TRACE MINMAX FUNCTIONS AND THE RADICAL
LAGUERRE-POLYA CLASS

J. E. PASCOE

ABSTRACT. We classify functions f : (a,b) — R which satisfy the
inequality
tr f(A) + f(C) = tr f(B) + (D)

when A < B < C are self-adjoint matrices, D = A+ C — B, the
so-called trace minmaz functions. (Here A < B if B — A is positive
semidefinite, and f is evaluated via the functional calculus.) A
function is trace minmax if and only if its derivative analytically
continues to a self map of the upper half plane. The negative expo-
nential of a trace minmax function ¢ = e~/ satisfies the inequality

det g(A) det g(C) < det g(B) det g(D)

for A, B,C, D as above. We call such functions determinant isoperi-
metric. We show that determinant isoperimetric functions are in
the “radical” of the the Laguerre-Pélya class. We derive an inte-
gral representation for such functions which is essentially a contin-
uous version of the Hadamard factorization for functions in the the
Laguerre-Pdlya class. We apply our results to give some equivalent
formulations of the Riemann hypothesis.

1. INTRODUCTION

Let E C R. Let f: E — R be a function. Let X be a self-adjoint
matrix of size n with spectrum in . We now briefly recall how to define
f(X) via the matrix functional calculus. Let X be diagonalized a
unitary matrix U. That is,

A1
X=U" U.
An
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f)
FX)=U" U.

f(w)

Therefore, for each n € N, the function f induces a function on
n by n self-adjoint matrices with spectrum in E. Moreover, one can
formulate familiar function theoretic notions, such as convexity and
monotonicity, in this context.

Given two self-adjoint matrices A and B we say A < Bif B — A is
positive semidefinite. (This is sometimes called the Lowner order.)

Say a function is trace monotone if A < B implies tr f(A) <
tr f(B). If we list the eigenvalues of A as

< po << gy,
and those for B as
A< A< <A,

one can show, for example using the Weyl inequalities|[22], that p; < ;.
Noting that tr f(A) = > f(u;) and tr f(B) = >_ f(\i), we see that f

15 trace monotone if and only if f is monotone.

Similarly, we say a function is trace convex if tr f (AJQB) <trl (A)Jgf B),

As happened in the case of monotonicity, a function f is trace convex
if and only if f is convezr [8, 13]. In multivariable settings, the the-
ory of joint trace convexity depends intensely on the expression being
analyzed [9, 2, 3].

Say a function is matrix monotone if A < B implies f(A) < f(B).
Let IT denote the upper half plane in C. Léwner’s theorem states [11, 1]
that a function f : (a,b) — R is matrix monotone if and only if f
analytically continues to IT and f : IT U (a,b) — II. The Nevanlinna
representation [18, 16] then says that

14tz

f(z)zc—l—dz—l—/ .

for some ¢ € R,d € R™ and positive Borel measure p with support
contained in R\ (a, b).

Say a function is matrix convex if f (A;B) < f(A)erf(B). The Kraus
theorem states [15, 1] that a matrix convex function f : (a,b) — R an-
alytically continues to the upper half plane and possesses an integral

du(t)

—Z
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representations similar to, but not the same as, the Nevanlinna repre-
sentation.

In general, the current theory of tracial inequalities is real analytic
and the theory of matrix inequalities is complex analytic. We give
a class of trace functions that have nice complex analytic properties,
which contrasts to existing literature [9, 8, 2, 3, 13].

1.1. Trace minmax functions. Say a function f is trace minmax
if
tr f(A) +tr f(C) > tr f(B) + tr f(D)

whenever A < B < (C are like-sized matrices with spectrum in the
domain of f and D = A+ C' — B. We use the term “minmax” because
when A < C, we can increase tr f(A) + tr f(C) by increasing their
difference, where the term minmax is taken from the naive practice in
tabletop gaming of maximizing certain statistics of a player character
at the expense of others to make them apparently more powerful.

Theorem 1.1. Let f : (a,b) — R. The following are equivalent:

(1) f is trace minmaxz,

(2) f" is matriz monotone on (a,b),

(3) f analytically continues to the upper half plane 11 and f': 11U
(a,b) — IL.

