have
ISE 1| + (1S3 | < CAte*, (3.75)

Define the errors 6U™ = u™ — U}, W™ = w™ — W}; then subtracting (3.26) from (3.74) gives
Zal sUntt 4 AtZ%
Za SWnt 4 AtZ% -

Therefore, (6U, W) satisfies the same scheme (3.26) up to the source terms. An argument similar to

(bSU™ + SWT) = Sn,
(3.76)
1 o b2 UnJri o

bW ) = —

BAt "
?5W +a + SW

the proof of Theorem 3.8 gives

((1 — V)G + Gt ﬁAtA”“) - ((1 = 0")Giy + Giw + @ Z;’w)

a—1 (3.77)
, . C
<CArY” (U + [|wr|*) + wAt (JSU2 + oW ) + Z A,
i=0
where the term involving S7. is estimated by (S}, is estimated similarly)
q—1 q—1 C
‘%/ <5U”+q - X;WSU”“> SPdx| < kAL||SU™)2 + CAtZ; |6U™+ )% + ;A#qﬂ, (3.78)

with £ > 0 small, to be chosen.
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Similarly as in Theorem 3.8, define

At
B = (1= )Gy + G + 220 Ay (3.79)

then by the postive-definiteness of G and semi-positive-definiteness of A, we have

—

q—

+if2 Lil2 1
S (Jom 1+ o) < g 350
and
1
5 n+qi|2 5 n+q||2 < EnJrl' )
U 4 WP < s — (3.81)
Using these in (3.77) gives
kAL C
l— —— | E" < (1 + CAHE™ + — AT, 3.82
( (1b%Amm) <@+ CANE" + 2 (3.82)
Recall that At < 1 by assumption. By choosing k = %, we have
1 1
T :1_Q§I+At. (3.83)
(1—b2) Amin 2
Hence
E"Tl < (14 CAt)E™ + CAt?THL (3.84)
Then using Gronwall’s inequality, we obtain
E" < O(Ey + At?). (3.85)
Finally the conclusion follows by noticing that
= . At .
HWW+WWWymmE%czme%@+5wmwﬂ=@m. (3.36)
i=0

4 Extension to the variable coefficient case

In this section we show that our results on the uniform accuracy of IMEX-BDF schemes can be

extended to linear hyperbolic relaxation systems with variable coefficients:

Oyu + Oyv = 0,
By + Opu = @(b(x)u — ), b
where b(z) and o(x) are smooth, satisfying
[b(z)| <by <1, 0<op<o(z)<oi, z€][0,2n]. (4.2)

In particular, the rationale of considering o(z) is that it resembles the collision frequency in the kinetic

equation.
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For simplicity, we will only show the analogs of Theorem 3.1 with s = 1 and Theorem 3.8 with ¢ = 1.
Higher order case can be obtained in similar ways.

Introducing the new variable w = v — b(x)u, one can rewrite (4.1) as

O+ Oz (b(x)u + w) =0,

) o(z) (4.3)
Oyw + 05 ((1 — b(z)7)u) + b(x)0b(x)u — b(x) 0w = W
Multiplying the first equation by (1 — b?)u and integrating in z, we get
1 1
Qg lull + /(1 PRy udywda + / SOty de =0, ul = /(1 CRylde,  (44)

using the notation ||ul||p for a weighte norm, being equivalent to ||u|| since [b(x)| < b1 < 1. Multiplyin
ing th ion [|ulls f ighted L* , being equival [[ul| since [b(z)[ < b1 < 1. Multiplying

the second equation of (4.3) by w and integrating in x, we get
1 2 2 1 2 1 2
atinH + [ wi, (1 —b")u)dx + [ (bOzb)uw dx + 3 (Ozb)w dx = - [ ow dz. (4.5)
Adding the above two relations gives the energy estimate
P 1 2 2y 90 2, 2 2 4.6
b5 lulls + llwll) < =—lwl® + C(llull + [lw]), (4.6)

since b(z) is a smooth function.

