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Abstract

We introduce a fast Fourier spectral method for the multi-species Boltzmann collision operator. The method retains the
advantages of the single-species fast spectral method Gamba et al. (2017) including: (a) spectral accuracy, (b) reduced
computational complexity compared to direct spectral method, (c¢) reduced memory requirement in the precomputation, and
(d) applicability to general collision kernels. The fast collision algorithm is then coupled with discontinuous Galerkin
discretization in the physical space Jaiswal et al. (2019) to result in a highly accurate deterministic method (DGFS) for the full
Boltzmann equation of gas mixtures. A series of numerical tests is performed to illustrate the efficiency and accuracy of the
proposed method. Various benchmarks highlighting different collision kernels, different mass ratios, momentum transfer, heat
transfer, and in particular the diffusive transport have been studied. The results are directly compared with the direct simulation
Monte Carlo (DSMC) method.
© 2019 Elsevier B.V. Allrights reserved.
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1. Introduction

The Boltzmann equation is an integro-differential equation describing the evolution of the distribution function
in six-dimensional phase space. It governs the dilute gas behavior at the molecular level and its solution is required
to accurately describe a wide range of non-continuum flow phenomena such as shocks, expansions into vacuum [1]
as well as velocity and thermal slip at gas—solid interfaces [2,3]. Most rarefied flows of technological interest
involve gas mixtures with species diffusion playing a decisive role in turbulent, chemically reacting flows, and
evaporation/condensation processes [4]. This paper focuses on the development and verification of a deterministic
numerical solution to the full Boltzmann equation for gas mixtures.

The physics of Boltzmann equation is now most often simulated computationally using the direct simulation
Monte Carlo (DSMC) method [5]. Based on the kinetic theory of gases, DSMC models the binary interactions
between particles stochastically. The DSMC method can be rigorously derived as the Monte Carlo solution of the

*  Corresponding author.

E-mail addresses: jaiswal0@purdue.edu (S. Jaiswal), alexeenk @purdue.edu (A.A. Alexeenko), jingweihu@purdue.edu (J. Hu).

https://doi.org/10.1016/j.cma.2019.04.015
0045-7825/@© 2019 Elsevier B.V. All rights reserved.


http://www.elsevier.com/locate/cma
https://doi.org/10.1016/j.cma.2019.04.015
http://www.elsevier.com/locate/cma
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cma.2019.04.015&domain=pdf
mailto:jaiswal0@purdue.edu
mailto:alexeenk@purdue.edu
mailto:jingweihu@purdue.edu
https://doi.org/10.1016/j.cma.2019.04.015

S. Jaiswal, A.A. Alexeenko and J. Hu / Computer Methods in Applied Mechanics and Engineering 352 (2019) 56-84 57

N-particle master kinetic equation [6]. Under the assumption that molecular interactions are Markov processes, in
the limit of infinite number of particles N — oo, Wagner established the convergence of Bird’s DSMC method to
the Boltzmann equation [7]. DSMC is widely used for simulating high-speed phenomena, whereas low-speed and
unsteady flows are less tractable by stochastic simulations due to the inherent statistical noise.

To avoid the complexity of solving the full Boltzmann equation, many simplified multi-species kinetic models
have been proposed and this is a very active research direction in the mathematical and engineering communities,
see for instance some early works [8—10], and more recently [11-14], and references therein. These simplified
models perform better at low Knudsen numbers for flows in the slip and early transition regimes. Yet they often
fail to capture the physics at high Knudsen numbers and for diffusion dominated flows at low Knudsen numbers
(see [15,16]). Consequently, in this work, rather than searching for a simple kinetic model to mimic some properties
of the Boltzmann equation, we propose a deterministic evaluation of the full multi-species Boltzmann equation with
an intention of correctly reproducing the mass, momentum, and energy transport in gas mixtures.

The main difficulty of numerically solving the full Boltzmann equation lies in its complicated collision term.
Over the past years, the deterministic methods that approximate the Boltzmann collision operator/equation have
undergone considerable development. This includes the discrete velocity methods, spectral methods, etc. The readers
are referred to [17,18] for a comprehensive review. In particular, the Fourier spectral method has been applied
to solve the multi-species Boltzmann equation in the past. In [19], a spectral-Lagrangian Boltzmann solver was
proposed for a multi-energy level gas for elastic/inelastic interactions with a Lagrangian based post-processing
procedure to guarantee the conservation of macroscopic quantities. However, the method was implemented in a
straightforward manner without any acceleration strategy and is therefore very expensive. In [20], a fast spectral
method was introduced for the multi-species Boltzmann equation along with a strategy to treat large mass ratios.
The method is based on the so-called Carleman representation which in its original form can only treat hard sphere
molecules [21]. Extension to general collision kernels requires additional assumption on the kernel and parameter
fitting/recalibration. This could be a reason that all the numerical tests were restricted to hard spheres in [20].
Recently, a fast Fourier spectral method for the single-species Boltzmann collision operator was introduced in [22].
The complexity for a single evaluation of the collision operator is reduced from O(N®) (direct calculation) to
O(MN*log N), where N is the number of discretization points in each velocity dimension, and M <« N? is
the number of discretization points on the sphere. Moreover, the method does not employ any assumptions or
parametric fitting on the collision kernel, and is directly applicable for general molecular interactions. Based on [22],
a discontinuous Galerkin fast spectral (DGFS) method was proposed in [23] for solving the full single-species
Boltzmann equation. DGFS can produce high order spatially and temporally accurate solutions for low-speed and
unsteady flows in micro-systems, and is amenable to excellent nearly-linear scaling characteristics on massively
parallel architectures [24].

Along similar lines, we develop in this work the DGFS method for the multi-species Boltzmann equation and
validate it on various benchmark tests including species diffusion which is of paramount importance in engineering
applications. Specifically, we first generalize the method in [22] to derive a fast Fourier spectral method for the multi-
species collision operator. The proposed method retains the riveting properties of the single-species fast spectral
method including: (a) spectral accuracy in the velocity space, (b) reduced computational complexity compared to
direct spectral method, (c¢) reduced memory requirement in the precomputation, and (d) applicability to general
collision kernels. Next, we couple the fast collision algorithm with the discontinuous Galerkin discretization [23]
in the physical space to result in a highly accurate deterministic method for the full Boltzmann equation of gas
mixtures.

The rest of this paper is organized as follows. In Section 2, we give an overview of the multi-species Boltzmann
equation, the self/cross collision integrals, H-theorem, and the phenomenological collision kernels used in practical
engineering applications. The nondimensionalization of the equation is performed in Section 3. Section 4 introduces
the fast Fourier spectral method for multi-species Boltzmann collision operator. The discontinuous Galerkin method
for the full Boltzmann equation is described in Section 5. Results of numerical experiments for the Krook—Wu
solution, normal shock, Fourier flow, oscillatory Couette flow, Couette flow, and Fick’s diffusion are presented in
Section 6. Concluding remarks are given in Section 7.

2. The multi-species Boltzmann equation

In this section, we give a brief description of the multi-species Boltzmann equation along with its basic
mathematical properties.
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Suppose we consider a many-particle system comprised of a mixture of s species (s > 2). Each species is
represented by a distribution function f (¢, x, v), where ¢ is time, x is position, and v is particle velocity. f @ dx dv
gives the number of particles of species i to be found in an infinitesimal volume dx dv centered at the point
(x, v) of the phase space. The multi-species Boltzmann equation describing the time evolution of f@ is written as
(cf. [25,26])

UfO4v-VofO =Y QD f), 1>0, xeRCR, veR, i=12...s. (1)
j=1

Here Q) is the collision operator that models binary collisions between species i and j, and acts only in the
velocity space:

QIO fily(v) = fR 3 fs Bijv = v, 0) [fOW) D) — fFO) fP,)] do du,, 2)

where (v, v,) and (v', v}) denote the pre- and post-collision velocity pairs. During collisions, the momentum and
energy are conserved:

— / / 2 2 __ 72 72 3

MV 4 mjv, = miv +m;v,,  mi|[v]” +mjlve]” = mi[v|" +m;lv, |, 3)

where m;, m; denote the mass of particles of species i and j respectively. Hence one can parameterize v’ and v,
as follows

v+ m; —m; m;
o= I ( ) (W —v) + ———v —vlo,
2 2(m; +m;) (m; +m;) @)
, vtve  (mp —my) m;
v, = (W —v) — ————|v —vo,
2 2(m; +mj) (mi +mj)

with o being a vector varying on the unit sphere S%. Finally B;; = B;;(> 0) is the collision kernel characterizing

the interaction mechanism between particles. It can be shown that
o (V—vy)
Bij = Bij(lv — vil,cos x), cosx = |v—v|* ©)
- Ux

where x is the deviation angle between v — v, and v’ — v.
Given the interaction potential between particles, the specific form of B;; can be determined using the classical
scattering theory:

Bjj(Jv — vy, cos x) = v — vif Zij (I — vil, ), (6)
where Xj; is the differential cross-section given by
sinx | dyx
with b;; being the impact parameter. With a few exceptions, e.g. Hard Sphere (HS) model, the explicit form of
Xij can be hard to obtain since b;; is related to x implicitly. To avoid this complexity, phenomenological collision
kernels are often used in practice with the aim to reproduce the correct transport coefficients. Koura et al. [27]
introduced the so-called Variable Soft Sphere (VSS) model by assuming

X = 2cos’1{(bij/dij)1/aij}v ®

Zij(lv — vl x) = , )

where «;; is the scattering parameter, and d;; is the diameter borrowed from Bird’s Variable Hard Sphere (VHS)
model (cf. Eq. (4.79) in [5]):

i = [ (Rt L) ®
ij ref,ij Mij|v — U*|2 I'e.s— a)ij) s

. . . m;m ; .
with I" being the Gamma function, u;; = ——% the reduced mass, dyf;;, Trerii, and w;;, respectively, the reference
J ml+m1 1] 1] J

diameter, reference temperature, and viscosity index. Substituting Eqs. (7)—(9) into (6), one can obtain B;; as

Bij = buyj oy [0 = 021790 (1 4 cos )i !, (10)
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where b, «;; i a constant given by

a),--—O.S
b _ drzef,ij 2kpTrerij \ 1 a;j

4 Iij r@.5—awy) 2%~
In particular, the VHS kernel is obtained when «;; = 1 and 0.5 < ;; < 1 (w;; = 1: Maxwell molecules; w;; = 0.5:
HS); and the VSS kernel is obtained when 1 < ;; <2 and 0.5 < w;; < 1.

Given the distribution function £, the number density, mass density, velocity, and temperature of species i are
defined as

n® = / fPdv, pD =mn®, u? = —/ vfPdv, TO=_" / (v —uD)? O dy. (12)
”3 n® Jp3 3nDkp Jrs

an

The total number density, mass density, and velocity are given by

N N s
. . 1 N
n= § n('), o= § ,0('), U= ; § p(’)u(l). (13)
i=1 i=1 i=1

Further, the diffusion velocity, stress tensor, and heat flux vector of species i are defined as

: 1 _ . A A A 1 A
v(LI)) = —/ cfPdv=u® —u, PY= / mic®@cfPdv, ¢¥ = / —mjc|c|* £V dv, (14)
n® Jgs R3 R 2

where ¢ = v —u is the peculiar velocity. Finally, the total stress, heat flux, pressure, and temperature are given by
L L 1
P=) PV, g¢= O, p=nkgT = —tr(P). 15
; q ; q", p=nksT = St(P) (15)
It can be shown that the collision operator Q) satisfies the following weak forms:

f QD fiNw)p(v)dv = / / f Bij(v — v, o) [fP) FP W) — FP) P (w0)]
]R3 ]R3 R3 52

() + ¢(vs) — (V') — p(v))
4

/ QO FD)w)p(w)dv + / QU FON)p(w) du
R R

p() + p(v) — p(v') — P(v))
2

do dv dv,,

do dv dv,.

- / / By — v, ) [FO0) FOW) — fOw) £ (0]
R3 ]R3 S2
(16)

Using these weak forms, it is easy to derive
/ QUN(FD, £y dy = 0,
R3
/]Rs QUN(FD | FDymv dv + /M QUI(FD, FDym v dy = 0, (17)
./]Rs Q£ FDym; |v[? dv + /R3 QUI(FD, fDym ;Jv|*dv = 0,
and the well-known Boltzmann’s H-theorem

Z f Q(ij)(f(i)’ f(j))]n f(i) dv <0. (18)
R3

ij=1
(18) implies that the total entropy of the system decays with time:

N

Z {a,/ fO1n O dv + v, / vf D 1n f© dv} <0, (19)
R3 R3

i=1
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and the equality holds if and only if £ attains the local equilibrium
@) 2

W _ n <_ (v—u)

= Garyr P\ " kT
where R; = kg/m; is the specific gas constant.

On the other hand, using (17), one can take the moments of Eq. (1) to obtain the following local conservation
laws:

) = MO, (20)

o | fPdv+V,- / vfPdv = 0,
R3 R3

Z{&,/ mivf(i)dv+Vx-/ miv®vf(i)dv} =0, Q1)
R3 R3

i=1
s

l )2 £© l . 2 £() —

PR mi|v)? fOdv + V, - mivlv]> fPdv} =0,

el R3 2 R3 2

which, using the previously defined macroscopic quantities, can be recast as
an + v, (n(i)u(i)) =0 = 0p+V, (ou)=0,
0;(pu) + V- (pu @u +P) =0, (22)
WE+V, - (Eu+Pu+q)=0,

where E = 3nkpT /2+pu?/2 is the total energy. Note that this system is not closed. However, replacing @ by M®©
in (22) yields a closed system, i.e., the compressible Euler equations. With more involved calculations (so-called
Chapman-Enskog expansion), one can derive the Navier—Stokes equations. We omit the detail but mention that the
heat flux term will contain the diffusion velocity v(L’)), a property unique to the mixtures (see for instance [26]).
For Eq. (1), one can consider the in-flow equilibrium boundary condition:
(@)

2
0] _ i ( (v—-um)) .

t,x,v) = exp( — , x€02, v-n<O, 23
P = Gk P ok, 9
where 7 is the outward pointing normal at x, ni(l"l), Tin and u;, are the prescribed density, temperature and velocity.
Another commonly used one is the Maxwell boundary condition:

2
FOG x,v) = (1 —a) fO, x, v — 200 — ) - AA) + a n® M)

U 7 R Ty)? exP(_ 2R T, 24)

x€df2, (v—uy) -n<0»0,

where T, and u,, are the temperature and velocity of the wall, n{!) is determined from conservation of mass as
Joocuyyizo — ) -7t fO dv

- 1 (v—uw)? ’

f(vfuw)»ﬁ<0(v —Uy) -0 QR T2 exp(— 2R; Ty )dv

and « is the accommodation coefficient, with o = 1 corresponds to purely diffusive boundary and o = 0 to purely
reflective boundary.

-

(25)

3. Nondimensionalization

For easier manipulation, we perform a nondimensionalization of Eq. (1). We first choose the characteristic length
H,, temperature Ty, number density no, and mass mg, and then define the characteristic velocity ug = +/2kgTy/mo
and time #) = Hy/uo. We rescale ¢, x, v, m;, and f(’) as follows:

. @)
. . m A
Co=l m=l oo L (26)
o H, Uog my no / uy

i 27)
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where
Boij = uo/T+mi/mjmdiy ;i (Tetij/ To)™ 7. (28)
Then Eq. (1) becomes (dropping for simplicity)
@) @) — nOHO @) () @) ()
0 fO vV, f Bo,j i[OO = O P w)] do dv,. (29)
The factor
uo
Ug __ noBoij — Knij (30)

noHo Bo;;  Ho
is the Knudsen number defined as the ratio of the mean free path and characteristic length scale, hence
1

Kn;; = 31
L T mimy g d2; (T To)"i =" Hy'
One can also define the “average” Knudsen number for each species i as
-1
N 1
Kn; = . 32
n=(2 R (32)
j=1
This is consistent with Eq. (4.76) in [5].
Therefore, the dimensionless Boltzmann equation for the VSS kernel (10) reads as
(@) . i) e @ £0)
ofP+v-V.f —;Knijg D09, M), (33)
with
Q0. 1w = [ [ By = vl cos 0 [0V — O O] do do, (34)
R3 J§2
Here \mu_ij=original \mu_ij/m_0
B — O‘u 21-w;;) a;i—1
ij = [v — v, |7 7% (1 4 cos )™ . (35)

VI+mi/mju 2““’"1 I'2.S5 — wij)m

Remark 1. We adopt the VSS kernel in this paper for easy comparison with DSMC solutions. The fast algorithm
for the collision operator does not rely on the specific form (35) (see Section 4).

