AN ALGEBRAIC LIFTING INVARIANT OF ELLENBERG,
VENKATESH, AND WESTERLAND

MELANIE MATCHETT WOOD

ABSTRACT. We define and prove basic properties of a lifting invariant of curves over an
algebraically closed field k with a map to the projective line P} that was introduced by
Ellenberg, Venkatesh, and Westerland.

1. INTRODUCTION

In this note, we explain a lifting invariant of curves over an algebraically closed field k& with
amap to the projective line P} that was introduced by Ellenberg, Venkatesh, and Westerland,
building on ideas of Serre [Ser90| and Fried [Fri95]. A very similar invariant has been
defined by Catanese, Lonne, and Perroni [CLP15| for G-covers of curves over the complex
numbers. We give a construction in group theory necessary to define the invariant, relate
the constructed group to the set of components of certain topological Hurwitz spaces over
C, determine the action of automorphisms of £ on the invariant, and prove the invariant is
constant in families. These results are all based on ideas from the paper [EVW12|. Since the
paper [EVW12| was retracted (for issues unrelated to the constructions in the current paper,
see the forthcoming Bourbaki seminar by Randal-Williams) we present this note because we
think the results are important to have in the literature and we expect them to be of use in
future work, especially in using Hurwitz schemes over [F, to answer questions in the arithmetic
statistics of function fields (see, e.g. [BW17, EVW16, ETW17, LT16, Wool7, Wool8| for
work along these lines). If G is a finite group and C' — P} is a tame map of curves with
automorphism group G, one can define an invariant of G' by the multiset of conjugacy classes
of cyclic subgroups of the inertia groups of the map (i.e. monodromy groups around the
ramification points). The invariant defined in this paper includes and refines the information
of this multiset of conjugacy classes of cyclic subgroups.

In Section 2, we define a first group U(G, ¢) in which the lifting invariant over C can be
valued. In Section 3, we show how elements of U(G, ¢) correspond to braid group orbits on
tuples of elements of G. This shows how U(G, ¢) can separate components of a topological
Hurwitz space, and generalizes a result of Conway and Parker that appears in a paper of
Fried and Volklein [FV]. In Section 4, we refine the location of where the lifting invariant will
lie to a certain twist of U(G, ¢) by roots of unity. This allows us, in Section 5, to algebraically
define the lifting invariant over any algebraically closed field k. In Section 6 we determine
how the lifting invariant behaves under change of fields and prove it is constant in families.

1.1. Notation. Whenever we require a number should be relatively prime to the character-
istic of a field, we mean there to be no condition when the field is characteristic 0.
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Notation 1.1. Throughout the paper, let G be a finite group and ¢ set of non-trivial elements
of G that is closed under conjugation by G and that generates G. We write D for the set of
conjugacy classes in c.

2. CONSTRUCTING A GROUP WHERE THE LIFTING INVARIANT CAN BE VALUED

In this section we define a group where the lifting invariant can be valued. Based on
[EVW12, Section 7.5|, we define a group U(G,c) by presentation with generators [g] for
g € ¢, and relations [z][y|[z] ! = [zyz~!] for x,y € c. There is a natural map U(G,c) — G
sending [g] — g, and a natural map U (G, ¢) — ZP sending [g] to a generator for the conjugacy
class of g. There is a natural map Z” — G% sending a generator for the conjugacy class of
[g] to the image of g in the abelianization G®. Combining, we have a homomorphism

U(G, C) — G X Gab ZD.

Lemma 2.1. Let G,c be as in Notation 1.1. Then U(G,c) — G is a central extension.
Moreover, if v € ¢ and y € G, with § a preimage of y in U(G, ¢), then g[z]g~ = [yzy~!].

Proof. The first claim follows from the second taking y = 1, and the fact that ¢ generates G
making U(G, c) — G a surjection. Note that by letting y = 2712z, in the relation we have

[z zz] = [x]7[2][z]. Let [g1]** - - [gx]™ be a preimage of y for ¢; € ¢, i.e. gi*---gp* = y.
Then for x € ¢, we have, using the defining relation,

9]+ (] [ ge] ™ - - [ga]™ = [g1" -+~ gt wgy ™ - 9] = [yay '],
which proves the first claim. 0

2.1. A more explicit expression for U(G, c¢). Next we will see how U(G, ¢) can be given
a more explicit description in terms of Schur covering groups. Central extensions

1-A—G—G—1

of G by a finite abelian group A are classified by elements of H*(G,A). The universal
coefficients theorem gives an exact sequence

(1) Ext'(G*, A) — H*(G, A) = Hom(H,y(G,7Z), A).