We first state the regularity result, analogous to Theorem 3.1 with s = 1:

Theorem 4.1. Assume

[u(0)[IF + w(0)[I3: = Eo < oo (4.7)
Then the solution to (4.3) satisfies
107 Oz u() | + 1107 O w(t)||* < CEoe,  ri+72 <1, (4.8)
and
(@) < CEe?eC, (49)

for allt > clogl/e)

o0

Proof. (0,u,0,w) satisfies

8,0y + 0y (b + Dpw) = —0, (Dpbu),

305w + 0y (1 — b2)Dptt) + bDybOyt — by = —gazw + 20, (bDybu) — Dy (bOyb)u + OpbByw — 82%.
(4.10)
Therefore, similar energy estimate as above gives
81(||6232<—@8208282 2 24 Sl 411
15 (10zull + 10:w]1%) < =2 1100w ]* + Cl0uull® + [0zl + [[ull® + wl®) + — el (4.11)
where the term [ &Cw(—az—"w) dx is handled by
X ) ol 70e o2 1
/&cw _%9) dal < M/\w&uﬂdxﬁ 909, w|f? + 122002 Ly e (4.12)
€ e 2¢e 200 ¢
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Multiplying (4.6) by C1 /09 and adding to (4.11), we can absorb the last term < ||wl[|? and get

1 2 2 & 2 2
o (2<||axu||b H0swl?) 4+ 5l + o)

(4.13)
00
< = 5 10ew]? + C (10zull® + 102w]* + flull® + [lw]?)
and then it follows that
10:u(®)]* + |0:w(B)|* < CEoe, (4.14)
for all t > 0.
(Oru, Oyw) satisfies the same system (4.3), and thus has the energy estimate
1 o
Ors (10eullf + [00w]|?) < = 20w ]* + C (|0rul® + [[9y]?)
o) go
== — (19wullg + 19w]*) + C ([ 9eull* + 10w]|*) + N0l (4.15)
o g0
<— (2 =) (10wl + 10w]?) + 2> 92,
for some C; > 0. Notice that 0yu = —9,(b(x)u + w). Thus by (4.14),
0u(t)||? < CEpect. (4.16)
Similarly
1
|0,w(t)|? < E—QC’EOeCt. (4.17)
Then by (4.15),
1
5 (I19:u@®1F + 020 ®)]?)
o 1 ¢ o
<e 2B (OO + [ow(O)]?) + [ e R o u(r) par
X o, 0 (4.18)
<0 (20 (0 O)F + [0mO)) + [ =D oy (r) R
0
< (e—ant/aZ n 1) O EpeC+20t
€
and it follows that
10vw(t)||* < CEge, (4.19)

for ¢ > £1980/9) " (4.9) follows from (4.8) using the relation w = — £ (9w+08, ((1—b?)u)+bdybu—bdyw). O

To apply the spectral discretization in space, we first need to rewrite (4.3) using the variables (4, w),

4= uv1—b25 ,
Oyt + 0, (bir) + %a + 1= b20,w =0,
bo-b . (4.20)
Ow + 0, (V1 — b2a) + \/liilﬂﬂ — bo,w = fgw.

Based on this reformulation, the first order IMEX-BDF (i.e., forward-backward Euler) scheme together
with the Fourier-Galerkin spectral method reads

~ ~ ~ b20,b -

Untt —UR + AtPy (@(bU}&,) + U+ V11— anQCW];) =0,

_}H2
L=b (4.21)

. bd,b - At
WL WE + AtPy {895 (Vi—viy) + N bawwﬁ] = = Pu(eWE.

e purpose of this reformulation is to make the Lyapunov functional ||u||f + ||w]||* into the pure norm ||@||® + ||w]|®,
5Th f this reformulation is to make the L functional ||ul|2 2 into thy L2 |2 2
so that no further error is produced by the Galerkin projection when conducting energy estimates.
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We have the following stability result:

Theorem 4.2. Under the CFL condition At < min{ccrr/N?,1} for any ccrr > 0, (4.21) is uniformly
stable, in the sense that
1T 12 + W32 < € (10812 + WS 12) (4.22)

for any n such that t,, = Ty + nAt < T, where C is a constant independent of €, At and N.
Proof. Multiplying the first equation of (4.21) by l'j]{ﬁ% integrating in x and taking the real part gives
Lomngige - Limmz o Lymar g2 1 .
0 =5 T% 2 = SITRIP + 1% — ORI + AtR [ 03710, (00%) do

= 2 ~ =
+ AtéR/U]{,“ f?’;f; vda + Até}t/U}wm — b20,Wh dx

L, L~ Lo~ ~ b?0,b =
=S I1TR P = SITRIP + F10% - ORI ;

+ AR / (T — T30, (b0 da + ALR / 0.0, (607 da
+ At%/(ﬁ;@“ — UMV — 620, W dz + Atm/ﬁ}wl — 029, W da,

where we used the fact that Py is self-adjoint (Lemma 3.2) and Py (Un™) = U,
Multiplying the second equation of (4.21) by Wﬁ“, integrating in x and taking the real part gives

