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THE FREE GROUP ON n GENERATORS MODULO n+u RANDOM
RELATIONS AS n GOES TO INFINITY

YUAN LIU AND MELANIE MATCHETT WOOD

ABSTRACT. We show that, as n goes to infinity, the free group on n generators, modulo n—+u
random relations, converges to a random group that we give explicitly. This random group
is a non-abelian version of the random abelian groups that feature in the Cohen-Lenstra
heuristics. For each n, these random groups belong to the few relator model in the Gromov
model of random groups.

1. INTRODUCTION

For an integer u and positive integers n, we study the random group given by the free
group F,, on n generators modulo n + u random relations. In particular we find that these
random groups have a nice limiting behavior as n — oo and we explicitly describe the
limiting random group.

There are two ways to take relations in a “uniform” way: 1)complete F,, to the profinite free
group E,onn generators and take relations with respect for Haar measure, or 2)take relations
from F,, uniformly among words up to length ¢ and then let ¢ — co. In Proposition 14.1, we
show that the random groups obtained from the second method weakly converge, as { — oo,
to the random groups obtained from the first method.

For a positive integer n, let F), be the profinite free group on n generators. For an integer
u, we define the random group X, , by taking the quotient of E, by (the closed, normal
subgroup generated by) n + u independent random generators, taken from Haar measure on
F,. We need to define a topology to make precise the convergence of X, ,, as n — oo.

Let S be a set of (isomorphism classes of ) finite groups. Let S be the smallest set of groups
containing S that is closed under taking quotients, subgroups, and finite direct products.
For a profinite group G, we write G® for its pro-S completion. We consider the set P of
isomorphism classes of profinite groups G such that G° is finite for all finite sets S of finite
groups. All finitely generated profinite groups are in P and all groups in P are small in the
sense of [FJO8, Section 16.10]. We define a topology on P in which the basic opens are, for
each finite set S of finite groups and finite group H, the sets Ug g := {G | G® ~ H}.

Theorem 1.1. Let u be an integer. Then there is a probability measure p, on P for the
o-algebra of Borel sets such that as n — oo, the distributions of X, ,, weakly converge to fi,.

We give these pu, explicitly in fact. See Equation (3.2) for a formula for p, on each
basic open, and see Section 12 for several other interesting examples of the values of these
measures. In fact, we prove in Theorem 11.4 a stronger form of convergence than weak
convergence, which, in particular, tell us the measure of any finite group. In particular, we
have

(1.2) fy (trivial group) = H H (1—|G|™) H e~ Au(@)ITHGI™

G finite simple i=u+1 G finite simple
abelian group non-abelian group
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which is ~ 4357 when u = 1. The abelian group version of this problem has been well-
studied, as the limiting groups when u = 0,1 are the random groups of the Cohen-Lenstra
heuristics. The first factor above, as a product over primes, is very familiar from the random
groups of the Cohen-Lenstra heuristics, but here it naturally appears as part of a product
over all finite simple groups.

Cohen and Lenstra [CL84| defined certain random abelian groups that they predicted
gave the distribution of class groups of random quadratic fields. Friedman and Washington
[FW89| later realized that these random abelian groups arose as the limits of cokernels of
random matrices, which is just a rewording of the abelianization of our construction above.
These random abelian groups are universal, in the sense that, as n — oo, taking Z™ modulo
almost any collection of n + u independent relations will give these same random abelian
groups, even if the relations are taken from strange and lopsided distributions [Wool5|.

One motivation for our work is to develop a non-abelian version of the random abelian
groups of Cohen and Lenstra, in order to eventually be able to model non-abelian versions
of class groups of random number fields. Boston, Bush, and Hajir [BBH16| have defined
random pro-p groups that they conjecture model the pro-p generalizations of class groups
of random imaginary quadratic fields. In their definition, they were able to use special
properties of p-groups to give a definition that avoids the limit as n — oo that we study
above (or rather, reduces the question of the limit as n — oo to the abelian case, which was
already understood).

There is a large body of work on the Gromov, or density, model of random groups (see
[O1105] for an excellent introduction). In this model, one takes F,, modulo r(¢) random
relations uniform among words of length ¢, and studies the behavior as ¢ — co. When r({)
grows like (2n — 1)% this is called the density d model. There has been a great amount
of work to understand, as ¢ — oo, what properties hold asymptotically almost surely for
these groups (e.g see [Oll05, Oll10] for an overview and [CW15, KK13, Macl6, OW11] for
some more recent examples). Our X, are limits as ¢ — oo of density 0 models of these
random groups. In fact, slightly different density 0 models introduced by Gromov [Gro87|
and Arzhantseva and Ol’shanskii [AO96| were predecessors to the work on the density model
for arbitrary d and are also the subject of a large body of work. However, the emphasis of
our work is different from much of the previous work on these models of random groups.
That work has often emphasized a random group with given generators, and we consider
only the isomorphism class of the group and focus on the convergence to a limiting random
variable as the number of generators goes to infinity. Properties that hold asymptotically
almost surely as £ — oo may not hold of the limiting random variable. For example, in our
topology, any Gromov random group with r(¢) — oo weakly converges to the trivial group,
yet at low enough density these groups are asymptotically almost surely not trivial (see
Proposition 14.2 and Remark 14.3). Our topology is aimed at understanding finite quotients
of groups, and is rather different than the topology due to Chabauty [Cha50] and Grigorchuk
[Gri84| on the space of marked groups that emphasizes the geometry of the Cayley graphs
but isn’t well behaved on isomorphism classes of groups.

The previous work with the closest emphasis to ours is that of Dunfield and Thurston
[DT06]. They studied F,, modulo  random relations (with both methods described above of
taking relations) in order to contrast those random groups with random 3-manifold groups.
Their main consideration was the probability that these random groups (for fixed n and r)
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had a quotient map to a fixed finite group. They do observe [DT06, Theorem 3.10| that for
a fixed non-abelian finite simple group G, the distribution of the number of quotient maps
to G has a Poisson limiting behavior as n — oo; this is the first glimpse of the nice limiting
behavior as n — oo that we study in this paper.

Jarden and Lubotzky [JLO6| studied the normal subgroup of E, generated by a fixed
number of random elements, in particular proving that when it is infinite index that it
is almost always the free profinite group on countably many generators. Our work here
complements theirs, as they have determined the structure of the random normal subgroup
and we determine the structure of the quotient by this random normal subgroup.

The bulk of this paper is devoted to showing the existence of the measure pu, of The-
orem 1.1. Let p,, be the distribution of our random group X, ,. Since the basic opens
in our topology are also closed, it is clear that if u, exists, then for any basic open U we
have p,(U) = lim,, o fty,n(U). The argument for the existence of p, breaks into two major
parts. The first part is to show the limit lim,,_,o ft,,,(U) exists. The second part is to show
that these measures on basic opens define a countably additive measure. After giving some
notation and basic definitions in Section 2, we will give the values of i, on basic opens in Sec-
tion 3 for easy reference. Then in Section 4 we set up the strategy for proving lim,, ety (U)
exists, which is entirely group theoretical. This argument will take us through Section 8.
It is easy to express f,, in group theory terms involving F,. However, such expressions
do not allow one to take a limit as n — oo, and so the main challenge is to extract E,
from the description of the probabilities so that they only involve the number n and group
theoretical quantities that do not depend on n. This requires several steps. In Section 5,
we express the probabilities in terms of multiplicities of certain groups appearing in E,. In
Section 6, we bound what possible groups can have positive multiplicities. In Section 7, we
relate the multiplicities to a count of certain surjections, and finally in Section 8 we count
these surjections in another way that eliminates E,, from our description of the probabilities.

The next challenge is to show the countable additivity of the pu, that we have then defined
on basic opens. It follows from Fatou’s lemma that for a finite set .S of finite groups,

Z lim Nu,n(US,H> S 1.

n—oo
H is finite

However, a priori, this inequality may be strict. In the limit as n goes to infinity there could
be escape of mass. To show that this does not occur, we require bounds on the p ,,(Us i)
that are sufficiently uniform in n. The difficultly is that our group theoretical expressions do
not easily lend themselves to the kind of bounds useful for an analytic argument. We obtain
the necessary uniformity by considering a notion of chief factor pairs, which generalizes the
notion of a chief factor of a group to also include the conjugation action on the chief factor.
We are able to bound the size of the outer action of conjugation on chief factors for a given S
in Section 6, which then, combined with an induction on S, gives us the uniformity necessary
to show in Section 9 that the above inequality is actually an equality. That is the heart of
the proof of countable additivity, which we show in Section 9.

Once we have established the existence of the measure pu, with the desired measure on
basic opens, Theorem 1.1 follows immediately in Section 10. In Section 11, we give the
measures of sets of the form {X € P | X° ~ H} for arbitrary sets S of finite groups,

and see that p, and lim,,_, ., agree there, giving a stronger convergence than the weak
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convergence of Theorem 1.1. There, one inequality is automatic, and we then we argue that
we either have the necessary uniformity to get equality, or that the larger probability is 0,
which also gives equality. The result of Section 11 then allows us to compute measures of
many different Borel sets, and in Section 12, we give many examples including the trivial
group, infinite groups, and distributions of the abelianization and pro-nilpotent quotient.
In Section 13, we see that the measures pu, give positive measure to any basic open where
groups can be generated by u more relations than generators. Finally, in Section 14, we
compare the profinite model used in this paper to the discrete group model described above.

This is the beginning of investigation into these random groups, and there are many
further questions we would like to understand. Are these measures universal in the sense of
[Wool5], i.e. would we still get p, as n — oo even if we took our relations from a different
measure? Are these measures determined by their moments, which in [HB94, Lemma 18|,
[FK06, Section 4.2], [EVW16, Lemma 8.2|, [Wool7, Theorem 8.3, and [BW17, Theorem 1.4]
has been an important tool to identify analogous random groups? What is the measure of
the set of all infinite groups when u > 0 (see Example 12.8, and note by [JLO6| this implies
the normal subgroup generated by the relations is free on countably many generators with
probability 1)? What is the measure of the set of finitely generated groups, and of finitely
presented groups? Do the p, ,, converge strongly to j,,? Besides their inherent interest, many
of these questions have implications for the possible connections to number theory described
above.

2. NOTATION AND BASIC GROUP THEORETICAL DEFINITIONS

2.1. Notation. In Section 15, we give a list of symbols used in the paper in more than one
section for ease of reference.

Whenever we take a quotient by relations, we always mean by the closed, normal subgroup
generated by those relations. For elements z1,... of a group G, we write [x1,...]g for the
closed normal subgroup of G generated by xy,. ...

We write G ~ H to mean that G and H are isomorphic. For profinite groups, we always
mean isomorphic as profinite groups. For two groups G and H, we write G = H when there
is an obvious map from one of G or H to the other (e.g. when H is defined as a quotient or
subgroup of ) and that map is an isomorphism.

For a group G, we write G’ for the direct product of j copies of G. If H is a subgroup of
G, then we denote the centralizer of H by Cs(H).

When we say a set of finite groups, we always mean a set of isomorphism classes of finite
groups.

2.2. F-groups. If F is a group, an F'-group is a group G with an action of F'. A morphism
of F-groups is a group homomorphism that respects the F-action. An F-subgroup is a
subgroup G such that f(G) = G for all f € F, and an F-quotient is a group quotient homo-
morphism that respects the F-action. An irreducible F'-group is an F-group with no normal
F-subgroups except the trivial subgroup and the group itself. We write Homp(G1, G3) for
the F-group morphisms from G4 to Gy and hr(G) := | Homg(G, G)|. We write Surp(G1, Gs)
for the F-group surjections from G to G, and Autp(G) for the F-group automorphisms of
G. For a sequence zy in an F-group G, let [z1,...]r be the closed normal F-subgroup of G

generated by the zy.
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2.3. H-extensions. For a group H, an H-extension is a group E with a surjective morphism
7:E— H lfr:FE— Hand 7« :E — H are H-extensions, a morphism from (E,7) to
(E',7") is a group homomorphism f : E — E’ such that m = 7’ o f. If 7 : E — H and
7' B — H are H-extensions, we write Sury(m, 7’) for the set of surjective morphisms from
(G,7) to (G',7’). For an H-extension E, we write Auty(E, ) for the automorphisms of
(E, ) as an H-extension. If (F, ) is an H-extension, a sub- H-extension is a subgroup E’ of
E with 7|g/, such that 7| is surjective. Note that when ker 7 is abelian, it is an H-group
under conjugation in E.

2.4. Pro-S completions and level S groups. Given a set S of finite groups, we let
S denote the smallest set of groups containing S that is closed under taking quotients,
subgroups and finite direct products. (This is called the variety of groups generated by S.)
Given a profinite group G, we write G for its pro-S completion, which is defined as

G° =1im G/M,
i

where the inverse limit is taken over all closed normal subgroups M of G such that G/M € S.

