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POSITIVE UNIVARIATE TRACE POLYNOMIALS

IGOR KLEP!, JAMES ELDRED PASCOE?, AND JURIJ VOLCIC?

ABSTRACT. A univariate trace polynomial is a polynomial in a variable « and formal
trace symbols Tr(z7). Such an expression can be naturally evaluated on matrices, where
the trace symbols are evaluated as normalized traces. This paper addresses global and
constrained positivity of univariate trace polynomials on symmetric matrices of all finite
sizes. A tracial analog of Artin’s solution to Hilbert’s 17th problem is given: a positive
semidefinite univariate trace polynomial is a quotient of sums of products of squares
and traces of squares of trace polynomials.

1. INTRODUCTION

Univariate trace polynomials are real polynomials in 2 and Tr(z?) for j € N. We view
x as a matrix variable of unspecified size, and evaluate a (univariate) trace polynomial
f(x, Tr(z), Tr(2?),...) at any n x n matrix X as f(X,+tr(X), = tr(X?),...). That is,
the trace symbol Tr evaluates as the normalized trace of a matrix. Trace polynomials as
matricial functions originated in invariant theory [Pro76], and more recently emerged in
free probability [GS14] and quantum information theory [PNA10, FN14]. In this paper
we characterize trace polynomials that have positive semidefinite values at symmetric
matrices of all sizes.

Trace polynomials form a commutative polynomial ring (in countably many vari-
ables), and several sum-of-squares positivity certificates (Positivstellensétze) for mul-
tivariate polynomials on semialgebraic sets are provided by real algebraic geometry
[BCR9S, Las01, Mar08, Lau09, BPT13]. However, this theory does not appear to directly
apply to our setup. First, matrix evaluations of trace polynomials are just a special class
of homomorphisms from trace polynomials. Second, the dimension-free context addresses
positivity on symmetric matrices of all sizes, hence on a countable disjoint union of real
affine spaces; there is no bound (with respect to the degree of a trace polynomial) on the
size of matrices for which positivity needs to be verified (Remark 3.6).

Therefore a different approach is required. To demonstrate it, consider the inequality
(1.1)  Tr(XH)(Tr(X?) — Tr(X)?) + 2 Tr(X?) Tr(X?) Tr(X) — Tr(X?)? — Tr(X?)* >0
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which holds for all symmetric matrices X. One way to certify (1.1) is by noticing that
f = Tr(z*)(Tr(2?) — Tr(z)?) +2 Tr(23) Tr(2?) Tr(z) — Tr(z?®)* — Tr(2*)? is the determinant
of the Hankel matrix
1 Tr(z) Tr(x?)

Tr(z) Tr(z?) Tr(a?)

Tr(z?) Tr(x®) Tr(z?)
which is positive semidefinite for every matrix evaluation (since it is obtained by applying
the normalized partial trace to a positive semidefinite matrix). Another certificate of
(1.1), in the spirit of sum-of-squares representations in real algebraic geometry, is

Tr ((x — Tr(:p))Q) - f
— Ty (((Tr(x)2 — Tr(2?)2? + (Tr(2®) — Tr(2?) Te(x))a + Tr(22)? — Tr(z?) Tr(a:))z),

where we view Tr as an idempotent linear endomorphism of trace polynomials in a natural
way. Thus f is a quotient of traces of squares. The main result of this paper shows that
these characterizations apply to all positive trace polynomials.

Corollary 3.8. Let f be a univariate trace polynomial. Then f(X) is positive semidef-
wnite for all symmetric matrices X iof and only if f is a quotient of sums of products of
squares and traces of squares of trace polynomials.

Corollary 3.8 is a special case of Theorem 3.2, a tracial Positivstellensatz that char-
acterizes positivity of trace polynomials subject to tracial constraints under certain mild
regularity assumptions. The proof of Theorem 3.2 splits into two parts: every tracial
inequality is a consequence of a certain tracial Hankel matrix being positive semidefi-
nite (Proposition 3.1), and this positive semidefiniteness is in turn certified by traces of
squares (Proposition 2.4).

Since we are addressing trace polynomials in only one matrix variable and the trace is
invariant under conjugation, we could of course restrict evaluations to diagonal matrices
and reach the same positivity conclusions. From this viewpoint, Corollary 3.8 pertains
to positive symmetric polynomials and mean inequalities in combinatorics and statistics
[Bul03, Tim03, CGS11, MS13, Sral9]: a positive trace polynomial corresponds to a
sample-size independent power mean (or moment) inequality.