At
oWt 12 de

=S IWRTHP = SIWRI + SR = Wi

+At§ﬁ‘:/W"+16 (V1 —bQU}@)derAtéR/VT/;“ b0

U da - AR / Wb, (W) da
b,
s

— AtR / (WL — WRb,(WR) de — AtR / WRbO,(WR) dx
+ Am/(v’vﬁl —WR)9(V1 — b2UR) dz + At%/Wﬁ,@r(\/l — b2U%) dx

‘We notice

(4.24)
WUy de

n n 1 n n
IR = SIWRIE + SIWEH — WP+ A [

%/171’5\/1 — 20, Wi dz + %/W;@az(\/l —b2U%)dx =0, (4.25)

and estimate the terms

C
< RAHUR? + — AT,

b29:b =,
At?}e/l_sz+UNdx

At 5)‘%/( L T1)0, (bR da
At §R/ (O — U2)V/1 — 620, Wh da
At | / a0, (607 dz

—At’/ (9:b)|UR|? dz

< 1T~ 0% 17 + o (JTRIP +18.0811?)
< f||0}3“ - UR|P? + CA |0, Wi |2, (4.26)

1 -
= At ’/b28w|U]\L,2dx‘

= At’%/baﬁ;@fm dz

< CAH|UR|?,
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with k£ > 0 small, to be chosen, and similar for those terms in (4.24). Therefore, adding (4.23) and (4.24)
yields

1 rrn+41112 n+1(2 1 T (|12 n |12
5 (1T 12 + W3 2) = 5 (1% + W)

rTn n 1 rTn n T n
<kt (103717 + W) + 0 (14 7 ) A (10817 + IWRIP) + A2 (10312 + 10, WRIE)

(4.27)
Under the CFL condition, one has (similarly for W)
rTn 7 CCFL n
1005 < NI < [ “CEE g (1.25)
Therefore
1 Frn n 1 rrn n
5 (1T 12 + W3 2) = 5 (IR + W)
2 2
) ) ] (4.29)
<nle (IR + W) + € (14 %) A (10312 + I3 12).
which implies
- 1+C(1+ At/ -
L2 w2 < K ( on2 + (wn 2) ) 4.30
[UNT P+ IWRTI < 1= 9nAL ORI+ [IWE (4.30)
Recall that At < 1. By choosing k = %, we have
b A (4.31)
1—2rAt — ' '
Then
[T+ IR < (ke (IR + IWRI1?) (432)
and the conclusion follows. O

5 Numerical tests

In this section, we numerically test the accuracy of the IMEX-BDF schemes applied to several stiff
hyperbolic and kinetic equations. We first verify our theoretical results in Section 3.4 by considering the
linear system (1.1) for which the exact solution is available. We then consider a nonlinear hyperbolic
relaxation system and the kinetic BGK equation. See Appendix A for a brief introduction of the BGK
equation and its IMEX-BDF discretization.

5.1 A linear stiff hyperbolic relaxation system

Counsider the linear system (1.1) with b = 0.6 on = € [0,1] with periodic boundary condition and
initial condition
u(0,2) = 2™ y(0,2) = be* 2, (5.1)

We adopt the Fourier-Galerkin spectral method for spatial discretization with modes |k| < N, and fix

N = 40. The exact solution to this problem can be computed analytically using the Fourier transform
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in . To avoid the initial layer or prepare the initial data satisfying the conditions of Theorem 3.11
(in particular, Case 2), we start the computation from time Ty = 1. The starting values at Ty + iA¢,
i=0,...,q — 1, are taken from the exact solution. We compute the solution to time 7" = 2 and record
the error as ||U — ul|p2 + ||V — v|| 2.

Figure 1 shows the results of IMEX-BDF schemes of order ¢ = 2, 3,4, and various values of At and
€. In all the subfigures except the last one, each curve represents the error for a fixed At with ¢ ranging
from le — 7 to 1. When taking the maximal L? error among all the tested values of € for a fixed At (see
bottom right subfigure), the uniform ¢-th order accuracy is clearly achieved for ¢ = 2,3,4. This is in
perfect agreement with our theoretical results.
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T T

102

3rd order IMEX-BDF
T T
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Figure 1: Linear stiff hyperbolic relaxation system. L? error of the solutions computed by IMEX-BDF
schemes. Top left, top right and bottom left figures: second/third/fourth order IMEX-BDF schemes,
respectively. In these three subfigures, horizontal axis is € ranging from le — 7 to 1, and different curves
represent different values of At, as shown in the top left figure. Bottom right figure is obtained as follows:

for each scheme, take the maximal L? error among all values of ¢ for a fixed At.
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5.2 A nonlinear stiff hyperbolic relaxation system