We write G for the class of the extension in H 2(@, A), with the dependence on the map
G — G implicit.

We recall some standard definitions. A stem extension is a central extension G — G, such
that the induced map G* — G2 is an isomorphism. For a finite group G, a Schur covering
group is a stem extension of H of maximal possible order, or equivalently, a central extension
G — G so that the image m(G) of the extension class under 7 above is an isomorphism
Hy(G,7Z) — A. In general, a Schur cover is not unique.

Given a Schur cover S — G, by definition we have an isomorphism 7(S) : Hy(G,Z) ~
ker(S — G). Let z,y € G be two commuting elements. Then, if Z,y are arbitrary lifts of
x,y to S, the commutator [Z,y] lies in ker(S — @) and is independent of the choice of z, 7.
One can check from definitions that in fact m(S)~*([%,9]) € H2(G,Z) is independent of the
choice of Schur cover because it is the image of the canonical generator for Ho(Z? Z) (i.e.
[(1,0)](0,1)] = [(0,1)|(1,0)] in non-homogeneous chain notation) in the map Hy(Z? Z) —
Hy(G,Z) induced by the map Z* — G that sends (i, j) to x'y’. We denote this element

(x,y) € glg(G,Z).



Definition. Let Hy(G,c) be the quotient of Hy(G,Z) by the subgroup Q. C Hy(G,Z)
generated by all elements (z,y), where z,y commute and = € ¢. Given G, ¢, we define a
reduced Schur cover S, — G to be the quotient of a Schur cover S — G by 7(5)(Q.). For
a Schur cover S., we have that 7(S.) : Hy(G,Z) — ker(S. — G) gives an isomorphism
7(Se) : Ha(G,c) ~ ker(S. — G). Like a Schur cover, a reduced Schur cover need not be
unique.

Lemma 2.2. Let G, ¢ be as in Notation 1.1. Let S. be a reduced Schur cover for G,c. Then
the composite map

HQ(SC,Z) — HQ(G, Z) — HQ(G, C)
15 0, where the first map is induced from the extension map S. — G and the second map is

from the definition of Ha(G,c).

Proof. The map H?*(G, A) — H?*(S,, A) induced from S, — G takes S, to the trivial exten-

sion S. X S. — G, which is split by the diagonal. Since the map (1) is functorial in G, the
composite

Ho(S.,Z) — Ho(G,Z) "% ker(S, — G)

is zero. As remarked above, the map Hs(G,Z) & ker(S. — @) factors through the

quotient Hy(G, ¢) and gives an isomorphism Hy(G, ¢) ~ ker(S. — G). Thus we conclude the
lemma. U

Lemma 2.3. Let G, c be as in Notation 1.1. Let S. be a reduced Schur cover for G,c. In
each conjugacy class in ¢, pick one element x, and then one preimage T of x in S.. Then
if y = grg™! for g € G, the element §j := §ig~', does not depend on the choice of g or
preimage g of g in S..

~

Proof. Since the extension is central §gig—' does not depend on the choice of preimage of g.
If grg~' = hah™!, then h = gk for some k that commutes with z. Note that [Z, l;:], for any
preimage k in S, of k, is in the image of 7(S,)(Q.), which is trivial. We can take h = gk,
and this concludes the proof. 0

Given a reduced Schur cover S,., we define G=2, X b ZP . (A priori, this depends on the
choice of reduced Schur cover.)

Lemma 2.4. Let G,c be as in Notation 1.1. Let S. be a reduced Schur cover for G,c and
G and defined above. Then G* = ZP.

Proof. Since the elements of ¢ generate G, for any g € S, we can find (g, z,) € G. Thus for
g,h € S, we have [(g, 2,), (h, z1)] = ([g, h],0). After we quotient G by these commutators,
we obtain S X ZP. By the fact that a Schur cover is a stem extension so S = G2,
and the fact that Z” — G2 is a surjection, we prove the lemma. O

Now we will see that G is a more explicit version of the group U(G, ¢), and so in fact does
not depend on the choice of Schur cover.