Nevertheless there are benefits to working with general matrix evaluations of trace
polynomials. Besides the algebraic structure, there is an intimate connection with the
emerging area of free analysis [IK-VV14] (cf. Proposition 2.1). Evaluations on arbitrary
symmetric matrices put the positivity of univariate trace polynomials under the um-
brella of multivariate trace polynomials and noncommutative tracial inequalities induced
by them. If one considers only tuples of matrices of fixed size, Positivstellensitze on ar-
bitrary tracial semialgebraic sets are known [Pro76, PS85, Cim12, KSV 18]. On the other
hand, multivariate trace positivity on matrices of all finite sizes is not understood well.
Namely, the failure of Connes’ embedding conjecture [JNVWY20] implies that there is
a noncommutative polynomial whose trace is positive on all matrix contractions, but
negative on a tuple of operator contractions from a tracial von Neumann algebra [[<S08],
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which obstructs the existence of a clean trace-of-squares certificate for matrix positiv-
ity in general. There are however Positivstellensétze for positivity of multivariate trace
polynomials on von Neumann algebras subject to archimedean constraints [KMV20]. In
a different direction, tracial inequalities of analytic functions are heavily studied in re-
lation to monotonicity, convexity and entropy in quantum statistical mechanics [Carl10].
The results of this paper fill the gap in understanding univariate trace polynomials by
demonstrating that in one operator variable, global positivity on matrices of all sizes

implies global operator positivity (in tracial von Neumann algebras).

2. UNIVARIATE TRACE POLYNOMIALS

In this section we introduce terminology and notation that will be used throughout
the paper. This includes the notion of a preordering from real algebraic geometry [Mar(0g],
and Proposition 2.4 establishes a relation between two preorderings appearing in our

positivity certificate.

Let T = R[Tr(27): j € N] be the polynomial ring generated by countably many inde-
pendent symbols Tr(z7). Its elements are called (univariate) pure trace polynomials.
By adjoining an additional variable x to T one obtains the ring of (univariate) trace
polynomials T = T ® R[z]. Let Tr : T — T denote the unital T-linear map given by
27— Tr(z?) for all j € N.

Let S,,(R) denote the space of n x n real symmetric matrices. We consider ma-
trix evaluations of trace polynomials, where the trace symbols are evaluated using the
normalized matrix trace on S, (R). For example, if

f=a%—2Tr(z)x + 2Tr(z)? — Tr(2?) and X € 5,(R)

then

f(X)=X?— 20(X) o o (Qtr(X)2 tr(X?)

n

) I, € S,(R).

One can further elaborate on this viewpoint of a trace polynomial as a family of matricial

n? n

polynomial functions that are equivariant under the orthogonal conjugation, respect am-
pliations and have a common degree bound. This perspective is inspired by free analysis
[K-VV14, KS17], where free functions are equivariant and respect direct sums instead of
just ampliations. An analog of the following proposition also holds for multivariate trace

polynomials (which are not considered in this paper).

Proposition 2.1. A sequence (f,)n of polynomial maps f, : S,(R) — S, (R) is given by
a trace polynomial if and only if

(1) fo(OXO") = Of,(X)O" for everyn € N, X € S,(R) and O € O,(R);
(11) frn(Ir @ X) = I} @ fo(X) for all k,n € N and X € S,(R);
(iii) sup,, deg f, < oo.

Proof. On the polynomial ring T, consider the degree function deg given by degx = 1
and deg Tr(2’) = j for j € N.
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(=) If f € T and deg f = d, then the polynomial maps f, = f|s,®) clearly satisfy
(i) and (ii), and deg f,, < d for all n € N.

(<) Since f, is O,(R)-equivariant, there exists f, € T with deg f, = deg f, such
that f, = fn\sn(R), see e.g. [Pro76, Theorem 7.3]. Let deg f,, < d for all n € N. By (iii),
for all k € N and X € S;.1(R) we have

I @ frainy(X) = freny (e @ X) = L @ fa1(X) = I, ® fas(X),

SO fk(d—f—l) = fdﬂ for all k since there are no tracial identities for Sy 1(R) of degree d
[Pro76, Proposition 8.3]. A further application of (iii) then gives

Tit1 @ fi(X) = farelap @ X) = 141 ® f(d+1)k(X) = Io01 ® fara(X)

for all k € N and X € Si(R). Therefore the trace polynomial f = fu.1 yields the
sequence (fp,)n. O

A direct consequence of Proposition 2.1 is the description of pure trace polynomials
as sequences of polynomial functions.

