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Abstract

A method based on Singular Value Decomposition (SVD) and Gaussian process machine learning is
proposed to build a metamodel of a material that exhibits time dependent and nonlinear behavior.
To test this method, we apply it to determine the material parameters of a nonlinear viscoelastic
(poly(vinylalcohol)) hydrogel (PVA). Using the metamodel, we are able to rapidly generate the
stress histories for a large set of data points spanning a wide range of material parameters without
solving the constitutive model of the PVA gel explicitly. To determine the material parameters,
we compare the stress histories predicted by the metamodel with the observed stress histories from
laboratory experiments consisting of uniaxial tension cyclic and relaxation tests. The efficiency of the
metamodel allows us to determine the material parameters of the constitutive model governing the
time-dependent behavior of the PVA gel in a short time. The proposed method shows that there exist
many sets of material parameters that can faithfully reproduce the experimental data. Further, our
method reveals important relationships between the material parameters in the constitutive model.
Although the focus is on the PVA gel system, the method can be easily transferred to build a
metamodel for any material model.

Keywords: parameters fitting, singular value decomposition, Gaussian process, PVA hydrogel,

viscoelastic model

1. Introduction

A fundamental problem in the mechanics of solids is to develop constitutive models which ac-
curately predict the mechanical response of materials subjected to applied loads. The simplest
constitutive model is an ideal elastic solid, which is a reasonable approximation for traditional engi-
neering materials. The elastic solid represents an extreme case of material behavior where there is
a unique relation between stress and strain. Many materials, for example, soft solids such as rubber

and gels, are viscoelastic or viscoplastic [1, 2, 3]. These materials, besides being rate-sensitive, may
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sustain very large deformation before failure [2, 4, 5]. The mechanical behavior of rate dependent
solids remains a major challenge to material physicists and mechanicians [6, 7, 3, 8].

Experiments on material behavior are time consuming and are often limited by the amount of
material available. Further, it is impossible to cover the entire spectrum of loading configurations
and histories by experiments. Thus, the development of constitutive models must be complemented
by theoretical modeling. Many constitutive models contain many material parameters that cannot
be directly determined by experimental data [3, 6]. In addition, validating the theoretical model
may be hindered by the limited amount of experimental data available.

An outstanding and important question is how to determine the material parameters for a con-
stitutive model given a finite amount of experimental data. First, there can be many sets of material
parameters that can fit a given set of experimental data. Second, the parameters that fit a set of
test data may not fit a larger set of data which may or may not contain the original set. The latter
case occurs when new data is available, for example, from another research team, or when a different
type of test is conducted, say torsion instead of tension. The process of fitting experimental data
to theory can be extremely tedious and time-consuming. When the number of material parameters
is large, poor fitting of data can occur even if the model captures the correct physics. To our best
knowledge, it is still a great challenge to rapidly determine the parameters for complex viscoelastic
constitutive models.

There is no doubt that physical insight and intuition are extremely important in the development
and validation of material models; nevertheless, recent works show that in a variety of modeling
techniques, physical insights can be complemented by advances in machine learning algorithms, see
for examples [9, 10, 11, 12, 13, 14, 15, 16, 17]. Specifically, the tools used in the present work,
singular value decomposition (SVD) and Gaussian process, have been used by different groups of
researchers to predict material behavior or to find crucial parameters for controlling system behavior.
For example, Guo et al. used SVD and Gaussian process to predict the solution of parameterized
ordinary differential equations [11, 12]; Frankel et al. used Gaussian process to predict the stress
response of hyper-elastic solids without assuming a specific constitutive model [14]; Yang et al. used
SVD to decompose several stress-strain curves from FEM and then used a convolutional neural
network to predict the stress-strain curves of composites beyond the elastic limit [15]; Zheng et
al. developed logistic regression-like and neural network-like algorithms to determine the fitting
parameters of a constitutive model of hydrogels [16]. The purpose of our current work is to develop
a systematic method that uses modern statistics and data science to determine material parameters
in complex material systems, especially rate dependent solids. Our method combines SVD and
machine learning tools, specifically, Gaussian process. Although our formulation is general, we
demonstrate its usage and validate our algorithm by applying it to study the mechanical behavior

of a nonlinear viscoelastic hydrogel.
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In a series of papers, we and our coworkers have conducted experiments on a hydrogel cross-linked
by physical and chemical bonds [6, 7]. Specifically, this gel is composed of chains of poly(vinyl alco-
hol) (PVA) chemically crosslinked by glutaraldehyde and physically crosslinked by Borax molecules
[18, 19]. This PVA gel is highly viscoelastic and can support strains of up to 400 — 500% before
failure. The remarkable viscoelasticity of this gel is due to breaking and reforming of physical cross-
links. In previous works, we have developed a 3D finite strain viscoelastic model which correctly
predicts the time-dependent stress response in uniaxial tension tests and torsion tests subjected to
complex strain histories and large deformation, such as loading followed by relaxation or unloading
at different strain rates or cyclic loading over a range of frequencies [7]. Therefore, this gel system
provides an excellent platform to test the feasibility of using machine learning as a tool to determine
material parameters.

The plan of this paper is as follows: In section 2 we define the constitutive model and the
training data set. In section 3 we review the tools, SVD and Gaussian process and how to use
them to construct metamodels. Subsequently, we explain how to use these tools to find optimal
parameters for experimental data in section 4. In section 5, we use the PVA constitutive model
as an example to demonstrate how to implement this method. Finally, we show the fitting results
and remark on how the Gaussian process machine learning can help us understand the model, and

discuss how this method can potentially be improved.

