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Abstract. We define and prove basic properties of a lifting invariant of curves over an
algebraically closed field k with a map to the projective line P1

k that was introduced by
Ellenberg, Venkatesh, and Westerland.

1. Introduction

In this note, we explain a lifting invariant of curves over an algebraically closed field k with
a map to the projective line P1

k that was introduced by Ellenberg, Venkatesh, and Westerland,
building on ideas of Serre [Ser90] and Fried [Fri95]. A very similar invariant has been
defined by Catanese, Lönne, and Perroni [CLP15] for G-covers of curves over the complex
numbers. We give a construction in group theory necessary to define the invariant, relate
the constructed group to the set of components of certain topological Hurwitz spaces over
C, determine the action of automorphisms of k on the invariant, and prove the invariant is
constant in families. These results are all based on ideas from the paper [EVW12]. Since the
paper [EVW12] was retracted (for issues unrelated to the constructions in the current paper,
see the forthcoming Bourbaki seminar by Randal-Williams) we present this note because we
think the results are important to have in the literature and we expect them to be of use in
future work, especially in using Hurwitz schemes over Fq to answer questions in the arithmetic
statistics of function fields (see, e.g. [BW17, EVW16, ETW17, LT16, Woo17, Woo18] for
work along these lines). If G is a finite group and C → P1

k is a tame map of curves with
automorphism group G, one can define an invariant of G by the multiset of conjugacy classes
of cyclic subgroups of the inertia groups of the map (i.e. monodromy groups around the
ramification points). The invariant defined in this paper includes and refines the information
of this multiset of conjugacy classes of cyclic subgroups.

In Section 2, we define a first group U(G, c) in which the lifting invariant over C can be
valued. In Section 3, we show how elements of U(G, c) correspond to braid group orbits on
tuples of elements of G. This shows how U(G, c) can separate components of a topological
Hurwitz space, and generalizes a result of Conway and Parker that appears in a paper of
Fried and Vólklein [FV]. In Section 4, we refine the location of where the lifting invariant will
lie to a certain twist of U(G, c) by roots of unity. This allows us, in Section 5, to algebraically
define the lifting invariant over any algebraically closed field k. In Section 6 we determine
how the lifting invariant behaves under change of fields and prove it is constant in families.

1.1. Notation. Whenever we require a number should be relatively prime to the character-
istic of a field, we mean there to be no condition when the field is characteristic 0.
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Notation 1.1. Throughout the paper, let G be a finite group and c set of non-trivial elements
of G that is closed under conjugation by G and that generates G. We write D for the set of
conjugacy classes in c.

2. Constructing a group where the lifting invariant can be valued

In this section we define a group where the lifting invariant can be valued. Based on
[EVW12, Section 7.5], we define a group U(G, c) by presentation with generators [g] for
g ∈ c, and relations [x][y][x]−1 = [xyx−1] for x, y ∈ c. There is a natural map U(G, c) → G
sending [g]→ g, and a natural map U(G, c)→ ZD sending [g] to a generator for the conjugacy
class of g. There is a natural map ZD → Gab sending a generator for the conjugacy class of
[g] to the image of g in the abelianization Gab. Combining, we have a homomorphism

U(G, c)→ G×Gab ZD.

Lemma 2.1. Let G, c be as in Notation 1.1. Then U(G, c) → G is a central extension.
Moreover, if x ∈ c and y ∈ G, with ỹ a preimage of y in U(G, c), then ỹ[x]ỹ−1 = [yxy−1].

Proof. The first claim follows from the second taking y = 1, and the fact that c generates G
making U(G, c) → G a surjection. Note that by letting y = x−1zx, in the relation we have
[x−1zx] = [x]−1[z][x]. Let [g1]a1 · · · [gk]ak be a preimage of y for gi ∈ c, i.e. ga1

1 · · · g
ak
k = y.

Then for x ∈ c, we have, using the defining relation,

[g1]a1 · · · [gk]ak [x][gk]
−ak · · · [gk]ak = [ga1

1 · · · g
ak
k xg

−ak
k · · · ga1

1 ] = [yxy−1],

which proves the first claim. �

2.1. A more explicit expression for U(G, c). Next we will see how U(G, c) can be given
a more explicit description in terms of Schur covering groups. Central extensions

1→ A −→ G̃ −→ G→ 1

of G by a finite abelian group A are classified by elements of H2(G,A). The universal
coefficients theorem gives an exact sequence

(1) Ext1(Gab, A) −→ H2(G,A)
π−→ Hom(H2(G,Z), A).

We write G̃ for the class of the extension in H2(G,A), with the dependence on the map
G̃→ G implicit.

We recall some standard definitions. A stem extension is a central extension G̃→ G, such
that the induced map G̃ab → Gab is an isomorphism. For a finite group G, a Schur covering
group is a stem extension of H of maximal possible order, or equivalently, a central extension
G̃ → G so that the image π(G̃) of the extension class under π above is an isomorphism
H2(G,Z)→ A. In general, a Schur cover is not unique.