Corollary 2.2. A sequence (p,), of polynomial functions p, : S,(R) — R is given by a
pure trace polynomial if and only if

(1) pn is Op(R)-invariant for every n € N;
(1) prn(ly @ X) = pp(X) for all k,n € N and X € S,,(R);
(11i) sup,, deg p,, < 0.

To a set of constraints S C T we associate its positivity set

Ks=|J{X €Su(R): s(X) = 0 for all s € S} .

neN

2.1. Preorderings and Hankel matrices. Given a commutative ring R and S C R,
the preordering generated by S is the smallest set P C R containing S that is closed
under addition and multiplication, and 72 € P for every r € R [Mar(8, Section 2.1].

For j=1,...,mlet 0;(X) € R be such that
(2.1) t" — o (X (D) o (X4 (1) (X) € R]Y

is the characteristic polynomial of X € M,,(R). In other words, ¢;(X) is the trace of
the jth exterior power of X, and in particular oy(X) = tr(X). Note that when R is a
real closed field, X is positive semidefinite if and only if o1(X),...,0,(X) > 0 by the
Descartes rule of signs.

Let d € N. We say that a (d+ 1) x (d+ 1) (symmetric) matrix H is a Hankel matrix
if H; = 1 and H;,;, = H,,;, for i1 + j1 = iz + j». The Hankel matrix over T whose
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(i, j)-entry equals Tr(xz*™7=2) for 1 <i,7 < d+ 1 is denoted H:

1 Tr(z) Tr(2?) ---  Tr(z?)
TI‘(:L’) TI‘(ZL’dJrl)
Na = | Tr(z2?) ' ' :
Tr(z?) Tr(z¢Y) .o .o Tr(2?d)

For each d € N we consider finitely generated polynomial rings
T,;=R[Tr(z’): j<d]cT and T;=Ts®@R[z]CT.

Let II4 be the preordering in Ty, generated by {o;($4): j = 1,...,d + 1}, and let Q be
the preordering in T generated by {Tr(f?): f € T}. As demonstrated in the next section,
both preorderings can be used to certify positivity. The upside of €2 is that it does so in
terms of squares, which are the most basic building blocks of positivity. However, € is
not a finitely generated preordering (which would not change even if only polynomials
of bounded degree were considered). On the other hand, II; is a finitely generated
preordering, and thus more in line with classical results in real algebraic geometry.

Lemma 2.3. Let A € M,,(T) and C,Cy € M, (T). If B € M,,(T) is the matriz
obtained by applying Tr to A entry-wise, then

tr(C’lBCQ) = i Tr ((ClACQ)kk)

Proof. Straightforward. O

The following proposition shows that, inside the field of fractions of pure trace poly-
nomials, II; is generated by 2.

Proposition 2.4. 0;($,) is a quotient of elements from 1 for every j,d € N with
g <d+1.

Proof. Let = be the generic (d + 1) x (d + 1) symmetric matrix; that is, entries of
= are commuting indeterminates, related only by = being symmetric. Let A be the
real polynomial algebra generated by the entries of =, and let R be its real subalgebra
generated by {0;(Z): 1 <i < d+1}. Let P be the preordering in R generated by

{tr(h(Z)?), tr(h(Z)?Z): h € T}.
By [KSVI& Lemma 4.1 and Theorem 4.13] there exist p;,p2 € P and k € N such that

(22) plcrj(E) = O'j(E)Qk +p2
Let w* = (12 --- 2%); then $, is obtained by applying Tr to ww' € My, (R[z]) entry-
wise. If h € T, then h($4) € Myy1(T) and h(H,)w € T4; hence by Lemma 2.3,

d+1

(23)  tr (h($94)>Ha) = tr (W(H4) Hah ZTr )i (h($1a)w);,) € Q
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If g; is obtained from p; by replacing = with $)4, then ¢, ¢2 € Q by (2.3). Further, ¢; # 0
by (2.2) since the right-hand side is strictly positive when evaluated at a positive definite
(d 4+ 1) x (d + 1) Hankel matrix. Therefore w; = 0;($4)* + g2 and wy = ¢ satisfy
73(9a) = £ by (2.2) O

For Proposition 2.4 it is crucial that €2 is generated not only by traces of squares of
polynomials in R[z], but traces of squares of trace polynomials; see Example 2.6 below.
Furthermore, quotients in Proposition 2.4 are necessary, as demonstrated by the following

example.
Example 2.5. Let

f = 09($2) = Tr(2*) Tr(z?) — Tr(2?)? 4+ Tr(z?) — Tr(2?)? + Tr(2?) — Tr(z)?
_Tr ((Tr(z?)a?* — Tr(2%)z)?)
Tr(z?)