2. Constitutive model

A general form of a nonlinear viscoelastic model can be written as

2
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where o (Z,t) is the nominal stress tensor at time ¢ and F'(¢) is the deformation gradient tensor at
time ¢; f is a nonlinear functional stating that the stress at time ¢ depends on the entire history of
deformation up to the current time t. In Eq. (1), # = (x1, 22, -+ ,x5) " is a vector with 3 components.
Each component represents a material parameter of the constitutive model. In the following, we
assume ¥ € € which is an open connected set in R?. We shall call &£ a parameter vector. The
nonlinear function f is usually given by theory. We shall call €2 the parameter space. The material
parameters are often determined empirically by fitting theory to experiments [6, 7, 3, 20].

A simple way to study the constitutive behavior of materials is to perform a uniaxial tension

test. In such a test, there is only one non-trivial stress o(t) and Eq. (1) can be written as
o(Z,t) = f (T, A\{t), —oo < t' <t) (2)

o(#,t) is the nominal tensile stress and A(t) is the stretch ratio in the loading direction at time t.

A common approach to determining Z is to fit the constitutive model to experimental data. For a
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given stretch history, the stress history can be calculated using Eq. (2) for any &, say & = Z;. This
stress history is compared with the experimental data. If the difference between them is unfavorably
large, then a different &, say & = Z5, is chosen and the process is repeated until the fit is acceptable.
Here we note that the calculation of the stress history can be numerically challenging, depending on
the formulation of the constitutive model. Such calculation often involves solving a set of differential
or integral equations.

To overcome these complexities, we propose an alternative and potentially superior approach.
The basic idea is as follows: the stress history in an unaxial test can be approximated as a vector
Fexp in some finite dimensional vector space RS where ¢ is a large number and each entry of Geyp
represents the stress at a particular time point. For each parameter vector, say £ € €, we can
compute the stress history of this test using the constitutive model. In principle, we can generate
a very large number of stress histories (say 10%). This procedure would provide 10® vectors &(Z)
in RS. If the constitutive model has the correct physics, a small number of these vectors (could be
hundreds) should be very close to &c;p. In this way, we can determine many parameter vectors that
fit the experiments well. The difficulty with this approach is the large amount of time required to
generate a data set consisting of 108 stress histories. For example, if it takes 1 sec to compute one
stress history, it would take about 27,000 hours to compute 10® histories. The goal of this work is

to use modern statistical methods to resolve this difficulty.

3. Metamodeling for parametric constitutive models

3.1. Generating stress matric

As part of the effort to construct the training data set, we construct the stress matrix first. We
sample w different parameter vectors 1, ¥, - - - , L, from the parameter space €2, where w depends on
the number of parameters in the constitutive model. Larger values of w may be chosen for constitutive
models with larger number of parameters. For our PVA model, which has four parameters (8 = 4),
see Section 5.2, we use w = 10% (details of how to select Z; are given below). w parameter vectors

are in the matrix X that has dimensions of w x 3, i.e.,
R - 1T
X—[xlvaa"'axw] ) (3)

which is also called the matrix of the training inputs. The superscript T denotes matrix transpose.
For each #j, 1 < j < w, we compute the stress history &' (#;) as a function of time ¢ for the
same stretch history using the constitutive model Eq. (2). This stress history is stored as the j

row vector

71 () = (o(Fj,t = At), 0(Tj,t = 2At), -, o(T5,t = (AL)) (4)

in a w x ¢ matrix A, which is shown in Fig. 1. The schematic for generating the stress matrix A is

illustrated in Fig. 2a. The numerical calculations begin at ¢ = At and At is a small time increment.
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Figure 1: Stress matrix A. The j* row of A stores the stress history &' (Z5)-

In general, A is a fairly large matrix, e.g. w ~ 103, and (At ~ 10! to 103 with At = 0.1s, then
¢ ~ 10% to 10* and the matrix has up to 10 million elements. The information stored in the stress
matrix A reflects how material parameters control stress histories. However, since the stress histories
in this matrix is constructed according to the constitutive model, they should be correlated. Hence
one anticipates that the data in this matrix can be compressed and the information in this matrix

can be extracted using SVD, which is described below.

3.2. Singular value decomposition (SVD)

Suppose the rank of the stress matrix A is r. The compact SVD of the rank-r w x ¢ matrix A

can be factorized into

A=UxV" (5a)
where

U=, iy, i), V=[0,0, -, %]andU'U=VTV = Ly, (5b)

Y = diag(s?,s3,- - -, s2) for singular values s7 > s2 >,--- , > 52 > 0. (5¢)

The columns of V, a ¢ x r matrix, denoted by 7 € R, 1 < k < r, form an orthonormal basis
of the row space of A. The matrix U, a w X r matrix, also has rank r; the non-zero columns of U,
denoted by ug, 1 < k < r are orthonormal vectors in R“ and form a basis for the column space of
A.

For many matrices of real-world data, the diagonal entries in ¥ decay rapidly [15]. That is, there

exists a positive integer £ such that

I3 r
Zs?>> Z s?, ELr (6)
i=1

i=¢+1
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This means that although &(Z;) reside in a r-dimensional space, their projections on most directions

are small. Thus, the matrix A can be approximated by a smaller rank-§ matrix, Ag, i.e.,

A= A§ = UgEgV&T = S%ﬁl’l_]ir + S%ﬂg’l_};r R Sgﬂgﬁg (7)
where Ug = [iy,- -+ , i), Y¢ = diag(s?,--- ,sg), Vg = [01, -, 0", are w x &, € x € and € x ¢
matrices respectively.

