
Proving Quantum Programs Correct
Kesha Hietala ! Ï

University of Maryland, College Park, MD, USA

Robert Rand ! Ï

University of Chicago, IL, USA

Shih-Han Hung !

University of Maryland, College Park, MD, USA

Liyi Li !

University of Maryland, College Park, MD, USA

Michael Hicks ! Ï

University of Maryland, College Park, MD, USA
Abstract

As quantum computing progresses steadily from theory into practice, programmers will face a
common problem: How can they be sure that their code does what they intend it to do? This
paper presents encouraging results in the application of mechanized proof to the domain of quantum
programming in the context of the sqir development. It verifies the correctness of a range of a
quantum algorithms including Grover’s algorithm and quantum phase estimation, a key component
of Shor’s algorithm. In doing so, it aims to highlight both the successes and challenges of formal
verification in the quantum context and motivate the theorem proving community to target quantum
computing as an application domain.

2012 ACM Subject Classification Hardware → Quantum computation; Software and its engineering
→ Formal software verification

Keywords and phrases Formal Verification, Quantum Computing, Proof Engineering

Digital Object Identifier 10.4230/LIPIcs.ITP.2021.21

Related Version Extended Version: https://arxiv.org/abs/2010.01240

Supplementary Material Software: https://github.com/inQWIRE/SQIR
archived at swh:1:dir:2aed711638324c36b815c91d1f8b9ad7ca46a300

Funding This material is based upon work supported by the U.S. Department of Energy, Office of
Science, Office of Advanced Scientific Computing Research, Quantum Testbed Pathfinder Program
under Award Number DE-SC0019040 and the Air Force Office of Scientific Research under Grant
No. FA95502110051.

Acknowledgements We thank Yuxiang Peng for ongoing contributions to the sqir codebase and
pointing out a bug in our original specification for QPE. We thank Xiaodi Wu for discussions about
sqir and follow-on projects.

1 Introduction

Quantum computers are fundamentally different from the “classical” computers we have
been programming since the development of the ENIAC in 1945. This difference includes a
layer of complexity introduced by quantum mechanics: Instead of a deterministic function
from inputs to outputs, a quantum program is a function from inputs to a superposition of
outputs, a notion that generalizes probabilities. As a result, quantum programs are strictly
more expressive than probabilistic programs and even harder to get right. While we can test
the output of a probabilistic program by comparing its observed distribution to the desired
one, doing the same on a quantum computer can be prohibitively expensive and may not
fully describe the underlying quantum state.

© Kesha Hietala, Robert Rand, Shih-Han Hung, Liyi Li, and Michael Hicks;
licensed under Creative Commons License CC-BY 4.0

12th International Conference on Interactive Theorem Proving (ITP 2021).
Editors: Liron Cohen and Cezary Kaliszyk; Article No. 21; pp. 21:1–21:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

21:2 Proving Quantum Programs Correct

This challenge for quantum programming is an opportunity for formal methods. We can
use formal methods to prove, in advance, that the code implementing a quantum algorithm
does what it should for all possible inputs and configurations.

In prior work [17], we developed a formally verified optimizer for quantum programs
(voqc), implemented and proved correct in the Coq proof assistant [8]. voqc transforms
programs written in sqir, a small quantum intermediate representation. While we designed
sqir to be a compiler intermediate representation, we quickly realized that it was not so
different from languages used to write source quantum programs, and that the design choices
that eased proving optimizations correct could ease proving source programs correct, too.

To date, we have proved the correctness of implementations of a number of quantum
algorithms, including quantum teleportation, Greenberger–Horne–Zeilinger (GHZ) state
preparation [15], the Deutsch-Jozsa algorithm [10], Simon’s algorithm [32], the quantum
Fourier transform (QFT), quantum phase estimation (QPE), and Grover’s algorithm [16].
QPE is a key component of Shor’s prime-factoring algorithm [31], today’s best-known, most
impactful quantum algorithm, with Grover’s algorithm for unstructured search being the
second. Our implementations can be extracted to code that can be executed on quantum
hardware or simulated classically, depending on the problem size and hardware limitations.

While sqir was first introduced as part of voqc, this paper offers two new contributions.
First, it presents a detailed discussion of how sqir’s design supports proofs of correctness.
After presenting background on quantum computing (Section 2) and reviewing sqir (Sec-
tion 3), Section 4 discusses key elements of sqir’s design and compares and contrasts them
to design decisions made in the related tools Qwire [25], Qbricks [7], and the Isabelle
implementation of quantum Hoare logic [18]. sqir’s overall benefit over these tools is its
flexibility, supporting multiple semantics and approaches to proof. As a second contribution,
this paper presents the code, formal specification, and proof sketch of Grover’s algorithm,
QFT, and QPE, which are the most sophisticated algorithms that we have verified so far
(Section 5). We comment on the proofs of simpler algorithms in Appendix B of the extended
version of this paper. We believe there is ripe opportunity for further application of formal
methods to quantum computing and we hope this paper, and our work on sqir, paves the
way for new research; we sketch open problems in Section 6.

sqir is implemented in just over 3500 lines of Coq, with an additional 3700 lines of
example sqir programs and proofs; it is freely available on Github.1

2 Background

We begin with a light background on quantum computing; for a full treatment we recommend
the standard text on the subject [22].

2.1 Quantum States
A quantum state consists of one or more quantum bits. A quantum bit (or qubit) can be
expressed as a two dimensional vector (α

β) such that |α|2 + |β|2 = 1. The α and β are called
amplitudes. We frequently write this vector as α |0⟩ + β |1⟩ where |0⟩ = (1

0) and |1⟩ = (0
1)

are basis states. When both α and β are non-zero, we can think of the qubit as being “both
0 and 1 at once,” a.k.a. a superposition. For example, 1√

2 (|0⟩ + |1⟩) is an equal superposition
of |0⟩ and |1⟩.

1 https://github.com/inQWIRE/SQIR

K. Hietala, R. Rand, S.-H. Hung, L. Li, and M. Hicks 21:3

(a) Quantum circuit

H 0;
CNOT 0 1;
CNOT 1 2

(b) sqir assembly

Fixpoint ghz (n : N) : ucom base n :=
match n with
| 0 ⇒ I 0
| 1 ⇒ H 0
| S n' ⇒ ghz n'; CNOT (n'-1) n'
end.

(c) sqir meta-program

box (x,y,z) ⇒
gate x ← H x;
gate (x,y) ← CNOT (x,y);
gate (y,z) ← CNOT (y,z);
output (x,y,z).

(d) Qwire

SEQ(SEQ(PAR(H, PAR(I, I)),
PAR(CNOT, I)),

PAR(I, CNOT))

(e) Qbricks-DSL

q1 := H q1;
q1,q2 := CNOT q1,q2;
q2,q3 := CNOT q2,q3

(f) QWhile

(I ⊗ CNOT) × (CNOT ⊗ I) × (H ⊗ I ⊗ I)
(g) Matrix expression

Figure 1 Example quantum program: GHZ state preparation.

We can join multiple qubits together by means of the tensor product (⊗) from linear
algebra. For convenience, we write |i⟩ ⊗ |j⟩ as |ij⟩ for i, j ∈ {0, 1}; we may also write |k⟩
where k ∈ N is the decimal interpretation of bits ij. We use |ψ⟩ to refer to an arbitrary
quantum state. Sometimes a multi-qubit state cannot be expressed as the tensor of individual
qubits; such states are called entangled. One example is the state 1√

2 (|00⟩ + |11⟩), known as
a Bell pair.