In addition, we rescale the macroscopic quantities as

Q) 0] Q) 0] 0] Q)
e n o e u ~os T ~ P e
a0 P ot fo L po - o __1 (36)

’

T . i
no mong uo Ty smonou} smonou}

then in rescaled variables (again dropping ~ for simplicity)

. . . . . 1 . ) 2m;
n® = / f(’)dv, p(t) — min(l)’ u® = vf(l) dv, 7O — ! / (v— (t))Zf(l) dv,
R3 n® R3 3n(1)

PO =2 m, / W—u)® v — u)f(i) dv, q(i) =m; / (W —u)v— u|2f(i)dv, 37)
R3 R3

and the Maxwellian (20) becomes

) o my \3/2 mi|v — ul?
MO = (1) g (il ) 5
m\gr) &P T (38)


Jingwei Hu


Jingwei Hu
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Remark 2. For the normal shock (see Section 6.2.1), it is often convenient to define the so-called parallel (T”(i))
and perpendicular (T(’)) components of temperature as
; 2m; : 2m; . )
@ _ = (z) 2 £(i) () _ <M N2 £()
T - n(z) / ( Ux ) f d TJ_ - n® /};3('))' uy ) f dva (39)

where subscripts x and y denote the first and second components of respective vector fields.

4. A fast Fourier spectral method for the multi-species Boltzmann collision operator

The main difficulty of numerically solving the multi-species Boltzmann equation (33) lies in the collision operator
(34). In this section, we introduce a fast Fourier spectral method (in the velocity space) to approximate this operator.
Discussion for the spatially inhomogeneous equation will be given in the next section.

We first perform a change of variables v, to g = v — v, in (34) to obtain

(0 1w = [ [ Bytlsl D000 - 100 0] do ds, 0)

where g is the unit vector along g and
V=v- gt ——glo, V=v-———g— ————|glo. (41)
mi+mj mi+mj m,-+mj mi+mj

Next we need to choose a finite computational domain Dy = [—L, L1%. This is based on the following criterion
(similar discussion for the single-species case can be found in [28]).

Assume the support of functions f©, ) can be approximated by a ball with radius S: Supp(f@(v), f(v)) C
By, then one has

L. Supp(Q(fD, fUh(w)) C B iz ms:
This is because if |v| > /1 +m;/m;S, then D) = 0; also mi|v’|2 —i—mj|vj‘|2 > m;|v]? > (m; +mj)Sz,
then either [v'| > S or [v)| > S, so fO@') =0 or fU(v.) = 0; either way QU (fD, fW))(v) =0

2. It is enough to truncate g to a ball Bg with R = 285:

QU(FO, FUN) () = /B /5 Byllgh o - D[O0) D) — 100 f V()] do dg. 42)

This is because if 25 < |g| = |v — v| < |v| 4+ |v4], then |v| > S or |v,| > S, so fP () =0or fY(v,) = 0;
also 28 < |g] = [v — vy = |V — V.| < |V/| +|vL], then [v'| > S or |[v)] > S, so fD () =0or fP,)=0;
either way QU)(f®, f)(v) = 0. o A

3. Since |v| < /T+m;/m;S and |g| <2S in QW (fD, fU))(v), we have
[vel = v —g | <fvl+gl =@+ 1 +m;/m)S;

, 2m;
vl = v — k- g+m+m 8l | < 1ol + 522 1gl < Cmj /i +m )+ /T m fm)S;
ol = |v = kg — (gl | < ol +1g] < @+ TFa/mp)S.

4. To avoid ahasmg, need

2L = (max(@m /i +m ), 2) + /T m/mi) S + . (43)

Remark 3. From (43), it can be seen that the computational domain needs to be very large for large mass
ratios m;/m; >> 1. This is a common issue appearing in multi-species problems. Possible remedies include
adaptive mesh in velocity space (cf. [29]), using an asymptotic model valid for large mass ratios (cf. [30]), or
introducing independent velocity grid for each species wherein different collision types for every (i, j) pair are
treated independently (cf. [20,31]). In this paper, we only consider moderate mass ratios and postpone these studies
to a future work.

Now we approximate f (similarly for f) by a truncated Fourier series on Dy :

L

(1) ~ (l)t Tk ~) (i) —ifkv
() ~ k_Z fiet g (2L)3 / FO@e e du, (44)
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note here an abuse of notation: the summation over the 3D index k means —N /2 < k; < N/2— 1, where k; is each
component of k. Upon substitution of f@, £ into QU(f®, £U)) and a Galerkin projection to the same Fourier
space, we obtain the kth Fourier mode of the collision operator as

¥

O = Z G, m) fO fD, (45)
l,m=— %
I+m=k

with the weight

m; m; n:
. . —i % (4m)g+i E| |(%zf M ,m)-a .
G(lj)(l, m) — / f sz(|g|, o - g) [6 L mj+m S§TITI8 miFm; T mitm; _ e*t%mg do dg
Br JS2

Without special treatment, the summation (45) has to be evaluated directly, resulting in a computational cost
of O(N®). Furthermore, the weight G%/(I, m) needs to be precomputed and the storage requirement is O(N®).
This can quickly become a bottleneck even for moderate N. Motivated by our previous work for the single-species
Boltzmann equation [22], we propose the following strategy to accelerate the direct summation as well as alleviate
its memory bottleneck.

For the gain term (positive part) of G%)(l, m), we decompose it as

. R . iz #1,#,” o
G(l/H’(l’m):/ / F<U)(l+m,,0,0')€ Lp<ml+mj mj+m ) do_ dp, (46)
0 Js?

where p = |g| is the radial of g and

ii —iZ M m)g .
F +m, p,0) = p? / Biy(p.o e T g, @)
s
while for the loss term (negative part) of GU)(l, m),
R
G (m) = f / : / P*Bij(p.0 - Qe 7" Edo dgdp. (48)
0o Js2Js

The idea is to precompute F@)(I +m, p, o) and G%~(m) up to a high accuracy, and approximate the integral
in (46) on the fly using a quadrature rule:

i% 0 s [~ i )
G, m) ~ Zw we F9U+m, p,o)e R (m’+ Joomim; ) , (49)
p,0
where for the radial direction, we use the Gauss—Legendre quadrature with N, = O(N) points (since the integral
oscillates roughly on O(N)); for the integral over the sphere, we use the M-point spherical design quadrature [32,33]
(usually M K N 2,
Therefore, the gain term of the collision operator can be approximated as

= T ) z (et o) (B ). 50

1+m i
Written in the above form, we see that the inner sum is a convolution of two functions so that it can be evaluated
efficiently in O(N 3 log N) operations via the fast Fourier transform (FFT). Together with the outer sum, the total
complexity of evaluating Q,ﬁ” * (for all k) is O(MN*log N) (recall the total number of quadrature points needed
for p and o is O(MN)).

On the other hand, the loss term of the collision operator can be written as

N
2
Q= 0 (G(’/)—(m)f,;f)), G}
l,m=7%
I+m=k

which is readily a convolution, hence can be evaluated in O(N?log N).
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Putting both pieces together, we have obtained a fast algorithm of complexity O(MN*log N) for evaluating
the collision operator QU)(f@, f)) where M <« N?2. In addition, the memory requirement to store the weight
F(+m, p,o) and G~ (m) is O(MN*?).

5. The discontinuous Galerkin method for the spatial discretization

The previously introduced fast spectral method allows us to compute the collision operator efficiently. To
solve the full spatially inhomogeneous equation (33), we also need an accurate and efficient spatial and time
discretization. Here we adopt the RKDG (Runge—Kutta discontinuous Galerkin) method [34] widely used for
hyperbolic type equations. Since the transport term is linear in the Boltzmann equation, the application of DG
method is straightforward. We give a brief description below for completeness.

We first decompose the physical domain {2 into N, variable-sized disjoint elements D¢:

Ne
Q~| DS DINDL =0, Ve#e, 1=<ee <N.,. (52)

In each element D¢, we approximate the distribution function £(t, x, v) for each species by a polynomial of order
N,:

K
xeDl: fOuxv) =) Fhvgix)., 1<i<s, (53)
wh_ere @/ (x) is the basis function supported in D¢, K is the total number of terms in the local expansion, and

F e(fl)(t, v) is the elemental degree of freedom.
We form the residual by substituting the expansion (53) into Eq. (33):

T 8,]:(‘)+Z]-"(’),v Vg - Z 5 o (F0. 7o) otes. 1=iss. b

=1 ’111121

where we used the quadratic property of the collision operator. We then require that the residual is orthogonal to
all test functions. In the Galerkin formulation, the test function is the same as the basis function, thus

RO¢dx =0, 1<m<K, 1<i<s. (55)
DS

Substituting (54) into (55) and applying the divergence theorem, we obtain

K K
Z(/D ¢ ¢fdx) 0T - Zféfiv-/m ¢ Vi, dx
_1 X
:_/3 ¢ (F(z) ~e dx+Z Z Q(zl)(]—'(l) ]—'6(71)2 (/ ¢";l ¢fl qbfz dx), (56)
D5 D5

n;
=1 iy =1

where 71¢ is the local outward pointing normal and F{” denotes the numerical flux. Specifically, the surface integral
in the above equation is defined as follows

/Beqb (FO.a%)dx= 3 /qs F(’E nE)dx, (57)
E €dD§

with ¢, and Ff)E being the outward normal and numerical flux along the face E. In our implementation, we choose
the upwind flux:

(58)

FO v O, XE i) V), V-G =0
v 9, X exepeys V), VA% <0

where int and ext denote interior and exterior of the face e respectively.
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Finally, define the mass matrix M,,, stiffness matrix S,,;, and the tensor H,,;,;, as

o —/ ¢, () ¢ (x)dx, Sy —/ &7 (x) Vi, (x) dx,

(59
Mo, = / 5, (0) ¢, (x) f, (x) dx,
DS
then (56) can be written as
ZMW 0F ) - Zv T = / o, (F - i) dx+Z 3 #, 00) (#9,.79.).
Dy lj I1, =1
(60)

forl<m<K,1<i<s.
(60) is the DG system we are going to solve in each element D of the physical domain. The fast spectral

method introduced in the previous section is used to evaluate the term Q@) (fe(')ll,]:e(]l)z) The second-order
strong-stability-preserving (SSP) RK scheme [35] is applied for the time derivative.