(4) For each ¢ € (a,b), there exist unique o, 5 € R and a unique
finite measure u on [, 2] such that

a—c’ b—c
—log(l —t(z—c¢)) —t(z —¢)
RN 3

a—c’b—c

f(z) =a+pBz+ dp.

—log(1—t(2—c))—t
+2

(2=0) limo = 22.

Here we interpret

Theorem 1.1 is proven in Section 6 based on results gathered from
Section 2 through Section 5.

Somewhat surprisingly, trace minmax functions are also matrix con-
vex, for the sole reason that logz is matrix concave on (0,00). (See
e.g. [1, Exercise V.2.11] which states that z" is matrix convex for
—1 < r < 0 and therefore logxz = lim,_,o- % is matrix concave.)
That is, by Theorem 1.1, a trace minmax function on (a, b) is a convex
combination of matrix convex functions on (a, b) of the form «, 8z and
positive multiples of —log(1 —t(z —¢)) — t(z — ¢).



4 J. E. PASCOE

Corollary 1.2. If f : (a,b) — R is trace minmaz, then f is matriz
convez.

1.2. The radical Laguerre-Pdlya class. Recall that

(1.1) det e = 4,
That is, if the eigenvalues of A are uy, ..., u,, then the eigenvalues of
et are ef,... e and therefore,

dete? = He’“ — g2t = ot A

We say f: (a,b) — R2? is determinant isoperimetric whenever
det f(A)det f(C) < det f(B)det f(D)

for A < B < C with spectrum in (a,b) and D = A+ C — B. We
use the term “isoperimetric” because when A < C, we can increase
the quantity det f(A) det f(C) by decreasing the difference between A
and C. Note that f is trace minmax if and only if e~/ is determinant
isoperimetric. That is, if f satisfies the inequality

tr f(A) + tr f(C) > tr f(B) + tr f(D)

then
det e det e~ /©) < det e TB) det e /(D)

by Equation (1.1) coupled with monotonicity of the exponential func-
tion.

Theorem 1.1 implies that —log(1 —tz), * and +x are trace minmax
on intervals containing zero where they are well-defined. Specifically,
for —log(1 — tx) one chooses the measure to be a point mass at ¢ with
weight t2, a to be 0, ¢ to be 0 and 3 to be t. For 2% one chooses the
measure to be a point mass at zero with weight one, with constants
a, 3, c chosen to be 0. For +x, we choose the measure and « to be 0
and [ to be 1. As these arise from point masses, these are in some
sense the most “extreme” trace minmax functions. (This can be made
formal in terms of Choquet theory.) Therefore, 1 — tx, e, e** and
constant functions are determinant isoperimetric. Thus, we obtain the
following system of inequalities.

Corollary 1.3. Let A,B,C € M,(C) such that A < B < C. Let
D = A+ C — B. The following are true:
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(1) det e det e’ = det e? det e,
(2) det eB” det eP* < det e’ det e, and thus,

1Bl + IDI7 < [IAIF + 1%

11
(3) for allt € <_W’ W) ,
det(1 —tA)det(l —tC) < det(1l —tB)det(1l —tD).

In principle, these generate (under the operations of products, n-th
roots, and taking limits) all inequalities of the form

[T ] re0 <TTr60 T £(50)

where «;, 8;,7;, 0; are the eigenvalues of A, B, C, D respectively, where
A< B<(CandD = A+C— B. One wonders if there is a classification
of all eigenvalue inequalities satisfied by D such that D = A4+ C — B
where A < B < C along the lines of Horn’s conjecture [10] and the
Knutson-Tao theorem [14].

The function —log x is trace minmax on (0,00), and therefore z is
determinant isoperimetric there, yielding a more memorable inequality

along the lines of the characteristic polynomials inequality in item 3 in
Corollary 1.3.

Corollary 1.4 (Isoperimetric inequality). Let A, B,C' € M, (C) such
that 0 < A< B<C. Let D=A+ C — B. Then,

det Adet C' < det Bdet D.

The set of determinant isoperimetric functions is closed under mul-

. . . . . . . 2
tiplication and pointwise convergent limits. Moreover, as 1 — tx, e,
e*® and constant functions are determinant isoperimetric, we see that

any Hadamard product of the form

(1_2) f(.%') _ xkefafbxfcgﬁ H(l _ $/p¢)€x/pi
where b € R, ¢ > 0 is determinant isoperimetric on open intervals in
R where f takes nonnegative values. The Laguerre-Pdélya class is
the set of entire functions which are the locally uniform limits of real-
rooted polynomials. Laguerre-Pélya class functions are important in
various contexts, [4, 5, 21, 20, 12]. The Laguerre-Pdlya class is exactly
the set of functions of the form (1.2) and the zero function.