2.2 Quantum Programs
Quantum programs are composed of a series of quantum operations, each of which acts on
a subset of qubits in the quantum state. In the standard presentation, quantum programs
are expressed as circuits, as shown in Figure 1(a). In these circuits, each horizontal wire
represents a qubit and boxes on these wires indicate quantum operations, or gates. The
circuit in Figure 1(a) uses three qubits and applies three gates: the Hadamard (H) gate and
two controlled-not (CNOT) gates. The semantics of a gate is a unitary matrix (a matrix that
preserves the unitarity invariant of quantum states); applying a gate to a state is tantamount
to multiplying the state vector by the gate’s matrix. The matrix corresponding to the circuit
in Figure 1(a) is shown in Figure 1(g), where I is the 2 × 2 identity matrix, CNOT is the
matrix corresponding to the CNOT gate, and H is the matrix corresponding to the H gate.

A special, non-unitary measurement operation is used to extract classical information
from a quantum state (often, when a computation completes). Measurement collapses the
state to one of the basis states with a probability related to the state’s amplitudes. For
example, measuring 1√

2 (|0⟩ + |1⟩) will collapse the state to |0⟩ with probability 1
2 and likewise

for |1⟩, returning classical values 0 or 1, respectively. The semantics of a program involving
measurement amounts to a probability distribution over quantum states; such a distribution
is called a mixed state. In our example above, measurement produces a mixed state that is a
uniform distribution over |0⟩ and |1⟩. By contrast, pure states like |0⟩ and 1√

2 (|0⟩ + |1⟩) can
be produced without measurement. Section 3.3 discusses non-unitary semantics further.

ITP 2021

21:4 Proving Quantum Programs Correct

3 SQIR: A Small Quantum Intermediate Representation

sqir is a simple quantum language deeply embedded in the Coq proof assistant. This
section presents sqir’s syntax and semantics. We defer a detailed discussion of sqir’s design
rationale to the next section.

3.1 Unitary SQIR: Syntax

sqir’s unitary fragment is a sub-language of full sqir for expressing programs consisting of
unitary gates. (The full sqir language extends unitary sqir with measurement.) A program
in the unitary fragment has type ucom (for “unitary command”), which we define in Coq as
follows:

Inductive ucom (U: N → Set) (d : N) : Set :=
| useq : ucom U d → ucom U d → ucom U d
| uapp1 : U 1 → N → ucom U d
| uapp2 : U 2 → N → N → ucom U d

The useq constructor sequences two commands; we use notational shorthand p1 ; p2 for
useq p1 p2. The two uappn constructors indicate the application of a quantum gate to n

qubits, where n is 1 or 2. Qubits are identified as numbered indices into a global qubit register
of size d, which stores the quantum state. Gates are drawn from parameter U, which is
indexed by a gate’s size. For writing and verifying programs, we use the following base set
for U, inspired by IBM’s OpenQASM [9]:2

Inductive base : N → Set :=
| U_R (θ ϕ λ : R) : base 1
| U_CNOT : base 2.

That is, we have a one-qubit gate U_R (which we write UR when using math notation), which
takes three real-valued arguments, and the standard two-qubit controlled-not gate, U_CNOT
(written CNOT in math notation), which negates the second qubit wherever the first qubit
is |1⟩, making it the quantum equivalent of a xor gate. The U_R gate can be used to express
any single-qubit gate (see Section 3.2). Together, U_R and U_CNOT form a universal gate set,
meaning that they can be composed to describe any unitary operation [3].

Example: SWAP

The following Coq function produces a unitary sqir program that applies three controlled-not
gates in a row, with the effect of exchanging two qubits in the register. We define CNOT as
shorthand for uapp2 U_CNOT.

Definition SWAP d a b : ucom base d := CNOT a b; CNOT b a; CNOT a b.

2 It is helpful for proofs to keep U small because the number of cases in the proof about a value of type
ucom U d will depend on the number of gates in U. In our work on voqc [17], we define optimizations
over a larger gate set that includes common gates like Hadamard, but convert these gates to our base
set for proof.

K. Hietala, R. Rand, S.-H. Hung, L. Li, and M. Hicks 21:5

Example: GHZ

Figure 1(b) is the sqir representation of the circuit in Figure 1(a), which prepares the
three-qubit GHZ state [15]. We describe families of sqir circuits by meta-programming
in the Coq host language. The Coq function in Figure 1(c) produces a sqir program that
prepares the n-qubit GHZ state, producing the program in Figure 1(b) when given input 3.
In Figures 1(b–c), H and I apply the U_R encodings of the Hadamard and identity gates.

3.2 Unitary SQIR: Semantics
Each k-qubit quantum gate corresponds to a 2k × 2k unitary matrix. The matrices for our
base set are:

JUR(θ, ϕ, λ)K =
(

cos(θ/2) −eiλ sin(θ/2)
eiϕ sin(θ/2) ei(ϕ+λ) cos(θ/2)

)
, JCNOT K =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 .

Conveniently, the UR gate can encode any single-qubit gate [22, Chapter 4]. For instance,
two commonly-used single-qubit gates are X (“not”) and H (“Hadamard”). The former
has the matrix (0 1

1 0) and serves to flip a qubit’s α and β amplitudes; it can be encoded as
UR(π, 0, π). The H gate has the matrix 1√

2

(1 1
1 −1

)
, and is often used to put a qubit into

superposition (it takes |0⟩ to 1√
2 (|0⟩ + |1⟩)); it can be encoded as UR(π/2, 0, π). Multi-qubit

gates are easily produced by combinations of CNOT and UR; we show the definition of the
three-qubit “Toffoli” gate in Section 4.6. Keeping our gate set small simplifies the language
and enables easy case analysis – and does not complicate proofs. We rarely unfold the
definition of gates like X or the three-qubit Toffoli, instead providing automation to directly
translate these gates to their intended denotations. Hence, X is translated directly to (0 1

1 0).
Users can thereby easily extend sqir with new gates and denotations.

A unitary sqir program operating on a size-d register corresponds to a 2d × 2d unitary
matrix. Function uc_eval denotes the matrix corresponding to program c.

Fixpoint uc_eval {d} (c : ucom base d) : Matrix (2^d) (2^d) := ...

We write JcKd for uc_eval d c. The denotation of composition is simple matrix multiplication:
JU1; U2Kd = JU2Kd × JU1Kd. The denotation of uapp1 is the denotation of its argument gate,
but padded with the identity matrix so it has size 2d × 2d. To be precise, we have:

Juapp1 U qKd =
{
I2q ⊗ JUK ⊗ I2d−q−1 q < d

02d otherwise

where In is the n× n identity matrix. In the case of our base gate set, JUK is the UR matrix
shown above. The denotation of any gate applied to an out-of-bounds qubit is the zero
matrix, ensuring that a circuit corresponds to a zero matrix if and only if it is ill-formed.
We likewise prove that every well-formed circuit corresponds to a unitary matrix.

As our only two-qubit gate in the base set is U_CNOT, we specialize our semantics for
uapp2 to this gate. To compute JCNOT q1 q2Kd, we first decompose the CNOT matrix into
(1 0

0 0) ⊗ I2 + (0 0
0 1) ⊗X. We then pad the expression appropriately, obtaining the following

when q1 < q2 < d:

I2q1 ⊗ (1 0
0 0) ⊗ I2q2−q1−1 ⊗ I2 ⊗ I2d−q2−1 + I2q1 ⊗ (0 0

0 1) ⊗ I2q2−q1−1 ⊗X ⊗ I2d−q2−1 .