We now consider the following nonlinear hyperbolic relaxation system

(9tu + @cv = 0,
1 (5.2)
Opv + Ozu = g(bu2 —v),
with b= 0.2 on z € [0, 1] with periodic boundary condition and initial condition
1 sin 272
w(0,2) = =S T = yp(x). (5.3)

2

Since the limit of (5.2) is the Burgers equation which may develop shocks, we discretize in space by a fifth
order finite volume WENO scheme [35]. We apply the second and third order IMEX-BDF schemes for
time discretization. For the second order scheme, we choose the time step as At = %Aw and the initial
data for v as

v(0,2) = bud, (5.4)

which is consistent up to O(1). For the third order scheme, we choose the time step as At = %Ax and
the initial data for v as
v(0,z) = buf — (1 — 4b%u?)Opuo, (5.5)

which is consistent up to O(g). The starting values at iAt, ¢ =0, ...,qg—1, are prepared using ARS(4,4,3)
with a much smaller time step ¢ = At/500. We compute the solution to time 7' = 0.2 and estimate the
error of the solutions Ua¢ Az, Vat,az a8 [|[Uat,ae — Untj2,az/2ll22 + [[Vat,ae — Vary2,az 21 22

The results are shown in Figure 2. The uniform ¢-th order accuracy can be observed, similar to the
previous subsection, except for the third order scheme for which one can see a slightly higher convergence
rate for large At due to the error from spatial discretization.

Remark 5.1. The initial data we take here does not satisfy the conditions in Theorem 3.11. Nevertheless
the q-th order uniform accuracy can still be observed. This shows that the conditions of Theorem 3.11 may
not be optimal. However, if using (5.4) for the third order scheme, we do observe some order reduction.

This means that certain high-order consistency of initial data is necessary to achieve uniform accuracy

of high-order IMEX-BDF' schemes.

5.3 The nonlinear stiff kinetic BGK equation

We finally consider the kinetic BGK equation in one dimension

0uf +v0uf = (MIf] - f). (56)

The spatial domain is taken as x € [0,2] with periodic boundary condition and discretized by the fifth
order finite volume WENO scheme. The velocity domain is truncated into [—|v|max; |0|max] With |v|max =
15 and discretized by a finite difference scheme using N, = 150 grid points. The time step is chosen as
At = % ‘Uﬁix to satisfy the CFL condition.

We apply the second and third order IMEX-BDF schemes for time discretization. For the second

order scheme, we take the initial data as

f(O,x, U) = Mp,u,T7 (57)
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Figure 2: Nonlinear stiff hyperbolic relaxation system. L? error of the solutions computed by IMEX-BDF
schemes. Top left and top right figures: second and third order IMEX-BDF schemes, respectively. In
these two subfigures, horizontal axis is € ranging from le — 7 to 1, and different curves represent different
values of At, given as At = Atg, Aty/2, Atg/4, ... from top curve to bottom curve, with Aty = 2.5 x 1073

for the second order scheme and Aty = 3.3 x 1072 for the third order scheme. Bottom figure is obtained

as follows: for each scheme, take the maximal L? error among all values of ¢ for a fixed At.
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with
1

0,7) = 1+ 0.2si 0,2)=1, T(0,2) = (ot
p(0, ) +0.2sin7mz, u(0,x) ) (0,2) 14+ 02sin7z’

(5.8)

which is consistent up to O(1). For the third order scheme, we take the initial data as

f(0,2,0) = Mpur (1 —e ((“;T“)Q - ‘;) W) , (5.9)

with (5.8), which is consistent up to O(e). The starting values at iA¢, i = 0,...,q — 1, are prepared
using an IMEX-RK scheme with a much smaller time step 0t = At/500. We compute the solution to
time 7" = 0.1 and estimate the L? error of the solution fasaz as ||fat,ae — fasz,a0/2l22 -

The results are shown in Figure 3. The uniform ¢-th order accuracy can be obser\)fed7 similar to
the previous subsection, except for the third order scheme for which one sees a higher convergence rate
because the error from the spatial discretization is always dominating.

6 Conclusion

The stiff kinetic equation (1.5) plays an important role in multiscale modeling by connecting meso-
scopic kinetic and macroscopic fluid descriptions. Inspired by its structure, we study in this paper a
simple linear hyperbolic system with stiff relaxation. Our main concern is to understand the accuracy of
a class of IMEX methods, IMEX-BDF schemes, that are widely used to solve this kind of equations. By
studying the regularity of the solution in time and introducing a new multiplier technique, we were able
to establish uniform stability and accuracy of these schemes for (1.1). Its extension to the variable coef-
ficient case was also considered. We provided several numerical examples for both linear and nonlinear
problems to validate our theoretical findings.