Given a Schur cover S → G, by definition we have an isomorphism π(S) : H2(G,Z) '
ker(S → G). Let x, y ∈ G be two commuting elements. Then, if x̂, ŷ are arbitrary lifts of
x, y to S, the commutator [x̂, ŷ] lies in ker(S → G) and is independent of the choice of x̂, ŷ.
One can check from definitions that in fact π(S)−1([x̂, ŷ]) ∈ H2(G,Z) is independent of the
choice of Schur cover because it is the image of the canonical generator for H2(Z2,Z) (i.e.
[(1, 0)|(0, 1)] − [(0, 1)|(1, 0)] in non-homogeneous chain notation) in the map H2(Z2,Z) →
H2(G,Z) induced by the map Z2 → G that sends (i, j) to xiyj. We denote this element

〈x, y〉 ∈ H2(G,Z).
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Definition. Let H2(G, c) be the quotient of H2(G,Z) by the subgroup Qc ⊂ H2(G,Z)
generated by all elements 〈x, y〉, where x, y commute and x ∈ c. Given G, c, we define a
reduced Schur cover Sc → G to be the quotient of a Schur cover S → G by π(S)(Qc). For
a Schur cover Sc, we have that π(Sc) : H2(G,Z) → ker(Sc → G) gives an isomorphism
π(Sc) : H2(G, c) ' ker(Sc → G). Like a Schur cover, a reduced Schur cover need not be
unique.

Lemma 2.2. Let G, c be as in Notation 1.1. Let Sc be a reduced Schur cover for G, c. Then
the composite map

H2(Sc,Z)→ H2(G,Z)→ H2(G, c)

is 0, where the first map is induced from the extension map Sc → G and the second map is
from the definition of H2(G, c).

Proof. The map H2(G,A)→ H2(Sc, A) induced from Sc → G takes Sc to the trivial exten-
sion S̃c ×G S̃c → G̃, which is split by the diagonal. Since the map (1) is functorial in G, the
composite

H2(Sc,Z)→ H2(G,Z)
π(Sc)→ ker(Sc → G)

is zero. As remarked above, the map H2(G,Z)
π(Sc)→ ker(Sc → G) factors through the

quotient H2(G, c) and gives an isomorphism H2(G, c) ' ker(Sc → G). Thus we conclude the
lemma. �

Lemma 2.3. Let G, c be as in Notation 1.1. Let Sc be a reduced Schur cover for G, c. In
each conjugacy class in c, pick one element x, and then one preimage x̂ of x in Sc. Then
if y = gxg−1 for g ∈ G, the element ŷ := g̃x̂g̃−1, does not depend on the choice of g or
preimage g̃ of g in Sc.

Proof. Since the extension is central g̃x̂g̃−1 does not depend on the choice of preimage of g.
If gxg−1 = hxh−1, then h = gk for some k that commutes with x. Note that [x̂, k̃], for any
preimage k̃ in Sc of k, is in the image of π(Sc)(Qc), which is trivial. We can take h̃ = g̃k̃,
and this concludes the proof. �

Given a reduced Schur cover Sc, we define Ĝ = Sc×Gab ZD. (A priori, this depends on the
choice of reduced Schur cover.)

Lemma 2.4. Let G, c be as in Notation 1.1. Let Sc be a reduced Schur cover for G, c and
Ĝ and defined above. Then Ĝab = ZD.
Proof. Since the elements of c generate Gab, for any g ∈ Sc, we can find (g, zg) ∈ Ĝ. Thus for
g, h ∈ Sc, we have [(g, zg), (h, zh)] = ([g, h], 0). After we quotient Ĝ by these commutators,
we obtain Sab

c ×Gab ZD. By the fact that a Schur cover is a stem extension so Sab
c = Gab,

and the fact that ZD → Gab is a surjection, we prove the lemma. �

Now we will see that Ĝ is a more explicit version of the group U(G, c), and so in fact does
not depend on the choice of Schur cover.

Theorem 2.5. Let G, c be as in Notation 1.1. Let Sc be a reduced Schur cover for G, c
and Ĝ and defined above. We pick lifts of the elements of c to Sc as in Lemma 2.3. There
is an isomorphism Ĝ → U(G, c) taking (x̂, ex) to [x] for x ∈ c, where ex is a generator
corresponding to the conjugacy class of x.
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Proof. We have a central extension K → U(G, c) → G from Lemma 2.1. We have a homo-
morphism from Ĝ to G, and whether this lifts to a homorphism Ĝ → U(G, c) is equivalent
to whether U(G, c) ∈ H2(G,K) pulls back to 0 in H2(Ĝ,K). Consider the commutative
diagram

H2(G,K)
π−−−→ Hom(H2(G,Z), K)y y

H2(Ĝ,K)
∼−−−→ Hom(H2(Ĝ,Z), K)

where the vertical maps are induced by the map Ĝ→ G. The bottom row is an isomorphism
by (1) and Lemma 2.4.