ITP 2021

21:6 Proving Quantum Programs Correct

When q2 < q1 < d, we obtain a symmetric expression, and when either qubit is out of bounds,
we get the zero matrix. Additionally, since the two inputs to CNOT cannot be the same, if
q1 = q2 we also obtain the zero matrix.

Example: Verifying SWAP

We can prove in Coq that SWAP 2 0 1, which swaps the first and second qubits in a two-qubit
register, behaves as expected on two unentangled qubits:

Lemma swap2: ∀ (ϕ ψ : Vector 2), WF_Matrix ϕ → WF_Matrix ψ →
JSWAP 2 0 1K2 × (ϕ ⊗ ψ) = ψ ⊗ ϕ.

WF_Matrix says that ϕ and ψ are well-formed vectors [29, Section 2]. This proof can be
completed by simple matrix multiplication. In the full development we prove the correctness
of SWAP d a b for arbitrary dimension d and qubits a and b.

3.3 Full SQIR: Adding Measurement
The full sqir language adds a branching measurement construct inspired by Selinger’s
QPL [30]. This construct permits measuring a qubit, taking one of two branches based on the
measurement outcome. Full sqir defines “commands” com as either a unitary sub-program,
a no-op skip, branching measurement, or a sequence of these.

Inductive com (U: N → Set) (d : N) : Set :=
| uc : ucom U d → com U d
| skip : com U d
| meas : N → com U d → com U d → com U d
| seq : com U d → com U d → com U d.

The command meas q P1 P2 measures qubit q and performs P1 if the outcome is 1 and P2
if it is 0. We define non-branching measurement and resetting to a zero state in terms of
branching measurement:

Definition measure q := meas q skip skip.
Definition reset q := meas q (X q) skip.

As before, we use our base set of unitary gates for full sqir.

Example: Flipping a Coin

It is simple to generate a random coin flip with a quantum computer: Use the Hadamard
gate to put a qubit into equal superposition 1√

2 (|0⟩ + |1⟩) and then measure it.

Definition coin : com base 1 := H 0; measure 0.

Density Matrix Semantics

As discussed in Section 2.2, measurement induces a probabilistic transition, so the semantics
of a program with measurement is a probability distribution over states, called a mixed state.
As is standard [25, 34], we represent such a state using a density matrix. The density matrix
of a pure state |ψ⟩ is |ψ⟩⟨ψ| where ⟨ψ| = |ψ⟩† is the conjugate transpose of |ψ⟩. The density
matrix of a mixed state is a sum over its constituent pure states. For example, the density
matrix corresponding to the uniform distribution over |0⟩ and |1⟩ is 1

2 |0⟩⟨0| + 1
2 |1⟩⟨1|.

K. Hietala, R. Rand, S.-H. Hung, L. Li, and M. Hicks 21:7

The semantics {|P|}d of a full sqir program P is a function from density matrices to density
matrices. Naturally, {|skip|}d ρ = ρ and {|P1 ; P2|}d = {|P2|}d ◦ {|P1|}d. For unitary subroutines,
we have {|uc U|}d ρ = JUKdρJUKd

†: Applying a unitary matrix to a state vector is equivalent to
applying it to both sides of its density matrix. Finally, using |i⟩q⟨j| for I2q ⊗ |i⟩⟨j| ⊗ I2d−q−1 ,
the semantics for {|meas q P1 P2|}d ρ is

{|P1|}d(|1⟩q⟨1| ρ |1⟩q⟨1|) + {|P2|}d(|0⟩q⟨0| ρ |0⟩q⟨0|)

which corresponds to probabilistically applying P1 to ρ with the specified qubit projected to
|1⟩⟨1| or applying P2 to a similarly altered ρ.

Example: A Provably Random Coin

We can now prove that our coin circuit above produces the |1⟩⟨1| or |0⟩⟨0| density matrix
(corresponding to the |1⟩ or |0⟩ pure state), each with probability 1

2 .

Lemma coin_dist : {|coin|}1 |0⟩⟨0| = 1
2 |0⟩⟨0| + 1

2 |0⟩⟨0|.

The proof proceeds by simple matrix arithmetic. {|H|} |0⟩⟨0| is H |0⟩⟨0|H† = 1
2 (1 1

1 1). Calling
this ρ12, applying measure yields |1⟩⟨1| ρ12 |1⟩⟨1| + |0⟩⟨0| ρ12 |0⟩⟨0|, which can be further
simplified using the fact ⟨1| ρ12 |1⟩ = ⟨0| ρ12 |0⟩ = (1

2), yielding 1
2 |1⟩⟨1| + 1

2 |0⟩⟨0| as desired.
Measurement plays a key role in many quantum algorithms; we discuss further examples

and an alternative semantics in Appendix A of the extended version of this paper.

4 SQIR’s Design

This section describes key elements in the design of sqir and its infrastructure for verifying
quantum programs. To place those decisions in context, we first introduce several related
verification frameworks and contrast sqir’s design with theirs. In summary, sqir benefits
from the use of concrete indices into a global register (a common feature in the tools we
looked at), support for reasoning about unitary programs in isolation (supported by one
other tool), and the flexibility to allow different semantics and approaches to proof (best
supported in sqir).

4.1 Related Approaches
Several prior works have had the goal of formally verifying quantum programs. In 2010,
Green [14] developed an Agda implementation of the Quantum IO Monad, and in 2015
Boender et al. [5] produced a small Coq quantum library for reasoning about quantum
“programs” directly via their matrix semantics (e.g. see Figure 1(g)). These were both
proofs of concept, and were only capable of verifying basic protocols. More recently, Bordg
et al. [6] took a step further in verifying quantum programs expressed as matrix products
(Figure 1(g)), providing a library for reasoning about quantum computation in Isabelle/HOL
and verifying more interesting protocols like the n-qubit Deutsch-Jozsa algorithm (shown in
sqir in Appendix B of the extended version of this paper).

In this section, we compare sqir’s design against three other tools for verified quantum
programming that have been used to verify interesting, parameterized quantum programs:
Qwire [27] (implemented in Coq [8]); quantum Hoare logic [19] (in Isabelle/HOL [23]); and
Qbricks [7] (in Why3 [11]). We do not include Bordg et al. [6], despite its recency, because
it operates one level below the surface programming language, so many issues considered
here do not apply. Bordg et al.’s library is similar to the quantum libraries developed for

ITP 2021

21:8 Proving Quantum Programs Correct

Qwire and the quantum Hoare logic. All matrix formalisms provided by Bordg et al. are
also available in Qwire’s library, which we re-use and extend (by ∼ 3000 lines [17, Section
2.2]) in sqir.

QWIRE

The Qwire language [25, 27] originated as an embedded circuit description language in the
style of Quipper [13] but with a more powerful type system. Figure 1(d) shows the Qwire
equivalent of the sqir program in Figure 1(b). Qwire uses variables from the host language
Coq to reference qubits, an instantiation of higher-order abstract syntax [26]. In Figure 1,
the Qwire program uses variables x, y, and z, while the sqir program uses indices 0, 1,
and 2 to refer to the first, second, and third qubits in the global register. Qwire does not
distinguish between unitary and non-unitary programs, and thus uses density matrices for
its semantics. Qwire has been used to verify simple randomness generation circuits and a
few textbook examples [28].

QBRICKS

Qbricks [7] is a quantum proof framework implemented in Why3 [11], developed concurrently
with sqir. Qbricks provides a domain-specific language (DSL) for constructing quantum
circuits using combinators for parallel and sequential composition (among others). Figure 1(e)
presents the GHZ example written in Qbricks’ DSL. The semantics of Qbricks are based
on the path-sums formalism by Amy [1, 2], which can express the semantics of unitary
programs in a form amenable to proof automation. Qbricks extends path-sums to support
parameterized circuits. Qbricks has been used to verify a variety of quantum algorithms,
including Grover’s algorithm and Quantum Phase Estimation (QPE).