Theorem 2.5. Let G,c be as in Notation 1.1. Let S, be a reduced Schur cover for G,c
and G and defined above. We pick lifts of the elements of ¢ to S. as in Lemma 2.3. There
is an isomorphism G — U(G,c) taking (Z,e;) to [z] for x € ¢, where e, is a generator

corresponding to the conjugacy class of x.
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Proof. We have a central extension K — U(G,¢) — G from Lemma 2.1. We have a homo-
morphism from G to G, and whether this lifts to a homorphism G — U (G, ¢) is equivalent
to whether U(G, ¢) € H*(G, K) pulls back to 0 in H2(G,K). Consider the commutative
diagram

H*(G,K) —— Hom(H,(G,Z),K)

| |

H*(G,K) —— Hom(H,(G,Z),K)
where the vertical maps are induced by the map G — G. The bottom row is an isomorphism
by (1) and Lemma 2.4.
If u: G — U(G,c) is any section (map of sets), then for z € c and y € G with [z,y] = 1,
we have m(U(G,¢))({z,y)) = u(z)u(y)u(x) u(y)~'. Since [z,y] = 1, by Lemma 2.1, we
have that 7(U(G, ¢))({z,y)) = 0. Thus n(U(G, ¢)) is in the image of Hom(Hy(G, ¢; Z), K) C
Hom(Hy(G,Z), K). Since the composite
Hy(S.,7) — Hy(G,7) — Hy(G,c;7)

is 0 by Lemma 2.2, and G — G factors through S., we have that the composite
Hy(G,Z) — Hy(G,Z) — Hy(G, ¢, Z)

is 0. .

This implies that 7(U(G,c)) has image 0 in Hom(H(G,Z), K) and thus image 0 in
H 2(@, K) by the commutative diagram above. We then have a homomorphism ¢ : G —
U(G, ¢) compatible with their maps to G. Now we write ¢(z,e,) = [z]k, for some k, € K
for one = in each conjugacy class of ¢. Since by Lemma 2.4 we have that (Z,e,) for one
xr from each conjugacy class of ¢ are a free generating set for Gab, we have a homomor-
phism ¢ : G — K taking (Z,e,) — ky. So ¢ -1 is a homomorphism G — U(G,c) tak-
ing (%,e,) — [z] for one x from each conjugacy class of c. Note that if y = gzg~!, then
(9, ey) = (7, 29) (2, €2)(g, 24) " for any lift g to S. and compatible element z, (see Lemma 2.3).
Since ¢ - (g, z,) is a preimage of g in U(G,c), we have ¢ - ¥(7,e,) = [gxg~'] = [y] by
Lemma 2.1. A

So we have a homorphism G — U(G, ¢) taking (z, e,) — [z] for all z € c. We also have a
homorphism U(G,¢) — G taking [z] — (&, e,) for all z € ¢, since

(fga ey)(fi‘a ex)(g, ey)_l = (yxy—l, ex)

for x,y € ¢ (see Lemma 2.3). So ¢ -1 : G — U(G,c) is a central split extension, and the
theorem follows from the fact that G% ~ ZP ~ U(G, c¢)®. O

3. COMPONENTS OF HURWITZ SPACES AND U(G, ¢)

Let G, c be as in Notation 1.1. We define V,, to be the set of all tuples (g1, ..., g,) with
g; € c¢. The braid group B, (with generators o; for 1 < ¢ < n and relations o;0;,10; =
0410041 for 1 <i <n —2 and 0,0; = 0,0, for i — j > 2) acts on V,, where

0i(g1y e Gn) = (G1s -y i1y GiGir10; s Gis s Gn)-

We write Conf™ C for the topological space of unordered, distinct sets of n elements of C

(obtained as the quotient by the symmetric group .S, of the complement of the big diagonal
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in C"). It is well-known that 7;(Conf" C) ~ B,,. We define a Hurwitz space Hurg, . to be the
covering space of Conf" C whose fiber is V;, and with the action of m; (Conf™ C) given above.
Many authors have studied various quotients of Hurg, . as moduli spaces for branched covers
of Pt with certain additional data (see, e.g. [FV, RW06]). In fact Hurg, is also a moduli
space for branched covers of P{. with certain additional data (see [LWZB19]). In any case,
by definition, the components of Hurg, . correspond to B,, orbits of V,.