Definition. For a set S of finite groups, we say that a profinite group G is level S if G € S.
Also, for a positive integer ¢, let Sy be the set consisting of all groups whose order is less
than or equal to £. Then we say G is level £ if G € Sy. Note that for G € P we have that G
is level S if and only if G = G”.

3. DEFINITION OF [,

For integers n > 1 and v > —n, recall that X, , is the random group defined by taking
quotient of the free profinite group F,onn generators by n+wu independent random relations
that are taken from the Haar measure on FE},. For finite set S of finite groups and finite group
H,let Usy := {X € P|X® ~ H} (where P is the set of isomorphism classes of profinite
groups G such that the pro-S completion G* is finite for all finite sets S of finite groups). We
have a measure p,, on the o-algebra of Borel sets of P such that i, ,(A) = Prob(X,, € A).
We will define a measure p,,, for each integer u, at first as a measure on the algebra A of
sets generated by the Us . For A € A, we define

(3.1) pu(A) = T g, (A).

We will below establish that 1) this limit exists when A = Ugpy (see Theorem 8.1, and
Equation (3.2) just below, in which we give the value of the limit), and hence for any A € A
since the limit is compatible with finite sums and subtraction from 1; and 2) p,, is countably
additive on A (see Theorem 9.1). These two results represent the bulk of the work of the
paper. Then by Carathéodory’s extension theorem, it follows that p, extends uniquely to a
probability measure on P.

3.1. Value of u, on basic open sets. Given a finite group H, let Ay be the set of
isomorphism classes of non-trivial finite abelian irreducible H-groups. Let N be the set of
isomorphism classes of finite groups that are isomorphic to G for some finite simple non-

abelian group G and a positive integer 7. Let S be a set of finite groups, and H a finite level
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S group. For G € Ay, we define the quantity

NS, H,G) = (hu(G) — 1) 3 m.

isom. classes of H-extensions (E, )
such that ker m ~ G as H-groups,
and F is level S

We will see in Remark 8.13 that for G € Ay, the number A(S, H,G) is an integer power of
hy(G). If G € N, we define

1
XS, H,G) := > TAta (B

isom. classes of H-extensions (E, )

such that ker 7 ~ G7 as groups,
ker w irred. E-group,
and F is level S

The definitions are not quite parallel in the abelian and non-abelian cases, but this is un-
avoidable given the different behavior of abelian and non-abelian simple groups.

It will follow from Theorem 8.1 below that for a finite set S of finite groups and a finite
level S group H, we have

hH(G) N _ —u
1-— S H G e~ IGIT*ASH,G) |
Aut(H ||H|uGg H T T ) 1L

(32) pu(Usu) =

Theorem 11.4 gives the analogous result for an infinite set S. We will see in Section 6 that for
finite S only finitely many elements of Ay and N contribute non-trivially to this product.

4. SETUP AND ORGANIZATION OF THE PROOFS

The proof of Equation (3.2) will be established from Section 5 to Section 8, which are
dominated by group theoretical methods. Here we outline the proof for the reader’s conve-
nience.

Suppose n is a positive integer, S is a finite set of finite groups, and H is a finite level S
group. Then (F,)° is a finite group [Neu67, Cor. 15.72] and (X, ,,)° has the same distribution
as the quotient of ( )S by n 4+ u independent, uniform random relations ry, - - - 7,4, from
(F,)5. By the definition of j,, we have that

Nu(USH) = hIIl Pl"Ob((F ) /[Tl,' c 7rn+u](ﬁ‘n)5‘ ~ H)

We consider a normal subgroup N of (F,)° with an isomorphism (F,)5/N ~ H. Let
M be the intersection of all maximal proper (F )S-normal subgroups of N. We denote
F = ( )S /M and R = N/M. Then for independent, uniform random elements 71, - - -, 7,14
of (F},)°, we have that [ry,--- s Tntul(f,ys = N if and only if R is the normal subgroup
generated by the images of ry,--- ,7,., in F. Indeed, the “only if” direction is clear; and
if [re,e e ras s /M = R, th?n [7“1,~-~ Tt gy = N osince [ri, -+ rp] g s being
contained in a proper maximal (F},)°-normal subgroup of N would imply that its image is
contained in a proper maximal F-normal subgroup of R.

Any two surjections from (F,)% to H are isomorphic as H-extensions [Lub01, Proposition
2.2|. Thus, the short exact sequence

(4.1) l1-R—-F—>H-—1
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does not depend (up to isomorphisms of F' as an H-extension) on the choice of the normal
subgroup N.

Definition. Given a finite set S of finite groups, a positive integer n and a finite level S
group H, the short exact sequence defined in Equation (4.1) is called the fundamental short
exact sequence associated to S, n and H.

By the above arguments, Prob((E, )S/[rl, o Tntul(p,)s = H) equals the number of nor-
mal subgroups N of (F,)5 with (F},)S/N ~ H times the probability that independent, uni-
form random elements x1, - - -, x,1, € F normally generate R. Note that the number of such
normal subgroups N is | Sur((Fn)g ,H)|/| Aut(H)|, and there is a one-to-one correspondence
between Sur((F,)5, H) and Sur(F,, H). It follows that

A g Sur(E,, H
(4.2)  Prob((F,)®/[ry,--- Tntul(fys = H) = W Prob([z1, ++ , Tpiu]r = R).
It therefore suffices to compute Prob([z1, -+, Zyiu]r = R). Note that R is an F-group
under the conjugation action. It will follow from Lemma 5.11 that R is a direct product of
irreducible F-groups. Theorem 5.1 will prove the formula for Prob([x1, -, Z,14]r = R) for

F and R where R is a direct product of irreducible F-groups, in terms of the multiplicities of
the various irreducible F-group factors of R. In Section 6, we will give some criteria for which
irreducible F-groups can appear in R. Then in Section 7, we will relate the multiplicities of
irreducible factors in R to the number of normal subgroups of R with specified quotients. In
Section 8, we will count these normal subgroups of R in another way in order to finally give
an explicit formula for g, ,(Us m). This formula will be explicit enough that we can easily
take the limit as n — oo, giving Equation (3.2).

5. GENERATING PROBABILITIES FOR PRODUCTS OF IRREDUCIBLE F-GROUPS

Throughout this section, we let n > 1 and u > —n be integers, I’ a group, and R a finite
product of finite irreducible F-groups. (We don’t require R to be a subgroup of F.) The
goal of this section is to prove the following theorem which gives the probability that the
normal F-subgroup generated by n 4+ u random elements of R is the whole group.

Theorem 5.1. Let F' be a group and G; be finite wrreducible F-groups for ¢ = 1,...,k
such that for i # j, we have that G; and G, are not isomorphic F-groups, and let m; be

non-negative integers. Let R = Hle G". Then

m;—1
Prob([zy,...,zelr =R) = ] [l -ke@yiGI™™ [ @=lGI)™
1<i<k  j=0 1<i<k
G, “abelian G; non-abelian

where the x; are independent, uniform random elements of R.

Remark 5.2. Given a finite abelian irreducible F-group G, if we let m be maximal such that
G™ can be generated by one element as an F-group, then we have hp(G)™ = |G|. This follows
from Theorem 5.1 because if we take m; = m, the probability that one element generates
G™ is positive, but if we take m; = m + 1 the probability is 0.
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We will build up to Theorem 5.1 through several lemmas. First, we determine the structure
of normal F-subgroups of products of irreducible F-groups.

Lemma 5.3. If G; are irreducible F-groups and N is an F-subgroup of [\~ G; that projects
to 1 or G; in each factor, then there exists a subset J C {1,...,m} such that the projection
of N to [[,c; Gi is an isomorphism.

Proof. We prove this by induction on m. Let m,, be the projection map from [, G; to G,,,
and 7 the projection map from N to [[7;" G;. Since 7, (N) is 1 or Gy, and 7, (ker ) is a
normal F-subgroup of m,,(N), we have m,,(ker7) is 1 or G,,. If m,(ker7) = 1, then since
ker mw Nker m,, = 1, we have ker 7 = 1 and N is isomorphic to 7(N). If 7, (ker 7) = G,,, then
N is isomorphic to m(N) X G,,. In either case, we apply the inductive hypothesis to m(N)
and conclude the lemma. U

Lemma 5.4. Let G; and G4 be irreducible F'-groups. Then any homomorphism of F-groups
¢ : G1 — Gy with normal image is either trivial or an isomorphism.

Proof. If it is not trivial, then ker(¢) is a normal F-subgroup and so must be trivial, and
im(¢) is a normal F-subgroup and must be G, so it is a bijection. U

Lemma 5.5. Let G; be irreducible F-groups for i = 1,...,k such that for i # j, we have
that G; and G; are not isomorphic as I'-groups. Let N be a normal F'-subgroup of Hle G,
then N = Hle N;, where N; is a normal F-subgroup of G;".

Proof. Since N is a normal F-subgroup of Hle G;", its projection to each factor G; is normal
F-subgroup of G;, hence it’s either 1 or GG;. By Lemma 5.3, we can write N abstractly as
Hle G} and define N; to be the subgroup of N such that it is the image of the factor G}

under the chosen isomorphism between Hle G;" and N. From Lemma 5.4, we see that for

1 # j the projection N; — G;nj is trivial, and it follows that N; is the subgroup of elements

of N that are trivial in the projections to G;nj for all j # i. Finally, if n € V;, then we can

see that any Hle G;" conjugate of n is trivial in the projections to G;-nj for all j # ¢ and in

is N. Hence N; is a normal F-subgroup of G". O
The followings are two corollaries of Lemma 5.5.

Corollary 5.6. Let G; be irreducible F-groups fori=1,...,k such that for i # j, we have
that G; and G; are not isomorphic as F-groups. Let N be a normal F-subgroup of Hle G
Then N = Hle G if and only if m(N) = G" for each projection m; : N — G".

Corollary 5.7. Let G; be finite irreducible F'-groups fori =1,...,k such that for i # j, we
have that G; and G; are not isomorphic as F-groups, and let m; be non-negative integers.

Let R =T[5, G™. Then
PI‘Ob([QEl; c. ,xn—l—u]F = R) = H PI‘Ob([yi’l, Ce 7yi,n+u]F = sz'z)7
=1

where the xy, are independent, uniform random elements of R, and the y,; ;, are independent,
uniform random elements of G".

The next lemma will help us determine when [y; 1, ..., Yin+u)r = G}
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Lemma 5.8. Let G be an irreducible F-group. If G is non-abelian, then a normal F-subgroup
N of G™ is all of G™ if and only if it is non-trivial in each of the m projections to G. If
G s abelian, then a normal F-subgroup N of G™ s all of G™ if and only if the projection
onto the product of the first m — 1 factors is surjective and the projection of N onto the mth
factor does not factor through the projection onto the product of the first m — 1 factors.

Proof. The only if direction is clear. We let m be the projection of N onto the first m — 1
factors of G and 7, the projection onto the last factor. For the other direction, for non-
abelian G we induct and so we have by the inductive hypothesis 7(N) = G™!. For G
abelian we have m(N) = G™ ! as a hypothesis. We consider T, (ker 7), which must be 1 or
G. If m,(kerm) is G, then we see N = G™, as it includes element with every possible first
m—1 coordinates, and then an element with trivial first m —1 coordinates and every possible
mth coordinate. Now we show that we cannot have m,,(ker 7) = 1. Suppose for the sake of
contradiction that m,,(ker 7) = 1. Then since ker 7, N kerm = 1, we have kerm = 1, and 7
is an isomorphism on N, and in particular 7, factors through 7. So given our hypotheses,
this can only happen when G is non-abelian. We write elements (a,b) € G™! x G. Since
Tm(IN) is non-trivial, it must be G by the irreducibility of G. For every b € GG, we have some
a € G™ ! such that (a,b) € N. However, since N is normal, that means (a, gbg™') € N for
every g € G. Since 7, factors through 7, we have that b = ghg~! for every b, g € G, which
is a contradiction, since above we saw we can only be in this case if G is non-abelian. U

Lemma 5.8 lets us compute the probabilities appearing in the right-hand side of Corol-
lary 5.7 in the following two corollaries.