5.1. Structure of H¢ , , : a spectral element approach

m1112

Needless to say, the main computational bottleneck when solving the system (60) lies in the term QU/)
(}' o , F, ) ) whose complexity is O(M N*log N) for given i, j, I}, and . For general polynomial basis (e.g., the
modal DG basis), H;,, ,, is a full tensor, hence the total complexity to evaluate the collision part would be
O(s>’K*MN*log N) (for all pairs of (i, j) and (I;, 1)) inside each element D¢. This is still computationally
demanding, even though we are equipped with the fast collision solver. Therefore, the sparsity of #;, , would
potentially save the computational cost since the collision operator only needs to be evaluated for /;, [, such that
H;, I # 0. It is known that in the spectral element method [36], if the nodal basis [37] is used and the interpolation
points are chosen the same as the quadrature points, the mass matrix will become diagonal. Here to achieve better
efficiency, we propose to use the same approach to treat the tensor H;,, ,,. We present the 1D case for simplicity.

Suppose D¢ = [x/,x7], with x/ and x; being, respectively, the left and right ends of the element Df.

= |x; — x[| is the element size. The DG convention is to define an element in the standard interval DD =[—1, 1]
and map the standard element D to the local element D¢ using an affine mapping

d=8 L 1EE

X =x— + x > £ e DU, 61)

Then
e = [ e ar© @ |5 e =T [ o ae o e
D( 85 DGt)

he st st st
~ Z wedl" (&) o1 () ¢ (&) = —Hf,,,i L (62)
q=1

Ny . .
where {§;, wg}, ?, are the quadrature points and weights.
Consider the Lagrange polynomials as basis functions, i.e.,

60 = [ 5__2’ m=1...K ©
IEI’;&%”K m n

where {£,, }nlgzl are the Gauss—Lobatto—Legendre (GLL) quadrature points. When {"Eq};\]il are taken the same as
{é}m 1> ¢,Sf’)(§q) = 8mq, hence the mass matrix becomes diagonal. Similarly,

N iff L=1

‘ Wy, iff m=1 =1,
H(sl) — w (Sm S b — 64
mlily ; 4mq ®hq Chq 0, otherwise. “
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For example, N, = K = 3 GLL quadrature yields

1/3 0 0
H(St) — di / (e) T (e) T
1, =diagy 0 ¢, My, =diag4/3¢, Hy,, =diag{ 0 ¢. (65)
0 0 1/3

Therefore, in this special case, the total complexity to evaluate the collision term Q) <}'£i),l , fe(jl)z) is reduced

to O(s>2KMN*log N) (for all pairs of (i, j) and (I;, 1) such that 7—[;11 Iy # 0). Of course, this improvement in
efficiency comes with an accuracy loss which is quite complicated to analyze. Nevertheless, all numerical results
presented in this paper are produced using the above described approach and the bulk properties such as density,
temperature, etc. are found to be in good agreement with reference solutions (available finite difference solutions

or DSMC solutions). A detailed study of numerical accuracy would be a subject of future work.

6. Numerical experiments
6.1. Spatially homogeneous case: Krook—Wu exact solution
For constant collision kernel, an exact solution to the spatially homogeneous multi-species Boltzmann equation

can be constructed (see [38]). We use this solution to verify the accuracy of the proposed fast spectral method for
approximating the collision operator. Considering a binary mixture, the equation simplifies to

2
VREDY f . f By [FP0N 0w = 10w P wn)] do dv., (66)
— Jr3 Js
j=1
where B;; = Bj; := 4:% and A;; is some positive constant. The exact solution is given by
mi \" m;v? m;
O ) = n<’)<ﬁ) exp (—7) ((1 —30)+ ;’Qnﬂ), i=12, (67)
where
4m1m2

n= 5 P1=An—Aau(B3 —21),  pr =i —Ainu -2,
(my + my)

1 1
A= 8<)»11 + Aot (3 — 2#%)) B = §<)»11P1 + A (3 — 2#)1?2),
i

o) = m, Q@) = p;0@),

n 4 @
(nD +n@) 4+ 2(nOp; +n@ py) Q1)
Furthermore, the following condition needs to be satisfied

(o1 = p) <2u2 (@ - E) - 1) —o0. 69)
P1 D2

K@) = (68)

For simplicity, we choose nD=n® =1 A1 =2p =1, A1 = Aoy = 1/2 but vary the mass ratio m;/m, in the
following tests.
It is also helpful to take the derivative of Eq. (67), which yields

9 f(i) f(i) 3 K + m; v? K') +n® m; 02 th2 30/ + m; 0 2 my K'Q 2
= - —_— n| —— exp| — =30+ —Q0: v — — iU
' 2K 2K2 K P\ 72k TR Tk

2
— Z Q(ij)(f(i)’ f(j)), (70)
j=1
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Table 1
Spatially homogeneous Krook-Wu solution. L> error £0) = |13, f© , — aff,f;)me,icall\Lw, i ={1,2} at t = 4 for different mass ratios. N is
the number of discretization points in each velocity dimension and N, is the number of Gauss quadrature points used in the radial direction.

Number of quadrature points M used on the sphere is fixed to 6. A fixed velocity domain [—12, 12]* has been used for all cases.

my/my =1 my/my =2 my/my =4 my/my =6 my/my =38
N Np
e @ 0] @ 0] £@ e @ e @
16 4 1.528e—03 1.528e—03 6.675¢—03 4.444e—03 2.048e—03 3.633e—03 1.414e—03 4.941e—04 2.709¢e—04 2.481e—03
8 2.114e—-03 2.114e—-03 7.795¢—-03 4.917e—03 2.253e—03 3.828¢—03 1.425¢—-03 7.087e—04 2.715e—04 1.963e—03
16 2.114e—03 2.114e—03 7.795e—03 4.917e—-03 2.253e—03 3.828e—03 1.425e—03 7.086e—04 2.715e—04 1.963e—03
32 8 1.526e—04 1.526e—04 1.671e—03 2.237e—04 7.249¢—03 9.770e—04 1.692e—02 1.701e—03 3.029e—02 2.928e—03
16 1.873e—04 1.873e—04 1.729e—03 1.852e—04 8.018e—03 9.020e—04 1.935e—02 1.652e—03 3.338¢—02 2.822e—03
32 1.873e—04 1.873e—04 1.729e—03 1.852e—04 8.018e—03 9.020e—04 1.935e—02 1.652e—03 3.338e—02 2.822e—-03
64 16 4.227e—08 4.227e—08 4.704e—06 4.749e—08 4.201e—04 3.460e—06 5.263e—03 4.056e—05 6.231e—02 4.053¢e—04
32 4.227e—-08 4.227e—-08 4.754e—06 4.422e—08 4.043e—-04 9.441e—07 5.153e—03 3.381e—05 6.186e—02 4.082e—04
64 4.227e—08 4.227e—08 4.754e—06 4.422e—08 4.043e—04 9.441e—07 5.153e—03 3.381e—05 6.186e—02 4.082e—04
where
3 (1 @y 2
o A° exp(At) S , K(s) — 2(n'Y + ') py +n' py) ,
0@ = Qi(1) = pi Q' (1), (1) = - 0'(@).

" (Aexp(At) — B)?’ [(nD + n@) + 20D py + n@ p2) O(1)]?

(71)

This allows us to check the accuracy of the collision solver without introducing time discretization error.

Fig. 1 depicts the convergence behavior of the proposed fast algorithm with respect to N for different mass ratios.
Due to the isotropic nature of the solution, we observe that the errors remain relatively unaffected for different M
(number of quadrature points used on the sphere). On the other hand, the method exhibits a spectral convergence
as N (number of discretization points in each velocity dimension) increases. It is also clear that the accuracy
deteriorates for large mass ratios (to keep the same level of accuracy, larger N is needed). To understand the
influence of N, (number of quadrature points in the radial direction), we list in Table 1 the errors of the method
with respect to different N,. It can be observed that the error is relatively unaffected upon reducing N, from N to
N/2.

