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Abstract. We classify functions f : (a, b) → R which satisfy the

inequality

tr f(A) + f(C) ≥ tr f(B) + f(D)

when A ≤ B ≤ C are self-adjoint matrices, D = A + C − B, the

so-called trace minmax functions. (Here A ≤ B if B−A is positive

semidefinite, and f is evaluated via the functional calculus.) A

function is trace minmax if and only if its derivative analytically

continues to a self map of the upper half plane. The negative expo-

nential of a trace minmax function g = e−f satisfies the inequality

det g(A) det g(C) ≤ det g(B) det g(D)

forA,B,C,D as above. We call such functions determinant isoperi-

metric. We show that determinant isoperimetric functions are in

the “radical” of the the Laguerre-Pólya class. We derive an inte-

gral representation for such functions which is essentially a contin-

uous version of the Hadamard factorization for functions in the the

Laguerre-Pólya class. We apply our results to give some equivalent

formulations of the Riemann hypothesis.

1. Introduction

Let E ⊆ R. Let f : E → R be a function. Let X be a self-adjoint

matrix of size n with spectrum in E.We now briefly recall how to define

f(X) via the matrix functional calculus. Let X be diagonalized a

unitary matrix U. That is,

X = U∗







λ1

. . .

λn






U.
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We define

f(X) = U∗







f(λ1)
. . .

f(λn)






U.

Therefore, for each n ∈ N, the function f induces a function on

n by n self-adjoint matrices with spectrum in E. Moreover, one can

formulate familiar function theoretic notions, such as convexity and

monotonicity, in this context.

Given two self-adjoint matrices A and B we say A ≤ B if B − A is

positive semidefinite. (This is sometimes called the Löwner order.)

Say a function is trace monotone if A ≤ B implies tr f(A) ≤
tr f(B). If we list the eigenvalues of A as

µ1 ≤ µ2 ≤ . . . ≤ µn,

and those for B as

λ1 ≤ λ2 ≤ . . . ≤ λn,

one can show, for example using the Weyl inequalities[22], that µi ≤ λi.

Noting that tr f(A) =
∑

f(µi) and tr f(B) =
∑

f(λi), we see that f

is trace monotone if and only if f is monotone.

Similarly, we say a function is trace convex if tr f
(

A+B
2

)

≤ tr f(A)+f(B)
2

.

As happened in the case of monotonicity, a function f is trace convex

if and only if f is convex [8, 13]. In multivariable settings, the the-

ory of joint trace convexity depends intensely on the expression being

analyzed [9, 2, 3].

Say a function is matrix monotone if A ≤ B implies f(A) ≤ f(B).

Let Π denote the upper half plane in C. Löwner’s theorem states [11, 1]

that a function f : (a, b) → R is matrix monotone if and only if f

analytically continues to Π and f : Π ∪ (a, b) → Π. The Nevanlinna

representation [18, 16] then says that

f(z) = c+ dz +

∫

1 + tz

t− z
dµ(t)

for some c ∈ R, d ∈ R
+ and positive Borel measure µ with support

contained in R \ (a, b).
Say a function is matrix convex if f

(

A+B
2

)

≤ f(A)+f(B)
2

. The Kraus

theorem states [15, 1] that a matrix convex function f : (a, b) → R an-

alytically continues to the upper half plane and possesses an integral
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representations similar to, but not the same as, the Nevanlinna repre-

sentation.

In general, the current theory of tracial inequalities is real analytic

and the theory of matrix inequalities is complex analytic. We give

a class of trace functions that have nice complex analytic properties,

which contrasts to existing literature [9, 8, 2, 3, 13].

1.1. Trace minmax functions. Say a function f is trace minmax

if

tr f(A) + tr f(C) ≥ tr f(B) + tr f(D)

whenever A ≤ B ≤ C are like-sized matrices with spectrum in the

domain of f and D = A+C −B. We use the term “minmax” because

when A ≤ C, we can increase tr f(A) + tr f(C) by increasing their

difference, where the term minmax is taken from the näıve practice in

tabletop gaming of maximizing certain statistics of a player character

at the expense of others to make them apparently more powerful.