Quantum Hoare Logic

Quantum Hoare logic (QHL) [34] has been formalized in the Isabelle/HOL proof assistant [18].
QHL is built on top of the quantum while language (QWhile), which is the quantum analog
of the classical while language, allowing looping and branching on measurement results.
Figure 1(f) presents the GHZ example written in QHL. QWhile does not use a fixed gate
set; gates are instead described directly by their unitary matrices. As such, the program
in Figure 1(f) could instead be written as the application of a single gate that prepares
the 3-qubit GHZ state. Given that measurement is a core part of the language, QWhile’s
semantics are given in terms of (partial) density matrices. A density matrix is partial when
it may represent a sub-distribution – that is, a subset of the outcomes of measurement.

QHL has been used to verify Grover’s algorithm [18]. An earlier effort by Liu et al. [20]
to formalize QHL claimed to prove correctness of QPE, too. However, the approach used a
combination of Isabelle/HOL and Python, calling out to Numpy to solve matrix (in)equalities;
as such, we consider this only a partial verification effort. We cannot find a proof of QPE in
the associated Github repository3 and believe that this approach was abandoned in favor of
Liu et al. [18].

3 https://github.com/ijcar2016/propitious-barnacle

K. Hietala, R. Rand, S.-H. Hung, L. Li, and M. Hicks 21:9

4.2 Concrete Indices into a Global Register
The first key element of sqir’s design is its use of concrete indices into a fixed-sized global
register to refer to qubits. For example, in our SWAP program (end of Section 3.1), a and
b are natural numbers indexing into a global register of size d. Expressing the semantics
of a program that uses concrete indices is simple because concrete indices map directly to
the appropriate rows and columns in the denoted matrix. Moreover, it is easy to check
relationships between operations – X a and X b act on the same qubit if and only if a = b.
Keeping the register size fixed means that the denoted matrix’s size is known, too.

On the other hand, concrete indices hamper programmability. The ghz example in
Figure 1(c) only produces circuits that occupy global qubits 0...n; we could imagine further
generalizing it to add a lower bound m (so the circuit uses qubits m ... n), but it is not clear
how it could be generalized to use non-contiguous wires. A natural solution, employed by
Qwire, is to use host-level variables to refer to abstract qubits that can be freely introduced
and discarded, simplifying circuit construction and sub-program composition. Unfortunately,
abstract qubits significantly complicate formal verification. To translate circuits to operations
on density matrices, variables must be mapped to concrete matrix indices. Each time a qubit
is discarded, indices undergo a de Bruijn-style shifting.

Similar to sqir’s use of concrete indices, Qbricks-DSL’s compositional structure makes
it easy to map programs to their denotation: The “index” of a gate application can be
computed by its nested position in the program. However, this syntax is even less convenient
than sqir’s for programming: Although Qbricks provides a utility function for defining CNOT
gates between non-adjacent qubits, their underlying syntax does not support this, meaning
that expressions like CNOT 7 2 are translated into large sequences of CNOT gates. QHL is
presented as having variables (e.g. q1 in Figure 1(f)), but these variables are fixed before a
program is executed and persist throughout the program. In the Isabelle formalization, they
are represented by natural numbers, making them comparable to sqir concrete indices.

4.3 Extensible Language around a Unitary Core
Another key aspect of sqir’s design is its decomposition into a unitary sub-language and the
non-unitary full language. While the full language (with measurement) is more powerful, its
density matrix-based semantics adds unneeded complication to the proof of unitary programs.
For example, given the program U1;U2;U3, its unitary semantics is a matrix U3 × U2 × U1
while its density matrix semantics is a function ρ 7→ U3 × U2 × U1 × ρ× U†

1 × U†
2 × U†

3 . The
latter is a larger term, with a type that is harder to work with. This added complexity,
borne by Qwire and QHL, lacks a compelling justification given that many algorithms can
be viewed as unitary programs with measurement occurring implicitly at their conclusion
(see Section 4.7).

On the other hand, Qbricks’ semantics is based on (higher-order) path-sums, which
cannot describe mixed states, and thus cannot give a semantics to measurement. sqir’s
design allows for a “best of both worlds,” utilizing a unitary semantics when possible, but
supporting non-unitary semantics when needed. Furthermore, as we show in Section 4.6,
abstractions like path-sums can be easily defined on top of sqir’s unitary semantics.

4.4 Semantics of Ill-typed Programs
We say that a sqir program is well-typed if every gate is applied to indices within range
of the global register and indices used in each multi-qubit gate are distinct. This second
condition enforces quantum mechanics’ no-cloning theorem, which disallows copying an
arbitrary quantum state, as would be required to evaluate an expression like CNOT q q. For
example, SWAP d a b is well-typed if a < d, b < d, and a ̸= b.

ITP 2021

21:10 Proving Quantum Programs Correct

Qwire addresses this issue through its linear type system, which also guarantees that
qubits are never reused. However, well-typedness is a (non-trivial) extrinsic proposition
in Qwire, meaning that many proofs require an assumption that the input program is
well-typed and must manipulate this typing judgment within the proof. Qbricks avoids
the issue of well-typedness through its language design: It is not possible to construct an
ill-typed circuit using sequential and parallel composition. The Isabelle implementation of
QHL uses a well-typedness predicate to enforce some program restrictions (e.g. the gate in
a unitary application is indeed a unitary matrix), but the issue of gate argument validity
is enforced by Isabelle’s type system: Gate arguments are represented as a set (disallowing
duplicates) where all elements are valid variables.

In sqir, ill-typed programs are denoted by the zero matrix. This often means that we do
not need to explicitly assume or prove that a program is well-typed in order to state a property
about its semantics, thereby removing clutter from theorems and proofs. For example, we can
prove symmetry of SWAP, i.e. SWAP d a b ≡ SWAP d b a, without any well-typedness constraint
because either both sides of the equation are well-typed or both are ill-typed. However, we
cannot always avoid well-typedness preconditions. Say we want to prove transitivity of SWAP,
i.e. SWAP d a c ≡ SWAP d a b ; SWAP d b c. In this case the left-hand side may be well-typed
while the right-hand side is ill-typed. To verify this equivalence, we (minimally) need the
precondition b < d ∧ b ̸= a ∧ b ̸= c. We capture these in our uc_well_typed predicate, which
resembles the WF_Matrix predicate (used in the SWAP example in Section 3.2) that guarantees
that a matrix’s non-zero entries are all within its bounds [17, Section 3.3]. Both conditions
are easily checked via automation.

4.5 Automation for Matrix Expressions
The sqir development provides a variety of automation techniques for dealing with matrix
expressions. Most of this automation is focused on simplifying matrix terms to be easier to
work with. The best example of this is our gridify tactic [17, Section 4.5], which rewrites
terms into grid normal form where matrix addition is on the outside, followed by tensor
product, with matrix multiplication on the inside, i.e., ((..× ..) ⊗ (..× ..)) + ((..× ..) ⊗ (..× ..)).
Most of the circuit equivalences available in sqir (e.g. ∀ a, b, c. CNOT a c ; CNOT b c ≡ CNOT
b c ; CNOT a c) are proved using gridify. This style of automation is available in other

verification tools too; gridify is similar to Liu et al.’s Isabelle tactic for matrix normalization
[18, Section 5.1]. Qbricks avoids the issue by using path-sums; they provide a matrix
semantics for comparison’s sake, but do not discuss automation for it.