There is a map of sets I1 : V,, — U(G, ¢) taking (g1,...,n) to [g1] - - - [gn], and this map is
constant on braid orbits. Then by composition we have a map V,,/B, — Z”. We can also
define V¢ to be the subset of V,, whose coordinates generate G, and V¢ is preserved set-wise
by B,. The following theorem tells us that at least when there are sufficiently many elements
of each conjugacy class, U(G, c) exactly detects braid orbits in V¢, In the case when c is all
non-trivial elements of G and Hy(G, ¢) = 1, the following theorem is a result of Conway and
Parker that appeared in the appendix to a paper of Fried and Vélklein [FV]. Tt is remarked
in [EVW12] that Fried has an unpublished proof of this result. Also, Kulikov [Kull3] and
Lonne [L19] have similar results; yet we are not able to find any complete reference in the
literature for the following.

Theorem 3.1. Let G,c be as in Notation 1.1. Then there is a constant M, such that 11
gives a bijection between the elements of V¢ /B, and U(G,c) whose coordinates in ZP are
all at least M.

Proof. We have that V' := U,>0V,,/B,, has the structure of a monoid under concatenation,
and we see that IT respects products. Since (¢)(g1,---,9n) = (99197, ..., 9929 ")(g) in V,
we see that if oy ---h, = 1 in G, then (k... hy) is central in V. Let v = [] ¢ (9)7@.

Since (g)°*49) is central, the order of the product does not matter and v is central.

For m € ZP, let Vj, be the set of elements of V' whose image in Z” is m, and V,¢ be the
subset of V,, whose coordinates generate G. (Note these are defined as sets of braid orbits.)
We write minm for the minimum coordinate of m, and use max similarly. For g € c, let ¢4
be the image of g in Z”. We claim that for g € ¢ the map V¢ — Vfﬂg that takes x — (g)x
is surjective as long as minm is sufficiently large. There is an M, only depending on G such
that when minm > M, for y € V.¢ e there is some element h € GG in the conjugacy class
of g that appears in the coordinates of (any representative of) y at least ord(g) + 1 times,
and can be braided (with o; ') to the left so that y = (h)"¥@hz. Then by [FV, Appendix,
Lemma 3], since the coordinates of hz generate G, we have that (h)"4@Whz = (g)°*49)2 for
some z'. This proves the claim.

Choose i € ZP so that the size of the set of VfG is minimal under the condition that

min f > My. Then it follows that for m € ZP with minm > max S that VfG and VmG are the

same size. This is because we can get from the first to the second with a sequence of surjective
maps, yet by choice of f, we have that VfG has size at most the size of V.¢. Moreover, since

surjective maps between sets of the same size are bijective, we have that for every g € ¢
left concatenation by (g) gives a bijective map V,§ — V¢ e, for m with minm > max f. It
follows that for for m with minm > max f, we have that the map V,{ — V¢, , that takes
x +— vx is bijective (where d is the image of v in ZP). B o

From the definition of v, we can see for every g € ¢ we have gv, = v = v,4g for some v, € V.

Thus the localization V[v™!] of the monoid V' is in fact a group. We have that IT: V[v™] —
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U(G,c) is a group homomorphism. Since for g,h € ¢, we have (ghg=')(g) = (9)(h) in V,
the generators (g) of V satisfy the defining relations of U(G,c¢), giving a homomorphism
U(G,c) — V]v™!] taking [g] to (g), and hence inverting IT and proving it is an isomorphism.

Elements a,b, € V have equal image in V[v™!] if and only if v‘a = v’b in V for some /.
Thus we have that for two elements z,y € V that [I(z) = II(y) if and only if v’z = v’y for
some (. Thus if z,y € VS with minm > max f, we have that II(z) = II(y) if and only if
x=1y.

Now, we claim there is an A/, depending only on G such that for minm > M; and w € V,,,
there is a w’ € V¢ such that ITI(w) = II(w’). We order the conjugacy classes in ¢ and suppose
the first conjugacy class has j elements hy, ..., h;. We can choose M; such that any w € V,,
has at least jord(h;) coordinates that are h; for some i, and then we braid all of those (h;)
to the left, so we can assume w = (h;)7°"4")y; . Since [h;] and [hy] are conjugate in U(G, c)
for all i,¢, and [h;]°"4") is central, we see that IT(w) = H(h‘;rd(hl) e h;rd(hj)wl). We can
proceed similarly for the other conjugacy classes, until we have a w’ € V' that contains every
element from ¢ among its coordinates and II(w) = II(w').

