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We present voqc, the first fully verified optimizer for quantum circuits, written using the Coq proof assistant.

Quantum circuits are expressed as programs in a simple, low-level language called sqir, a simple quantum

intermediate representation, which is deeply embedded in Coq. Optimizations and other transformations are

expressed as Coq functions, which are proved correct with respect to a semantics of sqir programs. sqir

uses a semantics of matrices of complex numbers, which is the standard for quantum computation, but treats

matrices symbolically in order to reason about programs that use an arbitrary number of quantum bits. sqir’s

careful design and our provided automation make it possible to write and verify a broad range of optimizations

in voqc, including full-circuit transformations from cutting-edge optimizers.
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1 INTRODUCTION

Programming quantum computers will be challenging, at least in the near term. Qubits will be
scarce and gate pipelines will need to be short to prevent decoherence. Fortunately, optimizing
compilers can transform a source algorithm to work with fewer resources. Where compilers fall
short, programmers can optimize their algorithms by hand.
Of course, both compiler and by-hand optimizations will inevitably have bugs. As evidence of

the former, Kissinger and van de Wetering [2020] discovered mistakes in the optimized outputs
produced by the circuit optimizer of Nam et al. [2018], and Nam et al. themselves found that the
optimization library they compared against (Amy et al. [2013]) sometimes produced incorrect
results. Likewise, Amy [2018] discovered an optimizer they had recently developed produced buggy
results [Amy et al. 2018]. Making mistakes when optimizing by hand is also to be expected: as put
well by Zamdzhiev [2016], quantum computing can be frustratingly unintuitive.
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Unfortunately, the very factors that motivate optimizing quantum compilers make it difficult
to test their correctness. Comparing runs of a source program to those of its optimized version
is often impractical due to the indeterminacy of typical quantum algorithms and the substantial
expense involved in executing or simulating them. Indeed, resources may be too scarce, or the
qubit connectivity too constrained, to run the program without optimization!
An appealing solution to this problem is to apply rigorous formal methods to prove that an

optimization or algorithm always does what it is intended to do. For example, CompCert [Leroy
2009] is a compiler for C programs that is written and proved correct using the Coq proof assis-
tant [Coq Development Team 2019]. CompCert includes sophisticated optimizations whose proofs
of correctness are verified to be valid by Coq’s type checker.
In this paper, we apply CompCert’s approach to the quantum setting. We present voqc (pro-

nounced łvoxž), a verified optimizer for quantum circuits. voqc takes as input a quantum program
written in a language we call sqir (łsquirež). sqir is designed to be a small quantum intermediate

representation, but it is suitable for source-level programming too: it is not very different from lan-
guages such as Quil [Smith et al. 2016] or OpenQASM [Cross et al. 2017], which describe quantum
programs as circuits. sqir is deeply embedded in Coq, similar to how Quil is embedded in Python
via PyQuil [Rigetti Computing 2019a], allowing us to write sophisticated quantum programs. voqc
applies a series of optimizations to sqir programs, ultimately producing a result that is compatible
with a specified quantum architecture. For added convenience, voqc provides translators between
sqir and OpenQASM. (Section 2.)
We designed sqir to make it as easy as possible to reason about the semantics of quantum

programs, which are significantly different from the semantics of classical programs. For example,
while in a classical program one can reason about different variables independently, the phenomenon
of quantum entanglement requires us to reason about a global quantum state, typically represented
as a large vector or matrix of complex numbers. This means that reasoning about quantum states
involves linear algebra, and often trigonometry and probability too. As a result, existing approaches
to program proofs in Coq tend not to apply in the quantum setting. Indeed, we first attempted to
build voqc using 𝒬wire [Paykin et al. 2017], which is also embedded in Coq and more closely
resembles a classical programming language, but found proofs of even simple optimizations to be
non-trivial and hardly scalable.
To address these challenges, sqir’s design has several key features (Section 3). First, it uses

natural numbers in place of variables so that we can naturally index into the vector or matrix state.
Using variables directly (e.g., with higher-order abstract syntax [Pfenning and Elliott 1988], as in𝒬wire and Quipper [Green et al. 2013]) necessitates a map from variables to indices, which we
find confounds proof automation. Second, sqir provides two semantics for quantum programs. We
express the semantics of a general program as a function between density matrices, as is standard
(e.g., in QPL [Selinger 2004] and 𝒬wire), since density matrices can represent the mixed states

that arise when a program applies a measurement operator (Section 5). However, measurement
typically occurs at the end of a computation, rather than within it, so we also provide a simpler
unitary semantics for (sub-)programs that do not measure their inputs. In this case, a program’s
semantics corresponds to a restricted class of square matrices. These matrices are often much
easier to work with, especially when employing automation. Other features of sqir’s design, like
assigning an ill-typed program the denotation of the zero-matrix, are similarly intended to ease
proof. Pleasantly, unitary sqir even turns out to be effective for proving quantum programs correct.
This paper presents a proof of correctness of GHZ state preparation [Greenberger et al. 1989]; in
concurrent work [Hietala et al. 2020a], we have proved the correctness of implementations of
Quantum Phase Estimation (a key component of Shor’s prime factoring algorithm [1994]), Grover’s
search algorithm [1996], and Simon’s algorithm [1994].
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At the core of voqc is a framework for writing transformations of sqir programs and verifying
their correctness. To ensure that the framework is suitably expressive, we have used it to develop
verified versions of a variety of optimizations. Many are based on those used in an optimizer
developed by Nam et al. [2018], which is the best performing optimizer we know of in terms of
total gate reduction (per experiments described below). We abstract these optimizations into a
couple of different classes, and provide library functions, lemmas, and automation to simplify
their construction and proof. We have also verified a circuit mapping routine that transforms
sqir programs to satisfy constraints on how qubits may interact on a specified target architecture.
(Section 4.)

We evaluated the quality of the optimizations we verified in voqc, and by extension the quality
of our framework, by measuring how well it optimizes a set of benchmark programs, compared to
Nam et al. and several other optimizing compilers. The results are encouraging. On a benchmark
of 28 circuit programs developed by Amy et al. [2013] we find that voqc reduces total gate count
on average by 17.8% compared to 10.1% for IBM’s Qiskit compiler [Aleksandrowicz et al. 2019],
10.6% for CQC’s t⋃︀ket̃︀ [Cambridge Quantum Computing Ltd 2019], and 24.8% for the cutting-edge
research optimizer by Nam et al. [2018]. On the same benchmarks, voqc reduces T -gate count (an
important measure when considering fault tolerance) on average by 41.4% compared to 39.7% by
Amy et al. [2013], 41.4% by Nam et al., and 42.6% by the PyZX optimizer. Results on an even larger
benchmark suite (detailed in the full version of this paper [Hietala et al. 2020b]) tell the same story.
In sum, voqc and sqir are expressive enough to verify a range of useful optimizations, yielding
performance competitive with standard compilers. (Section 6.)
voqc is the first fully verified optimizer for general quantum programs. Amy et al. [2017] de-

veloped a verified optimizing compiler from source Boolean expressions to reversible circuits
and Fagan and Duncan [2018] verified an optimizer for ZX-diagrams representing Clifford cir-
cuits; however, neither of these tools handle general quantum programs. In concurrent work, Shi
et al. [2019] developed CertiQ, which uses symbolic execution and SMT solving to verify circuit
transformations in the Qiskit compiler. CertiQ is limited to verifying correct application of local
equivalences and does not provide a way to describe general quantum states (a key feature of sqir),
which limits the types of optimizations that it can reason about. This also means that it cannot be
used as a tool for verifying general quantum programs. Smith and Thornton [2019] presented a
compiler with built-in translation validation via QMDD equivalence checking [Miller and Thornton
2006]. However, QMDDs represent quantum state concretely, which means that the validation
time will increase exponentially with the number of qubits in the compiled program. In contrast to
these, sqir represents matrices symbolically, which allows us to reason about arbitrary quantum
computation and verify interesting, non-local optimizations, independently of the number of qubits
in the optimized program. (Section 7.)
Our work on voqc and sqir are steps toward a broader goal of developing a full-scale verified

compiler toolchain. Next steps include developing certified transformations from higher-level
quantum languages to sqir and implementing optimizations with different objectives, e.g., that
aim to reduce the probability that a result is corrupted by quantum noise. All code we reference in
this paper can be found online at https://github.com/inQWIRE/SQIR.

2 OVERVIEW

We begin with a brief background on quantum programs, focusing on the challenges related to
formal verification. We then provide an overview of voqc and sqir, summarizing how they address
these challenges.
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2.1 Preliminaries

Quantum programs operate over quantum states, which consist of one or more quantum bits (a.k.a.
qubits). A single qubit is represented as a vector of complex numbers ∐︀α, β̃︀ such that ⋃︀α ⋃︀2 + ⋃︀β ⋃︀2 ≙ 1.
The vector ∐︀1, 0̃︀ represents the state ⋃︀0̃︀ while vector ∐︀0, 1̃︀ represents the state ⋃︀1̃︀. A state written⋃︀� ̃︀ is called a ket, following Dirac’s notation. We say a qubit is in a superposition of ⋃︀0̃︀ and ⋃︀1̃︀
when both α and β are non-zero. Just as Schrodinger’s cat is both dead and alive until the box is
opened, a qubit is only in superposition until it is measured, at which point the outcome will be 0
with probability ⋃︀α ⋃︀2 and 1 with probability ⋃︀β ⋃︀2. Measurement is not passive: it has the effect of
collapsing the state to match the measured outcome, i.e., either ⋃︀0̃︀ or ⋃︀1̃︀. As a result, all subsequent
measurements return the same answer.

Operators on quantum states are linear mappings. These mappings can be expressed as matrices,
and their application to a state expressed as matrix multiplication. For example, the Hadamard

operator H is expressed as a matrix 1⌋︂
2
( 1 1

1 −1 ). Applying H to state ⋃︀0̃︀ yields state ∐︀ 1⌋︂
2
,

1⌋︂
2
̃︀, also

written as ⋃︀+̃︀. Many quantum operators are not only linear, they are also unitaryÐthe conjugate
transpose (or adjoint) of their matrix is its own inverse. This ensures that multiplying a qubit by
the operator preserves the qubit’s sum of norms squared. Since a Hadamard is its own adjoint, it is
also its own inverse: hence H ⋃︀+̃︀ ≙ ⋃︀0̃︀.