Define the radical Laguerre-Pdlya class of (a,b) to be the set of
functions on (a,b) which are the pointwise limits of real n-th roots of



6 J. E. PASCOE

functions in the Laguerre-Pdlya class which are on nonnegative (a,b).
Note that every function in the Laguerre-Pélya class which is nonnega-
tive on (a,b) has f|(,s) in the radical Laguerre-Pélya class of (a,b). Ev-
ery function in the radical Laguerre-Pélya class which does not vanish
on (a,b) and is positive there is determinant isoperimetric, essentially
by Equation (1.2).

For example, assume a = 1,b = —1. Assume f" is in the Laguerre-
Pélya class and does not vanish on (a, b). Equation (1.2) implies

flay = et TT( = a/p)er/n

for some sequence of p; not in the the interval (—1,1), and therefore

~log f(r) = o+ B+ 72+ 3 ~log(1 — /p:) — /.

We can further rewrite the formula in a contrived way into the language
of integration as

—log(1 —tx) — tx

—logf(x):oz+63c+/ Bl )

t2

dp

where p = vdp + ningél/m which of the form in Theorem 1.1. So,
—log f is trace minmax, and, therefore, f is determinant isoperimetric.
Moreover, by varying the collection of zeros p; and n we can weakly ap-
proximate any finite measure p and work the construction backwards.

So, evidently, negative exponentials of trace minmax functions are
exactly nonvanishing members the radical Laguerre-Pdlya class of (a, b)
which are, in turn, determinant isoperimetric.

Theorem 1.5. Let f : (a,b) — R. The following are equivalent:
(1) f is trace minmarz,
(2) e~/ is determinant isoperimetric,
(3) e~/ is in the radical Laguerre-Polya class.

2. PRELIMINARIES

2.1. Derivatives in the functional calculus. We adopt the follow-
ing notation for derivatives taken in the functional calculus,

o f(X 4 tH) - f(X)

DJ(X)[H] = lim t ,

Df(X +tK)[H) - D(X)[H]
t )

D?f(X)[H, K] = lim
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where X, H, K are like-sized self-adjoint matrices.

Lemma 2.1. If f is analytic, trace minmaxity is equivalent to saying
that D*f(X)[H, K] > 0 whenever H, K > 0.

Proof. First, suppose f is trace minmax. Let X be a self-adjoint matrix
and let H, K > 0. Note X < X +tH < X +tH +sK. So, f(X +tH +
sK)+ f(X) < f(X +sK) + f(X + tH). Therefore,

fIX+tH+sK)+ f(X) = f(X +sK)— f(X+tH) _
st -
Taking the limit as ¢ — 0, we see that
DJ(X + sK)[H] = Df(X)[]
s
Now taking s — 0, D*f(X)[H, K] > 0.
To see the converse, let A< B<C.Let H=B—- A K= - B.
Now, Df(A+tH + sK)[H, K] > 0. Next,

> 0.

0< /1 Df(A+tH + sK)[H, K|dt
= Df(B + sK)[K] — Df(A + sK)[K].

Finally,
0< /lDf(B+ sK)[K] — Df(A+ sK)[K]ds
0

= [(A)+f(C) = f(B) - f(A+C = B).
O

2.2. Nevanlinna’s solutions to moment problems. In 1922, Nevan-
linna considered the question of when a sequence p,, is a sequence of

moments for some finite positive Borel measure. The problem is inti-

mately connected to the theory of self maps of the upper half plane.

Theorem 2.2 ([18]). Let p,, be a sequence of real numbers. Let a,b > 0
The following are equivalent:

(1) There exists a positive Borel measure pu on [=*,§] such that
pn = [t"dp,

(2) The moment generating function f(z) =Y oo anz""" analyti-
cally continues to I1U (a,b) and f : 1 U (a,b) — II.
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There is also a nice Hankel matrix type condition. (In fact, this is
used in conjunction with a GNS-type construction to prove the prior
theorem.)