Theorem 1.1. Let f : (a, b) → R. The following are equivalent:

(1) f is trace minmax,

(2) f ′ is matrix monotone on (a, b),

(3) f analytically continues to the upper half plane Π and f ′ : Π ∪
(a, b) → Π.

(4) For each c ∈ (a, b), there exist unique α, β ∈ R and a unique

finite measure µ on [ 1
a−c

, 1
b−c

] such that

f(z) = α + βz +

∫

[ 1

a−c
, 1

b−c
]

− log(1− t(z − c))− t(z − c)

t2
dµ.

Here we interpret − log(1−t(z−c))−t(z−c)
t2

|t=0 = z2.

Theorem 1.1 is proven in Section 6 based on results gathered from

Section 2 through Section 5.

Somewhat surprisingly, trace minmax functions are also matrix con-

vex, for the sole reason that log x is matrix concave on (0,∞). (See

e.g. [1, Exercise V.2.11] which states that xr is matrix convex for

−1 ≤ r ≤ 0 and therefore log x = limr→0−
xr−1
r

is matrix concave.)

That is, by Theorem 1.1, a trace minmax function on (a, b) is a convex

combination of matrix convex functions on (a, b) of the form α, βz and

positive multiples of − log(1− t(z − c))− t(z − c).
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Corollary 1.2. If f : (a, b) → R is trace minmax, then f is matrix

convex.

1.2. The radical Laguerre-Pólya class. Recall that

(1.1) det eA = etrA.

That is, if the eigenvalues of A are µ1, . . . , µn, then the eigenvalues of

eA are eµ1 , . . . , e
µ
n, and therefore,

det eA =
∏

eµi = e
∑

µi = etrA.

We say f : (a, b) → R
≥0 is determinant isoperimetric whenever

det f(A) det f(C) ≤ det f(B) det f(D)

for A ≤ B ≤ C with spectrum in (a, b) and D = A + C − B. We

use the term “isoperimetric” because when A ≤ C, we can increase

the quantity det f(A) det f(C) by decreasing the difference between A

and C. Note that f is trace minmax if and only if e−f is determinant

isoperimetric. That is, if f satisfies the inequality

tr f(A) + tr f(C) ≥ tr f(B) + tr f(D)

then

det e−f(A) det e−f(C) ≤ det e−f(B) det e−f(D)

by Equation (1.1) coupled with monotonicity of the exponential func-

tion.

Theorem 1.1 implies that − log(1− tx), x2 and ±x are trace minmax

on intervals containing zero where they are well-defined. Specifically,

for − log(1− tx) one chooses the measure to be a point mass at t with

weight t2, α to be 0, c to be 0 and β to be t. For z2 one chooses the

measure to be a point mass at zero with weight one, with constants

α, β, c chosen to be 0. For ±x, we choose the measure and α to be 0

and β to be ±1. As these arise from point masses, these are in some

sense the most “extreme” trace minmax functions. (This can be made

formal in terms of Choquet theory.) Therefore, 1 − tx, e−x2

, e±x and

constant functions are determinant isoperimetric. Thus, we obtain the

following system of inequalities.

Corollary 1.3. Let A,B,C ∈ Mn(C) such that A ≤ B ≤ C. Let

D = A+ C − B. The following are true:
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(1) det eA det eC = det eB det eD,

(2) det eB
2

det eD
2 ≤ det eA

2

det eC
2

, and thus,

‖B‖2F + ‖D‖2F ≤ ‖A‖2F + ‖C‖2F ,

(3) for all t ∈
(

− 1
‖A‖

, 1
‖C‖

)

,

det(1− tA) det(1− tC) ≤ det(1− tB) det(1− tD).

In principle, these generate (under the operations of products, n-th

roots, and taking limits) all inequalities of the form
∏

f(αi)
∏

f(γi) ≤
∏

f(βi)
∏

f(δi)

where αi, βi, γi, δi are the eigenvalues of A,B,C,D respectively, where

A ≤ B ≤ C and D = A+C−B. One wonders if there is a classification

of all eigenvalue inequalities satisfied by D such that D = A + C − B

where A ≤ B ≤ C along the lines of Horn’s conjecture [10] and the

Knutson-Tao theorem [14].