Next we evolve the solution using the SSP-RK2 with time step Ar = 0.01. Fig. 2 illustrates the time evolution
of the distribution function sliced along the velocity domain centerline, i.e., f¥(:, N/2, N/2). It is observed that:
(a) the distribution function of the heavy particles becomes more skewed as the mass ratio increases; (b) as time
goes by, the distribution function tends towards the Maxwellian.

6.2. Spatially inhomogeneous case

6.2.1. Normal shock with HS collision kernel

As a first example in the spatially inhomogeneous case, we consider the normal shock wave and compare
our results with the finite difference solutions reported in [39]. Four cases are considered here whose numerical
parameters are described in Table 2. The boundary conditions at upstream and downstream are the in-flow
equilibrium boundary (see Eq. (23)). We solve the Boltzmann equation until the solution reaches a steady state. A
convergence criterion of ([l /"' — f"ll,2/1f"ll.2) /01 f> = f'l2/1l ' l12) < 2 x 1075 has been used, where /"
denotes the distribution function at nth time step.

Fig. 3 shows the bulk properties (number density, temperature, velocity, parallel/perpendicular temperature
components) for Mach 1.5 normal shock with mass ratios my/m; = 0.5 and m,/m; = 0.25. Based on these
results, one can infer that DGFS recovers the normal shock reasonably well. In particular, from Figs. 3(a) and 3(b),
we observe that a Mach 1.5 shock can be captured with just 8 elements within engineering £5% accuracy. Note that
the discontinuity in the flow profile is the characteristic of the DG method. The discontinuity expectedly vanishes
upon refining the grid as in Figs. 3(c), 3(d).

Fig. 4 shows the bulk properties (number density, temperature, and velocity, parallel/perpendicular temperature
components) for Mach 1.5 and Mach 3 normal shock for mass ratio m,/m; = 0.5 at low concentration n? /n_ =
0.1. Again, we observe a fair agreement with the reference solutions.



68 S. Jaiswal, A.A. Alexeenko and J. Hu / Computer Methods in Applied Mechanics and Engineering 352 (2019) 56-84

10° 10°
——o6—— M=6, Species:1 ——o6—— M=6, Species:1
107 —-—e—-—- M=6, Species:2 10" —-—e—-—- M=6, Species:2
——a8—— M=12, Species:1 ——a8—— M=12, Species:1
—-—a—-—- M=12, Species:2 —-—a—-—- M=12, Species:2
102 ——o—— M=32, Species:1 102 ——o—— M=32, Species:1

—-—e—-— M=32, Species:2 —-—e—-— M=32, Species:2

10° E o ?
3 . I 5 4 i
=107 F 5OF
w F u i
10° ;_ 10° ;—
107 ;_ 107 ;—
o1 1 1 1 Lyge L L L !
10 20 40 N 60 80 10 20 40 N 60 80
(@) my/my =1 (®) mfm; =2
o 10°
—=o6—— M=6, Species:1
—-—e—-- M=6, Species:2 10"

—=a—— M=12, Species:1
—-—m—-— M=12, Species:2
———6—— M=32, Species:1 102
M=32, Species:2

. 2
L AL i |

10° 10°
P E i
210‘ = -210“
w F ‘.\ i
r \‘\ —=o6—— M-=6, Species:1
10° e 10°F —-—e—-— M=6, Species:2
F \o\-{ —=a—— M=12, Species:1
o N [ — —"—-- M=12, Species:2
10 E g 10 ——o—— M=32, Species:1
F \ —-—e—-- M=32, Species:2
107 = 107
A
a1 1 1 1 pe | 1 1 1
10 20 40 60 80 10 20 40 60 80
N N
©)my/my, =4 (d)my/my =8
Fig. 1. Spatially homogeneous Krook-Wu solution. L> error £0 = |3, £ . — 8, f,if;)me,,vm] oo, i = {1,2} at t = 4 for different mass

ratios. N is the number of discretization points in each velocity dimension and M is the number of spherical design quadrature points used
on the sphere. Number of Gauss-Legendre quadrature points N, in the radial direction is fixed to N. A fixed velocity domain [—12, 1213
has been used for all cases.

6.2.2. Solver configurations

In the sections that follow, we consider the standard benchmark cases of Fourier heat transfer, oscillatory
Couette flow, Couette flow, and Fick’s diffusion problem at different Knudsen numbers for different collision
kernels including VHS and VSS kernels. The results are compared with those obtained from DSMC with equivalent
molecular collision models.

All the cases, unless otherwise noted, employ Argon—Krypton mixture. The collision model parameters are tab-
ulated in Table 3 (as provided in [5]). The reference diameters are selected so as to maintain the reference viscosity
(cf. Eq. (4.62) in [5]). Note that the viscosity index (w;;) and scattering index («;;) are empirical parameters, which
are calibrated against experiments so that DSMC simulations reproduce experimental observations. The values of
these parameters need to be recalibrated for different temperature ranges and different molecules. One advantage
of the proposed fast collision solver is that it works for general collision kernels and can directly accommodate
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Fig. 2. Spatially homogeneous Krook-Wu solution. Evolution of f®, i = {1,2} sliced along the velocity domain centerline, i.e., f@(:
,N/2,N/2) for different mass ratios. The exact solutions (solid lines) are plotted using N = 64. The numerical solutions (symbols) are
evaluated using N =64, M =6, N, = 64. A fixed velocity domain [—12, 12]3 has been used for all cases. SSP-RK2 with Ar = 0.01 is
used for time stepping. Note that the x-axis has been zoomed to [—4, 4] for better visibility.
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Fig. 3. Variation of normalized flow properties along the domain for Mach 1.5 normal shock with n(,z)/n_ = 0.5: (a-b) ma/m; = 0.5 (Case
NS-01) with 8 elements, (c—d) mo/m; = 0.5 (Case NS-01) with 16 elements, and (e—f) my/m; = 0.25 (Case NS-02) with 16 elements.
Symbols denote results from [39], and lines denote DGFS solutions. Note that the position of the shock wave has been adjusted to the
location with the average number density (n_+n.)/2 as per [39]. The normalized quantities are defined using: n*@) = (n(i)—n(_'))/(nsl_)—n(_‘)),
70 = (1O — T)/(Ty = T), 0D = @D —up)/u- —up), T =@ = T)/(Ty = T_), and T}V = (1) — T_)/(Ty — T).
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Table 2

Numerical parameters for normal shock wave [39].
Parameter Case NS-01 Case NS-02 Case NS-03 Case NS-04
Molecular mass: m; (x10%7 kg) 6.63 6.63 6.63 6.63
Molecular mass: m, (x10%” kg) 3.315 1.6575 3.315 3315
Mass Ratio: my/m 0.5 0.25 0.5 0.5
Mach number 1.5 1.5 1.5 3.0
Concentration: n(_z)/n, = nf)/mr 0.5 0.5 0.1 0.1
Non-dim physical space [—0.5, 0.5] [-0.5, 0.5] [—0.5, 0.5] [—0.5, 0.5]
Non-dim velocity space [-9, 97° [—15, 157 [-9, 91° [—15, 1573
N3 323 643 323 483
N, 32 16 32 48
M 12 12 12 12
Spatial elements 8, 16 16 16 16
DG order 3 3 3 3
Time step (s x 10%) 5.57, 2.77 1.64 2.77 1.64
Viscosity index: w;j 0.5 0.5 0.5 0.5
Scattering parameter: «;; 1 1 1 1
Ref. diameter: dref;j (x1010 m) 2.17 2.17 2.17 2.17
Ref. temperature: Trer,;j (K) 273 273 273 273
Characteristic mass: mo (x10?7 kg) 6.63 6.63 6.63 6.63
Characteristic length: Hy (mm) 30 30 30 30
Characteristic velocity: ug (m/s) 963.7 963.7 963.7 963.7
Characteristic temperature: Tp (K) 223 223 223 223
Characteristic number density: ng (m™>) 2.889 x 10%! 2.889 x 10%! 2.889 x 10%! 2.889 x 10%!
Upstream conditions (subscript -)
Velocity: u_ (m/s) 1523.737 1669.171 1353.876 2707.753
Temperature: 7_ (K) 223 223 223 223
Mean free path: A_ = (v27 (12 +n2)d2 )~" (m) 0.000827 0.000827 0.00148 0.00148
Number density: n" (m=3) 2.889 x 10%! 2.889 x 10%! 2.889 x 10%! 2.889 x 10%!
Number density: 7 (m=3) 2.889 x 10%! 2.889 x 10%! 3.209 x 10?0 3.209 x 10?0
Downstream conditions (subscript +)
Velocity: u4 (m/s) 888.847 973.683 789.761 902.584
Temperature: 7.y (K) 333.338 333.338 333.338 817.667
Number density: n’ (m=3) 4.953 x 102! 4.953 x 10?! 4.953 x 10! 8.669 x 102!
Number density: n? (m~3) 4.953 x 102! 4.953 x 102! 5.502 x 1020 9.633 x 102
Initial conditions
Velocity: u (m/s) u_ + s —u_)x/Hy
Temperature: T (K) T_+(T+ —T-) x/Hy
Number density: n(V (m~=3) a4 (n(l) —ny x/Hy
Number density: n@ (m=3) n(_z) + (nf) — n(_z)) x/Hy

the scattering models used in traditional DSMC simulations. This is to be contrasted with other fast methods, for
instance, the one introduced in [40], wherein additional approximation is needed even for accommodating purely
empirical models such as the VHS kernel (see appendix of [40]).