+ Tr ((2* = Tr(2%))?) + Tr ((z — Tr(z))?).

On the polynomial ring T, consider the degree function deg given by degz = 1 and
deg Tr(z7) = j as in the proof of Proposition 2.1. Then deg f = 6. Furthermore, one
observes that if w € Q with degw = 6 contains the monomial Tr(z*)? with a negative
sign, then it must contain the monomial Tr(z%) with a positive sign. Since this fails for
f, we conclude that f ¢ €.

2.2. Univariate trace polynomials as multivariate polynomials. We will frequently
view trace polynomials in T, as polynomials in d + 1 variables

t(] =T, tl = TI'(I‘), ey td = TI'(.I‘d).

Thus they can evaluated at points in the real affine space R'*?. To avoid confusion with
matrix evaluations, we write f[y] € R for such an evaluation of f € Ty at v € R,
Furthermore, if f € Ty, then we also evaluate it at v/ € R? as f[y'], as the inclusion of
rings Ty C T, corresponds to the projection R'*% = R x R? — R

Example 2.6. If f = 05($) = det($);), then
f=Tr(z*) — Tr(z)* = Tr ((z — Tr(2))?) € Q.

On the other hand, we claim that f cannot be written as a quotient of elements from the
preordering in T generated by {Tr(p?): p € R[x]}; that is, trace polynomials are essential
for sum-of-squares representations.

Suppose this is not true. Note that f is a quadratic in the generators of T, while
Tr(p?) for p € R[z] are linear in generators of T. Let d € N be such that f is a
quotient of elements from the preordering in Tqy generated by {Tr(p?),..., Tr(p?)} for
some py, ..., p; € Rlz] of degree at most d. As above, we view the generators t; = Tr(z7)
as coordinates of the real affine space R?? corresponding to the polynomial ring Taq.
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Observe that then det($);[y]) > 0 implies $1[y] > 0 since ($);)1; = 1. Therefore
{v e R*: 1[y] = 0}
= {7y e R*: f[y] > 0}
(2.4) 2 {y e R*: Tr(pf
D {y e R*: Tx(
= {y € R*: 4[] = 0}.

Note that W is a polyhedron. Since the projections of {7: $:[y] = 0} and {7: $4[7] > 0}
onto the (¢1,ts)-plane coincide, the inclusions (2.4) imply that the projections of W
and {v: f[y] > 0} onto the ({1,%s)-plane also coincide. But then the projection of
{7: fl7] > 0} onto this plane is a polyhedron, which is impossible since f is quadratic.

Finally, to a finite set S C Ty; we assign the basic closed semialgebraic set

Ls = {y € R*: 5[y] >0 for all s € S and H,[y] = 0}.

3. POSITIVSTELLENSATZ FOR UNIVARIATE TRACE POLYNOMIALS

In this section we prove our main result (Theorem 3.2) which describes trace poly-
nomials that are positive on tracial semialgebraic sets subject to certain mild regularity
assumptions. As a corollary we characterize globally positive trace polynomials (Corol-

lary 3.8). Examples justifying the assumptions in Theorem 3.2 are also given.

3.1. Main result. At the core of our Positivstellensatz is the observation that the points
in Lg, which originate from tracial evaluations on matrices in Kg, are dense in the interior
of Lg. More precisely, we require the following statement, which relies on a solution of
the truncated moment problem [CF98]. For a classical application of moment problems
for deriving rational sum-of-squares certificates of positivity, see [PV99].

Proposition 3.1. Let S C Ty be a finite set and g € Toy\ {0}. For every interior point
BER X Lg C R gnd e > 0 there exists X € Ks with an eigenpair (\,v) such that

(i) |B; — Te(X?)| <& forj=1,...,2d;

(i1) |Bo — A| < &
(1i1) v'g(X)v £ 0.
Proof. Without loss of generality we can assume that 0 ¢ S. Then the interior of Lg is
contained in the closure of

{y € R*: 5[] > 0 for all s € S and $H4[y] = 0}.
After an arbitrarily small perturbation of S we can therefore assume that
s[f] > 0 for all s € S, $H4[6] > 0 and g[F] # 0.