The function − log x is trace minmax on (0,∞), and therefore x is

determinant isoperimetric there, yielding a more memorable inequality

along the lines of the characteristic polynomials inequality in item 3 in

Corollary 1.3.

Corollary 1.4 (Isoperimetric inequality). Let A,B,C ∈ Mn(C) such

that 0 ≤ A ≤ B ≤ C. Let D = A+ C − B. Then,

detA detC ≤ detB detD.

The set of determinant isoperimetric functions is closed under mul-

tiplication and pointwise convergent limits. Moreover, as 1− tx, e−x2

,

e±x and constant functions are determinant isoperimetric, we see that

any Hadamard product of the form

(1.2) f(x) = xke−a−bx−cx2
∏

(1− x/ρi)e
x/ρi

where b ∈ R, c ≥ 0 is determinant isoperimetric on open intervals in

R where f takes nonnegative values. The Laguerre-Pólya class is

the set of entire functions which are the locally uniform limits of real-

rooted polynomials. Laguerre-Pólya class functions are important in

various contexts, [4, 5, 21, 20, 12]. The Laguerre-Pólya class is exactly

the set of functions of the form (1.2) and the zero function.

Define the radical Laguerre-Pólya class of (a, b) to be the set of

functions on (a, b) which are the pointwise limits of real n-th roots of
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functions in the Laguerre-Pólya class which are on nonnegative (a, b).

Note that every function in the Laguerre-Pólya class which is nonnega-

tive on (a, b) has f |(a,b) in the radical Laguerre-Pólya class of (a, b). Ev-

ery function in the radical Laguerre-Pólya class which does not vanish

on (a, b) and is positive there is determinant isoperimetric, essentially

by Equation (1.2).

For example, assume a = 1, b = −1. Assume fn is in the Laguerre-

Pólya class and does not vanish on (a, b). Equation (1.2) implies

f(x)n = e−nα−nβx−nγx2
∏

(1− x/ρi)e
x/ρi

for some sequence of ρi not in the the interval (−1, 1), and therefore

− log f(x) = α + βx+ γx2 +
1

n

∑

− log(1− x/ρi)− x/ρi.

We can further rewrite the formula in a contrived way into the language

of integration as

− log f(x) = α + βx+

∫ − log(1− tx)− tx

t2
dµ

where µ = γδ0 +
∑

1
nρ2

i

δ1/ρi which of the form in Theorem 1.1. So,

− log f is trace minmax, and, therefore, f is determinant isoperimetric.

Moreover, by varying the collection of zeros ρi and n we can weakly ap-

proximate any finite measure µ and work the construction backwards.

So, evidently, negative exponentials of trace minmax functions are

exactly nonvanishing members the radical Laguerre-Pólya class of (a, b)

which are, in turn, determinant isoperimetric.

Theorem 1.5. Let f : (a, b) → R. The following are equivalent:

(1) f is trace minmax,

(2) e−f is determinant isoperimetric,

(3) e−f is in the radical Laguerre-Pólya class.

2. Preliminaries

2.1. Derivatives in the functional calculus. We adopt the follow-

ing notation for derivatives taken in the functional calculus,

Df(X)[H] = lim
t→0

f(X + tH)− f(X)

t
,

D2f(X)[H,K] = lim
t

Df(X + tK)[H]−Df(X)[H]

t
,
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where X,H,K are like-sized self-adjoint matrices.

Lemma 2.1. If f is analytic, trace minmaxity is equivalent to saying

that D2f(X)[H,K] ≥ 0 whenever H,K ≥ 0.

Proof. First, suppose f is trace minmax. LetX be a self-adjoint matrix

and let H,K ≥ 0. Note X ≤ X + tH ≤ X + tH + sK. So, f(X + tH +

sK) + f(X) ≤ f(X + sK) + f(X + tH). Therefore,

f(X + tH + sK) + f(X)− f(X + sK)− f(X + tH)

st
≥ 0.