Finally, suppose we have an element y € U(G, ¢) with image m € Z”, such that minm >
max f + M;. From V[v™'] ~ U(G, c), we have that y = 20~ where z is in the image of V
and £ is a non-negative integer. Let z be the image of w € Vj1¢4. Then choose w' € V.S,
as above so II(w') = II(w) = 2. Also, we have that w’' = v‘x for x € V¢. Then we have
(z) = v (v = y.

Thus we can conclude that for min m sufficiently large, the map II gives a bijection between
V& and elements of U(G, ¢) with image m € ZP. O

4. MORE PRECISELY THE GROUP WHERE THE LIFTING INVARIANT IS VALUED

In order to define an algebraic lifting invariant that will have an action of the automorphism
group of the base field, we must use not U(G, ¢) but a certain twist of U(G, ¢). In this section,
we will define that twist. R X

Let k£ be an algebraically closed field. We define Z(1), = l&n,um(k) and Zj = l‘&nZ/mZ,
where m ranges over positive integers relatively prime to char k. The subset of topological
generators of Z(1) will be denoted Z(1). Tt is a torsor for the units (Z;)* of Zj. For a set

X with an action of (Z;)*, we define
(2) X(=1)g = Mor, < (Z(1);, X)

to be the set of functions Z(1) — X equivariant for the (Z;)* actions. If we choose an
element p € Z(1), then elements of X (—1); are specified by their values on .

Let G be a finite group and ¢ a subset of G closed under conjugation by elements of G
and closed under invertible powering (e.g. if g € ¢ and (m,ord(g)) = 1, then g™ € ¢). We
write D for the set of conjugacy classes in c. If char k # 0, we require that char k { |G|. Note
that (Z)* acts on the set of elements of G, where {a,,} € (Z;)* takes g to g . There

* on D and hence ZP. Similarly, there is an action by powering

is an induced action of (Zj)
of (Zx)* on any prime to char k profinite group. We call all of these actions of (Z;)* the

powering action.
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Let Uy(G, ¢) be the pro-prime-to-(char k) (profinite if char k& = 0) completion of U(G, c).
Then we have an action (Z;)* on the group Uy (G, ¢), denoted by - such that
-1
(0% ]a

a-[g]=lg

for a € (Zk)X To see that this is well-defined, we need to check that the defining relations
[z][y][z] ' = [ryz~!] are mapped to relations under this rule. In other words, we need to
check that

which holds by Lemma 2.1. R )
Now we will define an action of (Zj)* on the set of elements of Ux(G, ¢) (the action is not
a group homomorphism) via the rule

axv=(a"t v)

for v € (Zy)*.

We show below that the * action of (Z;)* given above in fact gives an action of (Z;)* on
the set U(G, ¢). From Theorem 2.5, we have an explicit structure of U(G, ¢) as S, X ga» ZP,
and so every finite index normal subgroup of U(G, ¢) contains 1 x (mZ)P for some m, and
Un(G,¢) = S, Xgav (Zy)P. (Note that any prime not dividing |G| also does not divide |S|.)
So we see that the map from U(G,¢) to Uy(G, c) is injective and U(G,c) is exactly the
subgroup of elements of Uy (G, c) whose image in (Zi)? lies in ZP.

The morphism Uy (G, ¢) — (Zy)P is equivariant for (Z;,)*, where (Z;)* acts on Uy(G, ¢)
by means of *, and it it acts on (Zk)D by the powering action. In other words, the following
diagram commutes for any a € (Z;)*:

Ue(G,¢) —— (Zy)P
® o
Ue(G,¢) —— (Zy)P

(Z
This means that the % action preserves U(G, ¢) C Uy(G, ¢). We call this action of (Z)* on
(=

U(G, ¢) the discrete action. When we write U(G, ¢)(—1), it is for the discrete action of (Z;)*
on the set U(G, ¢).

4.1. Another description of the discrete action. We have

(g gl = [T g
Then

(=gl =t) = (g2 [l
Suppose we define w;(a) = [g;]7“[g5"]. Note this is a central element. Then [¢¢] = [g:]*w; ().
So

as (= gl ) = ((gn)"wi (@)= - ([gm]awm(a))ima*)a
= ([ - gl =) T wier)™.
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We can check using Lemma 2.1 that for conjugate g¢;,g; € ¢, we have w;(a)) = w;(«). Thus
we have a group homomorphism w,, : ZP — ker(Uy(G,c) — G), sending e, to [g]*[¢*], so
that for g € U(G, ¢) with image g € Z”, we have

a*xg=g"wa(g).