Eq. (7) shows that A can be written as a sum of projection matrices @9, , k = 1,--- ,£. Eqgs. (5a)

and (7) imply that the j** row of A can be approximated as
0 T(#)) ~ stuy ] + sjugTy + -+ sfugty =T (@), 1<j<w (8)

where uy; denotes the 4" component of the vector i), and J(fj) is a row vector of length £ defined
by

(@) = (g, sFuzy, -, stugs) | (9)
Since the rows of Vg—'— or B = {17,;'—7 1<k<¢ } is an approximate orthonormal basis for the row
space of A, the entries of 9(Z;) represent the coordinates of stress history &' (&) with respect to
B. The generation of @, 1 < k < ¢ and J(fj), 1 < j < w is shown in Fig. 2a. Here we state a key

assumption:

Assumption 1. If one keeps sampling from a fized probability distribution on 2, and calculate and
store the stress histories as rows in A (i.e. the number of rows of A, w, increases accordingly), Vg—r

or B = {17,3, 1<k< §} will converge.

Assumption 1 states that, for a given loading history, all stress histories generated by the con-
stitutive model are linear combinations of the same basis. This is a reasonable assumption because
there must exist some relation between stress histories since they are generated by the same con-
stitutive model. We can therefore use the same orthonormal basis B in the row space to compute
ET(fj) where &; can be any parameters in §). This means we can find a good approximation of
&' () in Q without using the constitutive model if we can find 1/7(:?]-), the projection of ' (#;) on
B. This allows us to dramatically increase the data set (in our case from 1000 stress histories to 1
to 10 million stress histories) without doing additional computations.

The next problem to be addressed is determining 1/7(:8}“) if the parameter vector & is not in the

J
training set. We will solve this problem using Gaussian Process machine learning (GPML).

3.8. Gaussian process machine learning (GPML): estimating J(fj)

In the following, &* denotes a parameter vector that is not in the training inputs but belongs to
Q. This notation separates two types of stress histories: &' (Z;) denotes a stress history calculated

using the constitutive model with parameter vector Z; and 1/_1'(9?]) is the projection of &' (¥;) on B;
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projection of 7, p(7}) on B. In the following, we review the basics of Gaussian process.

) is a stress history estimated using a trained Gaussian process model and JG p(f}‘) is the

A collection of random variables {y(Z;) | £; € Q} is said to be drawn from a Gaussian process

GP with a prior of zero mean and covariance function (also known as the kernel function) kg, , =

k(Z;,Z;). In the present work, ¥; and &, are any two parameter vectors in the parameter space .

We assume, for any finite set of input vectors &y, --- , %, € €, that the associated finite set of scalar
outputs (dependent variable) {y(Z1),--- ,y(%,)} have a joint Gaussian distribution:
y(%1) kyvor 0 Koy,
g= : ~ N, [Kxx]), [Kxx]= TP (10)
Y(Zw) kvoor 0 Koy,

where [Kx x| is the covariance matrix which is semi-positive definite and symmetric, and y € R.
Two popular covariance functions are RBF kernel and Matérn kernel that have kernel hyperparam-
eters [21]. Our choice of the covariance function is discussed in Section 3.5.

Recall that when a single random variable y is distributed normally with mean 0 and variance

o, the standard notation is y = A (0, o) or, equivalently, the probability density function p is

1 y?

ply) = 5 = (11)

Consistent with our notation, we identify ) as the parameter space of our constitutive model and,
correspondingly, an input vector &; € ) is a parameter vector specifying a unique location in €2. The
physical meaning of ¢ in Eq. (10) will be given in the next section. The theory of Gaussian process
addresses the following question: what is the probability distribution of §* = (y(&7),- - - ,y(f;))—r €
R" for inputs 3 € Q, 1 < j <1, given that ¥ = (y(Z1),--- ,y(Z,)) " has occurred? It is important
to note that the number of predictions need not be the same as the number of observations, i.e., i
need not to be equal to w. In this work, n = 10% and w = 102. These 7 parameter vectors that are
previously not in the training inputs are called the prediction inputs, and they are stored in a n x 3
matrix X*, i.e.,

X" = [fi’f;, 7':?):]]T

(12)

)

which is called the matrix of the prediction inputs. The theory of Gaussian process states that
the distribution over any set of inputs belonging to {2 must have a joint multivariate Gaussian

distribution, i.e.,
y Kxx]+ 061 [Kxx-
Pl oo [Kxx]+6°[I]  [Kxx-] (13)
v [Kx-x] [Kx=x+]

In Eq. (13), 6% represents the noise level and can be treated mathematically as a regularizer (e.g.

from experiments or numerical calculation), and [I] is the identity matrix. Here [Kxx], [Kxx~*],

[Kx~x] and [Kx+«x~] are w X w, w X 7, n X w and 1 X  matrices, respectively. Given g, the Gaussian
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process regression predicts that

= -1

7 = [Kx-x] [Kxx] + 8] 7 (14a)
where 7* is the mean value of the random variable, 7*; it represents the best estimation of the
output value for inputs #7 € Q, 1 < j < n when we already know the values of the training set

{y(@;) | £; € Q, 1 <j <w}. The variance of §* is given by:

var(5) = diag ([Kx-x-] — [Keox] [Kxx] +021]) " [Kxx-]) (14b)

Eq. (14b) measures the variablity of §* and provides useful information on the reliability of the
estimate given by Eq. (14a). The next step is to identify the random variables y(#;) and y(77;) in

the Gaussian process, GP, with physical quantities in our problem.