⎛⎜⎜⎜⎝

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

⎞⎟⎟⎟⎠

A quantum state with n qubits is represented as vector of length 2n . For
example, a 2-qubit state is represented as a vector ∐︀α, β,γ ,δ̃︀ where each com-
ponent corresponds to (the square root of) the probability of measuring ⋃︀00̃︀,⋃︀01̃︀, ⋃︀10̃︀, and ⋃︀11̃︀, respectively. Because of the exponential size of the com-
plex quantum state space, it is not possible to simulate a 100-qubit quantum
computer using even the most powerful classical computer!
n-qubit operators are represented as 2n × 2n matrices. For example, the

CNOT operator over two qubits is expressed as the matrix shown at the right. It expresses a
controlled not operationÐif the first qubit (called the control) is ⋃︀0̃︀ then both qubits are mapped
to themselves, but if the first qubit is ⋃︀1̃︀ then the second qubit (called the target) is negated, e.g.,
CNOT ⋃︀00̃︀ ≙ ⋃︀00̃︀ while CNOT ⋃︀10̃︀ ≙ ⋃︀11̃︀.
n-qubit operators can be used to create entanglement, which is a situation where two qubits

cannot be described independently. For example, while the vector ∐︀1, 0, 0, 0̃︀ can be written as∐︀1, 0̃︀⊗∐︀1, 0̃︀where⊗ is the tensor product, the state ∐︀ 1⌋︂
2
, 0, 0, 1⌋︂

2
̃︀ cannot be similarly decomposed.

We say that ∐︀ 1⌋︂
2
, 0, 0, 1⌋︂

2
̃︀ is an entangled state.

An important non-unitary quantum operator is projection onto a subspace. For example, ⋃︀0̃︀∐︀0⋃︀
(in matrix notation ( 1 0

0 0
)) projects a qubit onto the subspace where that qubit is in the ⋃︀0̃︀ state.

Projections are useful for describing quantum states after measurement has been performed. We
sometimes use ⋃︀ĩ︀q∐︀i ⋃︀ as shorthand for applying the projection ⋃︀ĩ︀ ∐︀i ⋃︀ to qubit q and an identity
operation to every other qubit in the state.

2.2 Quantum Circuits

Quantum programs are typically expressed as circuits, as shown in Figure 1(a). In these circuits,
each horizontal wire represents a qubit and boxes on these wires indicate quantum operators,
or gates. Gates can either be unitary operators (e.g., Hadamard, CNOT ) or non-unitary ones
(e.g., measurement). In software, quantum circuit programs are often represented using lists of
instructions that describe the different gate applications. For example, Figure 1(b) is the Quil [Smith
et al. 2016] representation of the circuit in Figure 1(a).
In the QRAM model [Knill 1996] quantum computers are used as co-processors to classical

computers. The classical computer generates descriptions of circuits to send to the quantum
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⋃︀0̃︀ H ●

⋃︀0̃︀ ●

⋃︀0̃︀

(a) Quantum Circuit

H 0

CNOT 0 1

CNOT 1 2

(b) Quil

def ghz_state(qubits):

program ≙ Program()

program +≙ H(qubits[0])

for q1,q2 in zip(qubits, qubits[1:]):

program +≙ CNOT(q1, q2)

return program

(c) PyQuil (arbitrary number of qubits)

Fig. 1. Example quantum program: GHZ state preparation

computer and then processes the measurement results. High-level quantum programming languages
are designed to follow this model. For example, Figure 1(c) shows a program in PyQuil [Rigetti
Computing 2019a], a quantum programming framework embedded in Python. The ghz_state

function takes an array qubits and constructs a circuit that prepares the Greenberger-Horne-
Zeilinger (GHZ) state [Greenberger et al. 1989], which is an n-qubit entangled quantum state of the
form

⋃︀GHZñ︀ ≙ 1⌋︂
2
(⋃︀0̃︀⊗n + ⋃︀1̃︀⊗n).

Calling ghz_state([0,1,2]) returns the Quil program in Figure 1(b), which produces the quantum
state 1⌋︂

2
(⋃︀000̃︀ + ⋃︀111̃︀). The high-level language may provide facilities to optimize constructed

circuits, e.g., to reduce gate count, circuit depth, and qubit usage. It may also perform transforma-
tions to account for hardware-specific details like the number of qubits, available set of gates, or
connectivity between physical qubits.

2.3 sqir: A Small Quantum Intermediate Representation Supporting Verification

What if we want to formally verify that ghz_state, when passed an array of indices [0, ...,n − 1],
returns a circuit that produces the quantum state ⋃︀GHZñ︀? What steps are necessary?

First, we need a way to formally define quantum states as matrices of complex numbers. Indeed,
we need a way to define indexed families of statesÐ⋃︀GHZñ︀ is a function from an index n to a
quantum state. Second, we need a formal language in which to express quantum programs; to this
language we must ascribe a mathematical semantics in terms of quantum states. A program like
ghz_state is a function from an index (a list of length n) to a circuit (of size n), and this circuit’s
denotation is its equivalent (unitary) matrix (of size 2n). Finally, we need a way to mechanically
reason that, for arbitrary n, the semantics of ghz_state([0,1,...,n − 1]) applied to the zero state

(⋃︀0̃︀⊗n ) is equal to the state ⋃︀GHZñ︀.
We designed sqir, a small quantum intermediate representation, to do all of these things. sqir

is a simple circuit-oriented language deeply embedded in the Coq proof assistant in a manner
similar to how Quil is embedded in Python via PyQuil. We use sqir’s host language, Coq, to define
the syntax and semantics of sqir programs and to express properties about quantum states. We
developed a library of lemmas and tactic-based automation to assist in writing proofs about quantum
programs; such proofs make heavy use of complex numbers and linear algebra. These proofs are
aided by isolating sqir’s unitary core from primitives for measurement, which require consideration
of probability distributions of outcomes (represented as density matrices); this means that (sub-
)programs that lack measurement can have simpler proofs. Either way, in sqirwe perform reasoning
symbolically. For example, we can prove that every circuit generated by the sqir-equivalent of
ghz_state produces the expected state ⋃︀GHZñ︀ when applied to input lists of length n, for any n.
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Fig. 2. The voqc architecture. Input circuits can be described in OpenQASM, OCaml, or Coq (top). The verified

voqc optimizer is extracted to an executable OCaml optimizer (middle), which can produce an optimized sqir

or OpenQASM circuit (bottom). The dashed line indicates the separation between the standard quantum

compiler stack (left) and our contribution (right).

sqir is implemented in just over 3500 lines of Coq. We started with Coq libraries for complex
numbers and matrices developed for the 𝒬wire language [Paykin et al. 2017]; over the course
of our work we have extended these libraries with around 3000 lines of code providing more
automation for linear algebra and better support for complex phases. We present sqir’s syntax and
semantics along with an example program and verified property of correctness in Section 3.

2.4 voqc: A Verified Optimizer forQuantum Circuits

While sqir is suitable for proving correctness properties about source programs like ghz_state,
its primary use has been as the intermediate representation of voqc, our verified optimizer for
quantum circuits, and the signature achievement of this paper. An optimizer is a function from
programs to programs, with the intention that the output program has the same semantics as the
input. In voqc, we prove this is always the case: a voqc optimization f is a Coq function over sqir
circuit C , and we prove that the semantics of input circuit C is always equivalent to the semantics
of the output f (C).
The voqc approach stands in contrast to prior work that relies on translation validation [Amy

2018; Kissinger and van de Wetering 2020; Smith and Thornton 2019], which may fail to identify
latent bugs in the optimizer, while adding compile-time overhead. By proving correctness with
respect to an explicit semantics for input/output programs (i.e., that of sqir), voqc optimizations
are flexible in their expression. Prior work has been limited to peephole optimizations [Shi et al.
2019], leaving highly effective, full-circuit optimizations we have proved correct in voqc out of
reach. Such global (non-peephole) proofs are aided by the design of sqir (notably, the isolation of a
unitary core) and accompanying proof automation.
The structure of voqc is summarized in Figure 2. The voqc transformations themselves are

shown at the middle right, and are described in Sections 4 and 5.3. In addition to performing circuit
optimizations, voqc also performs circuit mapping, transforming a sqir program to an equivalent
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one that respects constraints imposed by the target architecture. Once again, we prove that it does
so correctly (Section 4.7).

Using Coq’s standard code extraction mechanism, we can extract voqc into a standalone OCaml
program. This program takes as input a sqir program in an OCaml representation. This input can
be extracted from a Coq-hosted (and proved correct) sqir program (upper right), or from a program
expressed in OpenQASM [Cross et al. 2017], a standard representation for quantum circuits (upper
left). Since a number of quantum programming frameworks, including Qiskit [Aleksandrowicz
et al. 2019], t⋃︀ket̃︀ [Cambridge Quantum Computing Ltd 2019], Project Q [Steiger et al. 2018] and
Cirq [The Cirq Developers 2019], can output OpenQASM, this allows us to run voqc on a variety
of generated circuits, without requiring the user to program in OCaml or Coq.

voqc is implemented in about 7200 lines of Coq, with roughly 2100 lines for circuit mapping, 2100
lines for general-purpose sqir program manipulation, 2200 lines for unitary program optimizations,
and 800 lines for non-unitary program optimizations. We use about 400 lines of standalone OCaml
code for running voqc on our benchmarks in Section 6. We started work on sqir and voqc in
March 2019 and concluded work for this paper in May 2020. The majority of the optimizations
were implemented and verified within a span of four months.

3 SQIR: A SMALL QUANTUM INTERMEDIATE REPRESENTATION

Here we present the syntax and semantics of sqir, a small quantum intermediate representation. The
sqir language is composed of two parts: a core language of unitary operators and a full language
that incorporates measurement. This section focuses on the former; Section 5 presents the latter.
As we will show, the semantics of a unitary sqir program is expressed directly as a matrix, in

contrast to the full sqir, which treats programs as functions over density matrices. This matrix
semantics greatly simplifies proofs, both of the correctness of unitary optimizations (the bulk of
voqc) and of source programs, many of which are essentially unitary (measurement is the very last
step). Other aspects of sqir’s design also make proofs easier, as we will discuss and demonstrate
with an example at the end of the section.

3.1 Unitary sqir: Syntax

A unitary sqir programU is a sequence of applications of gates G to qubits q.

U ∶≙U1; U2 ⋃︀G q ⋃︀G q1 q2

Qubits are referred to by natural numbers that index into a global register of quantum bits. Each
sqir program is parameterized by a set of unitary one- and two-qubit gates (from whichG is drawn)
and the dimension of the global register (i.e., the number of available qubits). In Coq, a unitary sqir
program U has type ucom g n, where g identifies the gate set and n is the size of the global register.

Fixpoint ghz (n : N) : ucom base n :=

match n with

| 0 ⇒ I 0

| 1 ⇒ H 0

| S n' ⇒ ghz n'; CNOT (n'-1) n'

end.