Taking the limit as t → 0, we see that

Df(X + sK)[H]−Df(X)[H]

s
≥ 0.

Now taking s → 0, D2f(X)[H,K] ≥ 0.

To see the converse, let A ≤ B ≤ C. Let H = B − A,K = C − B.

Now, Df(A+ tH + sK)[H,K] ≥ 0. Next,

0 ≤
∫ 1

0

Df(A+ tH + sK)[H,K]dt

= Df(B + sK)[K]−Df(A+ sK)[K].

Finally,

0 ≤
∫ 1

0

Df(B + sK)[K]−Df(A+ sK)[K]ds

= f(A) + f(C)− f(B)− f(A+ C − B).

�

2.2. Nevanlinna’s solutions to moment problems. In 1922, Nevan-

linna considered the question of when a sequence ρn is a sequence of

moments for some finite positive Borel measure. The problem is inti-

mately connected to the theory of self maps of the upper half plane.

Theorem 2.2 ([18]). Let ρn be a sequence of real numbers. Let a, b > 0

The following are equivalent:

(1) There exists a positive Borel measure µ on [−1
a
, 1
b
] such that

ρn =
∫

tndµ,

(2) The moment generating function f(z) =
∑∞

n=0 anz
n+1 analyti-

cally continues to Π ∪ (a, b) and f : Π ∪ (a, b) → Π.
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There is also a nice Hankel matrix type condition. (In fact, this is

used in conjunction with a GNS-type construction to prove the prior

theorem.)

Theorem 2.3 ([18]). Let ρn be a sequence of real numbers. The fol-

lowing are equivalent:

(1) There exists a positive Borel measure µ on R such that ρn =
∫

tndµ,

(2) The infinite Hankel matrix











ρ0 ρ1 ρ2 . . .

ρ1 ρ2 ρ3 . . .

ρ2 ρ3 ρ4 . . .
...

...
...

. . .











is positive semidefinite.

3. Trace duality

We now endeavor to show that

trDf(X)[H] = trHf ′(X),

which we will use later.

For example, consider f(x) = x3. The derivative is given by

Df(X)[H] = HX2 +XHX +X2H.

Note,

trDf(X)[H] = trH3X2 = trHf ′(X).

It is clear that an inductive argument would prove this for polynomi-

als. However, for general functions, matters are a bit more delicate.

Our approach uses algebraic manipulation in the functional calculus.

It is also likely there is a somewhat involved argument using Stone-

Weierstrauss.

Lemma 3.1. Let f : (a, b) → R be a function. Let U be a unitary.

Then,

f(U∗XU) = U∗f(X)U.
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Proof. Suppose the unitary V diagonalizes X.

f(X) = V ∗







f(λ1)
. . .

f(λn)






V.

Now, V U diagonalizes U∗XU, and so

f(U∗XU) = U∗V







f(λ1)
. . .

f(λn)






V U

= U∗f(X)U

�

Lemma 3.2. Let f : (a, b) → R be a function. Let U be a unitary.

Then,

Df(U∗XU)[U∗HU ] = U∗Df(X)[H]U.

Proof. Calculating using Lemma 3.1

Df(U∗XU)[U∗HU ] = lim
t→0

f(U∗XU + tU∗HU)− f(U∗XU)

t

= lim
t→0

f(U∗(X + tH)U)− f(U∗XU)

t

= lim
t→0

U∗f(X + tH)U − U∗f(X)U

t

= lim
t→0

U∗(f(X + tH)− f(X))U

t

= U∗

(

lim
t→0

f(X + tH)− f(X)

t

)

U

= U∗Df(X)[H]U.

�

Theorem 3.3. Let f : (a, b) → R be a C1 function. Then,

trDf(X)[H] = trHf ′(X).

Proof. Because f is C1, for each self-adjoint matrix X with spectrum

in (a, b), trDf(X)[H] is linear map from n × n matrices to n × n

matrices as a function of H and there is a unique quantity g(X) such

that tr f(X)[H] = trHg(X). We will show that:

(1) g(U∗XU) = U∗g(X)U for all unitaries U,
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(2) g(X1 ⊕X2) = g(X1)⊕ g(X2),

(3) g(x) = f ′(x) whenever x is a real number in (a, b).