Corollary 5.9. If G is a finite non-abelian irreducible F-group, and yi fork=1,....,.n+u
are independent, uniform random elements of G™, then

Prob([y, s nealr = G™) = (1= |G| 7"7)",

Corollary 5.10. If G is a finite abelian irreducible F'-group, and yy fork =1,... ,n+u are
independent, uniform random elements of G™, then

m—1

Prob([ys, . -, Ynrulr = G™) = [ (1 = he(G)F|GI7"7).

k=0

Proof. Let m be the projection of G™ onto the kth factor, and II; the projection of G™ to
the first £ factors. We have

Prob([y1, ..., Yntulr = G™)

m—1
= I Prob(Mxca(ys, - -, ynrulr) = G¥H Tk, - - - Ynul ) = G¥).
k=0
We condition on the values of II(y;), and we still have, with this conditioning, that the
Tr+1(y;) are uniform, independent random in G. By Lemma 5.8, given Il ([y1, . .., Yntu|F) =
GF, we will have i1 ([y1, .- Ynsu)r) = GFTL exactly if the map Tt | [yr,egmsa] . dOECS

not factor through Ily|p,,  y...-- We have a total of |G|"™ choices for the (n + u)-tuple
(o1 (1), -+ s g1 (Yngw))- Call choice for (mpp1(v1), - Tog1 (Unsa)) bad i Topa iy, yniale
factors through IL;|y, . ywiule- Since I([y1,. .., Yntu)r) = G*, there are | Homp(G*, G)|

choices for maps from G* to G, each of which gives a bad choice for (mp11(y1), - -+ s Tot1 (Yntu))
9



(and all bad choices arise this way). For two maps in Homg(G*, G) to give the same bad
choice, they would have to agree on II(y;) for all i, and since I.([y1, ..., Ynsulr) = GF,
this would imply the two maps in Homp(G¥,G) would be the same. Thus there are
| Homp(G*, G)| bad choices in |G|"* for the 711 (y;), and as |Homp(G*, G)| = hp(G)F,
the corollary follows. O

Theorem 5.1 now follows from Corollaries 5.7, 5.9, and 5.10. Also, we can now prove the
following lemma which is key for our general approach in Section 4.

Lemma 5.11. Let G be a finite group, and let N be a normal subgroup of G. Let M be the
intersection of all maximal proper, G-normal subgroups of N. Then N/M is a G/M-group
under the action of conjugation. We have that N/M 1is isomorphic, as an G /M -group, to a
direct product of irreducible G /M -groups. Moreover, among these irreducible G /M -groups,
the abelian ones all have the action of G/M factor through G/N, so are also irreducible
G /N -groups.

Proof. We consider N as a G-group under conjugation. A subgroup of N is a normal sub-
group of G if and only if it is a G-subgroup of N. Taking the quotient modulo M gives us a
containment respecting bijection between the G-subgroups of N containing M and the G//M-
subgroups of N/M. Since all maximal proper G-subgroups of N contain M, the quotient
map gives us a bijection between the maximal proper G-subgroups of N and the maximal
proper G/M-subgroups of N/M, and in particular the quotient M/M = 1 is the quotient
of all the maximal proper G/M-subgroups of N/M. Let M; be the maximal proper G/M-
subgroups of N/M. Each (N/M)/M; is an irreducible G/M-group. We have that N/M is
a subgroup of [[.(N/M)/M, that surjects into each factor, N/M is isomorphic to a direct
product of irreducible G/M-groups by Lemma 5.3. On an abelian irreducible G /M-group
factor, conjugation by any element in N/M gives the trivial group action, so we have the
last statement of the lemma. O

6. DETERMINING FACTORS APPEARING IN R

Throughout this section, we assume S is a set of finite groups, n is a positive integer, and
H is a finite level S group. If S is finite, then we let

l1-R—-F—H—>1

be the fundamental short exact sequence associated to S, n and H (see Section 4). In
this section, we will bound which irreducible F-groups are possible factors in R. A finite
irreducible F-group is characteristically simple (that is, it contains no proper nontrivial
characteristic subgroups) and thus, as a group, a direct product I'™ of isomorphic simple
groups. First, when the group H is fixed, Lemma 6.1 will bound the possible power m for
factors in R. For fixed S, Corollary 6.12 will then bound the possible simple group I' for
factors in R. We take a slightly longer than necessary route to Corollary 6.12 because along
the way we will develop the technology to prove Corollary 6.13, which will later be critical
in Section 9 for our proof of countable additivity of p,,.

Lemma 6.1. Let (E,m) be an H-extension such that G = kern is a finite irreducible E-

group. Then G is isomorphic to I'™ for some finite simple group I' and m < |H]|.
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Proof. Let G ~ T'™, where I' is a finite simple group. If I' = Z/pZ, then G C Cg(G)
and the map H — Aut(G) = GL,,,(Z/pZ) defined by conjugation action is an irreducible
representation of H. Since for any non-zero vector v € F}', the vectors hv, for h € H, span
a subrepresentation of H, we have the dimension m is at most |H]|.

If T is non-abelian, then consider an embedding ¢ : I' < I such that the image is a
normal subgroup. There is an element a = (a1, -+ ,a,) € ¢(I') such that a; is not the
identity element for some i. Let b € I'™ have jth coordinate 1 for j # ¢ and ith coordinate
v € T'. Then since ¢(I") is normal, we have that the commutator [a,b] € ¢(I"). The element
[a, b] is trivial in all but the ith coordinate, where it is [a;,y]. So the intersection of +(I") and
the ith factor (which is a normal subgroup of I') contains [a;, 7] for some non-trivial a; € T’
and all v € I'. Since I" is a non-abelian simple group, this means the intersection of +(I") and
the ith factor is non-trivial, and hence all of the ith factor. So ¢(I') is exactly the ith factor
of I'". We have thus showed that a normal subgroup of I that is isomorphic to I' must be
one of the m factors. So we have a well-defined map Aut(I'"™) — S,, (the symmetric group
on m elements), and note that Inn(I"™) is in the kernel of this map. If '™ is an irreducible
E-group, the action of H on the factors must be transitive, which proves m < |H]. O

Recall that a chief series of a finite group G is a chain of normal subgroups
(6.2) 1=Gy<xGi1<---<G, =G

such that for each 0 < i < r — 1, G; is normal in G and the quotient group G;,1/G; is a
minimal normal subgroup of G/G;. If M is a minimal normal subgroup of G, then define
pu to be the homomorphism

ov G — Aut(M)
g = (x> g9xg " pen

The kernel of py is the centralizer Cg(M) of M in G. So py; gives an isomorphism from
G/Cqs(M) to the subgroup pp (G) of Aut(M). In fact, since M is a minimal normal subgroup
of G, it is a direct product of isomorphic simple groups. If M is a direct product of isomorphic
abelian simple groups, i.e. an elementary abelian p-group, then py/(M) = Inn(M) = 1;
otherwise, py(M) = Inn(M) ~ M. Thus, Inn(M) is always a normal subgroup of py/(G)
and py(G)/Inn(M) ~ G/(M - Cg(M)).

Definition. A chief factor pair is a pair of finite groups (M, A) such that M is an
irreducible A-group and the A-action on M is faithful (hence A is naturally a subgroup
of Aut(M)). In particular, the chief series (6.2) gives a sequence of chief factor pairs
(Gis1/Gis pGyir (G G)), and we call them chief factor pairs of the series (6.2).

Definition. Two chief factor pairs (M;, A;) and (Ms, As) are isomorphic if there exists an
isomorphism « : M; — M, such that the induced isomorphism a* : Aut(M;) — Aut(M)
maps A; to As,.

The following is an analog of the Jordan-H&lder Theorem.

Lemma 6.3. Let G be a finite group. Suppose there are two chief series of G:

(6.4) 1=Gy<xGi1<---<G, =G
11



(6.5) and 1=ILi<xL<---<I,=G.
Then
(1) r=s;
(2) the list of isomorphism classes of chief factor pairs {(GHI/GZ-, pGM/Gi(G/Gi))T }
i=0
s—1
is a rearrangement of the list {(L‘H/L‘, pIM/Ii(G/IZ-)> }
i=0
Proof. We prove this by induction on |G|. The case that |G| = 1 is trivial. Assume the
lemma is true for all groups of order less than k£ and G is a group of order k. If G; = I; then

1 <G2/G1 <1--- Gr/Gl = G/Gl
and 1Q[2/]1Q[s/]1:G/Il
are two chief series of G/G1. So the lemma is proved for G by the induction hypothesis.
Assume G; # I;. Since they are minimal normal subgroups, GiNI; = 1 and G111 = G x 1.

Define J; to be the product G1I;. Then Jy/Gy ~ [ is a minimal normal subgroup of G/G;
and we can construct a chief series of G passing through G; and J;

(6.6) 1<Gi< a3 =G,

Comparing chief series (6.4) and (6.6), it follows by the inductive hypothesis for the group
G /G that r =t and

6.7) {(Gis1/Gi paascn (GIG)

-1

} ~ {(Gl,pGl(G)>,<J2/G1,p]2/G1(G/G1))7

<Ji+1/Ji7 PJis1/Ji (G/Ji)>t_;}

1=

r
1=0

where the symbol ~ means “is a rearrangement of”. Let m be the quotient map G — G/G.
As G1 <Cq(1h), if an element in G centralizes [y, then its image under 7 centralizes 7([;) =
Jo/Gy. Tt follows that 7(Cg(11)) € Caya,(J2/Gh). Conversely, if a is an element in G such
that m(a) € Cg/q, (J2/Gh), then for every h € I;, we have w(aha™') = m(h), which indicates
that there exists ¢ € G such that aha™' = hg. But I, <G, so aha™' € I;. Tt follows from
I, NGy = 1 that g = 1, and hence a € Cg(1y), which proves 7(Cg(11)) = Cga, (J2/Gh).
Thus we have

~

“eon) = ¢/ )6y

12

G/Gl/CG/Gl (J2/Gr)

Therefore the chief factor pairs <Il,ph(G)> and (Jg/Gl, pJZ/Gl(G/G1)> are isomorphic. So
the list (6.7) is

(6.8) ~ {(GlapGl(G))? (]1,011(G)>a (Jz'-l—l/JiainH/Ji(G/Ji))t_:}'

1=

Similarly, by comparing the following chief series of G
(6.9) I<h< < d3<---<ad=0G.

with (6.5), we finish the proof of the lemma. O
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Definition.  If G is a finite group, then define CF(G) to be the set consisting of all
isomorphism classes of chief factor pairs of a chief series of G (CF(G) does not depend on
the choice of chief factor series by Lemma 6.3). If T" is a set of finite groups, then

CF(T) = | cF(G).

GeT

The following lemma shows that every factor in R comes from CF(S).

Lemma 6.10. Let S be a finite set of finite groups, and R, F' and H as defined at the

beginning of this section. If G is an irreducible F'-subgroup of R, then (G, pg(F)) € CF(S)
and pe(F)/Inn(G) is isomorphic to a quotient of H.

Proof. Since F is a finite level S group and G is a minimal normal subgroup of F, we

have (G, F/Cr(G)) € CF(S). Further, R is a direct product of irreducible F-groups, so
R is contained in Cp(G) - G and it follows that (F/Cp(G))/Inn(G) = F/(Cr(G) - G) is a
quotient of H. O

In the rest of this section, we will bound the size of chief factor pairs.

Lemma 6.11. If S is a set of finite groups that is closed under taking subgroups and quo-

tients, then CF(S) = CF(S).
Proof. Since S is the closure of S under taking finite direct products, quotients and sub-
groups, it suffices to show that none of these three actions creates new chief factor pairs not
belonging to CF(S).

First, taking direct products and quotients does not create new chief factor pairs. If G
and J are finite groups with chief series 1 <G <+ <G, =Gand 1< J; <--- < Js = J.
Then the following chief series of G x J

119G x1<---Gx1<1GXx 1 <1---<GxJ

implies that CF (G x J) = CF(G)UCF(J). If N is a normal subgroup of G, then CF(G/N) C
CF(G) since we can always find a chief series of G passing through G/N.

Finally, assume J is a subgroup of G for G € S such that CF(G) C CF(S). We want
to prove CF(J) € CF(S). Let 1 <Gy < --- <G, = G be a chief series of G. We can
construct a chief series of J that passes through G; N J for every ¢ = 1,--- ,r. The chief
factor pairs achieved from the elements between G; N J and G;11 N J are achieved from
the group J/(G; N J) ~ (J - G;)/G;, which is a subgroup of G/G;. Thus it’s enough to
consider the positions between 1 and G; N J. Since (G, pg, (G)) € CF(G) C CF(S), there
is a group G’ € S and a minimal subgroup G of G’ such that the chief factors (G, pg, (G))
and (G, pey (G")) are isomorphic, i.e. 3 o : Gy = G such that o* : Aut(Gy) = Aut(GY)
maps pg, (G) to pg; (G'). Define A := pg,(J) = (J - Ca(G1))/Ca(G1) that is a subgroup of
pc,(G). Note that the action of A on G actually stabilizes Gy N J. Let J' := p(_;,i(a*(A))
and J; = a(G; N J). So J' is a subgroup of G’ satisfying the following short exact sequence

1 - Cu(G)) = J —a*(A) — 1.
and J] is a subgroup of G|, N J'.
Since C/ (G) < C (G N J"), the action of J' via conjugation on G| N J’ factors through

a*(A). Also, since the a*(A) action on G| stabilizes .J|, we have that Jj is a normal subgroup
13



of J'. Because G; N J with the action of A is isomorphic to J{ with the action of a*(A),
every chief factor pair of G achieved from positions between 1 and G; N J is also a chief
factor pair of J’ achieved via a series passing through Ji. Finally, J’ as a subgroup of G’
belongs to S, so CF(J) C CF(S) and we prove the lemma.

0

Corollary 6.12. If S is a set of finite groups, and I’ € S is a simple group, then T is in the
closure of S under taking subgroups and quotients.