3.4. Metamodeling and predicting
Next, we determine stress histories from parameter vectors that are not in the training inputs

without using the constitutive model. In other words, we use SVD and Gaussian process to build a

"metamodel of constitutive behavior” based on the following assumption:

Assumption 2. Fach component in 1/7(5:']) and J(f]*) conforms to an independent Gaussian process

on .

Recall @/;(fj) and 1/7(5;‘) both contain & components, where £ is the number of dominant singular
values of A. Each component of these coordinate vectors g[_;(f]) and 1/7(:?3‘) will now be identified as
the random variable y(%;) or y(7}) in a GP. We further assume these GPs are independent. We

have ¢ independent GPs. Specifically, we choose
Yi(%;) = k" component of 1;(9?7), k=1,2,---,¢ (15a)
Yr(75) = k'™ component of 1/7(53’;‘), k=1,2,--- ¢ (15b)
For the rest of this paper, 1, (Z;) or ¥(27) denote the kth component of 1/;(@) or 1/7(:5'}‘) The

vectors i, k= 1,2,--- , &, which are the vectors of the training outputs in the k*"* Gaussian process

model GPy, correspond to i in Eq. (14a):

Vi (71)
ng 5 k:172a"'a£ (163‘)
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To predict g’}g(i‘?), we train a total of ¢ independent GPs, namely GPy, k = 1,2--- £, using the
training set that comprises the matrix of the training inputs X and the vector of the training outputs
g for k =1,2--- £, The training process is discussed in detail in Section 3.5. Using Eq. (14a) we

obtain
U= : = [Kxxli [Kxxle + 8] Gy k=1,2,--- & (16b)

where 7 (27) is the predicted mean value of kth component of 1/7(5:’;‘) The subscript k in [Kxx]|x
and [Kx«x] indicates that the elements of these matrices are dependent on ¢j. From Eq. (16b) we

obtain g p (T *) which is an approximation of (T %), ie.,
Jor(E) = (01(8). 0a(@). - (@) ~ 0(3) ()

With the estimated value of (& ) the stress history corresponding to &% 7 s

G (&) m b T @)V~ 9dp @)V (18)

In summary, the stress history can be predicted from matrix-vector multiplications without solving
for the stress using the constitutive model, as shown in Fig. 2(c).

We now have a better understanding why SVD is first applied to the stress matrix. After SVD,
each stress history can be represented by £ quantities. To build metamodels for all those quantities,
a total of ¢ independent GP should be trained, namely GPy, k =1,2--. ;€. Note, in the original
stress history matrix, each stress history is defined by ( quantities, i.e., the number of columns of
matrix A. As a result, to build metamodels for the constitutive model, a total of { independent GP
are needed. Unfortunately, ¢ is usually 10 to 1000 times larger than &, so applying Gaussian process

directly to the matrix is extremely uneconomical.

3.5. Anisotropic RBF kernel and training

To determine ¢ p(7;), we need to specify and evaluate the covariance matrices in Eq. (16b).
There are many forms of covariance functions [21]. In this work we use the anisotropic RBF kernel

which defines the elements of the covariance matrix [Kx x| in Eq. (14a) as

B
Lo 1
ko, = k(Z5,%5) = O'?' exp <—2 Z Tjq — Tjrq) /€d> 1<d<g (19)
d=1

where the subscript d in x4 denotes the d" component of the parameter vector Z; € RA. ¢4 is the
characteristic length specific to ;4 while o is the signal variance. This class of covariance functions
naturally takes care of the coordinate-dependent scaling of the parameter vector by specifying a

unique ¢4 for the d* coordinate of the parameter vector for 1 < d < 3. This property is especially
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suitable in our case where the parameters in a constitutive model usually have different units and
scales. In the literature, the anisotropic RBF kernel has been successfully applied to material
modeling [22, 23].

Let the set @ = {¢2 (3, -- ,E%,cr]%} denote the parameters in the covariance function. These
components are called the hyperparameters of the machine learning model GP. The characteristic
lengths ¢4 measure the distances in the parameter space when y(Z;) become uncorrelated [21]. ¢4
characterizes the dependence of y(%;) on the d'* component of Z;, i.e., ;4. A larger £; means
that y(Z;) is smoother in x;q4. If ¢4 is very large compared with the scale of x4, then y(Z;) is
approximately linear in x;q. If ¢4 is very small compared to the scale of x4, then a small change of
xjq can lead to a dramatic change of y(#;). The signal variance controls the range of the functions
drawn from a GP. Roughly, o represents the absolute scale of the training outputs.