To see (1), note that by Lemma 3.2

Df(U∗XU)[H] = U∗Df(X)[UHU∗]U.

Therefore,

trHg(U∗XU) = trDf(U∗XU)[H]

= trU∗Df(X)[UHU∗]U

= trDf(X)[UHU∗]

= trUHU∗g(X)

= trHU∗g(X)U

So, g(U∗XU) = U∗g(X)U.

To see (2), first write

H =

[

H11 H12

H21 H22

]

.

Note that f(X1⊕X2) = f(X1)⊕ f(X2), therefore Df(X1⊕X2)[H11⊕
H22] = Df(X1)[H11]⊕Df(X2)[H22]. Translating the relation to g, one

sees that g(X1 ⊕X2) is of the form:

g

(

X1

X2

)

=

[

g(X1) A(X1, X2)

A(X2, X1) g(X2)

]

for some unknown quantities A(X1, X2), A(X2, X1). Now by (1),

g

(

X1

X2

)

= g

((

1

−1

)(

X1

X2

)(

1

−1

))

=

(

1

−1

)

g

(

X1

X2

)(

1

−1

)

=

[

g(X1) −A(X1, X2)

−A(X2, X1) g(X2)

]

,

and therefore A(X1, X2), A(X2, X1) both equal 0. Thus, g(X1 ⊕X2) =

g(X1)⊕ g(X2).

Now to see (3), let x be a real number. Note

trDf(x)[h] = Df(x)[h] = hf ′(x) = trhf ′(x),
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and therefore g(x) = f ′(x).

We now claim f ′(X) = g(X). Write

X = U∗







λ1

. . .

λn






U.

Now,

f ′(X) = U∗







f ′(λ1)
. . .

f ′(λn)






U

= U∗







g(λ1)
. . .

g(λn)






U

= U∗g







λ1

. . .

λn






U

= g






U∗







λ1

. . .

λn






U







= g (X) .

�

4. Derivatives of trace minmax functions are matrix

monotone

Lemma 4.1. Let f : (a, b) → R be C1. The function f is trace minmax

if and only if f ′ is matrix monotone on (a, b).

Proof. Let A ≤ B ≤ C. One can rewrite the defining inequality for

trace minmaxity

tr f(A) + f(C) ≥ tr f(B) + f(A+ C − B)

as

tr f(C)− f(B) ≥ tr f(A+ C − B)− f(A)
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Let C = B + tH. Now

tr f(B + tH)− f(B) ≥ tr f(A+ tH)− f(A).

Dividing by t and taking the limit as t → 0 gives

trDf(B)[H] ≥ trDf(A)[H].

Applying trace duality established in Theorem 3.3, we see that

trHf ′(B) ≥ trHf ′(A).

Now, trH(f ′(B) − f ′(A)) ≥ 0 for an arbitrary positive semidefinite

matrixH and therefore f ′(B)−f ′(A) is positive semidefinite. Therefore

f ′(A) ≤ f ′(B) and so f ′ is matrix monotone. �

Theorem 4.2. Let f : (a, b) → R. The function f is trace minmax if

and only if f ′ is matrix monotone on (a, b).

Proof. Without loss of generality a = −1 and b = 1 First observe

that as a function on (−1, 1), f is convex, and therefore continuous.

Fix ϕ a positive smooth function such that
∫

R
ϕ = 1 with support

contained in (−1, 1). Write ϕt(x) = ϕ(x/t)/t. Write ft = f ∗ ϕt. Note

ft is trace minmax on (−1 + t, 1 − t). Therefore, by Lemma 4.1, f ′
t is

matrix monotone on (−1 + t, 1 − t). As ft → f as t → 0 because f

is continuous, and a pointwise limit of matrix monotone functions is

matrix monotone, we are done.

To see the converse, note that, if f ′ is matrix monotone and H,K

are positive semidefinite,

trD2f(X)[H,K] = trHDf ′(X)[K] ≥ 0,

so we are done by Lemma 2.1.