Theorem 2.3 ([18]). Let p, be a sequence of real numbers. The fol-
lowing are equivalent:

(1) There exists a positive Borel measure j1 on R such that p, =
Jtdu,
(2) The infinite Hankel matriz

Po P1 P2
P11 P2 P3
P2 P3 P4

18 positive semidefinite.

3. TRACE DUALITY

We now endeavor to show that
tr Df(X)[H] = tr Hf'(X),

which we will use later.
For example, consider f(x) = x3. The derivative is given by

Df(X)[H]= HX*+ XHX + X*H.

Note,
tr Df(X)[H] = tr H3X? = tr Hf'(X).

It is clear that an inductive argument would prove this for polynomi-
als. However, for general functions, matters are a bit more delicate.
Our approach uses algebraic manipulation in the functional calculus.
It is also likely there is a somewhat involved argument using Stone-
Weierstrauss.

Lemma 3.1. Let f : (a,b) — R be a function. Let U be a unitary.
Then,

FUXU) = U* f(X)U.



TRACE MINMAX 9

Proof. Suppose the unitary V' diagonalizes X.

f(A)
f(xX)y=vr V.
f(An)
Now, VU diagonalizes U* XU, and so
f(A)
fUXU)=U0"V VU
()
=U"f(X)U

O

Lemma 3.2. Let f : (a,b) — R be a function. Let U be a unitary.
Then,
Df(U*XU)[U'HU| =U"Df(X)[H]U.

Proof. Calculating using Lemma 3.1
DU XU U HU] = Tim f(U*XU +tU*HU) — f(U*XU)

t—0 t
_ iy LU L) = X0
i U* f(X + tH)iJ — U f(X)U
_ iy U 0) = SO0

(L) =YY

lim
t

= U*Df(X)[H]U.

Theorem 3.3. Let f: (a,b) — R be a C' function. Then,
tr Df(X)[H] = tr H f'(X).

Proof. Because f is C!, for each self-adjoint matrix X with spectrum
in (a,b), tr Df(X)[H] is linear map from n x n matrices to n x n
matrices as a function of H and there is a unique quantity g(X) such
that tr f(X)[H]| = tr Hg(X). We will show that:

(1) g(U*XU) = U*g(X)U for all unitaries U,
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(2) 9(X1 @ X5) = g(X1) ® g(Xa),
(3) g(z) = f'(x) whenever z is a real number in (a, b).
To see (1), note that by Lemma 3.2
Df(U*XU)[H] = U*Df(X)[UHU"|U.
Therefore,
tr Hg(U*XU) = tr Df(U*XU)[H]
— tr U*Df(X)[UHU*U
— tr Df(X)[UHU"]

=trUHU"g(X)
=tr HU"g(X)U
So, g(U*XU) = U*g(X)U.
To see (2), first write
Hyy H12}
H = .
{Hm Hy,

Note that f(X; @ Xy) = f(X1) @ f(X>), therefore D f(X; ® X5)[Hy &
Hy) = Df(X1)[H11) @ Df(Xs)[Has. Translating the relation to g, one
sees that g(X; & X5) is of the form:

(" ) = Lty o]

for some unknown quantities A(Xy, X5), A(Xs, X1). Now by (1),

(" )= () (" ) ()
() (M) ()

_ { 9(X1) —A(XlaXz)}
—AXy, X)) g(Xy) ]
and therefore A(X7, Xs), A(Xs, X1) both equal 0. Thus, g(X; & X») =

9(X1) ® g(Xa).
Now to see (3), let z be a real number. Note

tr Df(z)[h] = Df(z)[h] = hf'(z) = tr bf'(2),
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and therefore g(z) = f'(z).
We now claim f'(X) = g(X). Write

A1
X=U" U.
An
Now,
f'(M)
f(X)=U" U
f'(An)
g(\1)
=U" U
9(An)
A1
=U"g U
An
A1
=g |U" U
An

4. DERIVATIVES OF TRACE MINMAX FUNCTIONS ARE MATRIX
MONOTONE

Lemma 4.1. Let f : (a,b) — R be C'. The function f is trace minmazx
if and only if ' is matriz monotone on (a,b).