Some of our automation is aimed at alleviating difficulties caused by our use of phantom
types [29] to store the dimensions of a matrix, the rationale of which is explained in our prior
work [17, Section 3.3]. In our development, matrices have the type Matrix m n, where m is the
number of rows and n is the number of columns. One challenge with this definition is that
the dimensions stored in the type may be “out of sync” with the structure of the expression
itself. For example, due to simplification, rewriting, or declaration, the expression |0⟩ ⊗ |0⟩
may be annotated with the type Vector 4, although rewrite rules expect it to be of the form
Vector (2 ∗ 2). We provide a tactic restore_dims that analyzes the structure of a term and
rewrites its type to the desired form, allowing for more effective automated simplification.

4.6 Vector State Abstractions
To verify that the SWAP program has the intended semantics, we can unfold its definition
(CNOT a b; CNOT b a; CNOT a b) and compute the associated matrix expression. However, while
this proof is made simpler by automation like gridify, it is still fairly complicated considering

K. Hietala, R. Rand, S.-H. Hung, L. Li, and M. Hicks 21:11

that SWAP has a simple classical (non-quantum) purpose. In fact, this operation is much
more naturally analyzed using its action on basis states. A (computational) basis state is
any state of the form |i1 . . . id⟩ for i1, . . . , id ∈ {0, 1} (so |00⟩ and |11⟩ are basis states, while

1√
2 (|00⟩ + |11⟩) is not). The set of all d-qubit basis states form a basis for the underlying

d-dimensional vector space, meaning that any 2d × 2d unitary operation can be uniquely
described by its action on those basis states.

Using basis states, the reasoning for our SWAP example proceeds as follows, where we use
|. . . x . . . y . . .⟩ as informal notation to describe the state where the qubit at index a is in
state x and the qubit at index b is in state y.
1. Begin with the state |. . . x . . . y . . .⟩.
2. CNOT a b produces |. . . x . . . (x⊕ y) . . .⟩.
3. CNOT b a produces |. . . (x⊕ (x⊕ y)) . . . (x⊕ y) . . .⟩ = |. . . y . . . (x⊕ y) . . .⟩.
4. CNOT a b produces |. . . y . . . (y ⊕ (x⊕ y)) . . .⟩ = |. . . y . . . x . . .⟩.
In our development, we describe basis states using f_to_vec d f where d : N and f : N → B.
This describes a d-qubit quantum state where qubit i is in the basis state f(i), and false
corresponds to 0 and true to 1. We also sometimes describe basis states using basis_vector
d i where i < 2d is the index of the only 1 in the vector. We provide methods to translate
between the two representations (simply converting between binary and decimal encodings).
For the remainder of the paper, we will write |f⟩ for f_to_vec n f and |i⟩ for basis_vector n i,
omitting the n parameter when it is clear from the context.

We prove a variety of facts about the actions of gates on basis states. For example, the
following succinctly describe the behavior of the CNOT and Rz(θ) gates, where Rz(θ) =
UR(0, 0, θ):

Lemma f_to_vec_CNOT : ∀ (d i j : N) (f : N → B),
i < d → j < d → i ̸= j →
let f' := update f j (f j ⊕ f i) in
JCNOT i jKd × |f⟩ = |f'⟩.

Lemma f_to_vec_Rz: ∀ (d j : N) (θ : R) (f : N → B),
j < d →
JRz θ jKd × |f⟩ = eiθ(f j) * |f⟩.

Above, update f i v updates the value of f at index i to be v (i.e. for the resulting
function f ′, f ′(i) = v and f ′(j) = f(j) for all j ̸= i). So CNOT i j has the effect of updating
the jth entry of the input state to the exclusive-or of its ith and jth entries. Rz θ j updates
the phase associated with the input state.

There are several advantages to applying these rewrite rules instead of unfolding the
definitions of JCNOT i jKd and JRz θ jKd. For example, these rewrite rules assume well-typedness
and do not depend on the ordering of qubit arguments, avoiding the case analysis needed in
gridify [17, Section 4.5]. In addition, the rule for CNOT above is simpler to work with than
the general unitary semantics (CNOT 7→ _ ⊗ (1 0

0 0) ⊗ _ ⊗ I2 ⊗ _ + _ ⊗ (0 0
0 1) ⊗ _ ⊗σx ⊗ _).

As a concrete example of where vector-based reasoning was critical, consider the three-
qubit Toffoli gate, which implements a controlled-controlled-not, and can be thought of as the
quantum equivalent of an and gate. It is frequently used in algorithms, but (like all n-qubit
gates with n > 2) rarely supported in hardware, meaning that it must be decomposed into
more basic gates before execution. In practice, we found gridify too inefficient to verify the
standard decomposition of the gate [22, Chapter 4], shown below.

Definition TOFF {d} a b c : ucom base d :=
H c ; CNOT b c ; T† c ; CNOT a c ; T c ; CNOT b c ; T† c ;
CNOT a c ; CNOT a b ; T† b ; CNOT a b ; T a ; T b ; T c ; H c.

ITP 2021

21:12 Proving Quantum Programs Correct

However, like SWAP, the semantics of the Toffoli gate is naturally expressed through its action
on basis states:
Lemma f_to_vec_TOFF : ∀ (d a b c : N) (f : N → B),

a < d → b < d → c < d →
a ̸= b → a ̸= c → b ̸= c →
let f' := update f c (f c ⊕ (f a && f b)) in
JTOFF a b cKd × |f⟩ = |f'⟩.

The proof of f_to_vec_TOFF is almost entirely automated using a tactic that rewrites using the
f_to_vec lemmas shown above, since T and T† are Rz (PI / 4) and Rz (−PI / 4), respectively.

The f_to_vec abstraction is simple and easy to use, but not universally applicable: Not
all quantum algorithms produce basis states, or even sums over a small number of basis
states, and reasoning about 2d terms of the form |i1 . . . id⟩ is no easier than reasoning directly
about matrices. To support more general types of quantum states we define indexed sums
and tensor (Kronecker) products of vectors.
Fixpoint vsum {d} n (f: N → Vector d) : Vector d := ...
Fixpoint vkron n (f: N → Vector 2) : Vector 2n := ...

As an example of a state that uses these constructs, the action of n parallel Hadamard gates
on the state |f⟩ can be written as

vkron n (fun i ⇒ 1√
2 (|0⟩ + (−1)f(i) |1⟩)) or 1√

2n ∗ (vsum 2n (fun i ⇒ (−1)to_int(f)•i ∗ |i⟩)),

both commonly-used facts in quantum algorithms. For the remainder of the paper, we will
write

∑n−1
i=0 f(i) for vsum n (fun i ⇒ f i) and

⊗n−1
i=0 f(i) for vkron n (fun i ⇒ f i).

Relation with Path-sums

Our vsum and vkron definitions share similarities with the path-sums [1, 2] semantics used by
Qbricks [7]. In the path-sums formalism, every unitary transformation is represented as a
function of the form

|x⟩ → 1√
2m

2m−1∑
y=0

e2πiP (x,y)/2m

|f(x, y)⟩

where m ∈ N, P is an arithmetic function over x and y, and f is of the form |f1(x, y)⟩ ⊗ · · · ⊗
|fm(x, y)⟩ where each fi is a Boolean function over x and y. For instance, the Hadamard gate
H has the form |x⟩ → 1√

2

∑1
y=0 e

2πixy/2 |y⟩. Path-sums provide a compact way to describe
the behavior of unitary matrices and are closed under matrix and tensor products, making
them well-suited for automation. They can be naturally described in terms of our vkron and
vsum vector-state abstractions:
Definition path_sum (m : N) P f x :=

vsum 2m (fun y ⇒ e2πiP (x,y)/2m

* (vkron m (fun i ⇒ f i x y))).