SPARTA [15] has been employed for carrying out DSMC simulations in the present work. It implements the
DSMC method as proposed by Bird [5]. The solver has been benchmarked [15] and widely used for studying
hypersonic, subsonic and thermal gas flow problems [41—45]. In this work, cell size less than A/3 has been ensured
in all test cases. A minimum of 30 DSMC simulator particles per species per cell are used in conjunction with the
no-time collision (NTC) algorithm. Each steady-state simulation has been averaged for a minimum 100,000 steps
so as to minimize the statistical noise.

More specifically, for all the cases except oscillatory Couette flow, DSMC-SPARTA simulations employ 500 cells,
> 100 particles per cell, a time step of 2 x 10~ sec, 1 million unsteady time steps, and 100 million steady time
steps. These DSMC parameters have been in part taken from [23] where the authors investigated the single-species
rarefied gas flow problems. The parameters have been selected partially to minimize the statistical fluctuations
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Fig. 4. Variation of normalized flow properties along the domain for normal shock with my/m; = 0.5, n(f)/n_ = 0.1: (a-b) Mach 1.5

(Case NS-03), and (c—d) Mach 3 (Case NS-04). Symbols denote results from [39], and lines denote DGFS solutions. Note that the position
of the shock wave has been adjusted to the location with the average number density (n_ +n.)/2 as per [39]. Definition of the normalized
quantities is the same as in caption of Fig. 3.

Table 3

VHS and VSS model parameters for different mixture systems [5].
Mixture Ar—Kr Ar—Kr
Collision kernel VHS VSS
Molecular mass: m; (x10%7 kg) 66.3 66.3
Molecular mass: my (x 1027 kg) 139.1 139.1
Reference viscosity: firef,1 (x10° Pa s) 2.117 2.117
Reference viscosity: firef,2 (x10° Pa s) 2.328 2.328
Viscosity index: (w11, @22) (0.81, 0.8) (0.81, 0.8)
Viscosity index: (w12, wz1) (0.805, 0.805) (0.805, 0.805)
Scattering parameter: (otj1, @22) (1, 1) (1.4, 1.32)
Scattering parameter: («j2, @21) (1, 1) (1.36, 1.36)
Ref. diameter: (dref,11, dref,22) (><10'0m) (4.17, 4.76) 4.11, 4.7)
Ref. diameter: (dre,11, drer.22) (x101°m) (4.465, 4.465) (4.405, 4.405)
Ref. temperature: (Tref,11, Trer,22) (K) (273, 273) (273, 273)
Ref. temperature: (Tref.12, Trer21) (K) (273, 273) (273, 273)
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Fig. 5. Numerical setup for 1D Fourier and Couette flows. Distance between the walls is fixed as Hy = 107> m. Note that the cells are
finer in the near-wall region.

Table 4

Numerical parameters for Fourier heat transfer. The molecular collision parameters for Ar—Kr system are provided in Table 3.
Parameter Case F-01 Case F-02 Case F-03 Case F-04 Case F-05 Case F-06
Mixture Ar-Kr Ar-Kr Ar-Kr Ar-Kr Ar-Kr Ar-Kr
Collision kernel VHS VHS VHS VHS VHS VHS
Non-dim physical space [0, 1] [0, 1] [0, 1] [0, 1] [0, 1] [0, 1]
Non-dim velocity space [-5, 51 [-5, 5P [-5, 517 [-9, 91° [-9, 91° [-9, 913
N3 323 323 323 643 643 643
N, 32 32 32 64 64 64
M 12 12 12 12 12 12
Spatial elements 4 4 4 4 4 4
DG order 3 3 3 3 3 3
Time step (s) 2x 1078 2x 1078 2x 1078 2% 1078 2% 1078 2x 1078
Mass: mg mar = mj mar = mj mar = mj mar = mj mar = mj mar = mi
Length: Hy (mm) 1 1 1 1 1 1
Velocity: ug (m/s) 337.2 337.2 337.2 337.2 337.2 337.2
Temperature: Ty (K) 273 273 273 273 273 273
Number density: ng (m~) 1.680 x 10%! 8.401 x 10%0 1.680 x 102 1.680 x 10%! 8.401 x 10?0 1.680 x 10%°
Left wall (purely diffuse) boundary conditions (subscript /)
Velocity: u; (m/s) 0 0 0 0 0 0
Temperature: 7; (K) 263 263 263 223 223 223
Right wall (purely diffuse) boundary conditions (subscript r)
Velocity: u, (m/s) 0 0 0 0 0 0
Temperature: 7, (K) 283 283 283 323 323 323
Initial conditions
Velocity: u (m/s) 0 0 0 0 0 0
Temperature: 7 (K) 273 273 273 273 273 273
Number density: n) (m=3)  1.680 x 10?! 8.401 x 10% 1.680 x 1020 1.680 x 10%! 8.401 x 1020 1.680 x 1020
Number density: n® (m=3)  8.009 x 102 4.004 x 1020 8.009 x 10" 8.009 x 1020 4.004 x 102 8.009 x 10"
Knudsen: (Knj;, Knpp) (0.770, 0.591)  (1.541, 1.182)  (7.703, 5.912)  (0.770, 0.591)  (1.541, 1.182)  (7.703, 5.912)
Knudsen: (Knj2, Kny;) (0.782, 0.540)  (1.564, 1.080)  (7.820, 5.399)  (0.782, 0.540)  (1.564, 1.080)  (7.820, 5.399)

and linear time-stepping errors inherent to DSMC simulations. We, however, note that these parameters are very
conservative from a numerical simulation perspective.

6.2.3. Fourier heat transfer of argon—krypton mixture using VHS collision kernel

In the current test case, we consider the effect of temperature gradient on the solution. The coordinates are chosen
such that the walls are parallel to the y direction and x is the direction perpendicular to the walls. The geometry as
well as boundary conditions are shown in Fig. 5. We consider six cases for a range of temperature gradients and
rarefaction levels. The numerical parameters for these six cases are given in Table 4.

Fig. 6 shows the variation of normalized temperature along the domain length for different initial mixture
densities: (a)~(b) AT = 20 (Case F-01, F-02, F-03), and (¢)—(d) AT = 100 (Case F-05, F-06, F-07). The results
are compared against DSMC. We note minor (1 — 2%) discrepancy between DGFS and DSMC for Krypton in
the bulk-region away from the walls. Note however that the amount of predicted temperature jump is consistent
between DSMC and DGFS for both species.
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Fig. 6. Variation of normalized temperature (T) — T;)/(T, — Tj), i = {1,2} along the domain length for Fourier heat transfer obtained

with DSMC and DGFS using VHS collision kernel for Argon—Krypton mixture. Symbols denote DSMC solutions, and lines denote DGFS
solutions. Numerical parameters are provided in Table 4.

6.2.4. Oscillatory Couette flow of Argon—Krypton mixture using VHS collision kernel

In the current test case, we consider the effect of transient momentum transport for verifying the temporal
accuracy of the DGFS. The schematic remains the same as in the previous test case. The left wall is at rest, and
the right wall moves with a velocity of u = (0, v, sin(¢t), 0) m/s, where v, is the amplitude of oscillation. The
simulation parameters are given in Table 5. The present case is run for two different wall velocities: (a) v, = 50 m/s,
and (b) v, = 500 m/s. Argon—Krypton mixture with VHS collision model is taken as the working gas. Specifically
for DSMC simulations, the domain is discretized into 50 cells with 100000 particles per cell (PPC). For v, = 50 m/s
case, a time step of 2 x 107!% s is employed. For v, = 500 m/s case, a time step of 2 x 10~!! s is employed.
The results are averaged for every 1000 (Navg) time steps. These DSMC simulation parameters have been taken
from [23]. Note that such low DSMC time steps are particularly needed for obtaining time accurate results since
the time stepping is inherently linear in traditional DSMC method [5].