For positive definite Hankel matrices, the truncated Hamburger moment problem is
solvable [AKG2, Theorems 1.1 and 1.3]; c¢f. [CF91, Theorem 3.9]. Thus there exists a
(d + 1)-atomic measure p on R representing 4[], i.e., there are ay,...,a411 € R and
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A,y Aar1 € Ry with Y00 A = 1 such that g =), \;jd,,, where ¢ stands for the Dirac
measure, satisfies

Bj:/tjdu, j=1,...,2d.

Next we approximate ); by rationals with a denominator that is much larger than
Bo. That is, for every € > 0 there exist n,mq, ..., mgy1 € N such that

(1) In\; = my| <néfori=1,...,d+1;
@) Smi=n—1;
(3) 1Bo| < mé.

Denote

and set
Bo=pF  and Bj:/tﬂ'dﬁ forj=1,...,2d.

Since S is finite and we are approximating finitely many values, we can choose ¢ small
enough compared to ¢ such that

(1) \Bj _Bj|~< efor j=0,...,2d;
(27) (B, -+, Ba2q) € Ls;

(37) g[B] # 0.
The n x n diagonal matrix

X = bl & P ailm,

satisfies %tr(f(j) — B, for 1 < j < 2d. Consequently s(X) > 0 forall s € S. Furthermore,
(Bo, e1) is an eigenpair for X and e g(X)e; = g[] # 0. Hence (i)-(iii) are satisfied. [

A subset of a topological space is reqular closed if it equals the closure of its interior.

Theorem 3.2. Given a finite set S C Ty let P be the preordering in Toy generated by
SUIly, and let Q) be the preordering in T generated by S USY. Suppose that Lg is reqular
closed in R?*. Then the following are equivalent for f € Toq:

(i) f(X) =0 forall X € Kg;
(ii) there are p1,ps € P and k € N such that

(3.1) pif = 2+ po;

(111) f[5] >0 for all 5 € R x Lg;
(iv) there is g € Q \ {0} such that ¢f € Q.

Proof. (iii)=-(ii) Since the positive semidefiniteness of $); is certified by o0;($4) > 0
for j = 1,...,d+ 1 and P is a finitely generated preordering in a finitely generated
polynomial ring, this implication is an instance of the Krivine-Stengle Positivstellensatz
[Mar08, Theorem 2.2.1].

(i)=-(iii) Follows by Proposition 3.1 (the roles of g and the eigenpair are irrelevant
in this instance).
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(ii)=(iv) Suppose (3.1) holds. Without loss of generality assume that f # 0; then
p1 # 0 by (3.1) since Lg has nonempty interior. By Proposition 2.4, every element of
P can be written as a quotient of an element in ) and an element from ). So f is a
quotient of elements from @ by (3.1).

(iv)=-(i) Suppose qf = r for ¢, € @ with ¢ # 0, and let X € Kg. Let (\,v) be an
eigenpair of X. Since Lg is regular closed, by Proposition 3.1 there exists a sequence of
matrices X C Kg with eigenpairs (\g, vg) such that

k—o00

lim Tr(X]) = Tr(XY),  j=1,...,2d,
— 00
vrq(Xp)vg # 0 ke N.

Since q(Xy)f(Xy) = r(Xy) and ¢(Xy), 7(Xk) = 0, we have v}, f(Xy)v, > 0 for all k € N.
On the other hand,

V(X)) = fATe(X),. .., Tr(X?)
= lim fh, Te(Xy), - Tr(XG)

k—o0

and therefore v* f(X)v > 0. As the eigenpair (\,v) of X was arbitrary, f(X) is positive
semidefinite. O

Remark 3.3. The regular closed assumption in Theorem 3.2 is indispensable. Note that
sum-of-squares certificates imply not only positivity of matrix evaluations, but also pos-
itivity of evaluations in tracial von Neumann algebras. However, there exist pure tracial
constraints that are infeasible for matrices of arbitrary finite size, but feasible for infinite-
dimensional tracial von Neumann algebras. For example, let

(3.2) s1 = Tr((z — 2%)?), so = V2Tr(z) — 1.