If u : G→ U(G, c) is any section (map of sets), then for x ∈ c and y ∈ G with [x, y] = 1,
we have π(U(G, c))(〈x, y〉) = u(x)u(y)u(x)−1u(y)−1. Since [x, y] = 1, by Lemma 2.1, we
have that π(U(G, c))(〈x, y〉) = 0. Thus π(U(G, c)) is in the image of Hom(H2(G, c;Z), K) ⊂
Hom(H2(G,Z), K). Since the composite

H2(S̃c,Z)→ H2(G,Z)→ H2(G, c;Z)

is 0 by Lemma 2.2, and Ĝ→ G factors through S̃c, we have that the composite

H2(Ĝ,Z)→ H2(G,Z)→ H2(G, c;Z)

is 0.
This implies that π(U(G, c)) has image 0 in Hom(H2(Ĝ,Z), K) and thus image 0 in

H2(Ĝ,K) by the commutative diagram above. We then have a homomorphism φ : Ĝ →
U(G, c) compatible with their maps to G. Now we write φ(x̂, ex) = [x]kx for some kx ∈ K
for one x in each conjugacy class of c. Since by Lemma 2.4 we have that (x̂, ex) for one
x from each conjugacy class of c are a free generating set for Ĝab, we have a homomor-
phism ψ : Ĝ → K taking (x̂, ex) 7→ kx. So φ · ψ is a homomorphism Ĝ → U(G, c) tak-
ing (x̂, ex) 7→ [x] for one x from each conjugacy class of c. Note that if y = gxg−1, then
(ŷ, ey) = (g̃, zg)(x̂, ex)(g̃, zg)

−1 for any lift g̃ to Sc and compatible element zg (see Lemma 2.3).
Since φ · ψ(g̃, zg) is a preimage of g in U(G, c), we have φ · ψ(ŷ, ey) = [gxg−1] = [y] by
Lemma 2.1.

So we have a homorphism Ĝ→ U(G, c) taking (x̂, ex) 7→ [x] for all x ∈ c. We also have a
homorphism U(G, c)→ Ĝ taking [x] 7→ (x̂, ex) for all x ∈ c, since

(ŷ, ey)(x̂, ex)(ŷ, ey)
−1 = (ŷxy−1, ex)

for x, y ∈ c (see Lemma 2.3). So φ · ψ : Ĝ → U(G, c) is a central split extension, and the
theorem follows from the fact that Ĝab ' ZD ' U(G, c)ab. �

3. Components of Hurwitz spaces and U(G, c)

Let G, c be as in Notation 1.1. We define Vn to be the set of all tuples (g1, . . . , gn) with
gi ∈ c. The braid group Bn (with generators σi for 1 ≤ i < n and relations σiσi+1σi =
σi+1σiσi+1 for 1 ≤ i ≤ n− 2 and σiσj = σjσi for i− j ≥ 2) acts on Vn where

σi(g1, . . . , gn) = (g1, . . . , gi−1, gigi+1g
−1
i , gi, . . . , gn).

We write ConfnC for the topological space of unordered, distinct sets of n elements of C
(obtained as the quotient by the symmetric group Sn of the complement of the big diagonal
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in Cn). It is well-known that π1(ConfnC) ' Bn. We define a Hurwitz space HurnG,c to be the
covering space of ConfnC whose fiber is Vn and with the action of π1(ConfnC) given above.
Many authors have studied various quotients of HurnG,c as moduli spaces for branched covers
of P1

C with certain additional data (see, e.g. [FV, RW06]). In fact HurnG,c is also a moduli
space for branched covers of P1

C with certain additional data (see [LWZB19]). In any case,
by definition, the components of HurnG,c correspond to Bn orbits of Vn.

There is a map of sets Π : Vn → U(G, c) taking (g1, . . . , gn) to [g1] · · · [gn], and this map is
constant on braid orbits. Then by composition we have a map Vn/Bn → ZD. We can also
define V G

n to be the subset of Vn whose coordinates generate G, and V G
n is preserved set-wise

by Bn. The following theorem tells us that at least when there are sufficiently many elements
of each conjugacy class, U(G, c) exactly detects braid orbits in V G

n . In the case when c is all
non-trivial elements of G and H2(G, c) = 1, the following theorem is a result of Conway and
Parker that appeared in the appendix to a paper of Fried and Völklein [FV]. It is remarked
in [EVW12] that Fried has an unpublished proof of this result. Also, Kulikov [Kul13] and
Lönne [L1̈9] have similar results; yet we are not able to find any complete reference in the
literature for the following.

Theorem 3.1. Let G, c be as in Notation 1.1. Then there is a constant M , such that Π
gives a bijection between the elements of V G

n /Bn and U(G, c) whose coordinates in ZD are
all at least M .