As an example, consider the program to the
right, which is equivalent to PyQuil’s ghz_state
from Figure 1(c). The Coq function ghz recur-
sively constructs a sqir program, i.e., a Coq
value of type ucom base n. This program, when
run, prepares the GHZ state. When n is 0, ghz
produces a sqir program that is just the iden-
tity gate I applied to qubit 0. When n is 1, the
result is the Hadamard gate H applied to qubit
0. When n is greater than 1, ghz constructs the program U1;U2, where U1 is the ghz circuit on n'

(i.e., n − 1) qubits, and U2 is the appropriate CNOT gate. The result of ghz 3 is equivalent to the
circuit shown in Figure 1(a).
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⟦U1; U2⟧d ≙ ⟦U2⟧d × ⟦U1⟧d

⟦G1 q⟧d ≙
)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀
apply1(G1, q, d) well-typed

0
2d otherwise

⟦G2 q1 q2⟧d ≙
)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀
apply2(G2, q1, q2, d) well-typed

0
2d otherwise

Fig. 3. Semantics of unitary sqir programs, assuming a global register of dimension d . The applyk function

maps a gate name to its corresponding unitary matrix and extends the intended operation to the given

dimension by applying an identity operation on every other qubit in the system.

3.2 Semantics

Suppose that M1 and M2 are the matrices corresponding to unitary gates U1 and U2, which we
want to apply to a quantum state vector ⋃︀� ̃︀. Matrix multiplication is associative, soM2(M1 ⋃︀� ̃︀) is
equivalent to (M2M1) ⋃︀� ̃︀. Moreover, multiplying two unitary matrices yields a unitary matrix. As
such, the semantics of sqir programU1; U2 is naturally described by the unitary matrixM2M1.
This semantics is shown in Figure 3. There are two things to notice. First, if a program is not

well-typed its denotation is the zero matrix (of size 2d × 2d ). A program U is well-typed if every
gate application is valid, meaning that its index arguments are within the bounds of the global
register, and no index is repeated. The latter requirement enforces linearity and thereby quantum
mechanics’ no-cloning theorem, which says that it is impossible to create a copy of an arbitrary
quantum state.
Otherwise, the program’s denotation follows from the composition of the matrices that corre-

spond to each of the applications of its unitary gates, G. The only wrinkle is that a full program
consists of many gates, each operating on 1 or 2 of the total qubits; thus, a gate application’s
matrix needs to apply the identity operation to the qubits not being operated on. This is what
apply1 and apply2 do. For example, apply1(Gu , q, d) ≙ I2q ⊗u ⊗ I2(d−q−1) where u is the matrix
interpretation of the gateGu and Ik is the k × k identity matrix. The apply2 function requires us
to decompose the two-qubit unitary into a sum of tensor products: for instance, CNOT can be
written as ⋃︀0̃︀ ∐︀0⋃︀ ⊗ I2 + ⋃︀1̃︀ ∐︀1⋃︀ ⊗ σx where σx ≙ ( 0 1

1 0
). We then have

apply2(CNOT , q1, q2, d) ≙ I2q1 ⊗ ⋃︀0̃︀ ∐︀0⋃︀ ⊗ I2r ⊗ I2 ⊗ I2s + I2q1 ⊗ ⋃︀1̃︀ ∐︀1⋃︀ ⊗ I2r ⊗ σx ⊗ I2s
where r ≙ q2 − q1 − 1 and s ≙ d − q2 − 1, assuming q1 < q2.

In our development we define the semantics of sqir programs over gate setG ∈ {Rθ ,ϕ ,λ, CNOT}
where Rθ ,ϕ ,λ is a general single-qubit rotation parameterized by three real-valued rotation angles
and CNOT is the standard two-qubit controlled-not gate. This is our base set of gates. It is the
same as the underlying set used by OpenQASM [Cross et al. 2017] and is universal, meaning that it
can approximate any unitary operation to within arbitrary error. The matrix interpretation of the
single-qubit Rθ ,ϕ ,λ gate is

( cos(θ⇑2) −eiλ sin(θ⇑2)
eiϕ sin(θ⇑2) ei(ϕ+λ) cos(θ⇑2))

and the matrix interpretation of the CNOT gate is given in Section 2.1.
Common single-qubit gates can be defined in terms of Rθ ,ϕ ,λ . For example, the two single-qubit

gates used in our GHZ exampleÐidentity I and Hadamard HÐare respectively defined as R0,0,0

and Rπ ⇑2,0,π . The Pauli X ("NOT") gate is Rπ ,0,π and the Pauli Z gate is R0,0,π . We can also define
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more complex operations as sqir programs. For example, the SWAP operation, which swaps two
qubits, can be defined as a sequence of three CNOT gates.

3.3 Design for Proofs

We designed sqir’s unitary core to simplify formal proofs, in three ways.

Zero Matrix for Ill-typed Programs. By giving a denotation of the zero matrix to ill-typed gate
applications (and thereby ill-typed programs), we do not need to explicitly assume or prove that a
program is well-typed in order to state a property about its semantics, thereby removing clutter
from theorems and proofs. For example, in our proof of the ghz program below we do not need to
explicitly prove that ghz n is well-typed (although this is true).

Phantom Types for Matrix Indices. We do not use dependent types to represent matrices in the
semantics. Following Rand et al. [2017, 2018a], we define matrices as functions from pairs of natural
numbers to complex numbers.

Definition Matrix (m n : N) := N → N → C.

The arguments m and n, which are the dimensions of the matrix, are phantom typesÐthey do not
appear in the definition. These phantom types are useful to define certain operations on matrices
that depend on these dimensions, such as the tensor product and matrix multiplication. However,
there is no proof burden internal to the matrices themselves. Instead, it is possible to show a matrix
is well-formed within its specified bounds by means of an external predicate:

Definition WF_Matrix {m n} (M : Matrix m n) : P := ∀ i j, i ≥ m ∨ j ≥ n → M i j = 0.

Phantom types occupy a convenient middle ground in allowing information to be stored in the
types, while pushing the majority of the work to external predicates. For instance, we can define⋃︀ĩ︀⊗n (for i ∈ {0, 1}) recursively as ⋃︀ĩ︀⊗ ⋃︀ĩ︀⊗ ⋅ ⋅ ⋅ ⊗ ⋃︀ĩ︀, with n repetitions. Coq has no way of inferring
a type for this, so we declare that is has type Vector 2^n, and Coq will allow us to use it in any

context where a vector is expected. However, before using it in rewrite rules like I2n × ⋃︀ĩ︀⊗n ≙ ⋃︀ĩ︀⊗n
(which says that multiplication by the identity matrix is an identity operation), we will need to

show that ⋃︀ĩ︀⊗n is a well-formed vector of length 2n , for which we provide convenient automation.

Qubits are Concrete, Not Abstract, Indices. When we first set out to build voqc, we thought to do
it using 𝒬wire [Paykin et al. 2017], another formally verified quantum programming language
embedded in Coq. However, we were surprised to find that we had tremendous difficulty proving
that even simple transformations were correct. This experience led to the development of sqir, and
raised the question: Why does sqir seem to make proofs easier, and what do we lose by using it
rather than 𝒬wire?

The fundamental difference between sqir and𝒬wire is that sqir programs use concrete (numeric)

indices into a global register to refer to qubits. As such, the semantics can naturally map qubits
to rows and columns in the denoted matrix. In addition, qubit disjointness in a sqir program is
obviousÐG1 m operates on a different qubit than G2 n whenm ⇑≙ n. Both elements are important
for easily proving equivalences, e.g., that gates acting on disjoint qubits commute (a property that
allows us to reason about gates acting on different parts of the circuit in isolation).
In 𝒬wire, variables are implemented using higher-order abstract syntax [Pfenning and Elliott

1988] and refer to abstract qubits. This approach eases programmabilityÐlarger circuits can be built
by composing smaller ones, connecting inputs and outputs by normal variable binding, indifferent
to the physical identity of a qubit. This approach is also used in the language Quipper [Green et al.
2013]. However, we find that this approach complicates formal proof. To denote the semantics
of a program that uses abstract qubits requires deciding how abstract qubits will be represented
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concretely, as rows and columns in the denotation matrix. Reasoning about this translation can be
laborious, especially for recursive circuits and those that allocate and deallocate qubits (entailing
de Bruijn-style index shifting [Rand 2018]). Moreover, notions like disjointness are no longer
obviousÐG1 x and G2 y for variables x ⇑≙ y may not be disjoint if x and y could be allocated to the
same concrete qubit.
From a proof-engineering standpoint all of the above benefits have been pivotal in allowing

our proofs to scale up. The full version of this paper [Hietala et al. 2020b] presents a detailed
comparison of sqir and𝒬wire, exploring the tradeoffs of concrete versus abstract qubits at a lower
level.

3.4 Source-Program Proofs

Definition GHZ (n : N) : Vector (2 ^ n) :=

match n with

| 0 ⇒ I 1

| S n' ⇒ 1⌋︂
2

* ⋃︀0̃︀⊗n + 1⌋︂
2

* ⋃︀1̃︀⊗n

end.

This paper focuses on sqir’s use in proving
circuit optimizations correct, but sqir was de-
signed to support source-program proofs too.
As an illustration, we present a sqir proof
of correctness for GHZ state preparation. We
close with some discussion of ongoing efforts
to prove more sophisticated algorithms correct
in sqir.

GHZ Proof. As an example of a proof we can carry out using sqir, we show that ghz, sqir’s
Greenberger-Horne-Zeilinger (GHZ) state [Greenberger et al. 1989] preparation circuit given in
Section 3.1, correctly produces the GHZ state. The GHZ state is an n-qubit entangled quantum state

of the form 1⌋︂
2
(⋃︀0̃︀⊗n + ⋃︀1̃︀⊗n). This vector can be defined in Coq as shown. Like our definition of

⋃︀ĩ︀⊗n discussed above, we declare that this expression has type Vector 2^n, which will allow us to
use it in any context where Coq expects a vector, deferring the proof that it is well-formed.

Our goal is to show that for any n > 0 the circuit generated by ghz n produces the corresponding

GHZ n vector when applied to ⋃︀0̃︀⊗n .
Lemma ghz_correct : ∀ n : N,

n > 0 → ⟦ghz n⟧n × ⋃︀0̃︀⊗n = GHZ n.