Proof. Let A < B < (. One can rewrite the defining inequality for
trace minmaxity

tr f(A)+ f(C) >tr f(B)+ f(A+C — B)

as

tr f(C) = f(B) 2 tr f(A+ C — B) — f(A)
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Let C'= B +tH. Now
tr f(B+tH)— f(B)>tr f(A+tH) — f(A).
Dividing by ¢ and taking the limit as ¢ — 0 gives
tr Df(B)[H] > tr Df(A)[H].
Applying trace duality established in Theorem 3.3, we see that
tr Hf'(B) > tr Hf'(A).

Now, tr H(f'(B) — f'(A)) > 0 for an arbitrary positive semidefinite
matrix H and therefore f'(B)— f'(A) is positive semidefinite. Therefore
f'(A) < f/(B) and so f’ is matrix monotone. O

Theorem 4.2. Let f : (a,b) — R. The function f is trace minmaz if
and only if ' is matriz monotone on (a,b).

Proof. Without loss of generality a = —1 and b = 1 First observe
that as a function on (—1,1), f is convex, and therefore continuous.
Fix ¢ a positive smooth function such that [, ¢ = 1 with support
contained in (—1,1). Write ¢ (z) = ¢(x/t)/t. Write f; = f * ¢;. Note
fi is trace minmax on (—1 + ¢,1 — t). Therefore, by Lemma 4.1, f/ is
matrix monotone on (—1+¢,1 —1t). As f; — f as t — 0 because f
is continuous, and a pointwise limit of matrix monotone functions is
matrix monotone, we are done.

To see the converse, note that, if f’ is matrix monotone and H, K
are positive semidefinite,

tr D2f(X)[H, K] = tr HDf'(X)[K] > 0,

so we are done by Lemma 2.1.

5. TRACE MINMAX REPRESENTATION THEOREMS

We now prove our representation theorem for trace minmax func-
tions.

Proposition 5.1. Let f : (a,b) — R. If [ is trace minmazx then for
each ¢ € (a,b), there exists a unique measure o, 3 € R and a unique
finite measure 1 on [, =] such that

—log(l —t(z—c¢)) —t(z —¢)
t2

f(2)=a+ﬁz+/1 1 dp.

[afc’ bfc}
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Proof. Without loss of generality ¢ = 0. Because f is trace minmax,
by Theorem 4.2, f’ is matrix monotone. Furthermore, by Lowner’s
theorem, f analytically continues to an analytic function f : (a,b) U
IT — II. Write f(2) = a,2™. As f'(2) is self map of the upper half plane,
there is a measure p supported on [%, %] such that na, = [¢"2du by
Nevanlinna’s solution to the Hamburger moment problem [18], which
we gave as Theorem 2.2. Now,
© _n [ 4n—2
f(2) :ao—l—alz—kzz‘“—d'u

n=2

n

:ao—l—alz—l—zQZanTth'u

n=0

— [ ()"
:a0+alz+222/—du
—~J) n+2

—log(l —tz) —tz
:a0+a12+22/ 8( (Zt)2) dp

—log(l —tz) —tz
:ao—l—alz—}-/ 8( " ) dg.

0

A consequence of the fact that f’(z) is a Pick function and Theorem
2.3 is a Hankel matrix type test for trace minmaxity:.

Observation 5.2. Let f(z) = Y a,x™ be a convergent series on a
netghborhood of 0. The function f is trace minmax if and only if the
Hankel matriz

2a9 3as 4ay

3as 4as bas

4as das 6ag

s positive semidefinite.
6. PROOF OF THE MAIN RESULT

(1) < (2) is Theorem 4.2. (2) < (3) is Lowner’s theorem. (1) =
(4) is Proposition 5.1. (4) = (3) The derivative of such an integral
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z
b du.
+/11]1—t2 a

a—c’b—c

representation is

z
1—tz

Since each
formula.

takes the upper half plane to itself, so does whole

7. EXAMPLES

We now give some examples.

(1) The function e, real-rooted polynomials, and the Gamma func-
tion are all determinant isoperimetric by virtue of being in the
Laguerre-Pélya class.

(2) The function z* for 1 < ¢ < 2 is trace minmax, because the
derivative is a self-map of the upper half plane.