As above, P is an arithmetic function over x and y and f i is a Boolean function over x and y
for any i.

4.7 Measurement Predicates
The proofs in Section 5 do not use the non-unitary semantics directly, but instead describe
the probability of different measurement outcomes using predicates probability_of_outcome
and prob_partial_meas.

K. Hietala, R. Rand, S.-H. Hung, L. Li, and M. Hicks 21:13

(* Probability of measuring φ given input ψ. *)
Definition probability_of_outcome {n} (φ ψ : Vector n) : R :=

let c := (φ† × ψ) 0 0 in |c|2.

(* Probability of measuring φ on the first n qubits given (n+m) qubit input ψ. *)
Definition prob_partial_meas {n m} (φ : Vector 2n) (ψ : Vector 2n+m) :=
∥ (φ† ⊗ I2m) × ψ ∥2.

Above, ∥v∥ is the 2-norm of vector v and |c| is the complex norm of c. In formal terms, the
“probability of measuring φ” is the probability of outcome φ when measuring a state in the
basis {φ× φ†, I2n − φ× φ†}.

The principle of deferred measurement [22, Chapter 4] says that measurement can always
be deferred until the end of a quantum computation without changing the result. However,
we included measurement in Section 3.3 because it is an important feature of quantum
programming languages that is used in a variety of constructs like repeat-until-success
loops [24] and error-correcting codes [12]. Qbricks also uses measurement predicates, but
unlike sqir does not support a general measurement construct.

5 Proofs of Quantum Algorithms

In this section we discuss the formal verification of two classic quantum algorithms: Grover’s
algorithm [22, Chapter 6] and quantum phase estimation [22, Chapter 5]. We present
additional, simpler examples in Appendices A and B of the extended version of this paper.
All proofs and specifications follow the corresponding textbook arguments.

5.1 Grover’s Algorithm
Overview

Given a circuit implementing Boolean oracle f : {0, 1}n → {0, 1}, the goal of Grover’s
algorithm is to find an input x satisfying f(x) = 1. Suppose that n ≥ 2. In the classical
(worst-)case where f(x) = 1 has a unique solution, finding this solution requires O(2n) queries
to the oracle. However, the quantum algorithm finds the solution with high probability using
only O(

√
2n) queries.

The algorithm alternates between applying the oracle and a “diffusion operator.” Indi-
vidually, these operations each perform a reflection in the two-dimensional space spanned by
the input vector (a uniform superposition) and a uniform superposition over the solutions to
f . Together, they perform a rotation in the same space. By choosing an appropriate number
of iterations i, the algorithm will rotate the input state to be suitably close to the solution
vector. The sqir definition of Grover’s algorithm is shown in Figure 2.

The sqir version of Grover’s algorithm is 15 lines, excluding utility definitions like control
and npar. The specification and proof are around 770 lines. The proof took approximately
one person-week.

Proof Details

The statement of correctness says that after i iterations, the probability of measuring a
solution is sin2((2i+1)θ) where θ = arcsin(

√
k/2n) and k is the number of satisfying solutions

to f . Note that this implies that the optimal number of iterations is π
4

√
2n

k .

ITP 2021

21:14 Proving Quantum Programs Correct

(* Controlled-X with target (n-1) and controls 0, 1, ..., n-2. *)
Fixpoint generalized_Toffoli' n0 : ucom base n :=

match n0 with
| O | S O ⇒ X (n - 1)
| S n0' ⇒ control (n - n0) (generalized_Toffoli' n0')
end.

Definition generalized_Toffoli := generalized_Toffoli' n.

(* Diffusion operator. *)
Definition diff : ucom base n :=

npar n H; npar n X ;
H (n - 1) ; generalized_Toffoli ; H (n - 1) ;
npar n X; npar n H.

(* Main program (iterates applying Uf and diff). *)
Definition body := Uf ; cast diff (S n).
Definition grover i := X n ; npar (S n) H ; niter i body.

Figure 2 Grover’s algorithm in sqir. control performs a unitary program conditioned on an
input qubit, npar performs copies of a unitary program in parallel, cast is a no-op that changes the
dimension in a ucom’s type, and niter iterates a unitary program.

We begin the proof by showing that the uniform superposition can be rewritten as a sum
of “good” states (ψg) that satisfy f and “bad” states (ψb) that do not satisfy f .

Definition ψ := 1√
2n

∑2n−1
k=0 |k⟩.

Definition θ := asin (
√
k/2n).

Lemma decompose_ψ : ψ = (sin θ) ψg + (cos θ) ψb.

We then prove that Uf and diff perform the expected reflections (e.g. JdiffKn = −2 |ψ⟩ ⟨ψ| +
I2n) and the following key lemma, which shows the output state after i iterations of body.

Lemma loop_body_action_on_unif_superpos : ∀ i,
JbodyKi

n+1 (ψ ⊗ |-⟩) =
(-1)i (sin ((2 * i + 1) * θ) ψg + cos ((2 * i + 1) * θ) ψb) ⊗ |-⟩.

This property is straightforward to prove by induction on i, and implies the desired result,
which specifies the probability of measuring any solution to f .

Lemma grover_correct : ∀ i,
Rsum 2n (fun z ⇒ if f z

then prob_partial_meas |z⟩ (Jgrover iKn+1 × |0⟩n+1)
else 0) =

(sin ((2 * i + 1) * θ))2.

That is, the sum over the probability of all possible outcomes z such that f(z) is true is
sin2((2i+ 1)θ). Above, Rsum is a sum over real numbers.

5.2 Quantum Phase Estimation
Overview

Given a unitary matrix U and eigenvector |ψ⟩ such that U |ψ⟩ = e2πiθ |ψ⟩, the goal of
quantum phase estimation (QPE) is to find a k-bit representation of θ. In the case where
θ can be exactly represented using k bits (i.e. θ = z/2k for some z ∈ Z), QPE recovers θ

K. Hietala, R. Rand, S.-H. Hung, L. Li, and M. Hicks 21:15

exactly. Otherwise, the algorithm finds a good k-bit approximation with high probability.
QPE is often used as a subroutine in quantum algorithms, most famously Shor’s factoring
algorithm [31].

The sqir program for QPE is shown in Figure 3. For comparison, the standard circuit
diagrams for QPE and the quantum Fourier transform (QFT), which is used as a subroutine
in QPE, are shown in Figure 4. The sqir version of QPE is around 40 lines and the
specification and proof in the simple case (θ = z/2k) is around 800 lines. The fully general
case (θ ̸= z/2k) adds about 250 lines. The proof of the simple case was completed in about
two person-weeks. When working out the proof of the general case, we found that we needed
some non-trivial bounds on trigonometric functions (for x ∈ R, |sin(x)| ≤ |x| and if |x| ≤ 1

2
then |2 ∗ x| ≤ |sin(πx)|). Laurent Théry kindly provided proofs of these facts using the Coq
Interval package [21].

Proof Details

The correctness property for QPE in the case where θ can be described exactly using k bits
(θ = z/2k) says that the QPE program will exactly recover z. It can be stated in sqir’s
development as follows.
Lemma QPE_correct_simplified: ∀ k n (u : ucom base n) z (ψ : Vector 2n),

n > 0 → k > 1 → uc_well_typed u → WF_Matrix ψ →
let θ := z / 2k in
JuKn × ψ = e2πiθ * ψ →
JQPE k n uKk+n × (|0⟩k ⊗ ψ) = |z⟩ ⊗ ψ.