No X € S, (R) satisfies s1(X) = s2(X) = 0 (as if s;(X) = 0, then X is a projection, so
Tr(X) € Q). On the other hand, viewing L>(]0, 1]) as an abelian von Neumann algebra
with the trace given by the Lebesgue integration, the characteristic function y for [0, %]
satisfies s1(x) = s2(x) = 0. Therefore the conclusion (i)=-(ii) of Theorem 3.2 fails for
S = {+£sy,*s2} and f = —1. A Positivstellensatz for (multivariate) trace polynomials
positive on operators in tracial von Neumann algebras satisfying archimedean constraints

is given in [KMV20, Corollary 4.8].

Remark 3.4. The denominators p; and ¢ in parts (ii) and (iv) of Theorem 3.2 are necessary
in general. For (iv), this is demonstrated by Example 2.5. For (ii), this holds even if the
larger preordering P’ in Ty, finitely generated by S and all the principal minors of £y is
considered. Note that Ty is the polynomial ring in 2d + 1 > 3 indeterminates, and the
semialgebraic set corresponding to P’ equals R x Lg and has nonempty interior by the
assumption. Then by [Mar(08, Proposition 2.6.2] there exists f € Tyq that is non-negative
on R x Lg but f ¢ P'.
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Remark 3.5. When only matrices of a given fized size n are considered, then multivariate
trace polynomials that are positive on all n X n matrices are characterized via traces
of squares in the seminal work of Procesi and Schacher [Pro76]. The extension of this
characterization to positivity on invariant semialgebraic subsets of n x n matrices is given
in [KSV18]. However, one cannot deduce our size-independent positivity certificate from
such positivity certificates for each fixed size n. The obstacle is the non-existence of a
bound on n such that positivity of a trace polynomial f on n x n matrices would imply
positivity of f on all matrices; see Remark 3.6 below. Thus one cannot simply deduce
Theorem 3.2 from the existing dimension-dependent Positivstellensitze [Pro76, KSV18].

Remark 3.6. In Theorem 3.2, there is no bound on the size n of X € Kg in terms of
d for which positivity of f(X) need to be tested to ensure positivity on whole Kg. We
demonstrate this for d = 2 and S = ). Let

f=Tr((x —2®)?) + (V2Tr(z) — 1)* € Ty.

We claim that for every n € N there exists ¢ > 0 such that (f — ¢)|s,@®) > 0 but
(f —¢)|sy@®) # 0 for some N > n. Indeed, fix n and let m > 1 be such that m(m —1) >
v/n. Since f is nonzero on S,(R), f(0) =1 and f(X) > 1 for X € S,,(R) with || X| > m,
f admits a global minimum ¢ > 0 on S,,(R). Therefore f —¢ > 0 on S, (R). On the other
hand, there are r, N € N such that (\/Q% —1)? < ¢, so a projection X € Sy(R) of rank
r satisfies f(X) —e < 0.

Nevertheless, the proof of Theorem 3.2 (or rather Proposition 3.1) shows that it
suffices to consider only matrices X with at most d + 2 distinct eigenvalues. In terms of
positivity of trace polynomials on finite-dimensional real von Neumann algebras R": if
one tests positivity with respect to any possible tracial state on R™ as opposed to only
the averaging state, it suffices to check n = d + 2.

3.2. Convex tracial constraints. The most compelling part of Theorem 3.2 is the
equivalence (i)« (iv), which refers only to positivity of matrix evaluations and (traces of)
squares, but not to coefficients of the characteristic polynomial of the Hankel matrix $,.
Nevertheless, Theorem 3.2 is only valid under the assumption that the semialgebraic set
Lg is regular closed, so Hankel matrices still tacitly lurk around. The following lemma
gives a class of constraints where verifying that Lg is regular closed does not require

detailed information about the geometry of Lg.

Lemma 3.7. Let S C Ty, be finite.

(a) If KsNS,(R) has nonempty interior in S, (R) for somen € N, then Lgs has nonempty
interior in R??,

(b) If S is given by a linear matriz inequality of the symbols Tr(z?) and Ks NS, (R) has
nonempty interior for some n € N, then Lg is reqular closed.