If we use the isomorphism of Theorem 2.5 to write U(G,¢) in the coordinates of G =
S, Xgav ZP | 50 g = (h,m), then we have that

9%wa(g) = (R*, am)w,(m)

= (h*, am) H ([gy]_“[gﬁ])mv

yeD
= (h* am) [T (& e2) (g5, e40))™
yeD
— (ha I @)™ ﬂ"‘) 7
YyeED

where am is obtained from m by multiplying each coordinate by «, and g, is an element
from the conjugacy class v, and e, is the standard basis element of Z” corresponding to 7.
Thus we have that

(4) ax (hm) = (ha 1@ @)™ ,mo‘> .

yeD

Remark 4.1. From Equation (4), we can see that for a € (Z)* such that « = 1 (mod |G|?),
we have that « acts trivially on U(G,c¢) (using that the exponent of the Schur multiplier
divides the order of the group). Thus a map in U(G,c)(—1) will have the same image on

two different elements of Z(1)* that have the same image in e (k).

5. DEFINITION OF THE LIFTING INVARIANT

Notation 5.1. Let G be a finite group and ¢ a subset of G closed under conjugation by
elements of G and closed under invertible powering (e.g. if g € ¢ and (m,ord(g)) = 1, then
g™ € ¢). We write D for the set of conjugacy classes in c.

In this section we will define the lifting invariant. First, we need to define precise the
objects on which it will be defined.

Let S be a scheme. A curve over S is a smooth and proper map X — S whose geometric
fibers are connected and 1-dimensional. A cover of a curve X over S is a finite, flat, and
surjective morphism Y — X of S-schemes, where Y is also a curve over S. A cover f: Y — X
is Galois if f is separable and if Aut f acts transitively on fibers of geometric points of X.
Associated to a cover Y — X is its branch locus D C X, which has the properties that
D — S is étale, the restriction of f to X — D is étale, and X — D is maximal with respect
to this property. If there exists a constant n such that the degree of each geometric fiber of
D — S is equal to n (which is automatic if S is connected), then we say that f has n branch
points. A cover is tame if the ramification index at any point is prime to the characteristic

of that point.
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A marked, branched G cover of P! over S is a tame Galois cover X of P§ with n branch
points, together with a choice of identification of G with the automorphism group of the
cover, and a section P: S — X over the standard infinity section s, : S — Pk, where we
also require that im s, is disjoint from the branch locus of the cover.

5.1. Inertia groups. Now we let k be an algebraically closed field. The completion of k(z),
for the discrete valuation associated to z, is the field k((z)) of Laurent series. The maximal
prime-to-(char k) extension of k((t)) is the field k((2'/*)) of Puiseaux series generated by
Z1/™ for m relatively prime to p. We have that Gal(k((2"/*))/k((2))) ~ Z(1)k, via o — {om},
where o, = o (/™) /2™,

Let K be any Galois prime-to-(char k) extension of k(t). For a ty € k, if we let z =
t — to we have a Gal(K/k(t))-conjugacy class of homorphisms Gal(k((z'/*°))/k((2))) —
Gal(K/k(t)) corresponding to the homorphisms K — k((2'/>)) respecting k(t), which from
the isomorphism above gives a conjugacy class of homomorphisms

~

(5) T : Z(1), — Gal(K/k(t))

coming from ty, whose images are the inertia groups of .

5.2. Generators for 7. We continue with k, an algebraically closed field. Let U be an
open subset of P} that includes the point co. Denote by 7} (U, 00) its maximal prime-to-
(char k) quotient of the étale fundamental group of U based at oo (i.e. the Galois group of
the maximal prime-to-(char k) extension of k(¢) unramified at points of U). Write t,...,1,
for the k points of P! — U, i.e. t; € k. By Grothendieck’s comparison of étale and topological
m (see [Gro03, Corollaire 2.12, Exposé XIII|), we have that 7} (U, o0) contains elements
7v; € (U, 00) with the property that

(6) Voo Ya=1
and 7, ..., 7, topologically generate inertia groups at ty,...,t,, i.e. are r,((;) for some (; €
Z(1)g, and 7} (U, o0) is free as a prime-to-(char k) profinite group on generators vy, ..., Vn_1.