To find the optimal hyperparameters, we use Assumption 2 which states that {yx(Z;), -, yx(Zw)}
have a joint multivariate Gaussian distribution whose covariance matrix [Kx x| depends on the train-
ing inputs collected in X and 6, as indicated by Eq. (10) and Eq. (19). Thus, the probability density
function of g given X and 6 is [21]
exp (~437] [[Kxx] +82101] " i)

V(2 [[Kxx] + 02[1]]

where X = [, &2, -+ ,%,] . We remark that during training, the hyperparameters in @ are vari-

p(gk | X,0) = (20)

ables and each element in [Kxx]| is a function of 8 (dark green box in Fig. 2b). In a nutshell, the
training process is as follows: k = 1,--- , £, choose 8 = ) which made the observation of ¢ most

probable (dark boxes in Fig. 2b), i.e.,
0, = argmax p( g | X,0) = argmax logp( i | X,0) = argmax L;(0), k=1,2,---& (21)
0 0 0

where argmax p( 7k | X,0) denotes the 6 that maximizes p( 7 | X,0). The second equality in
0
Eq. (21) is because the logarithmic function monotonically increases. L (8) denotes the log marginal

likelihood of the observation of ¥, which is
. 1 -1, 1 w
Li(0) =logp(yi | X,0) = 3 v [[Kxx]+6°[1]] Y - 5108; [[Kxx]+ 6] — 5102;27? (22)

Numerical methods such as gradient based techniques are used to solve Eq. (21) for the optimal hy-
perparameters. In this work the sklearn.gaussian_process.GaussianProcessRegressor module
implemented in Python [24] is used to determine 7* while the L-BFGS-B algorithm [25, 26] is used
to maximize the log marginal likelihood function.

We use the set 0, = {Eil,ZiQ, e ,Z%ﬁ,afck} to specify the optimized hyperparameters in the
covariance function of the k** Gaussian process machine learning model GP}, (light green boxes in
Fig. 2b). They uniquely define GPy, by Eq. (19) and Eq. (10). Thus, the covariance matrices [Kx x|k
and [Kx-x|r in Eq. (16b) are [Kx x| and [Kx~x] evaluated at 8. That is,

[Kxx]k = [Kxx]lo, and [Kx-x]r =[Kx-x]lo, (23)

10
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Figure 2: The overall flowchart for (a) generating the data set, (b) metamodeling of the constitutive behaviour, and
(c) predicting the stress history &' (£7). The structure of the stress matrix A in (a) is shown in Fig. 1. Matrix VgT
in (a) and (c) is the transpose of the V' matrix in SVD but only with the first £ columns. Each of the the dark boxes
in (b) represents an individual training process that is based on hyperparameter optimization by maximizing the log

marginal likelihood.

4. Optimal parameter vector and ranking of parameter vector

Suppose an uniaxial experiment was carried out that had the same strain history as in A. The
stress history in this experiment, stored as a vector, is projected onto B to determine a row vector
Jemp of length £. We define the optimal parameters Z,,; for this experimental data as

2

. T eQ (24a)

fopt = argmin Hﬂ’(f*) - d}ezp
i’*

2
‘ . Theoretically, it

2 - .
‘ means the Z* that minimizes Hz/)(f*) — Yewp

where argmin HJ(Q?*) - 1/7%,,
f*
is extremely difficult to evaluate Eq. (24a), because there may be many local minimum in . A

practical way of determining #,p: is to randomly choose ¢ points in €2 and compute

2

—

Yap(T;) — (24b)

1<j5<n

o
exp

Zopt /= arg min
z
J

What if experiments are performed with N different strain histories (e.g. a relaxation test and

tension tests with different stretch rates)? This situation is more complicated since we have N

11
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different matrices A(i), 1 < ¢ < N and the basis set
. _(d) T .
B = {(v,j ) . 1<k< 5@)} (25)

of the row space of A% is specific to A®. A superscript (i) denotes the quantity’s association
with the it" stress history. For this case we use the average prediction error to find the material

parameters that can fit all the experiments well and define the optimal material parameter vector

‘2
’2 R I (26)

by f();mt
) 1 &) - 9,

Topt A argmin —
z; J(i)

exrp

i=1

where Jg},(f}‘) denotes the predicted projections of the stress history of parameter vector & on the
basis B, as defined in Eq. (17), and Jé?),, denotes the projections of the experimental stress history
on B,

We remark that there can be many material vectors &7 that almost minimize the error defined
in Eq. (26). It is important to note that these vectors need not be close to Z,,. There can
be different sets of material parameters that can equally fit experiments. Therefore, we rank the

%

material parameter vectors obtained using GP. The rank of a parameter vector Z; is determined by
its associated objective quantity in Eq. (26): the optimal parameter vector defined by Eq. (26) is

ranked 1%¢; the closer this quantity is to the minimum, the lower the rank.

5. Example: PVA hydrogel

In this section we test our theory by applying it to determine the material parameters for the

PVA gel system. We start by briefly describing the experiments and the constitutive model.

5.1. FExperiments: choosing strain history

We synthesized sheets of PVA gel in our laboratory and performed four different type of uniaxial
tension tests (N = 4) to provide the experimental data for fitting. Since the pertinent details
on chemistry and experimental methods were reported extensively in previous works [6, 7, 20], we
summarized the experimental procedures in the supporting information (SI). The four experiments
are illustrated in Fig. 3. The first three experiments consist of cyclic loading where the sample is
uniaxially stretched at three different constant stretch rates until a maximum stretch ratio of 1.3.
The sample is then unloaded at the same magnitude of stretch rate. The fourth loading history is
from a stress relaxation test. Here the sample is rapidly stretched at a rate of 0.5/s to A = 1.3,
then held at this stretch for the rest of the test. We denote the four test types as EXP 1 (Cyclic
test, 0.003/s), EXP 2 (Cyclic test 0.01/s), EXP 3 (Cyclic test 0.03/s) and EXP 4 (Relaxation test,
0.5/s).

12
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Figure 3: Stretch versus time for four loading histories. (a) EXP 1 (Cyclic test, 0.003/s), (b) EXP 2 (Cyclic test
0.01/s), (c) EXP 3 (Cyclic test 0.03/s), and (d) EXP 4 (Relaxation test, 0.5/s).