(3) Consider Riemann’s original = function. That is, take

£(2) = 2= — DT (/2)((2),

and define =(z) = €(1/2 + iz). The Riemann hypothesis says
that the zeros of = are real. Moreover, we know =(z) = [[(1 —
é)ez/ Pi are 1/2 + ip; are the nontrivial zeros of the Riemann
zeta function. Therefore, if the Riemann hypothesis is true,
then = is in the Laguerre-Pélya class. Similarly, the function
A(z) = E(1/2 + /z) has a similar factorization and is in the
Laguerre-Pélya class if and only if the Riemann hypothesis is
true.

Applying our results in tandem, we see the following list
of statements which are equivalent to the Riemann hypothe-
sis when applied to = or A.

Proposition 7.1. Suppose Z is an entire function of genus at
most 1 which is real valued on the real line. (Having genus 1 is
equivalent to having a Hadamard factorization of the form:

2(z) = et T - 2)erl
Pi

for some constants «, 8 and zeros p;. Let (a,b) be a nonempty
open interval in R where = is nonvanishing. The following are
equivalent:
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(a) The function = only has real zeros, (for = or A, this is the
Riemann hypothesis,)

(b) |Z| is in the radical Laguerre-Pdlya class of (a,b),

(¢) logZ(z) has a branch defined on the upper half plane,

(d) |Z| is determinant isoperimetric on (a,b),

(e) —log|Z(2)| is trace minmaz on (a,b),

(f) —log|=(2)| is matriz convez on (a,b),

(9) —Llog |2(2)| is matriz monotone (a,b),

(h) Let v € (a,b). If we write —logZ(z 4+ 1) = 3. a,2", then
the infinite matriz,

2a9 3as 4ag
3as 4ay bas
4CL4 5@5 6(1,6 R

s positive semidefinite.
(i) Let r € (a,b). If we write —log=(z +r) = > a,z", then
the infinite matriz,

o Az Qg
as a4 Qs
as as Qg ... !

is positive semidefinite.
(j) Let r € (a,b). If we write —logZ(z + 1) =Y a,2", then
there exists a k € N such that the infinite matriz,

Qkagk (2]@ + 1)a2k+1 (2]@ + 2)a2k+2
(2]{3 + 1)a2k+1 (2]{3 + 2)a2k+2 (2]{3 + 3)a2k+3
(Qk' + 2)a2k+2 (Qk' + 3)a2k+3 (Qk' + 4)a2k+4 Lo

15 positive semidefinite.
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(k) Let v € (a,b). If we write —logZ(z + 1) = 3 a,2", then
there exists a k € N such that the infinite matrix,
A2k A2k+1  A2k+2
A2k+1  A2k+2  A2k+3
Aok+2  Q2k43  (2ktd ’
is positive semidefinite.
Proof. (a) = (b) If = only has real zeros, then it is in the
Laguerre-Pélya class because it is of the form of Equation (1.2),
and therefore its absolute value is in the radical Laguerre-Pélya
class. (In the case of = or A, the equivalence of (a) and (b) is
essentially classical and crucial to the Jensen-Pdlya approach
to the Riemann hypothesis [19].)
(a) < (c) Z is nonvanishing on the upper half plane if and
only if it admits a branch of the logarithm.
(b) & (d) < (e) is Theorem 1.5.
(e) < (g) is part of Theorem 1.1.
(e) = (f) is Corollary 1.2.
(f) = (c¢) is Kraus theorem [15].
(e) < (h) follows from Observation 5.2.
(h) = (i) Note that
1/2 1/3 1/4
1/3 1/4 1/5
/55 |
1/4 1/5 1/6 =
and, therefore,
1/2 1/3 1/4 2&2 3(1,3 4@4 Ao a3z QA
1/3 1/4 1/5 3a3 4&4 5&5 as a4 Qs >0

1/4 1/5 1/6 ...| |4ay bas 6ag ... ay, as ag ...| &

(h) = (j) is trivial.
(7) = (k) has essentially the same proof as (h) = (i).
(i) = (k) is trivial.
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(k) = (c) follows from Theorem 2.3 combined with 2.2 ap-
plied to the function Z;";l (o S 2k+j+1 =

The above formulation of the the Riemann hypothesis evokes
a similiarity to approaches using hyperbolicity of Jensen polyno-
mials taken in [19, 6, 7], and a positivity of derivatives approach
in Li’s criterion [17].
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