The proof proceeds by induction on n. The n ≙ 0 case is trivial as it contradicts our hypothesis.
For n ≙ 1 we show that H applied to ⋃︀0̃︀ produces the ⋃︀+̃︀ state. In the inductive step, the induction
hypothesis says that the result of applying ghz n’ to the input state nket n’ ⋃︀0̃︀ is the state

( 1⌋︂
2
∗ ⋃︀0̃︀⊗n

′

+ 1⌋︂
2
∗ ⋃︀1̃︀⊗n

′

) ⊗ ⋃︀0̃︀. By applying CNOT (n' − 1) n' to this state, we show that ghz (n' + 1) =

GHZ (n' + 1). Our use of concrete indices allows us to easily describe the semantics of CNOT (n'−1) n'. If
we had instead used abstract wires (e.g. variables x and y), then to reason about the semantics of
CNOT x y we would also need to reason about the conversion of x and y to concrete indices, showing
that in the inductive case x refers to a qubit in the GHZ state prepared by the recursive call and y

references a fresh ⋃︀0̃︀ qubit.
Further Proofs. It turns out that with the right abstractions, sqir is capable of verifying a range

of quantum algorithms, from Simon’s [1994] and Grover’s [1996] algorithms to quantum phase
estimation, a key component of Shor’s factoring algorithm [1994]. All in all, the sqir development
contains about 3500 lines of example proofs and programs including GHZ state preparation, super-
dense coding, quantum teleportation, the Deutsch-Jozsa algorithm, Simon’s algorithm, Grover’s
algorithm, and quantum phase estimation. As this paper’s focus is voqc, we refer the interested
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reader to a separate paper [Hietala et al. 2020a] for detailed discussion of these source-program
proofs and proof techniques. We summarize some of the key takeaways here.

The textbook proofs of the algorithms listed above argue correctness by considering the behavior
of the program on a basis vector of the form ⋃︀i1i2 . . . iñ︀ for ik ∈ {0, 1}, or a weighted sum over such
vectors. To match this style of reasoning, we developed a sqir framework for describing quantum
states as vectors. We also found that we needed more sophisticated math lemmas when reasoning
about quantum source programs. For example, though the trigonometric lemmas in Coq’s standard
library are sufficient for verifying voqc optimizations, our proof of quantum phase estimation
relies on the Coq Interval package [Melquiond 2020] to prove bounds on trigonometric functions.1

These extensions aside, we were able to reuse much of what we developed for voqc. For example,
we directly use the sqir unitary semantics presented in this section, benefiting from its various
language simplifications. We also benefit from automation for matrices and complex numbers
added to𝒬wire as part of our work on voqc. In particular, we were able to re-purpose the gridify
tactic we developed for proving low-level matrix equivalences (described in Section 4.5) to prove
statements about the effects of different gates on vector states.

4 OPTIMIZING UNITARY SQIR PROGRAMS

This section and the next describe voqc, our verified optimizer for quantum circuits. voqc primarily
implements optimizations inspired by the state-of-the-art circuit optimizer of Nam et al. [2018].
As such, we do not claim credit for the optimizations themselves. Rather, our contribution is a
framework that is sufficiently flexible that it can be used to prove such state-of-the-art optimizations
correct. This section focuses on voqc’s optimizations for unitary sqir programs and mapping to
connectivity-constrained architectures; the next section discusses how voqc optimizes non-unitary
sqir programs.

4.1 Program Equivalence

The voqc optimizer takes as input a sqir program and attempts to reduce its total gate count by
applying a series of optimizations. For each optimization, we verify that it is semantics preserving

(or sound), meaning that the output program is guaranteed to be equivalent to the input program.
We say that two unitary programs of dimension d are equivalent, written U1 ≡ U2, if their

denotation is the same, i.e., ⟦U1⟧d ≙ ⟦U2⟧d . We also support a more general version of equivalence:
We say that two circuits are equivalent up to a global phase, writtenU1 ≅U2, when there exists a

θ such that ⟦U1⟧d ≙ eiθ ⟦U2⟧d . This is useful in the quantum setting because ⋃︀� ̃︀ and eiθ ⋃︀� ̃︀ (for
θ ∈ R) represent the same physical state. Note that the latter notion of equivalence matches the
former when θ ≙ 0.
Given this definition of equivalence we can write our soundness condition for optimization

function optimize as follows.

Definition sound {G} (optimize : ∀ {d : N}, ucom G d → ucom G d) :≙

∀ (d : N) (u : ucom G d), ⟦optimize u⟧d ≅ ⟦u⟧d.

This property is quantified over G, d, and u, meaning that the property holds for any program

that uses any set of gates and any number of qubits. The optimizations in our development are
defined over a particular gate set, defined below, but still apply to programs that use any number of
qubits. Our statements of soundness also occasionally have an additional precondition that requires
program u to be well typed.

1Laurent Théry helpfully pointed us to Interval and provided proofs of our sin_sublinear and sin_PIx_ge_2x lemmas.
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4.2 voqc Optimization Overview

voqc implements two basic kinds of optimizations: replacement and propagate-cancel. The former
simply identifies a pattern of gates and replaces it with an equivalent pattern. The latter works by
commuting sets of gates when doing so produces an equivalent quantum programÐoften with the
effect of łpropagatingž a particular gate rightward in the programÐuntil two adjacent gates can be
removed because they cancel out.

To ease the implementation of and proofs about these optimizations, we developed a framework
of supporting library functions that operate on sqir programs as lists of gate applications, rather
than on the native sqir representation. The conversion code takes a sequence of gate applications
in the original sqir program and flattens it so that a program like (G1 p;G2 q);G3 r is represented
as the Coq list ⋃︁G1 p;G2 q;G3 r⨄︁. The denotation of the list representation is the denotation of its
corresponding sqir program. Examples of the list operations our framework provides include:

● Finding the next gate acting on a qubit that satisfies some predicate f .
● Propagating a gate using a set of cancellation and commutation rules (see Section 4.3).
● Replacing a sub-program with an equivalent program (see Section 4.4).
● Computing the maximal matching prefix of two programs.

We verify that these functions have the intended behavior (e.g., in the last example, that the returned
sub-program is indeed a prefix of both input programs).
Our framework supports arbitrary gate sets (for example, the functions listed above are all

parameterized by choice of gate set). However, in the optimizations described below we use a
specific, universal gate set {H , X , Rz, CNOT} where Rz(k) describes rotation about the z-axis
by k ⋅ π for k ∈ Q. This gate set is more convenient than sqir’s base gate set for two reasons.
First, using a discrete gate set makes it possible to define optimizations using Coq’s built-in
pattern matching (with occasional equality checks between rational values). Second, using rational
parameters instead of real parameters allows us to extract to OCaml rational numbers rather than
floating point numbers, which would render verification unsound. Most existing tools (e.g., Qiskit
[Aleksandrowicz et al. 2019] and Nam et al. [2018]) allow gates parameterized by floats, which
invites rounding error and can lead to unsound optimization.
To compute a program’s denotation, voqc’s gates H , X , and Rz(k) are translated into Rπ ⇑2,0,π ,

Rπ ,0,π , and R0,0,kπ in sqir’s base gate set. (CNOT translates to itself.) voqc’s gate set is identical
to Nam et al.’s, with the exception of the z-axis rotation parameter type (rational, not float).

4.3 Optimization by Propagation and Cancellation

Our propagate-cancel optimizations have two steps. First we localize a set of gates by repeatedly
applying commutation rules. Then we apply a circuit equivalence to replace that set of gates. In
voqc, most optimizations of this form use a library of code patterns, but oneÐnot propagationÐis
slightly different, so we discuss it first.

Not Propagation. The goal of not propagation is to remove cancelling X (łnotž) gates. Two X
gates cancel when they are adjacent or they are separated by a circuit that commutes with X . We
find X gates separated by commuting circuits by repeatedly applying the propagation rules in
Figure 4. An example application of the not propagation algorithm is shown in Figure 5.

This implementation may introduce extra X gates at the end of a circuit or extra Z gates in the
interior of the circuit. Extra Z gates are likely to be cancelled by the gate cancellation and rotation
merging passes that follow, and moving X gates to the end of a circuit makes the rotation merging
optimization more likely to succeed.
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X q; H q ≡ H q; Z q

X q; Rz(k) q ≅ Rz(2 − k) q; X q

X q1; CNOT q1 q2 ≡ CNOT q1 q2; X q1; X q2
X q2; CNOT q1 q2 ≡ CNOT q1 q2; X q2

Fig. 4. Equivalences used in not propagation.

X ● H

X
→

● X H

X X
→

● H Z

Fig. 5. An example of not propagation. In the first step the leftmost X gate propagates through the CNOT

gate to become two X gates. In the second step the upper X gate propagates through the H gate and the

lower X gates cancel.

Wenote that our version of this optimization is a simplification of Nam et al.’s, which is specialized
to a three-qubit TOFF gate; this gate can be decomposed into a {H ,Rz,CNOT} program. In our
experiments, we did not observe any difference in performance between voqc and Nam et al. due
to this simplification.

Gate Cancellation. The single- and two-qubit gate cancellation optimizations rely on the same
propagate-cancel pattern used in not propagation, except that gates are returned to their original
location if they fail to cancel. To support this pattern, we provide a general propagate function in
voqc. This function takes as inputs (i) an instruction list, (ii) a gate to propagate, and (iii) a set of
rules for commuting and cancelling that gate. At each iteration, propagate performs the following
actions:

(1) Check if a cancellation rule applies. If so, apply that rule and return the modified list.
(2) Check if a commutation rule applies. If so, commute the gate and recursively call propagate

on the remainder of the list.
(3) Otherwise, return the gate to its original position.

We have proved that our propagate function is sound when provided with valid commutation and
cancellation rules.
Each commutation or cancellation rule is implemented as a partial Coq function from an input

circuit to an output circuit. A common pattern in these rules is to identify one gate (e.g., an X gate),
and then to look for an adjacent gate it might commute with (e.g., CNOT) or cancel with (e.g., X ).
For commutation rules, we use the rewrite rules shown Figure 6. For cancellation rules, we use
the fact that H , X , and CNOT are all self-cancelling and Rz(k) and Rz(k ′) combine to become
Rz(k + k ′).

4.4 Circuit Replacement

We have implemented two optimizationsÐHadamard reduction and rotation mergingÐthat work
by replacing one pattern of gates with an equivalent one; no preliminary propagation is necessary.
These aim either to reduce the gate count directly, or to set the stage for additional optimizations.

Hadamard Reduction. The Hadamard reduction routine employs the equivalences shown in
Figure 7 to reduce the number of H gates in the program. Removing H gates is useful because H
gates limit the size of the {Rz,CNOT} subcircuits used in the rotation merging optimization.
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●

Rz(k) H H ≡
●

H H Rz(k)

●
● ≡

●
●

● ●

Rz(k) Rz(k ′) ≡
● ●

Rz(k ′) Rz(k)

● ●

≡
● ●

Rz(k) ●
≡

● Rz(k)
●

H ● H ≡

●

H ● H

Fig. 6. Commutation equivalences for single- and two-qubit gates adapted from Nam et al. [Nam et al. 2018,

Figure 5]. We use the second and third rules for propagating both single- and two-qubit gates.