Proof. We have that V := ∪n≥0Vn/Bn has the structure of a monoid under concatenation,
and we see that Π respects products. Since (g)(g1, . . . , gn) = (gg1g

−1, . . . , ggng
−1)(g) in V ,

we see that if h1 · · · hn = 1 in G, then (h1, . . . , hn) is central in V . Let v =
∏

g∈c(g)ord(g).

Since (g)ord(g) is central, the order of the product does not matter and v is central.
For m ∈ ZD, let Vm be the set of elements of V whose image in ZD is m, and V G

m be the
subset of Vm whose coordinates generate G. (Note these are defined as sets of braid orbits.)
We write minm for the minimum coordinate of m, and use max similarly. For g ∈ c, let eg
be the image of g in ZD. We claim that for g ∈ c the map V G

m → V G
m+eg that takes x 7→ (g)x

is surjective as long as minm is sufficiently large. There is an M0 only depending on G such
that when minm ≥ M0, for y ∈ V G

m+eg there is some element h ∈ G in the conjugacy class
of g that appears in the coordinates of (any representative of) y at least ord(g) + 1 times,
and can be braided (with σ−1

i ) to the left so that y = (h)ord(g)hz. Then by [FV, Appendix,
Lemma 3], since the coordinates of hz generate G, we have that (h)ord(g)hz = (g)ord(g)z′ for
some z′. This proves the claim.

Choose f ∈ ZD so that the size of the set of V G
f is minimal under the condition that

min f ≥M0. Then it follows that for m ∈ ZD with minm ≥ max f that V G
f and V G

m are the
same size. This is because we can get from the first to the second with a sequence of surjective
maps, yet by choice of f , we have that V G

f has size at most the size of V G
m . Moreover, since

surjective maps between sets of the same size are bijective, we have that for every g ∈ c
left concatenation by (g) gives a bijective map V G

m → V G
m+eg for m with minm ≥ max f . It

follows that for for m with minm ≥ max f , we have that the map V G
m → V G

m+d that takes
x 7→ vx is bijective (where d is the image of v in ZD).

From the definition of v, we can see for every g ∈ c we have gvg = v = vgg for some vg ∈ V .
Thus the localization V [v−1] of the monoid V is in fact a group. We have that Π : V [v−1]→
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U(G, c) is a group homomorphism. Since for g, h ∈ c, we have (ghg−1)(g) = (g)(h) in V ,
the generators (g) of V satisfy the defining relations of U(G, c), giving a homomorphism
U(G, c)→ V [v−1] taking [g] to (g), and hence inverting Π and proving it is an isomorphism.

Elements a, b,∈ V have equal image in V [v−1] if and only if v`a = v`b in V for some `.
Thus we have that for two elements x, y ∈ V that Π(x) = Π(y) if and only if v`x = v`y for
some `. Thus if x, y ∈ V G

m with minm ≥ max f , we have that Π(x) = Π(y) if and only if
x = y.

Now, we claim there is anM1 depending only on G such that for minm ≥M1 and w ∈ Vm,
there is a w′ ∈ V G

m such that Π(w) = Π(w′). We order the conjugacy classes in c and suppose
the first conjugacy class has j elements h1, . . . , hj. We can choose M1 such that any w ∈ Vm
has at least j ord(h1) coordinates that are hi for some i, and then we braid all of those (hi)
to the left, so we can assume w = (hi)

j ord(hi)w1. Since [hi] and [h`] are conjugate in U(G, c)

for all i, `, and [hi]
ord(hi) is central, we see that Π(w) = Π(h

ord(h1)
1 · · · hord(hj)

j w1). We can
proceed similarly for the other conjugacy classes, until we have a w′ ∈ V that contains every
element from c among its coordinates and Π(w) = Π(w′).

Finally, suppose we have an element y ∈ U(G, c) with image m ∈ ZD, such that minm ≥
max f + M1. From V [v−1] ' U(G, c), we have that y = zv−` where z is in the image of V
and ` is a non-negative integer. Let z be the image of w ∈ Vm+`d. Then choose w′ ∈ V G

m+`d

as above so Π(w′) = Π(w) = z. Also, we have that w′ = v`x for x ∈ V G
m . Then we have

Π(x) = v−`Π(w′) = y.
Thus we can conclude that for minm sufficiently large, the map Π gives a bijection between

V G
m and elements of U(G, c) with image m ∈ ZD. �

4. More precisely the group where the lifting invariant is valued

In order to define an algebraic lifting invariant that will have an action of the automorphism
group of the base field, we must use not U(G, c) but a certain twist of U(G, c). In this section,
we will define that twist.