�

5. Trace minmax representation theorems

We now prove our representation theorem for trace minmax func-

tions.

Proposition 5.1. Let f : (a, b) → R. If f is trace minmax then for

each c ∈ (a, b), there exists a unique measure α, β ∈ R and a unique

finite measure µ on [ 1
a−c

, 1
b−c

] such that

f(z) = α + βz +

∫

[ 1

a−c
, 1

b−c
]

− log(1− t(z − c))− t(z − c)

t2
dµ.
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Proof. Without loss of generality c = 0. Because f is trace minmax,

by Theorem 4.2, f ′ is matrix monotone. Furthermore, by Löwner’s

theorem, f analytically continues to an analytic function f : (a, b) ∪
Π → Π. Write f(z) = anz

n. As f ′(z) is self map of the upper half plane,

there is a measure µ supported on [ 1
a
, 1
b
] such that nan =

∫

tn−2dµ by

Nevanlinna’s solution to the Hamburger moment problem [18], which

we gave as Theorem 2.2. Now,

f(z) = a0 + a1z +
∞
∑

n=2

zn
∫

tn−2dµ

n

= a0 + a1z + z2
∞
∑

n=0

zn
∫

tndµ

n+ 2

= a0 + a1z + z2
∞
∑

n=0

∫

(zt)n

n+ 2
dµ

= a0 + a1z + z2
∫ − log(1− tz)− tz

(zt)2
dµ

= a0 + a1z +

∫ − log(1− tz)− tz

t2
dµ.

�

A consequence of the fact that f ′(z) is a Pick function and Theorem

2.3 is a Hankel matrix type test for trace minmaxity.

Observation 5.2. Let f(x) =
∑

anx
n be a convergent series on a

neighborhood of 0. The function f is trace minmax if and only if the

Hankel matrix










2a2 3a3 4a4 . . .

3a3 4a4 5a5 . . .

4a4 5a5 6a6 . . .
...

...
...

. . .











is positive semidefinite.

6. Proof of the main result

(1) ⇔ (2) is Theorem 4.2. (2) ⇔ (3) is Löwner’s theorem. (1) ⇒
(4) is Proposition 5.1. (4) ⇒ (3) The derivative of such an integral
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representation is

b+

∫

[ 1

a−c
, 1

b−c
]

z

1− tz
dµ.

Since each z
1−tz

takes the upper half plane to itself, so does whole

formula.

7. Examples

We now give some examples.

(1) The function ez, real-rooted polynomials, and the Gamma func-

tion are all determinant isoperimetric by virtue of being in the

Laguerre-Pólya class.

(2) The function xt for 1 ≤ t ≤ 2 is trace minmax, because the

derivative is a self-map of the upper half plane.

(3) Consider Riemann’s original Ξ function. That is, take

ξ(z) =
1

2
z(z − 1)πs/2Γ(z/2)ζ(z),

and define Ξ(z) = ξ(1/2 + iz). The Riemann hypothesis says

that the zeros of Ξ are real. Moreover, we know Ξ(z) =
∏

(1−
z
ρi
)ez/ρi are 1/2 + iρi are the nontrivial zeros of the Riemann

zeta function. Therefore, if the Riemann hypothesis is true,

then Ξ is in the Laguerre-Pólya class. Similarly, the function

Λ(z) = Ξ(1/2 +
√
z) has a similar factorization and is in the

Laguerre-Pólya class if and only if the Riemann hypothesis is

true.

Applying our results in tandem, we see the following list

of statements which are equivalent to the Riemann hypothe-

sis when applied to Ξ or Λ.