Fig. 7 illustrates the results for the oscillatory Couette flow along the domain length for different v,. Ignoring
the statistical noise, we observe a good agreement between DGFS and DSMC. Note in particular that for both
species, the amount of slip at the left wall are different — which is in accordance with the conservation principles.
Moreover, the amount of slip is consistent between DSMC and DGFS.
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Table 5
Numerical parameters for oscillatory Couette flow. The molecular collision parameters for Ar—Kr
system are provided in Table 3.

Parameter Case OC-01 Case OC-02
Mixture Ar-Kr Ar-Kr
Collision kernel VHS VHS
Non-dim physical space [0, 1] [0, 1]
Non-dim velocity space (-5, 5P [-9, 97

N3 243 483

N, 24 48

M 6 6

Spatial elements 4 4

DG order 3 3

Time step (s) 2x 1078 2x 1078
Characteristic mass: m mar = my mar = my
Characteristic length: Hy (mm) 1 1
Characteristic velocity: ug (m/s) 337.2 337.2
Characteristic temperature: Tp (K) 273 273
Characteristic number density: no (m=>) 8.401 x 1020 8.401 x 1020
Initial conditions

Velocity: u (m/s) 0 0
Temperature: T (K) 273 273

Number density: nM (m=3) 8.401 x 1020 8.401 x 1020
Number density: n® (m~3) 4.004 x 1020 4.004 x 1020
Knudsen number: (Knj;, Knpy) (1.541, 1.182) (1.541, 1.182)
Knudsen number: (Knjz, Knjp) (1.564, 1.080) (1.564, 1.080)
Left wall (purely diffuse) boundary conditions (subscript /)

Velocity: u; (m/s) 0, 0, 0) 0, 0, 0)
Temperature: 7; (K) 273 273

Right wall (purely diffuse) boundary conditions (subscript r)

Velocity: u, (m/s) (0, 50sin(¢t), 0) (0, 500sin(¢t), 0)
Temperature: 7, (K) 273 273

Period of oscillation: ¢ (s~!) 27 /(5 x 1073) 27 /(5 x 1073)
Velocity amplitude: v, (m/s) 50 500

6.2.5. Couette flow of Argon—Krypton mixture using VSS collision kernel

Phenomenological scattering models are designed and calibrated (against experiments) so as to recover the correct
transport properties. VSS model, in particular, recovers two transport properties: (a) viscosity and (b) diffusion [5].
Couette flow serves as a test case for reproducing the correct viscosity coefficient (the test case for reproducing the
correct diffusion coefficient is provided in the later sections). In the current test case, the schematic remains the
same as in the previous test case. The left and right parallel walls move with a velocity of u,, = (0, 50, 0) m/s.
The simulation parameters are given in Table 6. Argon—Krypton mixture with VSS collision kernel is taken as the
working gas.

Fig. 8 illustrates the velocity and temperature along the domain length for both species. Ignoring the statistical
noise, we observe an excellent agreement between DGFS and DSMC.

The viscosity 1) can be recovered from the 1-D Couette flow simulations using the relation between shear-stress
and velocity-gradient [45,46]:

(i)
"
8u(y’) /0x
For consistency, we use Eq. (72) for both DSMC and DGFS. For computing the derivative in (72), we use centered
finite difference for DSMC, and the polynomial derivative for DGFS. Fig. 9 illustrates the variation of viscosity
along the domain for both species. It is observed that: (a) the viscosity is lower for the heavier (Kr) species since

the mixture contains ~ 32% Kr, and ~ 68% Ar; and (b) both DSMC and DGFS match well within the expected
statistical scatter inherent to DSMC simulations. Note that, in the present simulation, we use DG scheme with K = 3

nt = (72)
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Fig. 7. Variation of normalized velocity ug) /va, i ={1,2} along the domain length for oscillatory Couette flow obtained with DSMC and
DGFS using VHS collision model for Argon-Krypton mixture. Symbols denote DSMC solutions, and lines denote DGFS solutions.

which implies that the underlying polynomial is quadratic. Hence all the bulk properties including velocity should
be a quadratic polynomial. Since the viscosity (72) contains the derivative of the velocity, the overall reconstructed
viscosity should be linear, as we observe in Fig. 9(a). Upon increasing K, we recover the smooth high order
polynomial for viscosity as illustrated in Fig. 9(b).

From a computation viewpoint, DSMC-SPARTA simulations with 500 cells, 900 particles per cell, a time step of
2x 1077 s, 1 million unsteady time steps, and 20 million steady time steps, on 24 (Intel-Xeon Gold) processors took
26086.45 s The parameters have been selected to minimize the statistical fluctuations and linear time-stepping errors
inherent to DSMC simulations. On the other hand, DGFS simulations on a single (Titan X Pascal) GPU with 4
elements, K = 3, N3 = 323, M = 12 took 6020.19 s to achieve (|| f"*' — f™Il,.2/1 f Il .2)/l f2 = f Nl 2/ f Ml 2) <
5 x 1075, Note that these are representative simulation times for indicating the computational efforts required in
DGFS and DSMC for 1-D simulations. Our experience shows that even heavily tuned codes can be further improved.
A detailed comparison between CPU and GPU performance is subject of future study.

6.2.6. Self diffusion of argon—argon mixture using VSS collision kernel

In the current test case, we consider the effect of diffusive transport. The schematic remains the same as in the
previous test case. Argon—Argon mixture with VSS collision kernel is taken as the working gas. To differentiate
between two types of Argon, we tag the molecules as Ar; and Ar,. At the left boundary, Ar; enters and exits at the
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Table 6

Numerical parameters for Couette flow. The molecular collision parameters for Ar—Kr system are

provided in Table 3.

Parameter Case C-01
Mixture Ar-Kr
Collision kernel VSS
Non-dim physical space [0, 1]
Non-dim velocity space -7. 79

N3 323

N, 32

M 12

Spatial elements 4

DG order 3

Time step (s) 2x 1078
Characteristic mass: m may = my
Characteristic length: Hy (mm) 1
Characteristic velocity: ug (m/s) 337.2
Characteristic temperature: Tp (K) 273
Characteristic number density: no (m=>) 1.680 x 102!
Initial conditions

Velocity: u (m/s) 0
Temperature: T (K) 273
Number density: nM (m=3) 1.680 x 102!
Number density: n® (m~3) 8.009 x 1020

Knudsen number: (Knj;, Knpy)
Knudsen number: (Knjz, Knjp)

(0.793, 0.606)
(0.803, 0.555)

Left wall (purely diffuse) boundary conditions (subscript /)

Velocity: u; (m/s) (0, =50, 0)
Temperature: 7; (K) 273

Right wall (purely diffuse) boundary conditions (subscript r)

Velocity: u, (m/s) 0, 450, 0)
Temperature: 7, (K) 273
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Fig. 8. Variation of normalized y-velocity, and temperature along the domain for Couette flow (Case C-01) obtained with DSMC and DGFS
using VSS collision kernel for Argon—Krypton mixture. Symbols denote DSMC solutions, and lines denote DGFS solutions.

right boundary. At the right boundary, Ar, enters and exits at the left boundary. The molecules enter the domain
with zero mean velocity. The simulation parameters are provided in Table 7.
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Fig. 10. Variation of number density and diffusion velocity along the domain for self-diffusion cases obtained with DSMC and DGFS using
VSS collision kernel for Argon—Argon mixture. Symbols denote DSMC results, and lines denote DGFS results.

Fig. 10(a) shows the variation of concentration n/n along the domain. Since the species-1 enters from the left
boundary and exits at right, we observe a drop in species-1 concentration as we move towards the right boundary.
Conversely for species-2, since the species-2 enters from the right boundary and exits at left, we observe a drop
in species-2 concentration as we move towards the left boundary. The non-linearity of the concentration profile
and the associated slip at the boundaries can be explained through the low mixture density, and the fact that the
flow is in slip regime. It is also worth noting that throughout the domain at any given x location, the sum of the
concentrations of two species is unity which asserts that the numerical formulation is conservative.

Fig. 10(b) shows the variation of diffusion velocity along the domain. Since the species-1 enters from the left
boundary and exits at right, we observe a low net diffusion speed (magnitude of the diffusion velocity) for the first
species and a high diffusion speed for the second species. Conversely at the right boundary, since the species-2
enters from the right boundary and exits at left, we observe a low diffusion speed for the second species and high
diffusion speed for the second species.
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Table 7
Numerical parameters for Ar—Ar self diffusion. The molecular collision parameters for Ar are
provided in Table 3.