Let k be an algebraically closed field. We define Ẑ(1)k = lim←−µm(k) and Ẑk = lim←−Z/mZ,
where m ranges over positive integers relatively prime to char k. The subset of topological
generators of Ẑ(1)k will be denoted Ẑ(1)×k . It is a torsor for the units (Ẑk)× of Ẑk. For a set
X with an action of (Ẑk)×, we define

(2) X〈−1〉k := Mor(Ẑk)×(Ẑ(1)×k , X)

to be the set of functions Ẑ(1)×k → X equivariant for the (Ẑk)× actions. If we choose an
element µ ∈ Ẑ(1)×k , then elements of X〈−1〉k are specified by their values on µ.

Let G be a finite group and c a subset of G closed under conjugation by elements of G
and closed under invertible powering (e.g. if g ∈ c and (m, ord(g)) = 1, then gm ∈ c). We
write D for the set of conjugacy classes in c. If char k 6= 0, we require that char k - |G|. Note
that (Ẑk)× acts on the set of elements of G, where {αm} ∈ (Ẑk)× takes g to gαord(g) . There
is an induced action of (Ẑk)× on D and hence ZD. Similarly, there is an action by powering
of (Ẑk)× on any prime to char k profinite group. We call all of these actions of (Ẑk)× the
powering action.
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Let Ûk(G, c) be the pro-prime-to-(char k) (profinite if char k = 0) completion of U(G, c).
Then we have an action (Ẑk)× on the group Ûk(G, c), denoted by · such that

α · [g] = [gα
−1

]α

for α ∈ (Ẑk)×. To see that this is well-defined, we need to check that the defining relations
[x][y][x]−1 = [xyx−1] are mapped to relations under this rule. In other words, we need to
check that

[xα
−1

]α[yα
−1

]α[xα
−1

]−α = [x][yα
−1

]α[x]−1,

which holds by Lemma 2.1.
Now we will define an action of (Ẑk)× on the set of elements of Ûk(G, c) (the action is not

a group homomorphism) via the rule

α ∗ v = (α−1 · v)α

for v ∈ (Ẑk)×.
We show below that the ∗ action of (Ẑk)× given above in fact gives an action of (Ẑk)× on

the set U(G, c). From Theorem 2.5, we have an explicit structure of U(G, c) as Sc ×Gab ZD,
and so every finite index normal subgroup of U(G, c) contains 1 × (mZ)D for some m, and
Ûk(G, c) = Sc ×Gab (Ẑk)D. (Note that any prime not dividing |G| also does not divide |Sc|.)
So we see that the map from U(G, c) to Ûk(G, c) is injective and U(G, c) is exactly the
subgroup of elements of Ûk(G, c) whose image in (Ẑk)D lies in ZD.

The morphism Ûk(G, c) → (Ẑk)D is equivariant for (Ẑk)×, where (Ẑk)× acts on Ûk(G, c)
by means of ∗, and it it acts on (Ẑk)D by the powering action. In other words, the following
diagram commutes for any α ∈ (Ẑk)×:

(3)

Ûk(G, c) −−−→ (Ẑk)D

α∗
y α

y
Ûk(G, c) −−−→ (Ẑk)D

This means that the ∗ action preserves U(G, c) ⊂ Ûk(G, c). We call this action of (Ẑk)× on
U(G, c) the discrete action. When we write U(G, c)〈−1〉, it is for the discrete action of (Ẑk)×
on the set U(G, c).

4.1. Another description of the discrete action. We have

α−1 · ([g1]±11 · · · [gm]±m1) = [gα1 ]±1α−1 · · · [gαm]±mα
−1

.

Then

α ∗ ([g1]±11 · · · [gm]±m1) =
(

[gα1 ]±1α−1 · · · [gαm]±mα
−1
)α
.

Suppose we define wi(α) = [gi]
−α[gαi ]. Note this is a central element. Then [gαi ] = [gi]

αwi(α).
So

α ∗ ([g1]±11 · · · [gm]±m1) =
(

([g1]αw1(α))±1α−1 · · · ([gm]αwm(α))±mα
−1
)α

=
(
[g1]±11 · · · [gm]±m1

)α∏
i

wi(α)±i1.
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We can check using Lemma 2.1 that for conjugate gi, gj ∈ c, we have ωi(α) = ωj(α). Thus
we have a group homomorphism ωα : ZD → ker(Ûk(G, c) → G), sending eg to [g]−α[gα], so
that for g ∈ U(G, c) with image ḡ ∈ ZD, we have

α ∗ g = gαωα(ḡ).

If we use the isomorphism of Theorem 2.5 to write U(G, c) in the coordinates of Ĝ =
Sc ×Gab ZD, so g = (h,m), then we have that

gαωα(ḡ) = (hα, αm)ωα(m)

= (hα, αm)
∏
γ∈D

(
[gγ]

−α[gαγ ]
)mγ

= (hα, αm)
∏
γ∈D

(
(ĝγ, eγ)

−α(ĝαγ , eγα)
)mγ

=

(
hα
∏
γ∈D

(
ĝγ
−αĝαγ

)mγ
,mα

)
,

where αm is obtained from m by multiplying each coordinate by α, and gγ is an element
from the conjugacy class γ, and eγ is the standard basis element of ZD corresponding to γ.
Thus we have that

(4) α ∗ (h,m) =

(
hα
∏
γ∈D

(
ĝγ
−αĝαγ

)mγ
,mα

)
.