H P H ≅ P2 H P2 H P2 H ≅ P H P

●

H P2 P H ≅
●

P P2

●

H P P2 H ≅
●

P2 P

H ● H

H H
≡

●

Fig. 7. Equivalences for removing Hadamard gates adapted from Nam et al. [2018, Figure 4]. P is the phase

gate Rz(1⇑2) and P2 is its inverse Rz(3⇑2).

Rotation Merging. The rotation merging optimization allows for combining Rz gates that are
not physically adjacent in the circuit. This optimization is more sophisticated than the previous
optimizations because it does not rely on small structural patterns (e.g., that adjacent X gates
cancel), but rather on more general (and non-local) circuit behavior. The basic idea behind rotation
merging is to (i) identify subcircuits consisting of only CNOT and Rz gates and (ii) merge Rz gates
within those subcircuits that are applied to qubits in the same logical state.

The argument for the correctness of this optimization relies on the phase polynomial representa-
tion of a circuit. Let C be a circuit consisting of CNOT gates and rotations about the z-axis. Then
on basis state ⋃︀x1, ...,xñ︀, C will produce the state

eip(x1, ...,xn) ⋃︀h(x1, ...,xn)̃︀

where h ∶ {0, 1}n → {0, 1}n is an affine reversible function and

p(x1, ...,xn) ≙ l

∑
i≙1
(θi mod 2π) fi(x1, ...,xn)

is a linear combination of affine boolean functions. p(x1, ...,xn) is called the phase polynomial of
circuit C . Each rotation gate in the circuit is associated with one term of the sum and if two terms
of the phase polynomial satisfy fi(x1, ...,xn) ≙ fj(x1, ...,xn) for some i ≠ j , then the corresponding
i and j rotations can be merged.

As an example, consider the two circuits shown below.

● Rz(k ′)

Rz(k) ●
≡ ● Rz(k + k ′)

●

To prove that these circuits are equivalent, we can consider their behavior on basis state ⋃︀x1,x2̃︀.
Recall that applying Rz(k) to the basis state ⋃︀x̃︀ produces the state eikπx ⋃︀x̃︀ and CNOT ⋃︀x,ỹ︀
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produces the state ⋃︀x,x ⊕ỹ︀ where ⊕ is the xor operation. Evaluation of the left-hand circuit
proceeds as follows:

⋃︀x1,x2̃︀→ eikπx2 ⋃︀x1,x2̃︀→ eikπx2 ⋃︀x1,x1 ⊕ x2̃︀→ eikπx2 ⋃︀x2,x1 ⊕ x2̃︀→ eikπx2eik
′πx2 ⋃︀x2,x1 ⊕ x2̃︀ .

Whereas evaluation of the right-hand circuit produces

⋃︀x1,x2̃︀→ ⋃︀x1,x1 ⊕ x2̃︀→ ⋃︀x2,x1 ⊕ x2̃︀→ ei(k+k
′)πx2 ⋃︀x2,x1 ⊕ x2̃︀ .

The two resulting states are equal because eikπx2eik
′πx2 ≙ ei(k+k ′)πx2 . This implies that the unitary

matrices corresponding to the two circuits are the same. We can therefore replace the circuit on
the left with the one on the right, removing one gate from the circuit.
Our rotation merging optimization follows the reasoning above for arbitrary {Rz,CNOT}

circuits. For every gate in the program, it tracks the Boolean function associated with every qubit
(the Boolean functions above are x1, x2, x1 ⊕x2), and merges Rz rotations when they are applied to
qubits associated with the same Boolean function. To prove equivalence over {Rz,CNOT} circuits,
we show that the original and optimized circuits produce the same output on every basis state. We
have found evaluating behavior on basis states to be useful for proving equivalences that are not as
direct as those listed in Figures 6 and 7.
Although our merge operation is identical to Nam et al.’s, our approach to constructing {Rz,

CNOT} subcircuits differs. We construct a {Rz,CNOT} subcircuit beginning from a Rz gate
whereas Nam et al. begin from a CNOT gate. The result of this simplification is that we may miss
some opportunities for merging. However, in our experiments (Section 6) we found that this choice
impacted only one benchmark.

4.5 Proving Low-Level Circuit Equivalences

voqc optimizations make heavy use of circuit equivalences such as those shown in Figures 4, 6
and 7. To prove that voqc optimizations are sound, we must formally verify these equivalences
are correct. Such proofs require showing equality between two matrix expressions, which can be
tedious in the case where the matrix size is left symbolic. For example, consider the following
equivalence used in not propagation:

X n; CNOT m n ≡ CNOT m n; X n

for arbitrary n,m and dimension d . Applying our definition of equivalence, this amounts to proving

apply1(X ,n,d) × apply2(CNOT ,m,n,d) ≙ apply2(CNOT ,m,n,d) × apply1(X ,n,d), (1)

per the semantics in Figure 3. Suppose both sides of the equation are well typed (m < d and n < d
andm ⇑≙ n), and consider the case wherem < n (the n <m case is similar). We expand apply1 and
apply2 as follows with p ≙ n −m − 1 and q ≙ d −n − 1:

apply1(X ,n,d) ≙ I2n ⊗ σx ⊗ I2q
apply2(CNOT ,m,n,d) ≙ I2m ⊗ ⋃︀1̃︀∐︀1⋃︀⊗ I2p ⊗ σx ⊗ I2q + I2m ⊗ ⋃︀0̃︀∐︀0⋃︀⊗ I2p ⊗ I2 ⊗ I2q

Here, σx is the matrix interpretation of the X gate and ⋃︀1̃︀∐︀1⋃︀ ⊗ σx + ⋃︀0̃︀∐︀0⋃︀ ⊗ I2 is the matrix
interpretation of the CNOT gate (in Dirac notation). We can complete the proof of equivalence by
normalizing and simplifying each side of Equation (1), showing both sides to be the same.

Automation. We address the tedium of such proofs in voqc by almost entirely automating the
matrix normalization and simplification steps. We provide a Coq tactic called gridify for proving
general equivalences correct. Rather than assumingm < n < d as above, the gridify tactic does
case analysis, immediately solving all cases where the circuit is ill-typed (e.g.,m ≙ n or d ≤m) and

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 37. Publication date: January 2021.



37:16 K. Hietala, R. Rand, S. Hung, X. Wu & M. Hicks

thus has the zero matrix as its denotation. In the remaining cases (m < n and n <m above), it puts
the expressions into a form we call grid normal and applies a set of matrix identities.

In grid normal form, each arithmetic expression has addition on the outside, followed by tensor
product, with multiplication on the inside, i.e., ((..× ..)⊗(..× ..))+((..× ..)⊗(..× ..)). The gridify
tactic rewrites an expression into this form by using the following rules of matrix arithmetic:

● Imn ≙ Im ⊗ In
● A × (B +C) ≙ A × B +A ×C
● (A + B) ×C ≙ A ×C + B ×C
● A⊗ (B +C) ≙ A⊗ B +A⊗C
● (A + B) ⊗C ≙ A⊗C + B ⊗C
● (A⊗ B) × (C ⊗D) ≙ (A ×C) ⊗ (B ×D)

The first rule is applied to facilitate application of the other rules. (For instance, in the example
above, I2n would be replaced by I2m ⊗ I2 ⊗ I2p to match the structure of the apply2 term.) After
expressions are in grid normal form, gridify simplifies them by removing multiplication by the
identity matrix and rewriting simple matrix products (e.g. σxσx ≙ I2).

In our example, normalization and simplification by gridify rewrites each side of the equality in
Equation (1) to be the following

I2m ⊗ ⋃︀1̃︀∐︀1⋃︀⊗ I2p ⊗ I2 ⊗ I2q + I2m ⊗ ⋃︀0̃︀∐︀0⋃︀⊗ I2p ⊗ σx ⊗ I2q ,

thus proving that the two expressions are equal.
We use gridify to verify most of the equivalences used in the optimizations given in Sections 4.3

and 4.4. The tactic is most effective when equivalences are small: The equivalences used in gate

cancellation and Hadamard reduction apply to patterns of at most five gates applied to up to three
qubits within an arbitrary circuit. For equivalences over large sets of qubits, like the one used
in rotation merging, we do not use gridify directly, but still rely on our automation for matrix
simplification.

4.6 Scheduling

The voqc optimize function applies each of the optimizations we have discussed one after the
other, in the following order (due to Nam et al.):

0, 1, 3, 2, 3, 1, 2, 4, 3, 2

where 0 is not propagation, 1 is Hadamard reduction, 2 is single-qubit gate cancellation, 3 is two-
qubit gate cancellation, and 4 is rotation merging. Nam et al. justify this ordering at length, though
they do not prove that it is optimal. In brief, removing X and H gates (0,1) allows for more effective
application of the gate cancellation (2,3) and rotation merging (4) optimizations. In our experiments
(Section 6), we observed that single-qubit gate cancellation and rotation merging were the most
effective at reducing gate count.

4.7 Circuit Mapping

We have also implemented and verified a transformation that maps a circuit to a connectivity-
constrained architecture. Similar to how optimization aims to reduce qubit and gate usage to
make programs more feasible to run on near-term machines, circuit mapping aims to address
the connectivity constraints of near-term machines [Saeedi et al. 2011; Zulehner et al. 2017].
Circuit mapping algorithms take as input an arbitrary circuit and output a circuit that respects the
connectivity constraints of some underlying architecture.

For example, consider the connectivity of IBMs’s five-qubit Tenerife machine [IBM [n.d.]] shown
in Figure 8(a). This is a representative example of a superconducting qubit system, where qubits are
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(a) (b) (c) (d)

Fig. 8. Examples of two-qubit gate connections on near-term quantum machines. From left to right: IBM’s

Tenerife machine [IBM [n.d.]], LNN, LNN ring, and 2D grid. The last three architectures are shown with a

fixed number vertices, but in our implementation the number of vertices is a parameter. Double-ended arrows

indicate that two-qubit gates are possible in both directions.

laid out in a 2-dimensional grid and possible interactions are described by directed edges between
them. The direction of the edge indicates which qubit can be the control of a two-qubit gate and
which can be the target. For instance, a CNOT gate may be applied with Q4 as the control and Q2
as the target, but not the reverse. No two-qubit gate is possible between physical qubits Q4 and Q1.