If we consider the action of the +; on the extension

k <t, Rt —t)/(t—ta), R/ (t—t2) [t —t3), -, R/ (t —ta)/(t — tl)) ;

we find that v;...7, = 1 implies that the (; are all equal (and further that these values
(i do not depend on the choice of conjugacy class of ;). We write v for v1,...,7, and

I(7) € Z(1); common value of the ¢.

5.3. Definition of the lifting invariant. Given a branched, marked G cover X of P!
over Speck, let U be the complement of the branch locus in P}, and Y the preimage of
U in X. The marked basepoint P of Y, makes (Y, P) — (U,o0) a pointed Galois étale
map, which gives a surjection 7} (U, 00) — Aut(Y — U) (where we have a surjection and
not just a conjugacy class of surjections because of the choice of P). Note that we have
Aut(Y — U) = Aut(X — P'), and thus combining with the identification of the latter with

G, we obtain a surjection 7} (U, 00) = G.
9



Theorem 5.2. Let G, c be as in Notation 5.1, and let k be an algebraically closed field of
characteristic relatively prime to |G|. Let X be a branched, marked G cover of P! over
Speck, and let U be the complement of the branch locus in P}. Let

¢ m(U,0) — G
be the homomorphism associated to the cover. We assume that all inertia groups of the cover
are generated by elements of c. Then there is a unique element 3 € ker(U(G,c) — G)(—1),
the lifting invariant, such that for any choice of ordering of the branch points t, ..., t, and
any choice of v = y1,...,7 € m(U,00) so that ~y; topologically generates an inertia group
at t; and vy ...7, = 1, we have that 3 sends I1(y) (defined above) to

Z(y) =)l [e(w)] € UG, ¢).

The action of (Z;)* on ker(U(G, ¢) — G) is inherited from the * action of (Z;)* on U(G, ¢).
This is well defined because the map U(G,c) — G is equivariant for (Z;)* acting with % on
U(G, c¢) and the powering action on G, and thus the * action preserves ker(U(G, c¢) — G).

Proof. Note that, for any choice v = (71, ..., 7,), there is a unique morphism 3, € U(G, ¢){(—1)
that sends I(y) € € (Zy)* to Z(y 7) € U(G,c) (see remark after (2)). The content of Theo-
rem 5.2 is that this morphism is independent of the choices of order of the branch points
and 7.

Now consider a different choice ~/ (and implicitly a different choice of ordering of branch
points) with I(7') = I(y)®. There is then a permutation ¢ € S, such that ~/ is conjugate
to 75, for all i. Since (U, o0) is free as a prime-to-(char k) profinite group, ¢ lifts to a
homomorphism @ : (U, 00) — Uk(G,¢). We write K for ker(Uy(G,¢) — G), and recall
that Uy(G, ¢) — G is a central extension. We then define

(7) 2= o0 ()]
and note z/ € K so are central. So we have
(8) Z() = ¢()a - Gz = GO W)z = A

Note that for g € 7} (U, 00), we have that [p(g7/g™")] = ¢(9)[e(V))]@(g ) by Lemma 2.1,
and thus

2(gvi9~") " Lelgvia™)] = ¢(9)e () le(v)le(9) ™ = é(g)zid(g) ™
So then since v; is conjugate to 75, we have p(v5; ))_1[ (Ve@)] = zi- We then compute

-1

o 2() =l = [Tl =TT (200)%)
=[Teon G 0" ) = (HZQCr )

where we use crucially that ¢ is a homomorphism and the 2] are central. (The products of the
non-central terms must be taken in the specified order.) It then follows that axZ(y) = Z(7/),
as desired. 0

Remark 5.3. Let c(y be the set of conjugacy classes of cyclic subgroups generated by elements

of c. Note that (Zk)X orbits in ¢ all have the same image in the natural map ¢ — ¢(y. Thus

we have Z°(—1) = Z°. We have a factorization of the natural maps of sets c¢ —> D —
10



¢(y- Thus we have a homomorphism U(G,c) — ZP — Z%, where the discrete action

of (Z)* on U(G,c) covers the trivial action on Z°>. Thus we have an induced map of
sets U(G,c)(—1) — Z°. If we apply this in the case ¢ = G \ {1}, then the invariant of
Theorem 5.2 has image in Z° which counts the number of times each conjugacy class of
cyclic subgroups appears as an inertia group in the cover.