5.2. PVA constitutive model

In our previous publications [7, 27, 28], we have developed a 3D constitutive model which com-
bines the finite strain elasticity of elastomers with the kinetics of bond breaking and reattachment.
We have also demonstrated that our model accurately predicts uniaxial tension and torsional tests
with complex loading histories. The constitutive model for the PVA gel is completely determined
by four material parameters pup, ap, tp and p7y... Hence a parameter vector is specified by a four
components vector & = (up, ap, tg, W) (8 =4). According to our constitutive model, in a uni-
axial tension test where the stretch ratio A(t) is prescribed, the nominal stress o(Z,t) corresponding

to the parameter set & = (up, ap, tp, [Fs,) € 2 CR*is

o(F,1) = |+ 1 jBaB (1 + (ap — 1);) o [A(t) - )\21(16)]

+ 17e0 /Ot 5 (tt;T) [Aé((?) - :2((?)} o

(27a)

where

b5 (;) - (1 T (ap—1)— t’;) o (271)

The units of parameters are up(kPa), ap(1), tp(s), and p7,, (kPa), and the unit of o(Z,t) is kPa.
These units are used in this paper and will not be indicated explicitly. For any parameter vector

Z; = (ujpj, agj, tgj, Hj7mj) € ), we define the stress history as

0j(t) = o(Zj, 1) (28)
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5.8. Training and prediction inputs

Next, we use SVD and Gaussian process to build metamodels for the four loading histories
(N =4) in Fig. 3. As discussed before, to construct the metamodel, we need to sample parameter
vectors for SVD and Gaussian process model training, i.e. #;, 1 < j < w, and parameters for

prediction, i.e. 7, 1 <j <n. Here we limit #; and 2 in the parameter space {2 defined by

0<pp<15
) 1.30 < ap < 1.90
Q=< (np,aB,tp, i) (29)
0<tg <15

0 < oo < 100

The parameter space € is chosen based on data in our previous works [6, 7].

For 7}, we use Latin Hypercube Sampling (LHS) to randomly pick 1000 points in € (w = 10%).
The main feature of LHS is that, in contrast to simple random sampling, it simultaneously stratifies
on all dimensions of the parameter space ) by partitioning each dimensional distribution into many
intervals of equal probability, and selects one sample from each interval, resulting in an efficient and
effective sampling scheme for many computer simulations [29, 30, 31]. We also explore the possi-
bilities of sampling Z; in an active-learning manner as shown in Fig. S3, and we find that the LHS

%

sampling strategy is simpler and more effective for the presented work. For Z7, we randomly pick 1
million points in  (n = 10°) using uniform random sampling since we want to cover as much of
as possible.

Next, we follow the methods in Section 3 (Fig. 2) to construct metamodels of the PVA constitutive

model for the four uniaxial tensile tests mentioned above. Then we collect experimental data with

the same tensile strain histories as shown in Fig. 3.

6. Results and Discussion

6.1. The metamodels of PVA constitutive model for four uniazial tensile tests

We choose w = 1000 and 7 = 10%. Recall w is the number of stress histories in the training set,
that is, the stress histories calculated directly using the constitutive model, and 7 is the number
of stress histories generated by the Gaussian process models. We first conduct SVD on the stress
matrix A®, 1 < i < 4, where each matrix has w rows generated by solving our constitutive model,
as shown in Fig. 1. Fig. 4 shows the SVD of A®. Note that the singular values of A®) decay
rapidly to zero for k£ > 3 in all four strain histories. This shows that £ = 3 is sufficient for accurately
estimating the stresses for all four strain histories.

As described earlier, the hyperparameters can provide useful information about our constitutive
model. The optimized hyperparameters are listed in Table 1. Table 1 shows that the stress history

is most sensitive to ap, less sensitive to tp and least sensitive to up and p7¥,,. Specifically, in all
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Figure 4: Singular values of four strain histories. The singular values for each strain history are presented by different

color lines. sz values for k > 10 are not shown because they are too small compared with the first 4 singular values

Table 1: Summary of optimized hyperparameters. Since £ = 3 and N = 4, we have a total 12 different sets of
optimized hyperparameters. To simplify notation, we omit the subscript k& for each component. 1, ¢2, ¢3 and £4 are

the characteristic lengths of up, ap, tp and p7y., respectively, as defined in Eq. (19)

Train of 128 £l ls Ly
e 196 1.00 x 10* 0.185 2.94 393
EXP 1 7Y 197 1.00 x 10* 0.178 2.75 416
M 188 9.92 x 103 0.170 2.66 477
72 164 1.00 x 104 0.199 2.66 381
EXP 2 72 148 1.00 x 10* 0.189 2.54 408
7 144 9.98 x 103 0.194 1.85 491
7> 133 1.00 x 10* 0.213 2.39 367
EXP 3 7 123 1.00 x 10* 0.199 2.23 428
7 74 7.52 x 103 0.224 1.07 461
e 145 1.00 x 104 0.213 2.36 377
EXP 4 7y 266 1.00 x 10* 0.174 2.91 437
7Y 238 9.66 x 10° 0.170 2.21 468

+ the upper limit of ¢; in the optimization is set to be 1.00 x 10%.

experiments, the characteristic length ¢; is very large compared to the scale of up (0 < up < 15),
this is consistent with Eq. (27a) which indicates that the stress history depends almost linearly on
up. On the other hand, ¢ is very small compared to the scale of ap (1.3 < ap < 1.9), consistent
with the fact that the stress history is very sensitive to ag. Finally, ¢3 is very close to the scale of
tp (0 <tp < 1.5) and {4 is 2 to 6 times larger than the scale of p7., (0 < p7,, < 100). This is

again consistent with Eq. (27a) which shows that stress changes smoothly (but not linearly) with

15
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tp and py..
To justify our choice of w and 7, we randomly choose 1000 random parameter vectors from all

of T*%.