Remark 4.1. From Equation (4), we can see that for α ∈ (Ẑk)× such that α ≡ 1 (mod |G|2),
we have that α acts trivially on U(G, c) (using that the exponent of the Schur multiplier
divides the order of the group). Thus a map in U(G, c)〈−1〉 will have the same image on
two different elements of Ẑ(1)×k that have the same image in µ|G|2(k).

5. Definition of the lifting invariant

Notation 5.1. Let G be a finite group and c a subset of G closed under conjugation by
elements of G and closed under invertible powering (e.g. if g ∈ c and (m, ord(g)) = 1, then
gm ∈ c). We write D for the set of conjugacy classes in c.

In this section we will define the lifting invariant. First, we need to define precise the
objects on which it will be defined.

Let S be a scheme. A curve over S is a smooth and proper map X → S whose geometric
fibers are connected and 1-dimensional. A cover of a curve X over S is a finite, flat, and
surjective morphism Y → X of S-schemes, where Y is also a curve over S. A cover f : Y → X
is Galois if f is separable and if Aut f acts transitively on fibers of geometric points of X.
Associated to a cover Y → X is its branch locus D ⊂ X, which has the properties that
D → S is étale, the restriction of f to X −D is étale, and X −D is maximal with respect
to this property. If there exists a constant n such that the degree of each geometric fiber of
D → S is equal to n (which is automatic if S is connected), then we say that f has n branch
points. A cover is tame if the ramification index at any point is prime to the characteristic
of that point.
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A marked, branched G cover of P1 over S is a tame Galois cover X of P1
S with n branch

points, together with a choice of identification of G with the automorphism group of the
cover, and a section P : S → X over the standard infinity section s∞ : S → P1

S, where we
also require that im s∞ is disjoint from the branch locus of the cover.

5.1. Inertia groups. Now we let k be an algebraically closed field. The completion of k(z),
for the discrete valuation associated to z, is the field k((z)) of Laurent series. The maximal
prime-to-(char k) extension of k((t)) is the field k((z1/∞)) of Puiseaux series generated by
z1/m form relatively prime to p. We have that Gal(k((z1/∞))/k((z))) ' Ẑ(1)k, via σ 7→ {σm},
where σm = σ(z1/m)/z1/m.

Let K be any Galois prime-to-(char k) extension of k(t). For a t0 ∈ k, if we let z =
t − t0 we have a Gal(K/k(t))-conjugacy class of homorphisms Gal(k((z1/∞))/k((z))) →
Gal(K/k(t)) corresponding to the homorphisms K → k((z1/∞)) respecting k(t), which from
the isomorphism above gives a conjugacy class of homomorphisms

(5) rt0 : Ẑ(1)k → Gal(K/k(t))

coming from t0, whose images are the inertia groups of t0.

5.2. Generators for π1. We continue with k, an algebraically closed field. Let U be an
open subset of P1

k that includes the point ∞. Denote by π′1(U,∞) its maximal prime-to-
(char k) quotient of the étale fundamental group of U based at ∞ (i.e. the Galois group of
the maximal prime-to-(char k) extension of k(t) unramified at points of U). Write t1, . . . , tn
for the k points of P1−U , i.e. ti ∈ k. By Grothendieck’s comparison of étale and topological
π1 (see [Gro03, Corollaire 2.12, Exposé XIII]), we have that π′1(U,∞) contains elements
γj ∈ π′1(U,∞) with the property that

(6) γ1 . . . γn = 1

and γ1, . . . , γn topologically generate inertia groups at t1, . . . , tn, i.e. are rti(ζi) for some ζi ∈
Ẑ(1)k, and π′1(U,∞) is free as a prime-to-(char k) profinite group on generators γ1, . . . , γn−1.
If we consider the action of the γi on the extension

k
(
t, m
√

(t− t1)/(t− t2), m
√

(t− t2)/(t− t3), · · · , m
√

(t− tn)/(t− t1)
)
,

we find that γ1 . . . γn = 1 implies that the ζi are all equal (and further that these values
ζi do not depend on the choice of conjugacy class of rti). We write γ for γ1, . . . , γn and
I(γ) ∈ Ẑ(1)k common value of the ζi.