Proposition 7.1. Suppose Ξ̃ is an entire function of genus at

most 1 which is real valued on the real line. (Having genus 1 is

equivalent to having a Hadamard factorization of the form:

Ξ̃(z) = eα+βz
∏

(1− z

ρi
)ez/ρi

for some constants α, β and zeros ρi. Let (a, b) be a nonempty

open interval in R where Ξ̃ is nonvanishing. The following are

equivalent:
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(a) The function Ξ̃ only has real zeros, (for Ξ or Λ, this is the

Riemann hypothesis,)

(b) |Ξ̃| is in the radical Laguerre-Pólya class of (a, b),

(c) log Ξ̃(z) has a branch defined on the upper half plane,

(d) |Ξ̃| is determinant isoperimetric on (a, b),

(e) − log |Ξ̃(z)| is trace minmax on (a, b),

(f) − log |Ξ̃(z)| is matrix convex on (a, b),

(g) − d
dz

log |Ξ̃(z)| is matrix monotone (a, b),

(h) Let r ∈ (a, b). If we write − log Ξ̃(z + r) =
∑

anz
n, then

the infinite matrix,











2a2 3a3 4a4 . . .

3a3 4a4 5a5 . . .

4a4 5a5 6a6 . . .
...

...
...

. . .











,

is positive semidefinite.

(i) Let r ∈ (a, b). If we write − log Ξ̃(z + r) =
∑

anz
n, then

the infinite matrix,











a2 a3 a4 . . .

a3 a4 a5 . . .

a4 a5 a6 . . .
...

...
...

. . .











,

is positive semidefinite.

(j) Let r ∈ (a, b). If we write − log Ξ̃(z + r) =
∑

anz
n, then

there exists a k ∈ N such that the infinite matrix,











2ka2k (2k + 1)a2k+1 (2k + 2)a2k+2 . . .

(2k + 1)a2k+1 (2k + 2)a2k+2 (2k + 3)a2k+3 . . .

(2k + 2)a2k+2 (2k + 3)a2k+3 (2k + 4)a2k+4 . . .
...

...
...

. . .











,

is positive semidefinite.
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(k) Let r ∈ (a, b). If we write − log Ξ̃(z + r) =
∑

anz
n, then

there exists a k ∈ N such that the infinite matrix,










a2k a2k+1 a2k+2 . . .

a2k+1 a2k+2 a2k+3 . . .

a2k+2 a2k+3 a2k+4 . . .
...

...
...

. . .











,

is positive semidefinite.

Proof. (a) ⇒ (b) If Ξ̃ only has real zeros, then it is in the

Laguerre-Pólya class because it is of the form of Equation (1.2),

and therefore its absolute value is in the radical Laguerre-Pólya

class. (In the case of Ξ or Λ, the equivalence of (a) and (b) is

essentially classical and crucial to the Jensen-Pólya approach

to the Riemann hypothesis [19].)

(a) ⇔ (c) Ξ̃ is nonvanishing on the upper half plane if and

only if it admits a branch of the logarithm.

(b) ⇔ (d) ⇔ (e) is Theorem 1.5.

(e) ⇔ (g) is part of Theorem 1.1.

(e) ⇒ (f) is Corollary 1.2.

(f) ⇒ (c) is Kraus theorem [15].

(e) ⇔ (h) follows from Observation 5.2.

(h) ⇒ (i) Note that










1/2 1/3 1/4 . . .

1/3 1/4 1/5 . . .

1/4 1/5 1/6 . . .
...

...
...

. . .











≥ 0,

and, therefore,










1/2 1/3 1/4 . . .

1/3 1/4 1/5 . . .

1/4 1/5 1/6 . . .
...

...
...

. . .











·











2a2 3a3 4a4 . . .

3a3 4a4 5a5 . . .

4a4 5a5 6a6 . . .
...

...
...

. . .











=











a2 a3 a4 . . .

a3 a4 a5 . . .

a4 a5 a6 . . .
...

...
...

. . .











≥ 0.

(h) ⇒ (j) is trivial.

(j) ⇒ (k) has essentially the same proof as (h) ⇒ (i).

(i) ⇒ (k) is trivial.
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(k) ⇒ (c) follows from Theorem 2.3 combined with 2.2 ap-

plied to the function
∑∞

j=1 a2k+jz
2k+j+1. �

The above formulation of the the Riemann hypothesis evokes

a similiarity to approaches using hyperbolicity of Jensen polyno-

mials taken in [19, 6, 7], and a positivity of derivatives approach

in Li’s criterion [17].
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