Proof. (a) Let S = {s1,...,s,}. Since s N S,(R) has nonempty interior, there is X €
Sn(R) such that s;(X) > 0fori=1,...,¢ Consequently s;([;, ® X) = [;; ® 5;(X) > 0 for
1=1,...,¢ for every k € N. Thus we can without loss of generality assume that n > 2d.
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Furthermore, if D,,(R) denotes the space of n x n diagonal matrices, then g ND,,(R) has
nonempty interior in D,,(R). Therefore there exists Dy in the interior of sND,,(R) with
pairwise distinct eigenvalues. Let O C Kg N D, (R) be an open neighborhood of D such
that POP~1 N O = () for every permutation n x n matrix P. Consider the polynomial
map
¢:D,(R) = R* D (Tr(D),..., Tr(D*)).
Clearly ¢(Ks N D,(R)) C Lg. Also, the restriction of ¢ to O is an open map since it is
a composition of
O —R", D — (Tx(D),...,Te(D"))

which is open by the Invariance of domain theorem, and the projection R® — R??. Hence

¢(Dy) is an interior point of Lg.

(b) Since Lg is the solution set of a linear matrix inequality (as 4 = 0 is already a
linear matrix inequality), it is convex. Furthermore, Lg has nonempty interior by (a), so
it is regular closed. O

As a consequence we obtain a tracial version of Artin’s solution of Hilbert’s 17th
problem.

Corollary 3.8. Let f € T. Then f(X) = 0 for all X € |, Sn»(R) if and only if f is a
quotient of sums of products of squares and traces of squares of trace polynomials.

Proof. Apply Lemma 3.7 and Theorem 3.2 with S = (). U

Remark 3.9. While sum-of-squares certificates with denominators as in Theorem 3.2(iv)
are seldom of immediate use in polynomial optimization, our methods nevertheless yield
a practical algorithm for optimizing the normalized trace of a univariate polynomial over
matrices of arbitrary sizes. Let M be a symmetric matrix over Ts; whose entries are
linear in trace symbols, and let S be a set of constraints describing M > 0. Then

Proposition 3.1 implies that, for p € R[z] of degree at most 2d, one can compute
inf { Tr(p(X)): X € Ks}
by solving the semidefinite program in 2d variables
min Tr(p)[y] subject to $H4[y] = 0 & My] = 0,

which can be done efficiently using interior point methods [BPT13].

3.3. Impure tracial constraints. In Theorem 3.2, only pure tracial constraints are
allowed; that is, S C T. A natural extension to S C T could consider the preordering in
T generated by
S U {tr(g?), tr(g®s): g€ T, s € S}

or rather its variation with Hankel matrices. For s € T let 5 be the (d+ 1) x (d + 1)
Hankel matrix whose (i, j)-entry is Tr(z""7~2s) (cf. localizing Hankel matrix [Lau09,
Section 4.1.3]). Observe that $7 = 0 corresponds to Tr(g*s) > 0 for all ¢ € R[z] of degree
at most d. Thus one could consider, for each d € N the preordering in T generated by

(3.3) SU{0;(9a), 0;(93): s €8, 1<j<d+1}.
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This approach indeed leads to an algebraic certificate of positivity on Kg as in (3.1) if
S=5U{z}orS=95U{r—a,b—x} for S’ C T and a < b. The reasoning is analogous
to the proof of Theorem 3.2: in Proposition 3.1, the truncated Hamburger problem is
now replaced by the truncated Stieltjes and Hausdorff problems, respectively, which are
also solvable under the positive definiteness assumption [CF91]. We leave the details to
the reader. However, for a general S C T, the positivity on g cannot be certified with

preorderings generated by (3.3), as demonstrated by the following example.

Example 3.10. Let P C T be the preordering generated by
{0,(9a), 0;(97): j,d €N, j < d+1}.

For every X € S,(R), X3 = 0 implies Tr(X) > 0. On the other hand, we claim that
there are no py,ps € P and k € N such that

p1 Tr(x) = Tr(x)?* + ps.

To see this it suffices to prove the following: for every d € N there exists o € R?¥** such
that

(3.4) Har2la] = 0 and 5523 [a] =0 and a5 <O.

Fixd € N, and let p be a (d+2)-atomic measure on [0, 00). Let ; = —land 8; = [ 2du
for i =2,...,2d + 4. The Stieltjes moment problem [Mar08, Example 3.1.8] implies

(3.5) B:= (Birs)i 5y =0 and  (Big)iil, = 0.
Furthermore, B > 0 since ;1 has enough atoms. Let b = (3 - -+ 442). Since B is positive

definite, there exists € > 0 such that B — ebb® = 0. Then o = ¢8 € R?¥™ satisfies (3.4).
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