We have implemented a simple circuit mapper for unitary SQIR programs and verified that it is
sound and produces programs that satisfy the relevant hardware constraints. Our circuit mapper
is parameterized by two functions that describe the connectivity of an architecture: one function
determines whether an edge is in the connectivity graph and another function finds an undirected
path between any two nodes. Our mapping algorithm takes as input (i) these functions, (ii) a
program referencing logical qubits, and (iii) a map expressing the initial correspondence between
the program’s logical qubits and the physical qubits available on the machine. The algorithm
produces a program referencing physical qubits as well as an updated correspondence. Every time
a CNOT occurs between two logical qubits whose corresponding physical qubits are not adjacent
in the underlying architecture, we insert SWAP operations to move the target and control into
adjacent positions and update the physical-logical qubit correspondence accordingly. To apply a
CNOT when an edge points in the wrong direction, we make use of the equivalence CNOT b a ≡ H a;
H b; CNOT a b; H a; H b. For soundness, we prove that the mapped circuit is equivalent to the original
up to a permutation of the qubits.
Although our mapping algorithm is simple, it allows for some flexibility in design because we

do not specify the method for choosing the initial physical-logical qubit correspondence (called
łplacementž) or the implementation of the function that finds paths in the connectivity graph
(łroutingž). This allows, for example, placement and routing strategies that take into account
error characteristics of the machine [Tannu and Qureshi 2019]. We expect that our verification
framework can be applied to more sophisticated mapping algorithms such a those that partition
the circuit into layers and insert SWAPs between layers rather than naïvely inserting SWAPs
before CNOT gates [Zulehner et al. 2017]. We have used our framework to implement and verify
mapping functions for the Tenerife architecture pictured in Figure 8(a) as well as the linear nearest
neighbor (LNN), LNN ring, and 2D nearest neighbor architectures pictured in Figure 8(b-d).

5 FULL SQIR: ADDING MEASUREMENT

While the bulk of voqc proofs only use the unitary core of sqir, we also support programs
with measurement. Measurement plays a key role in protocols from quantum teleportation and
quantum key distribution [Bennett and Brassard 2020] to repeat-until-success loops [Paetznick and
Svore 2014] and error-correcting codes [Gottesman 2010]. It also enables a number of interesting
optimizations, which we discuss in Section 5.3. We begin with the syntax and semantics of full
sqir, and a proof that makes use of the non-unitary semantics.
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{⋃︀skip⋃︀}d(ρ) ≙ ρ
{⋃︀P1; P2⋃︀}d(ρ) ≙ ({⋃︀P2⋃︀}d ○ {⋃︀P1⋃︀}d)(ρ)
{⋃︀U ⋃︀}d(ρ) ≙ ⟦U ⟧d × ρ × ⟦U ⟧

2
d

{⋃︀meas q P1 P2⋃︀}d(ρ) ≙ {⋃︀P2⋃︀}d(⋃︀0̃︀q∐︀0⋃︀ × ρ × ⋃︀0̃︀q∐︀0⋃︀)
+ {⋃︀P1⋃︀}d(⋃︀1̃︀q∐︀1⋃︀ × ρ × ⋃︀1̃︀q∐︀1⋃︀)

Fig. 9. sqir density matrix semantics, assuming a global register of size d .

5.1 Syntax and Semantics

To describe general quantum programs P , we extend unitary sqir with a branching measurement

operation.

P ∶≙ skip ⋃︀ P1; P2 ⋃︀U ⋃︀ meas q P1 P2

The command meas q P1 P2 (inspired by a similar construct in QPL [Selinger 2004]) measures the
qubit q and either performs program P1 or P2 depending on the result. We define non-branching
measurement and resetting a qubit to ⋃︀0̃︀ in terms of branching measurement:

measure q ≙ meas q skip skip

reset q ≙ meas q (X q) skip

Figure 9 defines the semantics of a non-unitary program as a function from density matrices ρ to
density matrices, following the approach of several previous efforts [Paykin et al. 2017; Ying 2011].
Density matrices provide a way to describe arbitrary quantum states, including mixed states which
are probability distributions over quantum pure states and arise in the analysis of general quantum
programs. For example, 1

2
( 1 0

0 1
) represents a 50% chance of ⋃︀0̃︀ and a 50% chance of ⋃︀1̃︀.

5.2 Example: Quantum Teleportation

The goal of quantum teleportation is to transmit a state ⋃︀� ̃︀ from one party (Alice) to another (Bob)
using a shared entangled state. The circuit for quantum teleportation is shown in Figure 10 and the
corresponding sqir program is given below.

Definition bell : ucom base 3 := H 1; CNOT 1 2.

Definition alice : com base 3 := CNOT 0 1 ; H 0; measure 0; measure 1.

Definition bob : com base 3 := CNOT 1 2; CZ 0 2; reset 0; reset 1.

Definition teleport : com base 3 := bell; alice; bob.

The bell circuit prepares a Bell pair on qubits 1 and 2, which are respectively sent to Alice and Bob.
Alice applies CNOT from qubit 0 to qubit 1 and then measures both qubits and (implicitly) sends
them to Bob. Finally, Bob performs operations controlled by the (now classical) values on qubits 0
and 1 and then resets them to the zero state.
The correctness property for this program says that for any (well-formed) density matrix ρ,

teleport takes the state ρ ⊗ ⋃︀0̃︀∐︀0⋃︀⊗ ⋃︀0̃︀∐︀0⋃︀ to the state ⋃︀0̃︀∐︀0⋃︀⊗ ⋃︀0̃︀∐︀0⋃︀⊗ ρ.

Lemma teleport_correct : ∀ (ρ : Density 2),

WF_Matrix ρ → {⋃︀teleport⋃︀}3 (ρ ⊗ ⋃︀0̃︀∐︀0⋃︀ ⊗ ⋃︀0̃︀∐︀0⋃︀) = ⋃︀0̃︀∐︀0⋃︀ ⊗ ⋃︀0̃︀∐︀0⋃︀ ⊗ ρ.

The proof is simple: We perform (automated) arithmetic to show that the output matrix has the
desired form.
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⋃︀� ̃︀ ● H ● rese� ⋃︀0̃︀

⋃︀0̃︀ H ● ● rese� ⋃︀0̃︀

⋃︀0̃︀ X Z ⋃︀� ̃︀
bell

alice bob

Fig. 10. Circuit for quantum teleportation. In the standard presentation Bob only acts on the last qubit, given

two classical bits as input. In our presentation, Bob (equivalently) performs operations controlled by the first

two qubits, which are in a post-measurement classical state. We include the reset operations to simplify our

statement of correctness.

Quantum teleportation is a rare case in which we prove something about a fixed-size program
(i.e., n is fixed to 3 qubits) and not one of arbitrary dimension. Using the density matrix semantics
to prove properties about programs of arbitrary dimension n is more involved. Stating the property
requires introducing a symbolic density matrix ρ, which will be multiplied on the left and right by
2n ×2n matrices in the denotation. In our experience this results in complicated proof terms that are
tedious to manipulate, even with automation. By contrast, when reasoning about the equivalence
of two unitary programs we can simply compare their unitary matrices, without carrying around a
symbolic ρ (or input vector).

5.3 Non-unitary Optimizations

We have implemented two verified optimizations of non-unitary programs in voqc, inspired by
optimizations in IBM’s Qiskit compiler [Aleksandrowicz et al. 2019]: removing pre-measurement
z-rotations, and classical state propagation. For these optimizations, we represent a non-unitary
program P as a list of blocks. A block is a binary tree whose leaves are unitary programs (in list
form) and nodes are measurements meas q P1 P2 whose children P1 and P2 are lists of blocks. Since
the density matrix semantics denotes programs as functions over matrices, we say that programs
P1 and P2 of dimension d are equivalent if for every input ρ, {⋃︀P1⋃︀}d(ρ) ≙ {⋃︀P2⋃︀}d(ρ).
z-rotations Before Measurement. z-axis rotations (or, more generally, diagonal unitary operations)

before a measurement will have no effect on the measurement outcome, so they can safely be
removed from the program. This optimization locates Rz gates before measurement operations and
removes them. It was inspired by Qiskit’s RemoveDiagonalGatesBeforeMeasure pass.

Classical State Propagation. Once a qubit has been measured, the subsequent branch taken
provides information about the qubit’s (now classical) state, which may allow pre-computation of
some values. For example, in the branch where qubit q has been measured to be in the ⋃︀0̃︀ state,
any CNOT with q as the control will be a no-op and any subsequent measurements of q will still
produce zero.

In detail, given a qubit q in classical state ⋃︀ĩ︀, our optimization applies these propagation rules:

● Rz(k) q preserves the classical state of q.
● X q flips the classical state of q.
● If i ≙ 0 then CNOT q q′ is removed, and if i ≙ 1 then CNOT q q′ becomes X q′.
● meas q P1 P0 becomes Pi .
● H q and CNOT q′ q make q non-classical and terminate analysis.

Our statement of correctness for one round of propagation says that if qubit q is in a classical
state in the input, then the optimized program will have the same denotation as the unoptimized
original. We express the requirement that qubit q be in classical state i ∈ {0, 1} with the condition
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⋃︀ĩ︀q ∐︀i ⋃︀ × ρ × ⋃︀ĩ︀q ∐︀i ⋃︀ ≙ ρ, which says that projecting state ρ onto the subspace where q is in state ⋃︀ĩ︀

results in no loss of information.
This optimization is not implemented directly in Qiskit, but Qiskit contains passes that have a

similar effect. For example, the RemoveResetInZeroState pass removes adjacent reset gates, as the
second has no effect.

6 EXPERIMENTAL EVALUATION

The value of voqc (and sqir) is determined by the quality of the verified optimizations we can
write with it. We can judge optimization quality empirically. In particular, we can run voqc on
a benchmark of circuit programs and see how well it optimizes those programs, compared to
(non-verified) state-of-the-art compilers.

To this end, we compared the performance of voqc’s verified (unitary) optimizations against
IBM’s Qiskit compiler [Aleksandrowicz et al. 2019], CQC’s t⋃︀ket̃︀ [Cambridge Quantum Computing
Ltd 2019; Sivarajah et al. 2020], PyZX [Kissinger and van de Wetering 2020], and the optimizers
presented by Nam et al. [2018] and Amy et al. [2013] on a set of benchmarks developed by Amy
et al. We find that voqc has comparable performance to all of these: it generally beats all but Nam
et al. in terms of both total gate count reduction and T -gate reduction, and often matches Nam
et al. However, our aim is not to claim superiority over these tools (after all, we have implemented
a subset of the unitary optimizations available in Nam et al., and Qiskit and t⋃︀ket̃︀ contain many
features that Nam et al. does not), but to demonstrate that the optimizations we have implemented
are on par with existing unverified tools.