Proof. If ' € S is a simple group, then (T, Inn(T")) € CF(S). By Lemma 6.11, T is in the
closure of S under taking subgroups and quotients. O

Corollary 6.13. Let S be a finite set of finite groups. Then CF(S) is a finite set. Moreover,

if £ is the upper bound of the orders of groups in S, then for any pair (M, A) € CF(S), the
quotient A/ Inn(M) is of level £ — 1.

Proof. Without lost of generality, let’s assume S is closed under taking subgroups and quo-

tients. By Lemma 6.11, CF(S) = CF(S) is finite, and for any chief factor pair (M, A) €

CF(S), there is a group G € S such that (M, A) € CF(G). If M is abelian, then |M||A] <
|G| < ¢; otherwise, M is non-abelian and |A| = |M||A/ Inn(M)| < |G| < . In either case,
we have |A/Inn(M)| < £ <0—1. O

Remark 6.14. The statement in Corollary 6.13 remains true if £ — 1 is replaced by |¢/2] but
we will not use that stronger statement.

7. COUNTING MAXIMAL QUOTIENTS OF IRREDUCIBLE F-GROUPS

In order to apply Theorem 5.1 to a group that we know, abstractly, to be a product of
irreducible F-groups, we need to know the multiplicities of the various irreducible F-groups
in the product. In this section, we relate those multiplicities to a count of surjections.

Theorem 7.1. Let G; be finite irreducible F'-groups for i = 1,...,k such that G; and G,
are not isomorphic for i # j. Then if G; is abelian

k
4 Surp (H G Gj> = hp(Gy)™ —1

i=1
and if G is non-abelian

k
# Surp (H o Gj> = mj| Autp(G,)).
i=1
This theorem follows immediately from Lemma 5.4 and the following lemmas.

Lemma 7.2. Let G; be finite irreducible F-groups for i = 1,...,k such that for i # j, we
have that G; and G; are not isomorphic. The restriction map

k
Surp (H G Gj> — Homp (G777, Gy)
=1

is a bijection to Surp (G;-nj, Gj) C Homp (G;-nj, Gj).
14



Proof. Note that in a surjection, each G; must go to a normal subgroup of G, and so by
Lemma 5.4 the restriction to every G; factor for ¢ # j is trivial. So that proves the above
restriction map is injective. The restriction map is surjective to Surp (G;-nj , Gj) since GTj is

a quotient of T, G7". O
Lemma 7.3. Let G be a finite irreducible F-group and m a positive integer. We have
Homp(G™,G) C Homp(G,G)™

by restriction to each factor. If G is abelian, then this inclusion is an equality. If G is non-
abelian, then we have that Homp(G™, G) is the subset of the m-tuples Homp(G,G)™ where
at most 1 coordinate is a non-trivial morphism in Homp(G,G). The only homomorphism
that is not surjective among those above is the trivial morphism.

Proof. If G is abelian, then for ¢; € Homp(G, GG), we have a morphism ¢ : G™ — G such
that ¢(a1,...,an) = [[ir; ¢i(a;). Note for ¢ € Homp(G™, G), with restrictions ¢; to the
factors, we have that a € ¢;(G) and b € ¢;(G) commute for i # j. Since ¢;(G) is 1 or G,
if G is non-abelian we see that at most one ¢; can be non-trivial. Moreover, clearly the m-
tuples Homp (G, G)™ where at most 1 coordinate is a non-trivial morphism in Hompg(G, G)
give elements of Homg(G™, ). For an F-morphism G' — G, if it is non-trivial, it must be
injective (since its kernel is a normal F-subgroup), and thus surjective. U

8. DETERMINATION OF My, ON BASIC OPEN SETS

Recall that X, ,, is the random group obtained by taking quotient of E, by n 4+ wu indepen-
dent random relations from Haar measure. The goal of this section is to prove Theorem 8.1,
in which we will give Prob((X,.,)° ~ H) for every finite set S and finite level S group H, i.e.
determine the measures of the basic open sets in the distributions coming from our random
groups. Throughout this section, we assume n > 1, S is a finite set of finite groups, H is a

finite level S group and
l1-=R—-F—H—=1

is the fundamental short exact sequence associated to S, n and H. For any abelian irreducible
H-group G, we define m(S,n, H, G) to be the multiplicity of G in R as an H-group under
conjugation (see Lemma 5.11). Let G be a non-abelian finite group. Let G; be the irreducible
F-group structures one can put on G. Then we define m(S,n, H, G) to be the sum (over 7)
of the multiplicity of the G; in R as an F-group under conjugation. Equation (4.2) and The-
orem 5.1 allow us to express Prob((X,,)° ~ H) in terms of the multiplicities m(S,n, H, G).
The work of this section will be to find explicit formulas for these m(S,n, H,G) (given in
Corollaries 8.8 and 8.10).

Theorem 8.1. Let S be a finite set of finite groups and H a finite level S group. Letn > 1
and u > —n be integers. Then

(8.2) Prob((X,,)® ~ H)
m(S,n,H,G)—
Sur(E,, H)| ha(G)* o .
N |A|ut H)||H[+ 11 H (1— |an+l>H<1—lG| ) SmIa),
GeAgy GeN
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and we have

(8.3) lim Prob((Xu,n)S ~ H)
= H H (S, H, G H o~ |Gl NS H,G)
|AUt ||H| GeAp i=1 |G| GeN

Further, if G € Ay UN is isomorphic as a group to IV for some simple group T', and
either 1) I" is not in the closure of S under taking subgroups and quotients, or 2) j > |H|,
then m(S,n, H,G) = \(S, H,G) = 0.

Remark 8.4. The products over Ay and N appearing in Theorem 8.1 are actually finite
products (except for trivial terms), because of the last statement in the theorem.

Remark 8.5. We will show in Section 11 that statement of Theorem 8.1 also works for an
arbitrary set .S of finite groups.

First, we need to define the Mobius function on a poset of H-extensions. Given a finite
group H, there is a poset £y of H-extensions (not isomorphism classes of H-extensions)
where (E,m) < (E',7') if (E, ) is a sub-H-extension of (E’, 7’). (This relation is defined for
literal sub-H-extensions and not H-extensions just isomorphic to a subextension.) We let
v(D, E) be the Mobius function of this poset (we drop the maps to H in the notation but
they are implicit) so that for two H-extensions D and E we have

v(E,E) =1

v(D,Ey=— Y v(D,E) i#D#E
D'e€y
D<D'<E

so that in particular
v(D,E)=0if D is not a sub-H-extension of £

0 otherwise.

D'ety
D<D'<E

Theorem 7.1 relates our key multiplicities m(S,n, H,G) to the number of F-surjections
from R to G. An F-surjection R — G has a kernel K, and we have a surjection from our

H-extension (F,)° — H to the H-extension F/K — H. The next proposition will count
such surjections of H-extensions.

Proposition 8.6. Let n > 1 be an integer, S a finite set of ﬁmte groups, and H a finite
level S group. Let (F,)5 % H be an H-extension structure on (F,)S. Let E = H be a finite
H extension. We have

(p,7)| = {ZDE(‘:H ,D<E v(D,E) (%)n if E is level S

| Sur
otherwise.

Proof. 1f (F,)5 — E is a surjection, then E is level S and hence | Sur(p, 7)| = 0 if E' is not
level S. If E is level S and (D,) < (E, ), surjections (F},)° — D exactly correspond to

surjections E, — D, i.e. choices of image for each generator xy, ..., z, of F), such that their
16



images generate D. For each generator x; of F,, we have a fixed coset of ker(m) in D it
can land in to actually obtain a surjection compatible with the maps to H. The number of
homomorphisms F,, — D where the generators go to the appropriate cosets is (|D|/|H|)".
Let E’ be a subgroup of D that could be generated by some 1, ...,¥, with each y; in the
required cosets of ker(w). Since p is a surjection, it follows that 7(E’) = H. So we have

(%) = 3 [Swalpo)l.

(E',¢)EEH
(E',9)<(D¥)

Using Mobius inversion, we obtain the result. We can sum the above as follows. Given a
finite H-extension (£, 7) of level S, we have

S u(D.E) (%) - Y DB Y |Sunlpd)

(D)< (E,m) (D)< (E,m) (E',¢)< (D)
= ) |Suru(p¢)| > v(D, E)
(E',¢)<(E,m) (B ,¢) (D)< (E,m)
= | Sury(p, T,
as desired. O

Now we will build on Proposition 8.6 to find | Surg(R, G)|, after which we can then use
Theorem 7.1 to find the m(S,n, H,G). We will first do the case of abelian G, and then
non-abelian G.

Proposition 8.7 (Counting surjections from R to abelian G). Let H, F', and R be defined
as at the beginning of this section. Let G be an abelian irreducible F'-group. Then

ZDegH,DgE v(D, E) <%>
| Auty (E, )|

| Surp(R, Q)| = | Autp(G)| >

isom. classes of H-extensions (E, )
kerm ~ G as an H-group
E is level S

if the action of F' on G factors through F — H (i.e. elements of R act trivially on G) and
| Surp(R, G)| = 0 otherwise.

Proof. We have that |Surp(R, G)| is | Autp(G)| times the number of F-subgroups M of R
such that R/M under F-conjugation is isomorphic to G as an F-group. If M is an F-
subgroup of R such that R/M is abelian, then the action of F' via conjugation on R/M
factors through H (because conjugation by elements from R is trivial in R/M as R/M is
abelian). So suppose that the action of F' on G factors through H. We have the number of
F-subgroups M of R such that R/M is isomorphic to G as an F-group is

(F/IM — H) ~ (E,7) as H-exts,}

Z i {F-subgrouPS M of R R/M ~ G as F-groups

isom. classes of
H-extensions (E, )

R/M ~ G as F-groups

= Z # {F—subgroups M of R
isom. classes of

H-extensions (E, )
ker 7~G as groups

(F/IM — H) ~ (E,7) as H-exts,}
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Given that R/M is abelian (which is guaranteed by the group isomorphism ker 7 ~ G and
the H-extension isomorphism (F/M — H) ~ (F,)), since the action of F' on R/M factors
through H, we have that R/M is isomorphic to G as an F-group if and only if it is isomorphic
to G as an H-group. Given (F/M — H) ~ (E,7), this is the same as requiring kerm ~ G
as an H-group. Thus the above sum is equal to

Z # { F-subgroups M of R | (F/M — H) ~ (E, ) as H-exts}

isom. classes of H-extension (E,m)
ker 1~G as an H-group

M an F-subgroup of R
FYMON - piat = oY ~ (B, 7)
| Auty (E, )|

- 5

isom. classes of H-extension (E,m)
ker 1~G as an H-group

Note that the data (M, ¢) above is exactly the same as the data of a surjection of H-
extensions from F' — H to £ — H.
Now let (E,m) be an H-extension with ker 7 (via conjugation) an abelian irreducible H-

group. Consider a surjection of H-extensions from (F,)® — H to E — H, in which the

A A

map (F,)5 — E has kernel K. Let N denote the kernel of (F},)% — H. Then N/K ~kerw

~

is an irreducible (F},)%-group, and so K is a maximal proper (Fn)s-subgroup of N. So the

map (F},)° — E factors through F. On the other hand, any surjection of H-extensions from

F — H to E — H clearly extends to a surjection of H-extensions from (F,)5 — H to
E — H. Thus the above sum is equal to

Z | Sury ((F,)% — H,7)|
isom. classes of H-extensions (E, ) | AutH(E’ 7T)|
kerm ~ G as an H-group

The result now follows from applying Proposition 8.6 above, after dividing out by the number

of choices of isomorphism to (F, ). O

We now can determine the multiplicities of the abelian irreducible F-groups in R by
combining Theorem 7.1 and Proposition 8.7.

Corollary 8.8 (Multiplicities of abelian G in R). Let H, F' and R be as above. Let G be an
abelian 1rreducible H-group. Then

DI\
hH(G) -1 isom. classes of H-extensions (E, ) ‘ AU_tH(E7 7T)| .

kerm ~ G as an H-group
E is level S

Next, we will apply a similar plan to obtain the multiplicities of the non-abelian G, but
there is an important difference from the abelian case. When ker(E — H) is non-abelian, a
surjection of H-extensions F' — FE still gives an F-group structure on ker 7 by conjugation
in F, but, unlike in the case when ker 7 is abelian, that F-group structure is not necessarily

determined by the isomorphism type of the H-extension (F, 7). So in this case it is most
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convenient to add together, for each possible underlying group G of a non-abelian irreducible
F-group, all surjections F' — E over all G extensions E of H.