5.3. Definition of the lifting invariant. Given a branched, marked G cover X of P1

over Spec k, let U be the complement of the branch locus in P1
k, and Y the preimage of

U in X. The marked basepoint P of Y , makes (Y, P ) → (U,∞) a pointed Galois étale
map, which gives a surjection π′1(U,∞) → Aut(Y → U) (where we have a surjection and
not just a conjugacy class of surjections because of the choice of P ). Note that we have
Aut(Y → U) = Aut(X → P1), and thus combining with the identification of the latter with
G, we obtain a surjection π′1(U,∞)→ G.
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Theorem 5.2. Let G, c be as in Notation 5.1, and let k be an algebraically closed field of
characteristic relatively prime to |G|. Let X be a branched, marked G cover of P1 over
Spec k, and let U be the complement of the branch locus in P1

k. Let

ϕ : π′1(U,∞) −→ G

be the homomorphism associated to the cover. We assume that all inertia groups of the cover
are generated by elements of c. Then there is a unique element z ∈ ker(U(G, c) → G)〈−1〉,
the lifting invariant, such that for any choice of ordering of the branch points t1, . . . , tn and
any choice of γ = γ1, . . . , γn ∈ π′1(U,∞) so that γi topologically generates an inertia group
at ti and γ1 . . . γn = 1, we have that z sends I(γ) (defined above) to

Z(γ) := [ϕ(γ1)] . . . [ϕ(γn)] ∈ U(G, c).

The action of (Ẑk)× on ker(U(G, c)→ G) is inherited from the ∗ action of (Ẑk)× on U(G, c).

This is well defined because the map U(G, c)→ G is equivariant for (Ẑk)× acting with ∗ on
U(G, c) and the powering action on G, and thus the ∗ action preserves ker(U(G, c)→ G).

Proof. Note that, for any choice γ = (γ1, . . . , γn), there is a unique morphism zγ ∈ U(G, c)〈−1〉
that sends I(γ) ∈ (Ẑk)× to Z(γ) ∈ U(G, c) (see remark after (2)). The content of Theo-
rem 5.2 is that this morphism is independent of the choices of order of the branch points
and γ.

Now consider a different choice γ′ (and implicitly a different choice of ordering of branch
points) with I(γ′) = I(γ)α. There is then a permutation σ ∈ Sn such that γ′i is conjugate
to γασ(i) for all i. Since π′1(U,∞) is free as a prime-to-(char k) profinite group, ϕ lifts to a
homomorphism ϕ̃ : π′1(U,∞) → Ûk(G, c). We write K̂ for ker(Ûk(G, c) → G), and recall
that Ûk(G, c)→ G is a central extension. We then define

(7) z′i = ϕ̃(γ′i)
−1[ϕ(γ′i)]

and note z′i ∈ K̂ so are central. So we have
(8) Z(γ′) = ϕ̃(γ′1)z′1 · · · ϕ̃(γ′n)z′n = ϕ̃(γ′1 · · · γ′n)z′1 · · · z′n = z′1 · · · z′n.

Note that for g ∈ π′1(U,∞), we have that [ϕ(gγ′ig
−1)] = ϕ̃(g)[ϕ(γ′i)]ϕ̃(g)−1 by Lemma 2.1,

and thus
ϕ̃(gγ′ig

−1)−1[ϕ(gγ′ig
−1)] = ϕ̃(g)ϕ̃(γ′i)

−1[ϕ(γ′i)]ϕ̃(g)−1 = ϕ̃(g)z′iφ(g)−1 = z′i.

So then since γ′i is conjugate to γασ(i), we have ϕ̃(γασ(i))
−1[ϕ(γασ(i))] = z′i. We then compute

α−1 · Z(γ) =
∏

[ϕ(γi)
α]α

−1

=
∏

[ϕ(γαi )]α
−1

=
∏(

ϕ̃(γαi )z′σ−1(i)

)α−1

=
∏

ϕ̃(γi)
∏

(z′σ−1(i)
α−1

) =
(∏

z′i

)α−1

,

where we use crucially that ϕ̃ is a homomorphism and the z′i are central. (The products of the
non-central terms must be taken in the specified order.) It then follows that α∗Z(γ) = Z(γ′),
as desired. �

Remark 5.3. Let c〈,〉 be the set of conjugacy classes of cyclic subgroups generated by elements
of c. Note that (Ẑk)× orbits in c all have the same image in the natural map c→ c〈,〉. Thus
we have Zc〈,〉〈−1〉 = Zc〈,〉 . We have a factorization of the natural maps of sets c → D →
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c〈,〉. Thus we have a homomorphism U(G, c) → ZD → Zc〈,〉 , where the discrete action
of (Ẑk)× on U(G, c) covers the trivial action on Zc〈,〉 . Thus we have an induced map of
sets U(G, c)〈−1〉 → Zc〈,〉 . If we apply this in the case c = G \ {1}, then the invariant of
Theorem 5.2 has image in Zc〈,〉 which counts the number of times each conjugacy class of
cyclic subgroups appears as an inertia group in the cover.