The first four conditions ensure well-formedness of the inputs. The fifth condition enforces
that input ψ is an eigenvector of c. The conclusion says that running the QPE program
computes the value z, as desired.

In the general case where θ cannot be exactly described using k bits, we instead prove
that QPE recovers the best k-bit approximation with high probability (in particular, with
probability ≥ 4/π2).
Lemma QPE_semantics_full : ∀ k n (u : ucom base n) z (ψ : Vector 2n) (δ : R),

n > 0 → k > 1 → uc_well_typed u → Pure_State_Vector ψ →
-1 / 2k+1 ≤ δ < 1 / 2k+1 → δ ̸= 0 →
let θ := z / 2k + δ in
JuKn × ψ = e2πiθ * ψ →
prob_partial_meas |z⟩ (JQPE k n uKk+n × (|0⟩k ⊗ ψ)) ≥ 4 / π2.

Pure_State_Vector is a restricted form of WF_Matrix that requires a vector to have norm 1.
As an example of the reasoning that goes into proving these properties, consider the QFT

subroutine of QPE. The correctness property for controlled_rotations says that evaluating
the program on input |x⟩ will produce the state e2πi(x0 · x1x2...xn−1)/2n |x⟩ where x0 is the
highest-order bit of x represented as a binary string and x1x2...xn−1 are the lower-order
n− 1 bits.
Lemma controlled_rotations_correct : ∀ n x,

n > 1 → Jcontrolled_rotations nKn × |x⟩ = e2πi(x0 · x1x2...xn−1)/2n

|x⟩.

We can prove this property via induction on n. In the base case (n = 2) we have that x is a
2-bit string x0x1. In this case, the output of the program is e2πi(x0·x1)/22 |x0x1⟩, as desired.
In the inductive step, we assume that:

Jcontrolled_rotations nKn × |x1x2...xn−1⟩ = e2πi(x0 · x1x2...xn−1)/2n

|x1x2...xn−1⟩.

ITP 2021

21:16 Proving Quantum Programs Correct

(* Controlled rotation cascade on n qubits. *)
Fixpoint controlled_rotations n : ucom base n :=

match n with
| 0 | 1 ⇒ SKIP
| S n' ⇒ controlled_rotations n' ; control n' (Rz (2π / 2n) 0)
end.

(* Quantum Fourier transform on n qubits. *)
Fixpoint QFT n : ucom base n :=

match n with
| 0 ⇒ SKIP
| S n' ⇒ H 0 ; controlled_rotations n ; map_qubits (fun q ⇒ q + 1) (QFT n')
end.

(* The output of QFT needs to be reversed before further processing. *)
Definition reverse_qubits n := ...
Definition QFT_w_reverse n := QFT n ; reverse_qubits n.

(* Controlled powers of u. *)
Fixpoint controlled_powers' {n} (u : ucom base n) k kmax : ucom base (kmax+n) :=

match k with
| 0 ⇒ SKIP
| S k' ⇒ controlled_powers' u k' kmax ; niter 2k′

(control (kmax - k' - 1) u)
end.

Definition controlled_powers {n} (u : ucom base n) k := controlled_powers' u k k.

(* QPE circuit for program u.
k = number of bits in resulting estimate
n = number of qubits in input state *)

Definition QPE k n (u : ucom base n) : ucom base (k + n) :=
npar k H ;
controlled_powers (map_qubits (fun q ⇒ k + q) u) k;
invert (QFT_w_reverse k).

Figure 3 sqir definition of QPE. Some type annotations and calls to cast have been removed
for clarity. control, map_qubits, niter, npar, and invert are Coq functions that transform sqir
programs; we have proved that they have the expected behavior (e.g. ∀ u. Jinvert uKn = JuK†

n).

QPEk,n =

|0⟩ H . . . •

QFT−1
k

...
...|0⟩ H • . . .

|0⟩ H • . . .

|ψ⟩ /n
U20

U21 . . . U2k−1

QFTk =

H R2 . . . Rk−1 Rk

• . . . H . . . Rk−2 Rk−1... • • . . . H R2

• • . . . • H

Figure 4 Circuit for quantum phase estimation (QPE) with k bits of precision and an n-qubit
input state (top) and quantum Fourier transform (QFT) on k qubits (bottom). |ψ⟩ and U are inputs
to QPE. Rm is a z-axis rotation by 2π/2m.

K. Hietala, R. Rand, S.-H. Hung, L. Li, and M. Hicks 21:17

Jcontrolled_rotations (n+1)Kn+1 × |x⟩
= Jcontrol xn (Rz (2π/2n+1) 0Kn+1 × Jcontrolled_rotations nKn+1 × |x⟩
= Jcontrol xn (Rz (2π/2n+1) 0Kn+1 × e2πi(x0 · x1x2...xn−1)/2n

|x1x2...xn−1xn⟩

= e2πi(x0 · xn)/2n+1
e2πi(x0 · x1x2...xn−1)/2n

|x1x2...xn−1xn⟩

= e2πi(x0 · x1x2...xn)/2n+1
|x1x2...xn−1xn⟩

Figure 5 Reasoning used in the proof of controlled_rotations. The first step unfolds the
definition of controlled_rotations; the second step applies the inductive hypothesis; the third
step evaluates the semantics of control; and the fourth step combines the exponential terms.

We then perform the simplifications shown in Figure 5, which complete the proof.
Our correctness property for QFT n (shown below) can similarly be proved by induction

on n, and relies on the lemma controlled_rotations_correct.

Lemma QFT_semantics : ∀ n x, n>0 → JQFT nKn × |x⟩ = 1√
2n

⊗n−1
j=0 (|0⟩+ e2πix/2n−j

|1⟩).

6 Open Problems and Future Work

We previously presented sqir as the intermediate representation in a verified circuit optim-
izer [17]. In this paper, we presented sqir as a source language for quantum programming
and discussed how our design choices (e.g. concrete indices, unitary core, vector state
abstractions) ease proofs about sqir programs. But there is still work to be done.

So far, work on formally verified quantum computation has been limited to textbook
quantum algorithms like QPE and Grover’s. Although these algorithms are a useful stress-test
for tools, they do not accurately reflect the types of quantum programs that are expected to
run on near-term machines. Near-term algorithms are usually approximate. They do not
implement the desired operation exactly, but rather perform an operation “close” to what
was intended. Our probability_of_outcome and prob_partial_meas predicates can be used
to express distance between vector states, but we currently do not have support for reasoning
about distance between general quantum operations.

Another issue is that near-term algorithms often need to account for hardware errors.
Thus, verifying these algorithms may require considering their behavior in the presence of
errors. So far, most of our work in sqir has revolved around the unitary semantics and
vector-based state abstractions because we find these simpler to work with. However, it is
more natural to describe states subject to error using density matrices, since noisy states are
mixtures of pure states [22, Chapter 8].

On another front, there is important work to be done on describing quantum algorithms
and correctness properties at a higher level of abstraction. The proofs and definitions in this
paper follow the standard textbook presentation, but are still lower-level than similar proofs
about classical programs. Rather than working from the circuit model, used in Qwire, sqir,
Qbricks, and (to some extent) QWhile, it would be interesting to verify programs written
in higher-level languages like Silq [4] or Q# [33].

We hope that sqir’s extensible design and flexible semantics, developed while verifying
circuit optimizations and textbook quantum programs, will serve as a solid foundation for
the proposed verification efforts above and those to come.

ITP 2021

21:18 Proving Quantum Programs Correct

References
1 Matt Amy. Formal Methods in Quantum Circuit Design. PhD thesis, University of Waterloo,

2019.
2 Matthew Amy. Towards large-scale functional verification of universal quantum circuits. In

Proceedings of the 15th International Conference on Quantum Physics and Logic, QPL 2018,
June 2018.