Remark 5.4. Let G, ¢ be as in Notation 5.1, k be any algebraically closed field of characteristic

prime to |G|, and 4, ...,t, € P; distinct closed points. Then we claim there is a topological
generator ¢ of Z(1); such that for every ¢i,...,9, € ¢ with ¢g;---¢g, = 1, there exists a
branched, marked G cover of P! over Spec k, branched at exactly ¢y,...,t,, with all inertia

groups of the cover generated by elements of ¢, and with lifting invariant mapping ¢ to
(1] -+ - [gn]. There is a homomorphism ¢ : 7} (P* \ {t1,...,t,},00) — G sending 7; — g;.
Taking the unique map of smooth, proper curves over k£ that corresponds to the extension
given by the generic points of the cover given by ¢ gives the desired cover.

Remark 5.5. In [VE10, Section 2.5] and [Wool7, Section 3| in certain cases analogous defi-
nitions of lifting invariants are made for all global fields.

6. PROPERTIES OF THE LIFTING INVARIANT

6.1. Change of fields and Galois action. Let G, ¢, k, X be as in Theorem 5.2 with lifting
invariant 3. If o : K — K is a homomorphism of algebraically closed fields, then the extension
of scalars Xx := X Xgpeck Spec K has lifting invariant 3 o o~!, which is a composition

2 T Z(1r > UG, o).

This follows from the definition of the lifting invariant, the fact that we can choose ~;
compatibly with the map 7] (Uk,00) — (U, 00) induced by o, and the fact the inertia
group homorphisms defined in (5) are compatible with the maps induced by o. In particular,
if K = k, then we would usually write X, instead of Xg. Let x(c7!) be the cyclotomic
character of o', i.e. the map o' : Z(1); — Z(1); is powering by x(c"). In this case, if
X had lifting invariant 3 such that 3(() = g, for a topological generator ¢ € Z(l) x, then X,
has lifting invariant 3, such that 3,(¢) = 3(¢X ) = x(0) ' % .

6.2. Invariant constant in families. Finally, we prove that the lifting invariant is constant
in connected families.

Theorem 6.1. Let G,c be as in Notation 5.1. Let S be a scheme over SpecZ[|G|™Y], and
let X be a branched, marked G cover X of P over S, such that at all geometric points of S,
the inertia groups of the associated cover are generated by elements of c¢. Let §, and S, be
geometric points of S such that the image of 5o is in the closure of the image of 51, and let
k(s;) be the algebraically closed field of ;. Then there is a map of roots of unity

o Z(l)k(gz) — Z(l)k(gl)

(where by a slight abuse of notation on the right above we take roots of unity in k(s1) but of
order relatively prime to the characteristic of k(s2)) such that 3x,, = 3x. oo (where this is
well-defined by Remark 4.1). If S is a k-scheme for some algebraically closed field k, then

the Z(l)k(gi) are naturally identified with Z(l)k, and o respects this identification.
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Proof. Let D C P§ be the branch locus of X — Py. By [AGV72, VIII] Corollaire 7.5,
there is a map of S-schemes S(5;) — S(53), where S(5;) is the strict localization of S at
5; (as in [AGV72, XIII, Section 4]). Let Ds, = D x5 5; . Since D is étale over S, we have
that D x5 S(5,) is étale, and since S(3,) is strictly henselian, we have that D xg S(5,) is
isomorphic to a disjoint union of copies of S(3;). Using the maps 5; — S(5;) — S(52) and
55 — S(52), we have maps Ds, — D x g S(5). The latter maps give a bijection between the
points of D, and the components of D xg S(5,), and hence a bijection between the points
of Ds, and Ds,.
There is a specialization morphism

(U ® 5(51),00) = 7 (U @ S(53),00)

that takes inertia groups for the points in Dj, to inertia groups for the points in Dg, according
to the bijection above [Gro03, XIII, Lemme 2.11]. Let Og s, be the strictly local ring of of S at
59, 1.e. S(51) = Spec Og3,, and let k(5;) be the function field of 5;. Let p,, = Spec Z[z]/(z" —
1). For n relatively prime to the characteristic of k(Ss), by a similar argument as above with
fn in place of D, using the maps 5; — S(55), we obtain a bijection between the points of
n(51) and g, (82), and these are compatible, giving the map o of the theorem. Then it follows
from the statements above about inertia groups and the definition of the specialization map
that we can choose the v; in the definition of the lifting invariant compatibly between §; and
S9, and hence 3 Xs, = 3X5, OO0 The final statement of the theorem follows from the observation
that all of the morphisms involved are S-morphisms, and thus k-morphisms. 0J
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