Remark 5.4. Let G, c be as in Notation 5.1, k be any algebraically closed field of characteristic
prime to |G|, and t1, . . . , tn ∈ P1

k distinct closed points. Then we claim there is a topological
generator ζ of Ẑ(1)k such that for every g1, . . . , gn ∈ c with g1 · · · gn = 1, there exists a
branched, marked G cover of P1 over Spec k, branched at exactly t1, . . . , tn, with all inertia
groups of the cover generated by elements of c, and with lifting invariant mapping ζ to
[g1] · · · [gn]. There is a homomorphism φ : π′1(P1 \ {t1, . . . , tn},∞) → G sending γi 7→ gi.
Taking the unique map of smooth, proper curves over k that corresponds to the extension
given by the generic points of the cover given by φ gives the desired cover.

Remark 5.5. In [VE10, Section 2.5] and [Woo17, Section 3] in certain cases analogous defi-
nitions of lifting invariants are made for all global fields.

6. Properties of the lifting invariant

6.1. Change of fields and Galois action. Let G, c, k,X be as in Theorem 5.2 with lifting
invariant z. If σ : k → K is a homomorphism of algebraically closed fields, then the extension
of scalars XK := X ×Spec k SpecK has lifting invariant z ◦ σ−1, which is a composition

Ẑ(1)K
σ−1

→ Ẑ(1)k
z→ U(G, c).

This follows from the definition of the lifting invariant, the fact that we can choose γi
compatibly with the map π′1(UK ,∞) → π′1(U,∞) induced by σ, and the fact the inertia
group homorphisms defined in (5) are compatible with the maps induced by σ. In particular,
if K = k, then we would usually write Xσ instead of XK . Let χ(σ−1) be the cyclotomic
character of σ−1, i.e. the map σ−1 : Ẑ(1)k → Ẑ(1)k is powering by χ(σ−1). In this case, if
X had lifting invariant z such that z(ζ) = g, for a topological generator ζ ∈ Ẑ(1)k, then Xσ

has lifting invariant zσ such that zσ(ζ) = z(ζχ(σ−1)) = χ(σ)−1 ∗ g.

6.2. Invariant constant in families. Finally, we prove that the lifting invariant is constant
in connected families.

Theorem 6.1. Let G, c be as in Notation 5.1. Let S be a scheme over SpecZ[|G|−1], and
let X be a branched, marked G cover X of P1 over S, such that at all geometric points of S,
the inertia groups of the associated cover are generated by elements of c. Let s̄1 and s̄2 be
geometric points of S such that the image of s̄2 is in the closure of the image of s̄1, and let
k(s̄i) be the algebraically closed field of s̄i. Then there is a map of roots of unity

σ : Ẑ(1)k(s̄2) → Ẑ(1)k(s̄1)

(where by a slight abuse of notation on the right above we take roots of unity in k(s̄1) but of
order relatively prime to the characteristic of k(s̄2)) such that zXs̄2 = zXs̄1 ◦ σ (where this is
well-defined by Remark 4.1). If S is a k-scheme for some algebraically closed field k, then
the Ẑ(1)k(s̄i) are naturally identified with Ẑ(1)k, and σ respects this identification.
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Proof. Let D ⊂ P1
S be the branch locus of X → P1

S. By [AGV72, VIII] Corollaire 7.5,
there is a map of S-schemes S̄(s̄1) → S̄(s̄2), where S̄(s̄i) is the strict localization of S at
s̄i (as in [AGV72, XIII, Section 4]). Let Ds̄i = D ×S s̄i . Since D is étale over S, we have
that D ×S S̄(s̄2) is étale, and since S̄(s̄2) is strictly henselian, we have that D ×S S̄(s̄2) is
isomorphic to a disjoint union of copies of S̄(s̄2). Using the maps s̄1 → S̄(s̄1) → S̄(s̄2) and
s̄2 → S̄(s̄2), we have maps Ds̄i → D ×S S̄(s̄2). The latter maps give a bijection between the
points of Ds̄i and the components of D ×S S̄(s̄2), and hence a bijection between the points
of Ds̄1 and Ds̄2 .

There is a specialization morphism

π′1(U ⊗ S(s̄1),∞)→ π′1(U ⊗ S(s̄2),∞)

that takes inertia groups for the points in Ds̄1 to inertia groups for the points in Ds̄2 according
to the bijection above [Gro03, XIII, Lemme 2.11]. Let OS,s̄2 be the strictly local ring of of S at
s̄2, i.e. S̄(s̄1) = SpecOS,s̄2 , and let k(s̄i) be the function field of s̄i. Let µn = SpecZ[x]/(xn−
1). For n relatively prime to the characteristic of k(s̄2), by a similar argument as above with
µn in place of D, using the maps s̄i → S̄(s̄2), we obtain a bijection between the points of
µn(s̄1) and µn(s̄2), and these are compatible, giving the map σ of the theorem. Then it follows
from the statements above about inertia groups and the definition of the specialization map
that we can choose the γi in the definition of the lifting invariant compatibly between s̄1 and
s̄2, and hence zXs̄2 = zXs̄1 ◦σ. The final statement of the theorem follows from the observation
that all of the morphisms involved are S-morphisms, and thus k-morphisms. �
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