%. We then compute the ﬁ(f}‘) using Eq. (27a) for both the cyclic and relaxation tests and

compare them to the predicted 1/7G p(f}‘f) using the Gaussian process models. For each test and each
component of @[7(9?3‘), the prediction of our constitutive model vs the prediction of the Guassian
process models is shown in Fig. 5. In all cases, the predicted value is practically the same as the
computed value. This means the predicted 7,/;(; P (f;‘) by the models is highly accurate and we can
determine stress histories outside the training set without integrating the constitutive model.
Other than comparing the projections, we can also compare the stress histories calculated by the
PVA constitutive model in Eq. (27a) and the stress histories predicted by metamodels for a random
set of parameters in 2, as shown in Fig. 6. The curves predicted by the metamodels overlap almost
perfectly with the curves calculated using the constitutive model. This further demonstrates the

accuracy of our metamodels.

6.2. Comparison with Ezperiments

We then assess whether the material parameters determined by our method can accurately fit
experimental data. Fig. 7 compares the experimental stress-strain curves predicted using Eq. (27a)
with the rank 1%% vector given by Eq. (30) for the 4 different experiments in Fig. 7. The agreement
between experiments and theory is excellent. These results further demonstrate that our PVA
constitutive model correctly captures the mechanical behavior of PVA gels. In addition, it shows
that our machine learning algorithm is a powerful tool for determining material parameters in

constitutive models. The optimal set of parameters (rank 15?) is
(up, ap, tp, W) = (4.744,1.579,0.841,13.48) (30)

where the units are noted in section 5.2.

For comparison, we use the parameter vector that ranks 500”. This set of parameters is
(1up, aB, tp, 17.,) = (4.819,1.651,0.169,82.72) (31)

There are significant differences between parameters tp, (7., in Eq. (30) and Eq. (31). Despite
these differences, the prediction based on Eq. (31) still agrees well with the experimental data, as
shown in Fig. 8. Indeed, the top-ranked 500 parameter vectors all produce stress histories that fit

the experiments well.

6.3. Distribution of possible parameters

As mentioned above, the prediction of the constitutive model using the top-ranked 500 parameter
vectors can fit all four experiments very well, despite considerable variations amongst them. This

suggests there must be some relation between parameters. Here we make 2D projections of Z7 onto
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Figure 5: Predicted projection )y, (&*

]-) using GP versus projections 1y (:i';‘) obtained using constitutive model for four

different types of experiments.

two-dimensional subspaces of Q and plot them in Fig. 9. To be consistent with Eq. (26), the fitting

error of a parameter vector &} is defined by

J
Lo [ - i
err(@) == 5 , 1<j<n (32)
N= )
= exp
250 Fig. 9 shows that these 500 parameter vectors vary a great deal despite the fact that err(z7}) are

less than 0.065, with most below 0.05. We let X denote the set of these 500 parameter vectors. The
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Figure 7: Comparison of model prediction with experiments. Model prediction is based the rank 15¢ parameter vector
given by Eq. (30).

inescapable conclusion is that there are many sets of material parameters that fit these experiments.
More importantly, these plots show that there are strong relationships between pup and ap, as well
as tp and py,,.

To understand this dependence, we use a result from our previous work [7] which shows that
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Figure 8: Comparison of model prediction with experiments. Model prediction is based the rank 500t" parameter

vector given by Eq. (31).

when strains are small, that is, when A(t) = 1 + €(¢) ~ 1, our nonlinear viscoelastic model becomes

o(Z,1) = /_ too Y (t;) d;(:) dr (33a)

where Y is the relaxation function in tension and is given by

linear, resulting in

2—ap
T

3T ot t B
Y(t) = W <1 +(ap — 1)) + 3up (33b)
ap tB

Egs. (33a) and (33b) states that o(#,t) depends linearly on py . tp. If the constitutive law is correct,
then p¥, tp must be a material constant C' for a specific experiment, therefore p7y., = C/tp. Also,
Egs. (33a) and (33b) shows that o(¢) increases with up and ap. Therefore, to produce the same
stress history, a smaller ag must be chosen if a larger value of up is chosen. Fig. 9 shows that these

relationships are consistent with machine learning prediction.

6.4. Insight for experiment design and model analysis

The question to be addressed in this section is to what extent the set of good parameters X
can be narrowed down if more experiments are incorporated. To answer this question, we design
four additional loading histories (EXP 5 — 8) which we could do in our lab, as shown in Fig. 10.
Then we build metamodels for these newly designed loading histories according to Eq. (1) through
Eq. (23). With these metamodels, we can predict the stress histories for these loading histories for

any parameter vector.
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It is important to specify that we do not plan to do all the newly designed experiments (i = 5,
6, 7, 8). Instead, with the help of the metamodels, we first analyze whether these new experiments
(i=75,6, 7, 8) could reduce the number of good parameter vectors. When plugging all Z; € X into
one of the newly built metamodels, the metamodel returns a set of stress histories, which may or
may not deviate significantly from each other. Naturally, one expect an experiment worth doing to
show significantly diverse stress history curves on X. To quantify this diversification, we use the
dispersion of vectors Jg}, (f;k) in experiment i. Specifically, we use the generalization of normalized
standard deviation of Jg}(f}‘),fj € X for each of the experiments, S(i, X'), 1 < i < 8, to capture

such dispersion:

S(i, X) = i Zriex Hl;g}j(x;) —5XH2 (34a)

=
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Figure 10: Stretch versus time for four new loading histories. (a) EXP 5 (Complex loading), (b) EXP 6 (Cyclic test,
loading - 0.1/s, unloading - 0.001/s), (¢) EXP 7 (Relaxation test, 0.5/s, 1.5 stretch), and (d) EXP 8 (Pure shear
relaxation test, 0.5/s, 1.5 stretch).

where

In = 2 T (310
Y

The values of S(i,X') for all experiments are shown in Fig. 11. We find that these values are
all small. Additionally, EXP 5 — 8 has even smaller S(i,X) than EXP 4. This means that even
if we conduct these new experiments, they will offer very limited help to narrow down the set of
good parameter vectors. To further test our hypothesis, we use EXP 1 — 6 to fit our model, and
the results are shown in Fig. S5. It turns out that the number of good parameter vectors remains

technically the same. This result is consistent with our fluctuation analysis above.
Therefore, adding more experiments do not necessarily effectively reduce the number of feasible
parameter sets. The key is to find the right experiment. This is an interesting and important topic

which we will investigate in the future.

6.5. Computational efficiency

We have successfully built a metamodel, which predicts the stress history for parameter vectors,
to determine the material parameters in a viscoelastic model of a PVA hydrogel. Why do we not
simply compute the stress histories for each parameter vector using the constitutive model? Time
is the most important factor. Table 2 shows that Eq. (27) takes 2.7 to 41.0 ms to calculate the stress
history for cyclic loading (EXP 1-3) per set of parameters (using Eqgs. (27a) and (27b)), while it takes

the metamodel no more than 0.1 ms. Furthermore, the time needed to compute the stress history is
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proportional to the duration of the experiment. That is why we need such a long time as 1160 ms to
calculate a stress relaxation history using the constitutive model for EXP 4: for EXP 4, prediction
for 1 million parameter vectors would take 1.6 min using SVD and Gaussian process metamodel
while it would take up to 322h to evaluate using the constitutive model. For more complicated
constitutive models and longer strain histories, it is impractical to calculate the stress history for
millions of parameter sets. On the other hand, using our method, the computational time required to
determine the stress history is independent of the duration of the experiment. As shown in Table 2,

the calculation time of our metamodel is practically identical for the cyclic and relaxation tests.

Table 2: Time to computer stress history per parameter vector

Constitutive model (ms) Metamodel (ms) Constitutive/Meta
EXP 1 41.0 0.094 436
EXP 2 8.26 0.096 86
EXP 3 2.74 0.096 29
EXP 4 1160 0.098 11836

After obtaining 1 million sets of stress histories, the time needed to find the optimal parameters
is a few seconds since the calculations are purely matrix multiplications. More importantly, if
the parameters determined by the metamodel cannot fit the experiments well, one can confidently
conclude that with very high probability there does not exist such a set of parameters that can fit
the experimental data in 2. Such conclusions can hardly be made if the fitting is done manually or
using gradient-based optimization methods.

It is important to note that the time needed to run the metamodel does not include the time

required to calculate 0y and [[Kx x|, + 62[1]] - (Egs. (16b) and (21)). The time needed to calculate
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these quantities largely depends on the size of the training set, w, and is independent of the number of
Z; or n. It is known that a universal issue with GP models is that the basic computation complexity
for the training process is O(w?) [21]. This complexity can be prohibitive for large data sets, and thus
the size of the training set is usually less than 10000. The inherent unscalability of GPs will limit the
size of 2. There are two ways to tackle this problem. The first is to use theory or physical intuition
to narrow ) down to a domain of manageable size. For example, some of material parameters in the
constitutive model may be directly measurable from experiments and this will reduce the dimension
of the parameter space. The second is to use approximation methods to reduce the computation
complexity. Recent developments have shown several approximation methods for GPs that have

higher computational efficiency [32], and parallel computing can also increase the performance of

Gaussian process dramatically [33].

7. Conclusion

An algorithm based on SVD and Gaussian process machine learning is used to build metamodels
of constitutive models. SVD is used to compress the stress histories and extract the information in
them. Gaussian process-based metamodels are used to efficiently and rapidly predict stress histories
for a huge number of parameter vectors that are not in the training set. This enables us to select
multiple sets of material parameters for a given constitutive model that fits all our experimental
data. This is an advantage of our method over the traditional methods of constitutive model fitting.
Besides, our approach can be automated and it is computationally efficient. Further, our approach
allows exploration of the correlations between different material parameters in the constitutive model.
Such information can provide useful guidance to the underlying micro-mechanics that governs the
mechanical behavior of materials. This is also important for generative design of materials when the
constitutive model accurately captures the physics.

Although we use the PVA gel as a demonstration of our algorithm, our method can be generalized
to study other material systems. Indeed, the training set can be generated for any constitutive model.
One limitation of our method is that the basic computational complexity of Gaussian process is the
size of the training set w to the third power, i.e., O(w?®). When the size of the parameter space
becomes larger, larger training set is required to effectively represent the parameter space, which
will potentially lead to low computational efficiency. Fortunately, there are ways to bypass this
limitation, such as using more efficient approximation algorithms of Gaussian Process or using
active learning. Incorporating these advanced algorithms into the current method will be the focus

of our future work.
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