Benchmarks. We evaluated performance by applying voqc and the other compilers to the bench-
mark of Amy et al. [2013], which consists of programs written in the łClifford+Tž gate set (CNOT ,
H , S and T , where S and T are z-axis rotations by π⇑2 and π⇑4, respectively). The benchmark
programs contain arithmetic circuits, implementations of multiple-control X gates, and Galois
field multiplier circuits, ranging from 45 to 13,593 gates and 5 to 96 qubits. All of these circuits are
unitary, so they only serve to evaluate our unitary circuit optimizations. We do not evaluate circuit
mapping transformations.
We measure the reduction in total gate count and T -gate count. Total gate count is a useful

metric for near-term quantum computing, where the length of the computation must be minimized
to reduce error. T -gate count is relevant in the fault-tolerant regime where qubits are encoded
using quantum error correcting codes and operations are performed fault-tolerantly. In this regime
the standard method for making Clifford+T circuits fault tolerant produces particularly expensive
translations for T gates, so reducing T -count is a common optimization goal. The Clifford+T set is
a subset of voqc’s gate set where each z-axis rotation is restricted to be a multiple of π⇑4 (an odd
multiple of π⇑4 corresponds to one T gate).

Some of the benchmarks contain doubly-controlled Z , or CCZ , gates. Before applying optimiza-
tions we convert CCZ gates to voqc’s gate set using the following standard decomposition, where

T is the Rz(1⇑4) gate and T
2 is its inverse Rz(7⇑4).

CCZ a b c :≙ [ CNOT b c ; T
†
c ; CNOT a c ; T c ; CNOT b c ; T

†
c ; CNOT a c ;

CNOT a b ; T
†
b ; CNOT a b ; T a ; T b ; T c ].

We also evaluated the performance of voqc on the benchmark used by Nam et al., of which
Amy et al. is a subset. Nam et al.’s benchmark includes additional unitary circuits for simulating
Hamiltonian dynamics as well as quantum Fourier transform and adder circuits, which are subrou-
tines in Shor’s integer factoring algorithm [Shor 1994]. voqc’s results on Amy et al.’s benchmark
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Table 1. Summary of unitary optimizations for reducing total gate count.

Nam et al.
Not propagation (P) ✓∗

Hadamard gate reduction (L, H) ✓
Single-qubit gate cancellation (L, H) ✓
Two-qubit gate cancellation (L, H) ✓
Rotation merging using phase polynomials (L) ✓∗

Floating Rz gates (H)
Special-purpose optimizations (L, H)
• LCR optimizer ✓
• Toffoli decomposition

Qiskit Terra 0.15.2

CXCancellation (L1) ✓∗

Optimize1qGates (L1, L2, L3) ✓∗

CommutativeCancellation (L2, L3) ✓∗

ConsolidateBlocks (L3)

t⋃︀ket̃︀ 0.6.0
FullPeepholeOptimise ✓∗

are representative of voqc’s behavior on the full set; details are given in the full version of this
paper [Hietala et al. 2020b].

Baseline: Total Gate Count. To evaluate reduction in total gate count, we compare voqc’s perfor-
mance with that of Nam et al., Qiskit Terra version 0.15.2 (release date September 8, 2020), and t⋃︀ket̃︀
version 0.6.0 (September 18, 2020). We do not include the results from Amy et al. or PyZX because
their optimizations are aimed at reducing T -count, and often result in a higher total gate count.
Table 1 performs a direct comparison of functionality provided by voqc versus Nam et al., Qiskit,
and t⋃︀ket̃︀. For the Qiskit optimizations, Li indicates that a routine is used by optimization level
i . For Nam et al., P stands for łpreprocessingž and L and H indicate whether the routine is in the
łlightž or łheavyž versions of the optimizer. voqc provides the complete and verified functionality
of the routines marked with✓; we write✓∗ to indicate that voqc contains a verified optimization
with similar, although not identical, behavior.

Compared to Nam et al.’s rotation merging, voqc performs a slightly less powerful optimization
(as discussed in Section 4.4). Conversely, voqc’s one- and two-qubit gate cancellation routines
generalize Qiskit’s Optimize1qGates and CXCancellation when restricted to voqc’s gate set. For
CommutativeCancellation, Qiskit’s routine follows the same pattern as our gate cancellation
routines, but uses matrix multiplication to determine whether gates commute while we use a
rule-based approach; neither is strictly more effective than the other. t⋃︀ket̃︀’s FullPeepholeOptimise
performs local rewrites similar to those applied by Qiskit.
When evaluating Qiskit, we include all unitary optimizations up to level 3. In our evaluation,

both Qiskit and t⋃︀ket̃︀ use the gate set {u1,u2,u3,CNOT} where u3 is Rθ ,ϕ ,λ from voqc’s base set
and u1 and u2 are u3 with certain arguments fixed. This gate set gives these industrial compilers an
advantage over voqc because they can, for example, represent X followed by H with a single gate.

Baseline: T -Gate Count. To evaluate reduction in T -gate count, we compare voqc against Nam
et al., Amy et al., and PyZX version 0.6.0 (release date June 16, 2020). We do not include results
from Qiskit or t⋃︀ket̃︀ because these compilers produce circuits that do not use the Clifford+T set.
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Table 2. Reduced total gate counts on Amy et al. [2013] benchmarks. Red cells indicate programs optimized

incorrectly. Bold results mark the best performing optimizer.

Total Gate Count

Name Original Qiskit t⋃︀ket̃︀ Nam (L) Nam (H) VOQC

adder_8 900 805 775 646 606 682
barenco_tof_3 58 51 51 42 40 50
barenco_tof_4 114 100 100 78 72 95
barenco_tof_5 170 149 149 114 104 140
barenco_tof_10 450 394 394 294 264 365
csla_mux_3 170 156 155 161 155 158
csum_mux_9 420 382 361 294 266 308
gf2^4_mult 225 206 206 187 187 192
gf2^5_mult 347 318 319 296 296 291

gf2^6_mult 495 454 454 403 403 410
gf2^7_mult 669 614 614 555 555 549

gf2^8_mult 883 804 806 712 712 705

gf2^9_mult 1095 1006 1009 891 891 885

gf2^10_mult 1347 1238 1240 1070 1070 1084
gf2^16_mult 3435 3148 3150 2707 2707 2695

gf2^32_mult 13593 12506 12507 10601 10601 10577

mod5_4 63 58 58 51 51 56
mod_mult_55 119 106 102 91 91 90

mod_red_21 278 227 224 184 180 214
qcla_adder_10 521 469 460 411 399 438
qcla_com_7 443 398 392 284 284 314
qcla_mod_7 884 793 780 636 624 723

rc_adder_6 200 170 172 142 140 157
tof_3 45 40 40 35 35 40
tof_4 75 66 66 55 55 65
tof_5 105 92 92 75 75 90
tof_10 255 222 222 175 175 215

vbe_adder_3 150 138 139 89 89 101

Geo. Mean Reduction ś 10.1% 10.6% 23.3% 24.8% 17.8%

When evaluating PyZX, we use the full_reduce method, which applies an optimization similar in
intent to rotation merging, but implemented in terms of the ZX-calculus.

Results. The results are shown in Table 2 and Table 3. In each row, we have marked in bold
the gate count of the best-performing optimizer. The geometric mean of the reduction in each
benchmarks is given in the last row. Shaded cells mark that the resulting optimized circuit has
been found to be inequivalent to the original circuit, indicating a bug in the relevant optimizer.2

Results for incorrectly-optimized circuits are n ot included in the averages on the last line. We do
not re-run Nam et al. (which is proprietary software) or Amy et al.. We report results from Nam
et al. [2018].

2The bug in csla_mux_3 was found by Nam et al. [2018] and the bug in qcla_com_7 was found by Kissinger and van de

Wetering [2019]; both were discovered using translation validation.
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Table 3. Reduced T -gate counts on the Amy et al. [2013] benchmarks. Red cells indicate programs optimized

incorrectly. Bold results mark the best performing optimizer.

T -Gate Count

Name Original Amy PyZX Nam (L) Nam (H) VOQC

adder_8 399 215 173 215 215 215
barenco_tof_3 28 16 16 16 16 16

barenco_tof_4 56 28 28 28 28 28

barenco_tof_5 84 40 40 40 40 40

barenco_tof_10 224 100 100 100 100 100

csla_mux_3 70 62 62 64 64 64
csum_mux_9 196 112 84 84 84 84

gf2^4_mult 112 68 68 68 68 68

gf2^5_mult 175 111 115 115 115 115
gf2^6_mult 252 150 150 150 150 150

gf2^7_mult 343 217 217 217 217 217

gf2^8_mult 448 264 264 264 264 264

gf2^9_mult 567 351 351 351 351 351

gf2^10_mult 700 410 410 410 410 410

gf2^16_mult 1792 1040 1040 1040 1040 1040

gf2^32_mult 7168 4128 4128 4128 4128 4128

mod5_4 28 16 8 16 16 16
mod_mult_55 49 37 35 35 35 35

mod_red_21 119 73 73 73 73 73

qcla_adder_10 238 162 162 162 162 164
qcla_com_7 203 95 95 95 95 95

qcla_mod_7 413 249 237 237 235 249
rc_adder_6 77 63 47 47 47 47

tof_3 21 15 15 15 15 15

tof_4 35 23 23 23 23 23

tof_5 49 31 31 31 31 31

tof_10 119 71 71 71 71 71

vbe_adder_3 70 24 24 24 24 24

Geo. Mean Reduction ś 39.7% 42.6% 41.4% 41.4% 41.4%

On average, Qiskit reduces the total gate count by 10.1%, t⋃︀ket̃︀ by 10.6%, Nam et al. by 23.3%
(light) and 24.8% (heavy), and voqc by 17.8%. voqc outperforms or matches the performance of
Qiskit and t⋃︀ket̃︀ on all benchmarks but one. In 8 out of 28 cases voqc outperforms Nam et al. The
gap in performance between voqc and the industrial compilers is due to voqc’s rotation merging
optimization, which has no analogue in Qiskit or t⋃︀ket̃︀. The gap in performance between Nam
et al. and voqc is due to the fact that we have not yet implemented all their optimization passes
(per Table 1). In particular, Nam et al.’s łspecial-purpose Toffoli decompositionž (which affects
how CCZ gates are decomposed) enables rotation merging and single-qubit gate cancellation to

cancel two gates (e.g. cancel T and T 2) where we instead combine two gates into one (e.g. T and
T becomes P ). Interestingly, the cases where voqc outperforms Nam et al. can also be attributed
to their Toffoli decomposition heuristics, which sometimes result in fewer cancellations than the
naïve decomposition that we use. We do not expect adding and verifying this form of Toffoli
decomposition to pose a challenge in voqc.
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voqc’s performance is closer to Nam et al.’s when considering T -count. On average, Amy et al.
reduce theT -gate count by 39.7%, PyZX by 42.6%, and Nam et al. and voqc by 41.4%. voqc matches
Nam et al. on all benchmarks but two. The first case (qcla_adder_10) is due to our simplification in
rotation merging. In the second case (qcla_mod_7), Nam et al.’s optimized circuit was later found to
be inequivalent to the original circuit [Kissinger and van de Wetering 2019], so the lowerT -count is
spurious. On 16 benchmarks, all optimizers produce the sameT -count. This is somewhat surprising
since, although all these optimizers rely on some form of rotation merging, their implementations
differ substantially. Kissinger and van de Wetering [2019] posit that these results indicate a local
optimum in the ancilla-free case for some of the benchmarks (in particular the tof benchmarks,
whose T -count is not reduced by applying additional techniques [Heyfron and T. Campbell 2018]).