Proposition 8.9 (Counting surjections from R to non-abelian GG). Let H, F' and R be as
above. Let G be a finite non-abelian group. Let G; be the pairwise non-isomorphic irreducible
F-group structures on G for 1 <i <k (k may be 0). Then

| Surp(R, G | > peey,p<p (D, E) (%)n
Z - 2 -
‘AUtF

isom. classes of H-extensions (E, ) | AutH(E’ 7T)|

kerm ~ G
ker w irred. E-group

E is level S

Proof. We note that | Surp(R, G;)|/| Autp(G;)| is the number of F-subgroups of R whose
corresponding quotient is isomorphic to G; as an F-group. We have

Z|SurFRG |

| Alltp

ZZZ#

isom. classes of
H-extensions (E, )

IZZ#

isom. classes of {

(F/M — H) ~ (FE,r) as H-exts

b M of R
-subgroups M 0 R/M ~ G, as F-groups

F-sub M of
subgroups M of R/M ~ G, as F-groups

H-extensions (E, )
kerm ~ G

(F/M — H) ~ (FE,r) as H-exts

F-sub M of R
Substotips Ao R/M ~ G, as F-groups

k
isom. Classes of =1
H-extensions (F, )

kerm ~ G

(F/M — H) ~ (E, 7 asHexts}

k
= Z # < F-subgroups M of R

isom. Classes of =1

R/M ~ G, as F-groups

(F/M — H) ~ (E,m) as H—exts}

H-extensions (F, )

kerm >~ G
ker 7 irred. E-group
= Z #{F-subgroups M of R|(F/M — H) ~ (E, ) as H-exts }
isom. classes of H-extensions (F, )
kerm >~ G
ker 7 irred. E-group
M an F-subgroup of R
# M o)
¢:(F/M — H) ~ (E,r) as H-exts
N 2 [Auty (E, 7))

isom. classes of H-extensions (E, )

kerm ~ G
ker 7 irred. E-group

The second equality follows because (F/M — H) ~ (E,7) and R/M =~ G, imply that
ker m ~ G. The fourth equality follows because (F/M — H) ~ (E,n) and R/M being an

irreducible F-group imply that ker 7 is an irreducible E-group. The fifth equality follows
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because ker 7 ~ G and ker 7 being an irreducible E-group and (F/M — H) ~ (E,7) imply
that R/M is isomorphic to some G; as an F-group.

Then we obtain the desired result by applying the same argument as at the end of Propo-
sition 8.7. 0

We now can determine the multiplicities of the non-abelian irreducible F-groups in R by
combining Theorem 7.1 and Proposition 8.9.

Corollary 8.10 (Multiplicities of non-abelian G in R). Let H, F' and R be as above. Let G
be an non-abelian finite group. Then

ZDESH p<pV(D, E) (%)n

S,n,H,G) = — :
S LG = > [ Aty (B, )

isom. classes of H-extensions (E, )

kerm ~ G
ker w irred. E-group

E level S

Finally, before we prove Theorem 8.1, we need the following lemma, whose proof is straight-
forward.

Lemma 8.11. Suppose xy,xs,... is a sequence of real numbers with limit x, and y, ...
is a sequence of real numbers with limit co. Let a > 1 be a real number. Then f(x) =
[T2, (1 —za™") is continuous in = and
Yn )
lim H(l —r,a7") = H(l —xa™").
n—oo
i=1 i=1
Proof of Theorem 8.1. Equation (4.2) and Theorem 5.1 establish Equation (8.2) of Theo-
rem 8.1. Recall that for G a finite abelian irreducible H-group, we have defined

1
A(S, H,G) == (hu(G) — 1) > TAuty (B, )|
isom. classes of H-extensions (E, ) HAS
such that ker 7 ~ G as H-groups,

and F is level S
and Corollary 8.8 gives that

b\ "
hi(G)™SmHE) 1 Z > peey.n<p V(D E) (H)
hH(G) -1 isom. classes of H-extensions (E, ) ‘ AUtH(E’ ﬂ-)‘ .
kerm ~ G as an H-group
E is level S

So we have

B (G)m(SnHG) hoy(G)Y™SnHG) _ 1
lim 1(G) = lim 1(G)

ZDegH,DgE v(D, E) (%)n

. hg(G) -1

= lim o Z At (B

e | ‘ isom. classes of H-extensions (F, ) ‘ u H( ’ﬂ-)‘
kerm ~ G as an H-group

E is level S

Note for any D # E in the above sum, we have lim, . |D|*|H|™"|G|™ = 0. Thus we

conclude (and similarly in the non-abelian case using Corollary 8.10) that A(S, H,G) is
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related to m(S,n, H, G) as follows:

m(S,n,H,G)
(8.12) lim hH(Gf G = ME.HLG) for G € Ay
lim % — \(S,H.C) for G € .

Remark 8.13. Note that since by Remark 5.2, for G € Ay, we have that |G| is a power of
hu(G), it follows that \(S, H,G) is an integral power of hy(G), and that the limit above
stabilizes for sufficiently large n.

We next establish the final statement of Theorem 8.1. Since any irreducible F-group factor
of Ris in S, Corollary 6.12 shows that it is a power of a simple group in the closure of S
under taking subgroups and quotients. Lemma 6.1 shows that the power is bounded by |H],
showing the final statement of Theorem 8.1.

To establish Equation (8.3), it will suffice to take the limit of a factor in Equation (8.2)
corresponding to a single G (since there are only finitely many G with non-trivial factors,
independent of n, by Lemma 6.10 and Corollary 6.13). The factor in Equation (8.2) for a
Ge Ay is

m(S,n,H,G)—1 m(S,n,H,G) m(S.n —i
[[ o290 [ o @ (@)
Pl |G P |Gt '

If there are no extensions F in the sum in Corollary 8.8, then m(S,n, H, G) and A(S, H, G) are
0. Otherwise A\(S, H,G) > 0, and thus it follows from Equation (8.12) that m(S,n, H,G) —
oo as n — oo. So using Lemma 8.11 and Equation (8.12), we obtain the limit in Equa-
tion (8.3) for a single factor G € Ap. In a similar but simpler fashion, from Equation (8.12),
we obtain the limit in Equation (8.3) for a single factor G € A/. This completes the proof of
Theorem 8.1. 0

9. COUNTABLE ADDITIVITY OF fi,,

The goal of this section is to prove Theorem 9.1 which states that p, defined in Equa-
tion (3.1) is countably additive on the algebra A. It then follows from Carathéodory’s
extension theorem that pu, can be uniquely extended to a measure on the Borel sets of P.
The heart the proof of Theorem 9.1 is Theorem 9.2. We will first prove Theorem 9.2 in
Section 9.1, and then prove Theorem 9.1 in Section 9.2.

Theorem 9.1. Let u be an integer. Then i, is countably additive on the algebra A generated
by the Us g for S a finite set of finite groups and H a finite group.

Theorem 9.2. Let ¢ be a positive integer. Recall that Sy is defined to be the set consisting
of all groups of order less than or equal to £. For a non-negative integer u, we have

> tu(Us,m) = 1.

H is finite and level £
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9.1. Proof of Theorem 9.2. Assume / is a positive integer, H is a finite level £ group and
let H = H%-' . In Lemmas 9.3 and 9.4, we will first give upper bounds for the number of
irreducible factors G with non-zero m(Sy, n, H, G) for some n that are isomorphic to a given
underlying group M.

Lemma 9.3. Suppose M is a direct product of isomorphic abelian simple groups. Then

G ~ M and g o
m(Séa n, H, G) #0 for somen | — Z ) ‘ ur( ) )‘7
(M,A)ECF(Sy)

#{GEAH

where the notation on the right-hand side above means that the sum 1is taken over all chief
factor pairs in CF(Sy) whose first components are isomorphic to M as groups.

Proof. We give an injection
Ged ¢: G~ M and
€ Au, ¢ m(Se,n, H,G) # 0 for some n

Consider G € Ay and ¢ : G ~ M such that m(Sy,n, H,G) # 0 for some n. Assume
l1-=R—-F—H—1

is the fundamental short exact sequence associated to Sy, n, and H. Then G appears as a
factor in R and (G, pg(F)) € CF(S;). Using ¢ : G ~ M, we have that the quotient pg(F)
of H acts on M, and so (M, po(F)) € CF(S;). We let m be the quotient map from H to
pa(F). Given (M, A) € CF(S,) and m € Sur(H, A), we can use 7 to give M the structure of
an irreducible H-group, and let ¢ be the identity. This recovers G and ¢, though possibly
without m(Se, n, H, G) # 0. By Corollary 6.13, if (M, A) € CF(S,), then A/ Inn(M) ~ A is
a group of level £ — 1. Then by the definition of pro-S completion, Sur(H, A) is one-to-one
corresponding to Sur(]?I ,A) and we finish the proof. O

} S {(M, A) € CF(S), 7| 7 € Sur(H, A)}.

Similarly, for non-abelian irreducible factors, we have the following lemma.

Lemma 9.4. Suppose M is a direct product of isomorphic non-abelian simple groups. Then

ker m ~ M 1is irred. E—group}

- {mm' classes of H-extensions (B, | g s jeye ¢

< > | Sur(H, A/ Inn(M))].

(M,A)eCF(S,)

Proof. We give an injection

FE is level /¢
— {(M,A) € CF(S)),¢| ¢ € Sur(H, A/ Inn(M))}.

Consider an isomorphism class of H-extension (F, ) such that ker 7 ~ M is an irreducible

E-group and E is level £. Then (ker 7, pyer«(E)) € CF(Sy), and pre» induces a surjection

¢ H = pror(E)/Inn(M) since pyerr i an isomorphism when restricted on ker 7 that

maps ker 7 to Inn(M). Suppose (M, A) € CF(Sy) and ¢ € Sur(H, A/ Inn(M)). If two H-

extensions (Ey, ;) and (Esy, m2) both map to (M, A) and ¢, then from the diagram below
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ker m >~ M is irred. E-group
isom. classes of H-extensions (E, )



we see that F; and E, are both the fiber product of ¢ and A — A/Inn(M), so (Ey,m)
and (FEs, m) are isomorphic as H-extensions. Therefore, the map defined at the begin of the
proof is an injection. Then the lemma follows as Sur(H, A) is one-to-one corresponding to

Sur(H, A).

2

EFL—" s H

J/pker T l¢

A —— A/Inn(M)

Let P, ,,(Us, i) denote the product in Equation (8.2), i.e

m(Se,n,H,G)—

P,n(Us, n) H H (1 _ M) H (1— |G| "™ m(Se,n,H,G)

+
GeAy |G‘n ! GeN

Lemma 9.5. Suppose £ > 1 n > 1 and uw > —n are integers and H is a finite level
{—1 group. Then there exists a non-zero constant c(u,, H) depending on u,l and H such
that, for every finite level € group H with HS-1 = H either P, ,(Us,.m) > c(u, ¥, H) or
Pu,n(USe, ) 0.

Proof. For each G € Ay, GG is a direct product of isomorphic abelian simple groups, i.e.
G is a direct product of Z/pZ for some prime p. By Remark 5.2, hy(G) is a power of p
and |G| is a power of hy(G). Note that both of the trivial map (every element maps to 1)
and the identity map of G respect the H-action, therefore hy(G) > 1. So if the product

;n:(‘g""’H’G)_l(l — }Ilg‘(ﬁ)j ) is nonzero, then it is a product of 1 — p~* for distinct positive

integers 7, which is greater than [[,—,(1 —p™*) > [[,2,(1 — 27%). If P,,(Us, i) # 0, then

m(Se,n,H,G)— m(Se,n,H,G)—1

hy(G)* hy (G)*
T o3 - 11 I o

GeAy GeAy and k=0
m(SZ7n7H7G)7éO

0o
> 11 [Ta-2*
GeAy and k=1

m(Sg,n,H,G)#0 for some n

M oo 1 #{GeAy|m(Se,n,H,G)#0 for some n}
- [TI0-2

Lk=1 J

L ooy S

M,A)eCF(S

> H(l — 2Ry M abelian :

Lk=1 _




where the last inequality follows from Lemma 9.3. Therefore, if P, ,,(Us, i) is non-zero, then
its abelian part has a lower bound depending only on ¢ and H. Similarly, for the non-abelian
part, we consider

m(Sy,n,H,G)
\G\”JF“
H (1 o |G|—n—u)m(Se,n,H,G) > H |:(1 _ 1)2]
2
GeN GeN
m(Sy,n,H,G)

_ [ L] B
2 Y

where the first inequality follows because (1 — %)” is an increasing sequence. Then we have

Z m(Sg, n, H, G)
G

GeN

IGI™" > peey.p<p V(DvE)%

S >

GeN isom. classes of H-extensions (E,r) | AUtH(E’ 7T)|
ker 1>~G
ker 7 irred. E-group
FE is level £

< Glua ) ; 1 ¢ Hooxtons P ker 7 ~ G is irred. E-group
< Z |G|7“# < isom. classes of H-extensions (E, ) 7 is lovel ¢

GeN
< el D] [Sw(H, A/In(G)))|

GeN (G,A)eCF(S,)

- > |G Sur(H, A/ Inn(G))|.

(G,A)eCF(Sy)

G non-abelian

The first equality above is Corollary 8.10. The first inequality follows from the fact that
| Sur(p, 7)| in Proposition 8.6 is less than or equal to |G|". The second inequality follows by
Lemma 9.4. It shows that the non-abelian part also has a lower bound depending on u, ¢
and H. By Corollary 6.13, CF(S,) is a finite set, so these lower bounds for abelian part and
non-abelian parts are both non-zero. Then we proved the theorem. O

Now, we establish the inductive step that is crucial in the proof of Theorem 9.2.