Parameter Case SD-01 Case SD-02
Mixture Ar-Ar Ar-Ar
Collision kernel VSS VSS
Non-dim physical space [0, 1] [0, 1]
Non-dim velocity space [—5.09, 5.09]° [—5.09, 5.09]
N3 323 323

N, 32 32

M 12 12

Spatial elements 4 4

DG order 3 3

Time step (s) 2x 1078 2x 1078
Viscosity index: (w;;) 0.81 0.81
Scattering index: (e;;) 1.4 1.4
Characteristic mass: m mar = my may = my
Characteristic length: Hy (mm) 1 1
Characteristic velocity: ug (m/s) 337.2 337.2
Characteristic temperature: Tp (K) 273 273
Characteristic number density: no (m=>) 1.680 x 10%! 8.401 x 10%!
Initial conditions

Velocity: u (m/s) 0 0
Temperature: T (K) 273 273
Number density: aM (m—3) 1.680 x 102! 8.401 x 10
Number density: n® (m~3) 1.680 x 10%! 8.401 x 10?!
Knudsen number: (Knj;, Knpy) (0.793, 0.793) (0.159, 0.159)
Knudsen number: (Knjp, Knp) (0.793, 0.793) (0.159, 0.159)
Left boundary conditions (subscript /)

Ary enters: inlet boundary condition for Ary

Velocity: u; (m/s) 0, 0, 0) 0, 0, 0)
Temperature: 7; (K) 273 273
Number density: n(V (m=3) 1.680 x 10%! 8.401 x 102!
Ary freely exits

Right boundary conditions (subscript r)

Ar, enters: inlet boundary condition for Ar

Velocity: u, (m/s) 0, 0, 0) 0, 0, 0)
Temperature: 7, (K) 273 273
Number density: n® (m~—3) 1.680 x 10%! 8.401 x 10%!

Ar freely exits

Fig. 11 illustrates the temperature profile along the domain, where we observe a drop in temperatures of the two
species. Based upon these results, it can be inferred that DGFS can resolve the strong gradients in temperature and
diffusion velocity with just 4 elements and K = 3 within engineering accuracy.

For this test case, the self-diffusion coefficient is given as (cf. Eq. (12.18) in [5])

Dawzlwbz_4¢n_um)ﬁnnm ax

. * n? AWM /n)

While writing this equation, it is also assumed that the coefficient of thermal diffusion is low [47], and therefore
the effect of temperature gradient is negligible (see Eq. (8.4.7) in [48]). Note that this equation is an approximation
to the diffusion equation, derived from leading order Chapman expansion (see section 8.4 in [48]), and therefore,
strictly speaking, the values computed from this equation might not be fully accurate especially for the rarefied
flows, since the higher order terms have not been accounted for. For consistency, we use (73) for both DSMC and
DGFS. For computing the derivatives in (73), we use centered finite difference for DSMC, and the polynomial
derivative for DGFS. In particular, for DSMC simulations, we used 500 cells, 2000 particles per cell, a time step

(73)
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Fig. 11. Variation of temperature along the domain for self-diffusion cases obtained with DSMC and DGFS using VSS collision kernel for
Argon—Argon mixture (;; = 1.4). The physical space is discretized using: (a) 4 elements and K = 3, (b) 8 elements and K = 4. Symbols
denote DSMC results, and lines denote DGFS results.

of 1 x 1078 sec, and averaged the results for 1 million time steps to minimize the statistical scatter in diffusion
coefficients.

Fig. 12 illustrates the variation of self-diffusion coefficient along the domain as a function of scattering parameter
a;;. It is observed that: (a) the diffusion coefficient increases with increase in «;; in accordance with the VSS model
(cf. Eq. (3.75) in [5]), (b) both DSMC and DGFS match well within the expected statistical scatter inherent to
DSMC simulations, and (c) with increase in number density from Case 01 to Case 02, the diffusion coefficient
decreases in accordance with (73). Note that, in the present simulation, we use DG scheme with K = 3 which
implies that the underlying polynomial is quadratic. Hence all the bulk properties including number density should
be a quadratic polynomial. Recall that the diffusion (73) contains the derivative of the number density, and hence
the overall reconstructed diffusion coefficient should be linear, which is what we observe in Figs. 12(a) and 12(b).
Upon increasing K, we recover the smooth high-order polynomial for diffusion coefficient.

6.2.7. Mass diffusion of argon—krypton mixture using VSS collision kernel

In the current test case, we consider the effect of mass diffusion. The conditions remain the same as in previous
case, except that Argon—Krypton mixture with VSS collision model is taken as the working gas. More specifically,
Argon enters the left boundary and exits at the right boundary; and Krypton enters through the right and exits at
left. The molecules enter the domain with zero mean velocity. We consider two cases with different initial number
density. The numerical parameters for both the cases are given in Table 8.

Fig. 13(a) shows the variation of concentration profile for the two species. We observe that the concentration of
Argon remains greater than Krypton throughout the domain, except for a small portion near the right boundary. This
can be directly inferred from the mass/momentum conservation principle i.e., the heavier species diffuses slower
and the lighter species diffuses faster. Therefore, after a sufficiently long time, the concentration of lighter species
will be greater than that of heavier species in the major part of the domain. As in the self-diffusion case, the sum
of the concentrations of both species is unity throughout the domain at any given x location. The effect of the
momentum conservation is more apparent in Fig. 13(b) wherein we observe a higher diffusion speed for the lighter
species and a lower diffusion speed for the heavier species.

7. Conclusions

A fast spectral method for the multi-species Boltzmann collision operator has been proposed in this work. The
method is designed to handle the cross-molecular interactions between dissimilar species with moderate mass ratios.
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Fig. 12. Variation of diffusion coefficient along the domain for self-diffusion cases obtained with DSMC and DGFS using VSS collision
model for Argon—Argon mixture. Note that only «;; is varied by keeping all other parameters fixed as in Table 7. Symbols denote DSMC
results, and lines denote DGFS results.
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Table 8
Numerical parameters for Ar—Kr mass diffusion. The molecular collision parameters for Ar—Kr
system are provided in Table 3.

Parameter Case MD-01 Case MD-02
Mixture Ar-Kr Ar-Kr
Collision kernel VSS VSS
Non-dim physical space [0, 1] [0, 1]
Non-dim velocity space [—5.09, 5.09] [-5.09, 5.09]
N3 323 323

N, 32 32

M 12 12

Spatial elements 4 4

DG order 3 3

Time step (s) 2x 1078 2x 1078
Characteristic mass: mg Mar = My Mmar = my
Characteristic length: Hy (mm) 1 1
Characteristic velocity: uo (m/s) 337.2 337.2
Characteristic temperature: Tp (K) 273 273
Characteristic number density: ng (m™3) 1.680 x 102! 8.401 x 102!
Initial conditions

Velocity: u (m/s) 0 0
Temperature: 7 (K) 273 273
Number density: (D (m~3) 1.680 x 102! 8.401 x 10
Number density: n® (m~3) 8.009 x 1020 4.004 x 10%!

Knudsen number: (Knj;, Kny)
Knudsen number: (Knjz, Knpp)

(0.793, 0.606)
(0.803, 0.555)

(0.159, 0.121)
(0.161, 0.111)

Left boundary conditions (subscript /)
Ar enters: inlet boundary condition for Ar

Velocity: u; (m/s) 0, 0, 0) 0, 0, 0)
Temperature: 7; (K) 273 273
Number density: n(V (m~3) 1.680 x 102! 8.401 x 10%!
Kr freely exits

Right wall (purely diffuse) boundary conditions (subscript r)

Kr enters: inlet boundary condition for Kr

Velocity: u, (m/s) 0, 0, 0) 0, 0, 0)
Temperature: 7, (K) 273 273
Number density: n® (m~3) 8.009 x 10?0 4.004 x 10%!

Ar freely exits

In particular, it is applicable to general collision kernels which allows us to directly compare our results against
the well-known stochastic DSMC solutions. The fast collision algorithm in the velocity space was then coupled
with the discontinuous Galerkin discretization in the physical space to yield highly accurate numerical solutions for
the full spatially inhomogeneous Boltzmann equation. The DG-type formulation employed in the present work has
advantage of having high order accuracy at the element-level, and its element-local compact nature (and that of our
collision algorithm) enables effective parallelization on massively parallel architectures.

To validate our solver, extensive numerical tests were performed, including the spatially homogeneous Krook—
Wau solution for Maxwell molecules where the exact solution is known; normal shock wave for HS where finite
difference solutions are available for comparison, and Fourier, oscillatory Couette, Couette, self diffusion, mass
diffusion problems where different collision kernels (VHS and VSS), Knudsen numbers, and mass ratios were
considered and the results were compared well with DSMC solutions.
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