To compare the running times of the different tools, we ran 11 trials of voqc, Qiskit, t⋃︀ket̃︀, and
PyZX (taking the median time for each benchmark) on a standard laptop with a 2.9 GHz Intel Core
i5 processor and 16 GB of 1867 MHz DDR3 memory, running macOS Catalina. We consider the
timings for Amy et al. and Nam et al. given in Nam et al. [2018, Table 4], which were measured on
a similar machine with 8 GB RAM running OS X El Capitan. We show the geometric mean running
times over all 28 benchmarks below.

voqc Nam (L) Nam (H) Qiskit t⋃︀ket̃︀ Amy PyZX

0.013s 0.002s 0.018s 0.812s 0.129s 0.007s 0.384s

All the tools are fast; Nam et al. light optimization tends to be the fastest and Qiskit tends to be
the slowest. However, these means are not the entire story: the tools’ performances scale differently
with increasing qubit and gate count. For example, on gf2^32_mult (the largest benchmark) Qiskit
and voqc are comparable with running times of 31.6s and 27.4s respectively; Nam et al. light
optimization and t⋃︀ket̃︀ are very fast with running times of 1.8s and 7.0s; and Nam et al. heavy
optimization, Amy et al., and PyZX are fairly slow with running times of 275.7s, 602.6s, and 577.1s.
These results are encouraging evidence that voqc supports useful and interesting verified

optimizations, and that we have faithfully implemented Nam et al.’s optimizations. Furthermore,
despite having been written with verification in mind, voqc’s running times are not significantly
worse than (and sometimes better than) that of current tools.

Trusted Code. For performance, voqc uses OCaml primitives for describing rational numbers,
maps and sets, rather than the code extracted from Coq. Thus we implicitly trust that the OCaml
implementation of these data types is consistent with Coq’s; we believe that this is a reasonable
assumption. Furthermore, our translation from OpenQASM to sqir and extraction from Coq to
OCaml are not formally verified.

7 RELATED WORK

Ourwork on voqc and sqir is primarily related towork on quantum program compilation, especially
work aiming to add assurance to the compilation process. It is also related to work on quantum
source-program verification.

Verified Quantum Compilation. Quantum compilation is an active area. In addition to Qiskit, t⋃︀ket̃︀,
and Nam et al. [2018] (discussed in Section 6), other recent compiler efforts include quilc [Rigetti
Computing 2019b], ScaffCC [Javadi-Abhari et al. 2014], and Project Q [Steiger et al. 2018]. Due to
resource limits on near-term quantum computers, most compilers for quantum programs contain
some degree of optimization, and nearly all place an emphasis on satisfying architectural require-
ments, like mapping to a particular gate set or qubit topology. None of the optimization or mapping
code in these compilers is formally verified.
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However, voqc is not the only quantum compiler to which automated reasoning or formal
verification has been applied. Amy et al. [2017] developed a certified optimizing compiler from
source Boolean expressions to reversible circuits, but did not handle general quantum programs.
Rand et al. [2018b] developed a similar compiler for quantum circuits but without optimizations
(using the 𝒬wire language).

The problem of optimization verification has also been considered in the context of the ZX-
calculus [Coecke and Duncan 2009], which is a formalism for describing quantum tensor networks
(which generalize quantum circuits) based on categorical quantum mechanics [Abramsky and
Coecke 2009]. The ZX-calculus is characterized by a small set of rewrite rules that allow translation
of a diagram to any other diagram representing the same computation [Jeandel et al. 2018]. Fagan and
Duncan [2018] verified an optimizer for ZX diagrams representing Clifford circuits (which use the
non-universal gate set {CNOT ,H ,S}) in the Quantomatic graphical proof assistant [Kissinger and
Zamdzhiev 2015]. PyZX [Kissinger and van de Wetering 2020] uses ZX diagrams as an intermediate
representation for compiling quantum circuits, and generally achieves performance comparable
to leading compilers [Kissinger and van de Wetering 2019]. While PyZX is not verified in a proof
assistant like Coq (the łPyž stands for Python), it does rely on a small, well-studied equational
theory. Additionally, PyZX can perform translation validation to check if a compiled circuit is
equivalent to the original. However, PyZX’s translation validator is not guaranteed to succeed for
any two equivalent circuits.
A recent paper from Smith and Thornton [2019] presents a compiler with built-in translation

validation via QMDD equivalence checking [Miller and Thornton 2006]. However the optimizations
they consider are much simpler than voqc’s and the QMDD approach scales poorly with increasing
number of qubits. Our optimizations are all verified for arbitrary dimension.

Concurrently with our work, Shi et al. [2019] developed CertiQ, an approach to verifying prop-
erties of circuit transformations in the Qiskit compiler, which is implemented in Python. Their
approach has two steps. First, it uses matrix multiplication to check that the unitary semantics of
two concrete gate patterns are equivalent. Second, it uses symbolic execution to generate verifica-
tion conditions for parts of Qiskit that manipulate circuits. These are given to an SMT solver to
verify that pattern equivalences are applied correctly according to programmer-provided function
specifications and invariants. That CertiQ can analyze Python code directly in a mostly automated
fashion is appealing. However, it is limited in the optimizations it can verify. For example, equiva-
lences that range over arbitrary indices, like CNOT m x ; CNOT n x ≡ CNOT n x ; CNOT m x

cannot be verified by matrix multiplication; CertiQ checks a concrete instance of this pattern and
then applies it to more general circuits. More complex optimizations like rotation merging (the most
powerful optimization in our experiments) cannot be generalized from simple, concrete circuits.
CertiQ may also fail to prove an optimization correct, e.g., because of complicated control code; in
this case it falls back to translation validation, which adds extra cost and the possibility of failure at
run-time. By contrast, every optimization in voqc has been proved correct. Finally, CertiQ does not
directly represent the semantics of quantum programs, so it cannot be used as a tool for verifying
general properties of a program’s semantics (as we do in Section 3).

Verified Quantum Programming. We designed sqir primarily as the intermediate language for
voqc’s verified optimizations, but it can be used for verified source programming as well, per
Section 3 and ongoing work [Hietala et al. 2020a]. Early attempts to formally verify aspects of a
quantum computation in a proof assistant were an Agda implementation of the Quantum IO Monad
[Green 2010] and a small Coq quantum library by Boender et al. [2015]. Later, Rand et al. [2017]
embedded the higher-level 𝒬wire programming language in the Coq proof assistant, and used it
to verify a variety of simple programs [Rand et al. 2017], assertions regarding ancilla qubits [Rand
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et al. 2018b], and its own metatheory [Rand 2018]. voqc and sqir reuse parts of 𝒬wire’s Coq
development, and take inspiration and lessons from its design. However, as discussed in Section 3.3
and the full version of this paper [Hietala et al. 2020b], 𝒬wire’s higher-level abstractions (notably,
its representation of variables using higher-order abstract syntax) complicate verification.
Concurrently with this work, Chareton et al. [2020] introduced 𝒬bricks, a tool implemented

in Why3 [Filliâtre and Paskevich 2013] whose aim is to support mostly-automated verification
of complex quantum algorithms. Their design in many ways mirrors sqir’s: both tools provide
special support for reasoning about quantum programs and the languages are simplified so that
programs have a straightforward translation to their semantics. A 𝒬bricks program specifies a
circuit without variables, instead using operators for parallel and sequential composition. 𝒬bricks
defines the meaning of its programs using a łhigher orderž path-sum semantics [Amy 2018], which
limits it to unitary programs, but substantially enhances automation. sqir and 𝒬bricks have been
used to verify similar algorithms (e.g., Grover’s algorithm and quantum phase estimation [Hietala
et al. 2020a]), but 𝒬bricks’ approach reduces manual effort.

8 CONCLUSIONS AND FUTURE WORK

This paper has presented voqc, the first fully verified optimizer for quantum circuits. A key
component of voqc is sqir, a simple, low-level quantum language deeply embedded in the the
Coq proof assistant, which gives a semantics to quantum programs that is amenable to proof.
Optimization passes are expressed as Coq functions which are proved to preserve the semantics of
their input sqir programs. voqc’s optimizations are mostly based on local circuit equivalences,
implemented by replacing one pattern of gates with another, or commuting a gate rightward until
it can be cancelled. Others, like rotation merging, are more complex. These were inspired by, and
in some cases generalize, optimizations in industrial compilers, but in voqc are proved correct.
When applied to a benchmark suite of 28 circuit programs, we found voqc performed comparably
to state-of-the-art compilers, reducing gate count on average by 17.8% compared to 10.1% for IBM’s
Qiskit compiler, 10.6% for CQC’s t⋃︀ket̃︀, and 24.8% for the cutting-edge research optimizer by Nam
et al. [2018]. Furthermore, voqc reduced T -gate count on average by 41.4% compared to 39.7% by
Amy et al. [2013], 41.4% by Nam et al., and 42.6% by the PyZX optimizer.

Moving forward, we plan to incorporate voqc into a full-featured verified compilation stack
for quantum programs, following the vision of a recent Computing Community Consortium
report [Martonosi and Roetteler 2019]. We can verify compilation from high-level languages
with formal semantics like Silq [Bichsel et al. 2020] to sqir circuits. We can implement validated
parsers [Jourdan et al. 2012] for languages like OpenQASM and verify their translation to sqir (e.g.,
using metaQASM’s semantics [Amy 2019]); this work is already in progress [Singhal et al. 2020].
We can also add support for hardware-specific transformations that compile to a particular gate
set. Indeed, most of the sophisticated code in Qiskit is devoted to efficiently mapping programs to
IBM’s architecture, and IBM’s 2018 Developer Challenge centered around designing new circuit
mapping algorithms [IBM Research Editorial Staff 2018]. We leave it as future work to incorporate
optimizations and mapping algorithms from additional compilers into voqc. Our experience so far
makes us optimistic about the prospects for doing so successfully.
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