Lemma 9.6. Let { > 1, n > 1, u > —n be integers, and H be a finite level £ — 1 group.

Then
lim E :uum(USbH) = E NU(USe,H)'
n—00
H is finite level £ H is finite level £
s.t. H=H -1 s.t. H=H -1

Proof. Assume H is finite and level ¢ such that H = HS%1. Let i(H) be the smallest

integer such that | Sur(F,, H)|/|H|" > : for all n > i(H) (note that ¢(H) is finite since
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limy, o | Sur(Fy,, H)|/|H|" = 1). Then either ji,,(Us,.z) = 0 or

| Sur(E,, H)|
:u’u,n(US[,H> |Aut(H)||H|n+uPU7n(USLH)
1 ~ 1
> - H——
> et )|Aut(H)||H|u

for n > i(H), by Lemma 9.5. We call H achievable if it is finite level ¢ and there exists n
such that p,,(Us, i) # 0 (we will give an equivalent definition in Section 13). The function
tun(Us, i) of H is dominated by the function of H that is W when H is achievable
and 0 otherwise. We will next show that the sum of this dominating function converges, in
order to use Lebesgue’s Dominated Convergence Theorem. We have

1 1
= lim S
2 [Aut(H)[[H[* — noeo > | Aut(H)[[H|"

H is achievable H is achievable

s.t. HoeHo0-1 s.t. Hofoe—1
and i(H)<n
. 2
S h_)m EE—— g ,U/u,n(US[,H>
n—00
C(u> E? H) H is gchievgble
st HeHS0-1
and i(H)<n
2
< —
c(u,l, H)

where the first equality expresses the implicit infinite sum as an explicit limit. Thus by
Lebesgue’s Dominated Convergence Theorem,

lim E :Uu,n(USe,H) = E lim :Uu,n(USe,H)a
n— oo n— oo
H is finite level £ H is finite level £
st. HeHY0-1 st. HeHY0-1
which completes the lemma. O

Proof of Theorem 9.2. We proceed by induction on /. When ¢ = 1, note that the trivial
group is the only group that is finite level 1 and it’s obvious that y,(Us, 1) = 1. Assume the
theorem is true for £ — 1, i.e.

Z ’u“(USthﬁ) =L

H is finite level ¢—1

We see that for any finite level £ — 1 group H
mUs, ) = N pn(Us, | )

= lim Z ,uu,n(US&H)

n—00
H is finite level £

s.t. H=H%e-1

= Z pu(Us, 1),

H is finite level £
st. H=H"t-1
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where the second equality above follows from the definition of p, , on basic open sets and
the last step follows from Lemma 9.6. Therefore, we finish the proof by

Y wUsm) = > Y. mUsnm)

H is finite level ¢ H is finite level ¢—1 H is finite level £
s.t. H=H%-1

= Z :Uu(USl,l,ﬁ)

H is finite level £—1
= 1.

9.2. Proof of Theorem 9.1. We will use the following corollary of Theorem 9.2.

Corollary 9.7. Let { be a positive integer, and B = U32,Us, g, for some finite groups H;
such that US@,H]» 75 USijf fOTj 75 j/ (note that USZ,HJ' 75 USijf implz’es USZ,H]‘ N USZ,HJ-/ = @)
Suppose that B € A, the algebra of sets generated by the basic open sets Ugq for a finite
set S of finite groups and a finite level S group G. Let u be an integer. Then u,(B) =

Z]O'il MU(USe,Hj)'

Proof. Since p,, is defined as a limit of measures f,,, it is immediate that g, is finitely
additive because finite sums can be exchanged with the limit. Let G; be the level ¢ finite
groups not among the H;. Then for every positive integer M, we have

M M
> pu(Usp) < pu(B) < 1= pu(Us, )
j=1 j=1
Taking limits as M — oo gives
Z MU(US(,H]‘> S ,uu(B) S 1 - Z /’LU(US(,GJ'> = Z /*’LU(US(,H]‘>7
j=1 j=1 j=1

where the last equality is by Theorem 9.2. U

Proof of Theorem 9.1. If we have disjoint sets A, € A with A = U,>1 4, € A, by taking
B, = A\U;‘ZlAj, it suffices to show that for By D By D ... (with B, € A) with N,>1B,, =
we have lim,,_, p1,(By) = 0.

We can assume, without loss of generality, that for each £ > 1, we have B, = U;Us, g, ;
(i.e. By is defined at level ¢). (Note that when all groups in S have order at most m that
Us p is a union of sets of the form Ug,, ¢ for varying G. We can always insert redundant
By’s if the level required to define the B, increase quickly.) We will show by contradiction
that limy . o (Be) = 0.

Suppose, instead that there is an € > 0 such that for all ¢, we have p,(By) > e. It follows
from Corollary 9.7 that for each ¢ we have a subset K, C By such that p,(B,\ K;) < ¢/2¢!
and K is a finite union of Us, .Gy,

Next, let Cy = N{_; K;. Then p,(B; \ Cy) < €/2, since

Mu(BZ\CZ) :MU(BZ\KE)+MU(K5\K5ﬂK5_1)+"'—|—,uu(Kzﬁ"'mKQ\Kzﬁ-“ﬂKl)

<€/2£+1 + ,uu(BZ—l \ Kz_l) + -+ ,uu(Bl \ Kl)
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<e/2 fe/2f - €)%

So 1, (Cy) > €/2 for each ¢ and in particular it is non-empty. Note Cpyq C Cy for all . Pick
zp € Oy for all £.

Note Cy is defined at level ¢ and a finite union of the basic open sets Us, Gy ;- Pick an H; so
that infinitely many of the x, are in Ug, g, (this is possible since all 2, are in C and there are
only finitely many Ug, g that make up C}), and then disregard the z, that are not in Ug, g,
In particular note Ug, g, C C;. Then pick Hj so that infinitely many of the remaining z, are
in Ug, u,, and disregard the z, that are not. Since all of the remaining z, are in Ug, g,, we
have Us, g, C Us, u, and hence H; is a quotient of H,. Also note Ug, g, C C5. We continue
this process and then consider the profinite group H that is the inverse limit of the H,’s.
Since H € Ug, y, C C; C By for all ¢, we have a point H € Ny>1 B, which is a contradiction.

O

10. PROOF OF THEOREM 1.1

The last section established the existence of the probability measure p, on Borel sets of
P. Now we are able to give the proof of Theorem 1.1, the weak convergence of the f,, to

b
Proof of Theorem 1.1. Note that the weak convergence i, , = [, is equivalent to that

lim inf j1,.,,(U) > 1,(U)
n—oo

for all open sets U. In the topological space P, every open set is a countable disjoint union
of basic open sets, since two open basic open sets having nontrivial intersection implies that
one basic open set contains the other. Assume U = U;>1U; is an open set, where U; are
disjoint basic open sets. By Fatou’s lemma, we have

ma(U) =Y paUs) = ) lim pryn(Us) S liminf Y g (Us) = liminf 2, (U).

n—oo
i>1 i>1 i>1

11. FOR ARBITRARY SET S

In this section, we let S be an arbitrary (not necessarily finite) set of finite groups and
consider the value of u, on the specific type of Borel sets

Vou ={X eP|X°~H)}

for a finite level S group H. We will first prove an analogue of Theorem 8.1 for an arbitrary
set S (see Theorem 11.4), the proof of which shows that Equation (8.3) gives the value
Hu (VS,H ) .

Note that Vg is not a basic open set, but is the intersection of a sequence of basic open
sets. Since we will approximate S by increasing finite subsets, we need the following lemma.

Lemma 11.1. Consider two sets T C T of finite groups. For any positive integer n, finite
group H of level T, and G € Ag UN, we have m(T,n, H,G) < m(T",n,H,G). Also if
T, C Ty C --- are finite sets of finite groups, then m(T,,,n, H,G) eventually stabilizes as

m — OQ.
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Proof. Consider the case when G is abelian. Let p : FTm - H be a surjection. Corollary 8.8
and Proposition 8.6 give

hig (GG 1 > |Sur(p. )]
@ -1  TAuty (B, m)]

isom. classes of H-extensions (F
kerm ~ G as an H-group
FE is level Ty,

The right-hand side is clearly non-decreasing in m. There are only finitely many isomorphism
classes of H-extensions whose kernel is isomorphic to G, which proves the stabilization. The
case of non-abelian G is similar. O

Definition. Let S be a set of finite groups, n a positive integer, and H a finite level S
group. Let T} C Ty C --- be finite sets of finite groups such that U,,>,7,,, = S. For any
G € Ay UN, we define m(S,n, H,G) = lim,, oo m(Tyn,n, H,G).

Remark 11.2. It’s clear that m(S,n, H,G) does not depend on the choice of the increasing
sequence T;, and m(S,n, H,G) is always a non-negative integer.

It is actually easier to determine pu,(Vs ), as we will in the next lemma, than to find
lim,, o0 ftun(Vs ), which we will do in Theorem 11.4.

Lemma 11.3. Let S be a set of finite groups. Let Ty C Ty C --- be finite sets of finite
groups such that U,,>1T,,, = S. Let H be a finite group of level S. Let u be an integer. Then

(V) = lim lim Prob((X,,)™ ~ H)
hH(G)_Z _ —u
_ q |GI~“A(S,H,G)
i 11 [[0 - x50 a1l
GeAy i=1 GeN

Proof. First of all, since j, is a measure and the sequence Uy, gz is descending, we have

pu(Vem) = pru(N m>1Ug, HTm ) = hm ,uu(UT HTm) = lim lim Prob((X un)Tm ~ H).

mM—r00 N—00

By definition, we have that A(T, H, ) is non-decreasing in 7', i.e. if T' C T" then \(T, H,G) <
MT', H,G). Further, again by definition, we have

AS, H,G) = lim \NT,,, H,G).
m—r0o0
When m is sufficiently large such that H is level T,,, we have
lim Prob((Xu,n)Tm ~ H)

n—oo
hH(G) _i —_ G 7u>\ G
— " H H M, H,G)—57"—) H o~ |GIT AT, H,G)
|Aut )| H]| et i Il 11
by Equation (8.3) since T, is finite. For each G € Ay, the factor

ﬁu — (T, H, G)%

i=1

)
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is a limit of terms
m(vaanvG)

H (1 B hH(G)m(Tm,n,H,G)hH(G)—i>
[EaE

i=1
by Lemma 8.11, each of which is a probability (see Corollary 5.10) and hence in the interval
[0, 1]. Since the factors

o0

[[a - T, H.G)

i=1

) and o= |G AT H,G)
|G
are all in [0, 1] and are non-increasing in m, we have the second equality in the following

lim lim Prob((Xu,n)Tm ~ H)

mM—r00 N—00

hu(G)™ —|G|UN(Ton H,G
lim uHH MNTn, H,G)——=—— )I_Ie‘| (T, H,G)
’”*“"A“t JIIH ey Gl G
1 . hu(G)™ G|=“\(Tm,H,G
- lim | [(1 - X7, H,G)—=— lim e~ G ATm H,G)
| Aut(H)[[H[* H "HOO.H G GHV"HOO
hu(G)™ —|G|UA(S,H,G
= UHH MS, H,G)———) ] el &0,
|A“t NH Ged, it G Gy
The last equality uses the continuity from Lemma 8.11. U

Theorem 11.4. The statement in Theorem 8.1 also works for an arbitrary set S of finite
groups.

Proof. Let T,,, be the subset of S of all groups of order at most m in S. Since H is level S,
for large enough m we have that H'™ = H, and from now on we only consider m this large.
We can show that G® ~ H if and only if for every m > 1 we have G'™ ~ H. Since G™m
is a quotient of G®, the “only if” direction is clear. If we take the inverse limit of the sets
Isom(GTm, HT), with the natural maps, we have an inverse limit of non-empty finite sets,
which is non-empty. An element of this inverse limit gives us an isomorphism G° ~ H*.

From this, and the basic properties of a measure, and Equation (8.2) for finite S, we have
that

Prob((X,,)° ~ H)
m(Tm,n,H,G)—

, Suan,H h(G)* e n
= lim | H H (1_ i >)H(1_|G| Y@ HG)

e TR [ERERES?

From Lemma 11.1, we have that
m(Tm,n,H,G)—1

[ -7 ad =y

k=0

are non-increasing in m, and as they are probabilities they are in the interval [0, 1]. Thus it
follow from basic analysis that

Prob((X,,.)° ~ H)
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m(Tm,n,H,G)—1

| Sur(F,, H)| ,
_ 1
| Aut(H)||H [+ Gg Jim ]

k=0

G)k) H lim (1 . |G|_n—u)m(Tm,n,H,G)
G|”+“ m—00

GeN
By definition of m(S,n, H, G), we have that lim,, .. m(T,,,n, H,G) = m(S,n, H,G) (and
the latter is finite). Thus, we have

Prob((X,,)° ~ H)

m(S,n,H,G)—

| SU_I‘ Fn, H H H (1 . hH(G)k> H (1 . |G‘—n—u>m(5,n,H,G)’

- + +
| Aut(H)[[H[" 24 |Gl oo

which is Equation (8.2) for arbitrary S.