Regarding future work, one possibility is to consider high order spatial discretizations other than the
spectral method, for example, the discontinuous Galerkin method. Another direction is to study the
hyperbolic/kinetic equations in diffusive scaling. As opposed to the scaling in the current work which
leads to a hyperbolic equation when € — 0, the diffusive scaling leads to a diffusion equation in the limit.
There is already some numerical analysis work in this case [28, 24], whereas the time discretization is
limited to first order.
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Appendix

A IMEX-BDF schemes for the kinetic BGK equation

In this appendix, we describe briefly the kinetic BGK equation (equation (1.5) with Q being the BGK
operator [7]) along with its time discretization using IMEX-BDF schemes. Further details can be found

in many references, e.g., [18].
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these two subfigures, horizontal axis is € ranging from le — 7 to 1, and different curves represent different
values of At, given as At = Atg, Aty/2, Atg/4, ... from top curve to bottom curve, with Aty = 4.4x 1073,
Bottom figure is obtained as follows: for each scheme, take the maximal L? error among all values of €
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The BGK equation reads
1
8tf+v-fo:g(M[f]—f), t>0, z€QCRY veRY d=1,23, (A1)

where f = f(t,x,v) is the PDF, ¢ is the Knudsen number, and M is the Maxwellian, or local equilibrium,

defined as | 2
_ 0 v—u
= o (5. "

where p, u and T are density, bulk velocity and temperature given by the moments of f:

1 1
p= fdv, u=- [ fovdo, Tz—/ flo—ul? dv. (A.3)
R4 P JRrd dp Jra
It is easy to verify the Maxwellian M shares the same first d + 2 moments as f:
(MIfl0) = (1), ()i= [ -do. 9(0) = (Lo o). (A4)
and the moments can be represented using p, v and T as

(M[flg) = (fo) =2U, U= (p,pu,pu’ +dpT)"". (A.5)

The IMEX-BDF scheme applied to (A.1) reads

q q—1
, . BAt
S aifT ALYy Vo frT = %(M"ﬂ ) (A.6)
=0 =0

where the coefficients «, # and « are given in Table 1.

The scheme (A.6) appears nonlinearly implicit since M™"9 depends on f"*¢. However, it can be
implemented in an explicit manner using the property (A.4). Indeed, taking (-¢) on both sides of (A.6)
yields

q g—1
> U+ ALY iV, (uf"Te) = 0. (A7)
=0 =0

Hence one can obtain U™ 19 first, which gives p"t9, w9, T™*+49 and consequently defines M"™+49. Then
™4 is explicitly solvable from (A.6).
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B Lemma 3.5 for ¢ =4

Here we list an approximate choice of coefficients for ¢ = 4. These values are obtained using symbolic

computation such that (3.30) and (3.31) are satisfied up to an error of 107! for each coefficient of u;u;.

g11 = 0.0039752881793877403062594960990749
g22 = 0.064911795951738806179916997308306
g3z = 0.15895411498724386738087416173813
gaa = 0.094405276410813782029324113702474
g12 = —0.015901152717550961225037984396299
g13 = 0.023851729076326441837556976594449
g14 = —0.015901152717550961225037984396299
g2z = —0.099845362848676151804359071547141
g24 = 0.068060968391835181509937875064459
g34 = —0.11343769059020016642872820354501
m = 0.15803668922323725486664131361509

12 = —0.71978015153831346379435821236894
13 = 1.4954886593252805371567252971026 (B.1)
d1 = 0.90559472358918621797067588629753

d2 = 0.13803083956207431618956583677343

a11 = 0.33641496341408589312936763149214
a2z = 0.76333671636580335303312323666967
az3 = 0.98143988982596163900489424649966
a12 = —0.37897607563001842534574230771888
a13 = 0.27087482555618781445745449601102
ag3 = —0.68412028602560052688774821729113
c1 = 0.58001289935145915953659169454951

co = —0.653392495328586904564 75648019655
c3 = 0.46701517476433063541910705624076

¢y = —0.13623549527945483633692800818261

The smallest eigenvalues of G and A are approximately given by

AL(G) & 0.0000050314827031121361651672184255414, A1 (A) ~ 0.076485547272566738154682052748733.
(B.2)
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