3 Adriano Barenco, Charles H. Bennett, Richard Cleve, David P. DiVincenzo, Norman Margolus,
Peter Shor, Tycho Sleator, John A. Smolin, and Harald Weinfurter. Elementary gates for
quantum computation. Phys. Rev. A, 52:3457–3467, November 1995. doi:10.1103/PhysRevA.
52.3457.

4 Benjamin Bichsel, Maximilian Baader, Timon Gehr, and Martin Vechev. Silq: A high-level
quantum language with safe uncomputation and intuitive semantics. In Proceedings of the 41st
ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI
2020, 2020.

5 Jaap Boender, Florian Kammüller, and Rajagopal Nagarajan. Formalization of quantum
protocols using coq. In Chris Heunen, Peter Selinger, and Jamie Vicary, editors, Proceedings
of the 12th International Workshop on Quantum Physics and Logic, Oxford, U.K., July 15-17,
2015, volume 195 of Electronic Proceedings in Theoretical Computer Science, pages 71–83.
Open Publishing Association, 2015. doi:10.4204/EPTCS.195.6.

6 Anthony Bordg, Hanna Lachnitt, and Yijun He. Certified quantum computation in Isa-
belle/HOL. Journal of Automated Reasoning, 2020. doi:10.1007/s10817-020-09584-7.

7 Christophe Chareton, Sébastien Bardin, François Bobot, Valentin Perrelle, and Benoit Valiron.
Toward certified quantum programming. arXiv e-prints, 2020. arXiv:2003.05841.

8 The Coq Development Team. The coq proof assistant, version 8.10.0, 2019. doi:10.5281/
zenodo.3476303.

9 Andrew W. Cross, Lev S. Bishop, John A. Smolin, and Jay M. Gambetta. Open Quantum
Assembly Language. arXiv e-prints, July 2017. arXiv:1707.03429.

10 David Deutsch and Richard Jozsa. Rapid solution of problems by quantum computation.
Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences,
439(1907):553–558, 1992.

11 Jean-Christophe Filliâtre and Andrei Paskevich. Why3 — where programs meet provers. In
Proceedings of the 22nd European Symposium on Programming, Lecture Notes in Computer
Science, 2013.

12 Daniel Gottesman. An introduction to quantum error correction and fault-tolerant quantum
computation. In Quantum information science and its contributions to mathematics, Proceed-
ings of Symposia in Applied Mathematics, volume 68, pages 13–58, 2010.

13 Alexander Green, Peter LeFanu Lumsdaine, Neil J. Ross, Peter Selinger, and Benoît Valiron.
Quipper: A scalable quantum programming language. In Proceedings of the 34th ACM
SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2013,
pages 333–342, 2013.

14 Alexander S Green. Towards a formally verified functional quantum programming language.
PhD thesis, University of Nottingham, 2010.

15 Daniel M. Greenberger, Michael A. Horne, and Anton Zeilinger. Going Beyond Bell’s Theorem,
pages 69–72. Springer Netherlands, Dordrecht, 1989. doi:10.1007/978-94-017-0849-4_10.

16 Lov K Grover. A fast quantum mechanical algorithm for database search. In Proceedings of
the twenty-eighth annual ACM Symposium on Theory of Computing, pages 212–219, 1996.

17 Kesha Hietala, Robert Rand, Shih-Han Hung, Xiaodi Wu, and Michael Hicks. A verified
optimizer for quantum circuits. Proceedings of the ACM on Programming Languages, 5(37),
2021.

18 Junyi Liu, Bohua Zhan, Shuling Wang, Shenggang Ying, Tao Liu, Yangjia Li, Mingsheng
Ying, and Naijun Zhan. Formal verification of quantum algorithms using quantum hoare
logic. In Computer Aided Verification - 31st International Conference, CAV 2019, New

K. Hietala, R. Rand, S.-H. Hung, L. Li, and M. Hicks 21:19

York City, NY, USA, July 15-18, 2019, Proceedings, Part II, pages 187–207, 2019. doi:
10.1007/978-3-030-25543-5_12.

19 Junyi Liu, Bohua Zhan, Shuling Wang, Shenggang Ying, Tao Liu, Yangjia Li, Mingsheng Ying,
and Naijun Zhan. Quantum hoare logic. Archive of Formal Proofs, March 2019. , Formal
proof development. URL: http://isa-afp.org/entries/QHLProver.html.

20 Tao Liu, Yangjia Li, Shuling Wang, Mingsheng Ying, and Naijun Zhan. A theorem prover for
quantum hoare logic and its applications. arXiv preprint arXiv:1601.03835, 2016.

21 Guillaume Melquiond. Interval package for coq, 2020. URL: https://gitlab.inria.fr/
coqinterval/interval.

22 Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Information.
Cambridge University Press, 2000.

23 Tobias Nipkow, Markus Wenzel, and Lawrence C. Paulson. Isabelle/HOL: A Proof Assistant
for Higher-order Logic. Springer-Verlag, Berlin, Heidelberg, 2002.

24 Adam Paetznick and Krysta M Svore. Repeat-until-success: non-deterministic decomposition
of single-qubit unitaries. Quantum Information & Computation, 14(15-16):1277–1301, 2014.

25 Jennifer Paykin, Robert Rand, and Steve Zdancewic. QWIRE: A core language for quantum
circuits. In Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming
Languages, POPL 2017, pages 846–858, New York, NY, USA, 2017. ACM. doi:10.1145/
3009837.3009894.

26 Frank Pfenning and Conal Elliott. Higher-order abstract syntax. In Proceedings of the ACM
SIGPLAN 1988 Conference on Programming Language Design and Implementation, PLDI ’88,
pages 199–208, New York, NY, USA, 1988. ACM. doi:10.1145/53990.54010.

27 Robert Rand. Formally Verified Quantum Programming. PhD thesis, University of
Pennsylvania, 2018.

28 Robert Rand, Jennifer Paykin, and Steve Zdancewic. QWIRE practice: Formal verification of
quantum circuits in Coq. In Proceedings 14th International Conference on Quantum Physics
and Logic, QPL 2017, Nijmegen, The Netherlands, 3-7 July 2017., pages 119–132, 2017.
doi:10.4204/EPTCS.266.8.

29 Robert Rand, Jennifer Paykin, and Steve Zdancewic. Phantom types for quantum programs.
The Fourth International Workshop on Coq for Programming Languages, January 2018.

30 Peter Selinger. Towards a quantum programming language. Mathematical Structures in
Computer Science, 14(4):527–586, August 2004.

31 P. W. Shor. Algorithms for quantum computation: discrete logarithms and factoring. In
Proceedings 35th Annual Symposium on Foundations of Computer Science, FOCS ’94, 1994.

32 DR Simon. On the power of quantum computation. In Proceedings of the 35th Annual
Symposium on Foundations of Computer Science, pages 116–123, 1994.

33 Krysta Svore, Alan Geller, Matthias Troyer, John Azariah, Christopher Granade, Bettina
Heim, Vadym Kliuchnikov, Mariia Mykhailova, Andres Paz, and Martin Roetteler. Q#:
Enabling scalable quantum computing and development with a high-level dsl. In Proceedings
of the Real World Domain Specific Languages Workshop 2018, page 7. ACM, 2018.

34 Mingsheng Ying. Floyd–hoare logic for quantum programs. ACM Transactions on Programming
Languages and Systems (TOPLAS), 33(6):19, 2011.

ITP 2021