Next, towards Equation (8.3) for arbitrary S, we will show that the order of the limits in
Lemma 11.3 could be exchanged. )

For every m, we have Prob((X,,)° ~ H) < Prob((X,,)" ~ H) and so

lim sup Prob((Xu,n)S ~ H)

n—oo

< lim lim Prob((X,,)"™ ~ H)

m—ro0 N—r00

hH(G)_Z _ —u
11.5 = [] | [(1-\(S. H,G)—2—) [] e EH,
o) | Aut(H)| | H]|* HHI“ e

GeAy i=1 GeN

From here we consider two cases. Case 1 will be the following:

Z h ALS, ng Z 7)\(S’GHU’ G) diverges.
GeAy ‘ | GeN | ‘

In case 1, the product in Equation (11.5) is 0, and we have proven lim,,_,, Prob((X, )" ~

H) = 0, establishing Equation (8.3).
Case 2 will be the following:

S H,G) A(S, H,G)
Z " Z — A, converges.
GeAy h |G‘ GeN ‘G|

We define a minimal non-trivial H-extension (F, ) to be an H-extension whose only quotient
H-extensions are itself and the trivial one. These are exactly the H-extensions with ker 7
an irreducible E-group (under conjugation). Also, these are exactly the H-extensions (E, )
such that ker 7 is an abelian irreducible H-group or ker 7 is a power of a non-abelian simple
group and an irreducible E-group. Since | Aut(E)| > | Auty(E, 7)| and hy(G) > 2, we have

S H,G) AS,H,G) _ 1 i
2 st Tan 23 2 | Aut(E)] |G
GeAy hu ‘G| GeN |G‘ 2 (E,m) min. non-triv. H-extension
E level S

Since we are in case 2, the sum on the right converges, and

lim > | Aut(E)| B
m—oo
(E,7) min. non-triv. H-extension

E level S, but not level T},
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= 1HI™ Jim, > Aut(B) Gl
(E,7) min. non-triv. H-extension

E level S, but not level T,

= 0.

If (Xuvn)g * H, but (Xu,n)Tm ~ H for some m, then X, , has a surjection to H and thus
Xu.n has a surjection to some minimal non-trivial H-extension (E, m) of level S but not level
T,,. Note that

Prob(X,,, has a surjection to F) < E(quotients of X, , isom. to E)
= | Aut(E)|"E(| Sur(Xyq, £)])

- | Sur(E,, E)|
‘E‘n—i—u
< [Aut(E)|~HE| ™

— | Aut(E)

Thus,
Prob((Xy,)® ~ H) > Prob((X,,)™ ~ H) — > | Aut(E)| !B
(E,7) min. non-triv. H-extension
E level S, but not level T},
and

lim inf Prob((X,,,)° ~ H)
n—oo

> lim Prob((X,,)™ ~ H) — E | Aut(E)| " Bl
n—00
(E,7) min. non-triv. H-extension

E level S, but not level T},

Now we take a lim,, ,», of both sides and conclude Equation (8.3) for arbitrary S. Finally,
note that if m(S,n, H, G) # 0, then m(T,,, n, H, G) # 0 for some m, and so the last statement
of Theorem 8.1 for infinite S follows from the same statement for finite S. O

Though this doesn’t follow from weak convergence (see Proposition 14.2 and Remark 14.3,
for example), we see here that 1, and lim,_, jt,, agree on the Vg .

Corollary 11.6. Let S be a set of finite groups and H a finite level S group. Then we have
T pn(Vsa) = pru(Ve,m)-
Proof. In the proof of Theorem 11.4, we showed that
lim lim Prob((X,,)™ ~ H) = lim lim Prob((X,,)™ ~ H).

n—00 M—00 mM—00 N—00

By Lemma 11.3, the right-hand side in the above equation is y1,(Vs g). Also, since ji,,, are
measures on P, we have lim,, o, Prob((X,,)™™ ~ H) = jyn(Vs.). O

12. EXAMPLES OF THE VALUES OF [,

In this section, we will apply Theorem 11.4 to compute p,(A) for some interesting Borel
sets A.
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Example 12.1 (Trivial group). Let S contain every finite group. Then the trivial group is
the only element in Vs,. By Lemma 6.1, if (E,m) is an extension of the trivial group such
that ker w is irreducible E-group, then E is a finite simple group. Then it follows from the
definition of (S, H,G) that

1 G 1s a non-trivial abelian simple group
AS,1,G) = |Awt(G)|™' G is a non-abelian simple group
0 otherwise,

where in the first case, we use the fact that hy(G) — 1 = |Hom(G,G)| — 1 = | Aut(G)] as G
1s simple. By Theorem 11.4, we have

iy (trivial group) = H H (1—-p H e~ |Gl [ Aut(G) 7

p prime i=u+1 G finite simple
non-abelian group

The above product over prime integers is zero if and only if u < 0. When u > 1, by the
classification of finite simple groups, the number of finite simple groups of given order is at
most 2. Note that | Aut(G)| > |Inn(G)| = |G| for every non-abelian simple group G. We

have
— —u -1 —u—
H e |G|~ Aut(@)] > exp(— § : |G‘ u 1) >0,
G finite simple G finite simple
non-abelian group non-abelian group

which shows that p,(trivial group) > 0 if and only if u > 1. By using the classification of
finite simple groups, we are able to give the following approximations
0.4357 when u =1
o (trivial group) ~ < 0.7168  when u = 2
0.8616 when u = 3.

We observe that the product over non-abelian factors is very close to 1 and cannot be seen
in this many digits.
Example 12.2 (Any infinite group). Again let S contain all finite groups. Let H be an
infinite profinite group in P, and H, denote the pro-S, completion of H. Since Us, u, is a
sequence of basic opens that is decreasing in ¢ and NUs, y, = {H}, we obtain
UU({H}) = th MU(USszz)
—00
< 1 !
>~ lm .
R TAE () [[H
Note that H is the inverse limit of Hy, so limy_, |Hy| = co. It follows that p,({H}) = 0

when v > 1. When u = 0, since {H} is contained in the Borel set A := Vi apetian groups), Heb
and po(A) =0 (see Example 12.4), we have puo({H}) = 0.

Example 12.3 (Pro-p abelianization). Let p be a prime integer and S the set consisting
of all finite abelian p-groups. Then S = S and (Z/pZ,1) is the only element in CF(S).
Let H be a finite abelian p-group of generator rank d. Then for any G € Ag UN, the
factor in Theorem 8.1 associated to G is 1, unless G = Z/pZ with the trivial H-action. We

consider the Borel set Vg i that is the set of all profinite groups whose mazimal abelian pro-p
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quotient is H. For any integer n > d , there is a normal subgroup N of (F,)° = (Z,)"
such that the corresponding quotient is H. Since H is finite, N is isomorphic to (Z,)" with
the trivial (F,)°-action, which shows that m(S,n, H,Z/pZ) =n and \(S, H,Z/pZ) = 1. By

Lemma 11.3, we have

o0

1 i—u
Vo) = Ty 110 =077
When u < 0, this probability is 0, which is as expected since we can never get a finite quotient
of (Z,)™ with fewer than n relators. When u > 0, we get a finite group with probability 1.
When uw = 0 or 1, these are the measures used in the Cohen-Lenstra heuristics for class
groups of quadratic number fields.

More generally, let’s consider an infinite abelian pro-p group H in P. Since H € P, the
pro-{Z/pZ} completion of H is finite, so H is finitely generated, i.e. H = Hy X (Z,)" for a
finite abelian p-group Hy and a positive integer r. Let T; := {Z/p’Z}. So T; is an increasing
sequence and UT; = S. Assume n > d and j is greater than the exponent of Hy. Then we
have

(F)5 = (Z)p'Z)" and HT = Hy x (Z/p'Z)".
Som(T;,n, H,Z/pZ) =n—r, N(1;,H,Z/pZ) = p~" and
1 o

WV = _ , 1—p™
K ( TJ7H> |Aut(HTJ)||H1|up]ru H ( p )

i=14u+r
1 . —in—1 - —1
= 2ru'rruH(1_p ) H (l_p )’
| Aut(Hy)|| Hy [Prfupir(re) L2 i=1tutr

since
T

| Aut(H)| = | Aut(H) || Hi 9™ [T = p7).
=1

It follows that 1, (Vs i) = lim_,oo(Vr, 1) > 0 if and only if u+1r =0, in which case

1 M '
u(Vs,n) = Y
pu(Vs 1) | Aut(Hy)||Hq |~ zzll_[u( .

So we see that when w < 0, p,(Vsn) > 0 if and only if the (torsion-free) rank of H is —u
and we get the groups in such form with probability 1.

Example 12.4 (Abelianization). Similar to the example above, when S is the set of all finite
abelian groups and H is a finite abelian group, we have

1 - —i—u
pu(Vs, ) = TAut(F)[[ A" IT TIa—-»"),

p prime i=1

A

which is 0 if u < 0 and is positive if u > 1. If H = Hy X (Z)", then

1 M —i
tu(Vs i) = P GAIGAR IT [Ja-»H>0

p primei=1—u

if u=—r <0 and p,(Vsu) = 0 otherwise.
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In order to consider the pro-p quotients of our random groups, we will first need to recall
the definitions of some p-group invariants. Let H be a finite p-group of generator rank
d. The relation rank r(H) of H is defined to be the smallest number of relations in a
pro-p presentation of H (and also it is known that r(H) = dimg, H*(H,Z/pZ)). Let 1 —
N — F; — H — 1 be a presentation of H. Define N* := [N, ;] - N*. Then N* is the
minimal Fj-normal subgroup of N such that N/N* is a finite elementary abelian p-group
with trivial Fd/N*—action. Fd/N* is called the p-covering group of H, and N/N* is called
the p-multiplicator of H, and dimg, (N/N*) is called the p-multiplicator rank of H. It is not
hard to see that r(H) is the p-multiplicator rank of H.

Lemma 12.5. Let H be a finite p-group of generator rank d, S the set of all finite p-groups,
and G the H-group that is isomorphic to Z/pZ with trivial H-action. Then m(S,d, H,G) =
r(H) and m(S,n, H,G) = r(H) +n —d for every n > d.

Proof. Since the intersection of every normal subgroup and the center of a finite p-group is
nontrivial, every finite p-group acts trivially on all of its minimal normal subgroups, which im-

plies CF(S) = {(Z/pZ,1)}. Recall that m(S,n, H, Q) is defined to be lim; o m(7T;,n, H, G),
where T; is an increasing sequence of finite sets of groups such that UT; = S. When ¢ is
sufficiently large such that T} contains the p-covering group of H, the map p : (Fd)Ti — H
factors through the p-covering group of H. Let 1 - R — F — H — 1 be the fundamental
short exact sequence associated to T;, d, H. It is not hard to check that R is also the maximal
quotient of ker p that is an elementary abelian p-group with the trivial F-action. Therefore,
R is the p-multiplicator of H and m(S,d, H,G) = m(T;,d, H,G) = r(H).

Assume n > d. We can find a surjection p; : Fn-ﬁ-l — H and generators xy, -+ ,xp11 of
Fn—i—l such that pi(z,+1) = 1. Let ps be the restriction of p; on the subgroup generated
by x1,---,z,. Then psy : ]3’” — H is a surjection. Let 1 — R; — F} NH — 1 and
1 — Ry — F, B3 H — 1 be the fundamental short exact sequences associated to T, n+ 1, H
and T;,n, H that arise from p; and ps respectively. These constructions allow us to get
a surjection 7w : F; — F, with my = m o 7, and a generator set yi,---, 9,41 of F; such
that 7(y,+1) = 1. Since y,11 € kerm; and F} acts trivially on R;, the subgroup generated
by Yn+1, which is isomorphic to Z/pZ, is normal in Fy. It implies that Ry ~ Ry X Z/pZ
and m(T;,n+ 1, H,G) = m(T;,n, H,G) + 1. By induction on n, we finish the proof of the
lemma. U

Example 12.6 (Pro-p quotient). Let H be a finite p-group of generator rank d, and S the set
of all finite p-groups, and G the H-group that is isomorphic to Z/pZ with trivial H-action.

Since CF(S) = (Z/pZ,1), we have

1 = S, H,G)
u(Va - l——-).
Vo) = g L0~ 7550
By Equation (8.12) and Lemma 12.5, \(S, H,G) = p")=4. So

o0

1 .
pu(Vs.n) = == (1—p7"),
wwr,
and p1,(Vs i) > 0 if and only if u > r(H) —d.
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Gwen u, if X, , has generator rank d with d* /4 > d+u, we have that the X} , is necessarily
infinite by the Golod-Shafarevich inequality. We can see from the pro-p abelianization that
we get groups X;?u with each generator rank d > min(0, —u) with positive probability. All
groups in P have their pro-p quotient finitely generated.

Example 12.7 (Pro-nilpotent quotient). When S is the set of all finite nilpotent groups and
H is a finite nilpotent group with Sylow p-subgroup H, of generator rank d,, we have

Hu(Vsiar) = | Aut(H)[|H" ||H|u H H (1—=p™).

p prime i=1+u—r(Hp)+dp

Let W be the set of profinite groups G such that there are only finitely many primes p such
that the mazimal pro-p quotient of G has generator rank > max(2,—u + 1). By the Borel-
Cantelli lemma, we can see that p, (W) =1, and thus p, assigns probability 1 to the set of
groups who pro-nilpotent quotient is finitely generated.

Example 12.8 (All infinite groups). When u < 0, we have p, ({infinite groups}) =1 (which
can already be seen on the abelianization). When u > 0, we have 0 < u, ({infinite groups}) <
1, since p,({trivial group}) > 0 and there is positive probability of infinite pro-p quotient.
This was seen for the fu,, in [JLOG].

13. WHICH GROUPS APPEAR?

In this section, we consider the question of when g, is 0 on our basic opens Ugpy. In
order for a basic open Ug y to have positive probability for s, ., the group H needs to be
able to be generated as a pro-S group with n generators and n + u relations. We will see
in Proposition 13.4 that the same criterion holds for p,. We start with a lemma about the
number of generators and relations required to present a pro-S group.

Lemma 13.1. Let S be a finite set of finite groups and u an integer. Let H be a finite pro-S
group that can be generated by d generators. If H can be presented as a pro-S group by m
generators and m + u relations, then H can be presented as a pro-S group by d generators
and d + u relations.

This is the same as the situation when S'is the set of all profinite groups and H is a finite
group (see [Lub01, Theorem 0.1]), but contrasts to the more general situation of presenting
H as a finite group, where the analog is a long-standing open question (see |Gru76, Lecture
1: Question 3|).

Proof. Suppose for the sake of contradiction that we have a counterexample, and consider
one with m minimal. We have that

Num(USH)
m(S,m,H,G)—
| Sur(E,,, H)| H H he(G)k —m—um(S.m, H.G
= - 1O T 1 i
| Aut(H)||H|™+ Gy |Gl GeN
> 0.

In particular, since |G| is a power of hy(G) this implies that for G € Ay, we have

hH(G)m(S,m,H,G)—l |G|—m—u < hH(G)_l.
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However, since we have a minimal counterexample, we have that m > d and

Hu,m— I(USH)
m(S,m—1,H,G)—

‘Sur m—1, H hy(G)* (S L)
| Aut(H)[[H|"™ 1+u 11 H “‘W)H(l—@\ )

GeAy GeN

= 0.

By the ﬁnal statement of Theorem 8.1, we have that one of the factors is 0. Since m > d, we
have | Sur(F,,_1, H)| # 0. If H is the trivial group, the lemma is clear. Thus we can assume
d > 1and m > 2, and so for G € N we have (1 — |G|~ F1—u)m&m-LHG) ~ (. Thus, for
some G € Ay, we have

(132> hH(G>m(S,m—1,H,G)—1|G‘—m+1—u > 1.
If p, : (E,)° — H is a surjection, we have
Sur(pn, )|
g (G)™SmH.G) G|™" = (hu(G) -1 | = :
isom. classes of H-extensions (E, )
kerm ~ G
ker 7 irred. E-group
E is level S

Any surjection from p, to 7 can be extended to a surjection from p,.1 to 7 in |G| ways. So,
(hg(G)™&nHE) _ 1)|G|~™ is non-decreasing in n. So we have

hH(G)m(S,m,H,G) -1 - hH(G)m(S,m—l,H,G) -1
|G|™ - |G|t ’

(13.3)

and then we have
G[*hi(G) < hyg(G)mEm- LD Gl
< h(G)MEEO|GIT |G |G
<|GI"+|GIT |G
where the first and the last inequalities follow by (13.2) and the second one follows by (13.3).
Since m > d and H can be generated by d generators, the number of relations m+wu has to be

positive. From above, we have |G|"**(hy(G) —1) < (|G| —1). Then this is a contradiction,
since hy(G) > 2. O

Lemma 13.1 leads to the following definition.

Definition. Let S be a finite set of finite groups and u be an integer. We call a finite
group H with generator rank d achievable (with S and w implicit) if it can be generated as
a pro-S group with d generators and d + u relations.

Proposition 13.4. Let S be a finite set of finite groups and u be an integer. Then for a
finite group H we have that p1,(Us i) > 0 if H is achievable and p,(Usy) = 0 otherwise.

So given w, our measure i, is supported on those groups in P whose pro-S completion
is achievable (for u, S) for every finite set S of finite groups. Note that given S, any finite

pro-S group H is achievable for u sufficiently large.
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Example 13.5. From |GKKLO7, Theorem A|, we have that every finite simple group can
be presented as a profinite group with 2 generators and 18 relations. Thus if u > 16 and S
s a finite set of finite groups with H € S a simple group, then H is achievable.

Example 13.6. If S is the set of all groups of order 32 and u < 0, we can see that H =
7.)27 x Z]2Z is not achievable. To obtain H as a quotient of Fy, it is easy to compute we
need at least 3 relations (for both generators to be order 2 and for them to commute with
each other).

Remark 13.7. Proposition 13.4 need not hold for infinite S. For example, if S is the set of all
finite abelian groups, then any finite abelian group H can be presented as an abelian group
with n generators and n relations, but (Vs y) = 0. (See Example 12.4.) This is because
the product over G € Ay is contains factors (1 — p~!) for each prime p and thus is 0 even
though no individual factor is 0. Further, if S is the set of all groups and H € P, we have
1o(Vs,rr) < 11o(Viabelian groups},mab) = 0. Some of those groups H can be profinitely presented
with n generators and n relations. It is an interesting open question to understand in general
for which infinite S and finite H does the product in Equation 8.3 give p,(Vsy) = 0 even
when none of the factors in the product is 0.

Proof of Proposition 13.4. By Lemma 13.1, if H is not achievable, then p, ,(Us ) = 0 for
all n and hence p,(Usy) = 0. Suppose that p,(Usy) = 0. Then using Theorem 8.1 and
Remark 8.4, we must have that one of the factors in

h,H(G)_Z _ —u
S H,G PHAMT e |G| )\(S,H,G).
Aut(d umuGLL,lI e 1L

is 0, i.e. for some G € Ay we have \(S, H,G)hy(G)7'|G|™ > 1. Recall by Remark 5.2
that |G| is a power of hy(G) and thus so is A(S,H,G). In fact, for sufficiently large
n, we have \(S,H,G) = hy(GQ)™&HG|G|=. Thus, for sufficiently large n, we have
hy (G)™SnHEE=1 > G+ and p, ,(Us,z) = 0. However if we can present H as a pro-
S group with d generators and d + u — k relations with k& > 0, we can add m generators for
any m and m + k relations to trivialize those generators, to present H with d +m generators

and d + m + u relations for all m > 0, which implies p,, ,(Us g) > 0 for n sufficiently large.
0

14. COMPARISION TO NON-PROFINITE GROUPS

Let Y, ¢ be F,, modulo n + u random relations uniform from words of length at most
¢. In this section, we will compare this model to our X, ,. To put the groups on the same

footing, we take the profinite completions ffu,n,f of the Y, ,, 0. Alternatively, we could enlarge
our measure space to include non-profinite groups, with the same definition of basic opens.
Since our topology would not separate groups with the same profinite completion, we might
as well consider only the profinite completions. (Note by [OW11] and [Agol3|, at density
< 1/6, these groups are asymptotically almost surely residually finite and thus inject into
their profinite completions.)

The following is almost the same as [DT06, Lemma 4.4], but we include it here for com-

pleteness.
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Proposition 14.1. Given integers n,u, we have that the distributions v, , . of the Yum’g
weakly converge to X, ,.

Proof. As in the proof of Theorem 1.1, it suffices to show that for each finite group H and
finite set S of groups that

lim Vu,n,z(US,H) = Mu,n(US,H>-
{—00

Thus we are asked to compare the quotient of the finite group (Fn)g by the image of random
uniform words of length at most ¢ versus by uniform random relators. However as ¢ — oo the
image of a random uniform words of length at most ¢ converges to the uniform distribution

on (Fn)g , by the fundamental theorem on irreducible, aperiodic finite state Markov chains
[Dur10, Theorem 6.6.4]. O

Next we see that taking a number of relations that is going to infinity always gives groups
weakly converging to the trivial group in our topology. This includes all positive density
Gromov random groups as well as plenty of density 0 random groups.

Proposition 14.2. Let u({) be an integer valued function of the positive integers that goes
to 00 as £ — 0o. Then vy e weakly converge to the probability measure supported on the
trivial group as ¢ — o0.

Proof. Fix a finite set .S of finite groups and a finite group H. Fix an integer v. For u(¢) > v,
we have that

PrOb(Yu(g)m’g has a surjection to H) < PI"Ob(Y/U,mg has a surjection to H).

Since the set of groups with a surjection to H is open and closed by Proposition 14.1, we
have that

~

Zlim Prob(Y, ., has a surjection to H) = Prob(X,,, has a surjection to H).
— 00

It is easy to see using the approach of our paper that

| Sur(F,, H)| Y
E(| Sur(Xo, H|) = TEp < [H[™.
Thus R
lim sup Prob(Y,,)n,¢ has a surjection to H) < [H|™

{—00
for every v, and so limy_, Prob(ffu@),n’g has a surjection to H) = 0. Thus, for every Ug g
with H non-trivial, we have that
lim Vu(é),n,Z(US,H> =0.
{—00
For u(¢) > v, we have that
Prob(?f(z)’n’g trivial) > Prob(fﬂfn’g trivial).
By Proposition 14.1, we have that
Jim (Prob(Y.3 , trivial)) = Prob(X?  trivial).
—00 o )

n

So
lim inf Prob(ﬁf{@,mg trivial) > lim sup Prob(Xf:n trivial).

—00 V—+00
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From Equation (1.2), we have that limsup,_, Prob(Xf,n trivial) = 1. (We can control the
size of the product in Equation (1.2), for example, by using the fact that there are at most
2 finite simple groups of any particular order.) Thus, for every Us;, we have that

}Ego Vu@yme(Usp) = 1.
]

Remark 14.3. Proposition 14.2 might seem surprising at first. The groups Yy »¢ are plenty
interesting as ¢ — oo. In particularly they are asymptotically almost surely infinite at density
< 1/2|Gro93|, and residually finite at density < 1/6 [OW11, Ago13], and so have many finite
quotients. The above shows that those quotients are escaping off to infinity, however. Just
as a very interesting sequence of numbers might go to 0, an interesting sequence of random
groups can converge to the trivial group. A better analogy might be that a sequence of
integers with interesting asymptotic growth that goes to 0 p-adically. This shows that, at
low densities, the weak convergence of v, in £ is not as strong as the convergence of the
y,n in 1 that we see in Corollary 11.6. In particular

Zlim Vu(e)m,e(trivial group) = 0 # 1.
—00

15. LIST OF NOTATIONS APPEARING IN MULTIPLE SECTIONS

Notation § Description

E, 1 Free profinite group on n generators

Xun 1 Random group with n generators and n + u Haar relators

S .

P 1 {isom. cl. of profinite groups G IG7l < (.)Ov finite set}
S of finite groups

Usu 1 Basic open sets: {G € P | G° ~ H} for finite set S

s 1, 3 | distribution of X, ,

Lo 1, 3 | probability measure given explicitly, limit of x,,

Cq(H) 2.1 | Centralizer of a subgroup H of G

Homp(G1, Gs) 2.2 | F-group homorphisms G; — G»

Surp (G, Ga) 2.2 | F-group surjections G; — G

[z, ]F 2.2 | The closed normal F-subgroup of G generated by xy

(B, ) 2.3 | H-extension 7: £ — H

Surg (m, ') 2.3 | Surjections between H-extensions

Auty(E, ) 2.3 | Automorphism of an H-extensions (F, )

S 2.4 | Variety of groups generated by the set S

G° 2.4 | The pro-S completion of G

Sy 2.4 | {isom. cl. of groups G | |G| < ¢}

A 3 The algebra of sets generated by basic opens Ug g

An 3.1 | {isom. cl. of non-trivial finite abelian irreducible H-groups}

N 3.1 | {isom. cl. of groups G’ for nonabelian simple G and j € Z-}

A(S, H, Q) 3.1 | Values defined for given S, H and G

l1-R—-F—-H—1|4 Fundamental short exact sequence

oM 6 G — Aut(M) for a minimal normal subgroup M of G
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Chief factor pairs of a group G or a set T’
Multiplicity of G in R, see Section 11 for infinite S
poset of H-extensions

Moébius function on a poset of H-extensions

1 |{G e P|G5 ~ H} for arbitrary set S
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