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ON ℓ-TORSION IN CLASS GROUPS

OF NUMBER FIELDS

JORDAN ELLENBERG, LILLIAN. B. PIERCE, AND MELANIE MATCHETT WOOD

Abstract. For each integer ℓ ≥ 1, we prove an unconditional upper bound on the size of the ℓ-torsion
subgroup of the class group, which holds for all but a zero-density set of field extensions of Q of degree d,
for any fixed d ∈ {2, 3, 4, 5} (with the additional restriction in the case d = 4 that the field be non-D4).
For sufficiently large ℓ (specified explicitly), these results are as strong as a previously known bound that
is conditional on GRH. As part of our argument, we develop a probabilistic “Chebyshev sieve,” and give
uniform, power-saving error terms for the asymptotics of quartic (non-D4) and quintic fields with chosen
splitting types at a finite set of primes.

1. Introduction

The distribution of class groups is a great mystery. The Cohen-Lenstra heuristics [CL84] (for quadratic
fields) and the Cohen-Lenstra-Martinet heuristics [CM90] (for more general number fields) make predictions
for the distribution of class groups, including for the average size of the ℓ-torsion subgroups for certain “good”
primes ℓ. However, the questions of proving anything towards these predictions are almost entirely open,
and mostly apparently inaccessible.

The main goal of the present work is to prove, for each integer ℓ ≥ 1, an unconditional upper bound for the
size of the ℓ-torsion subgroup of the class group, which holds for all but a zero-density set of field extensions
of Q of degree d, for any fixed d ∈ {2, 3, 4, 5} (with the additional restriction in the case d = 4 that the
field be non-D4). Alternatively, these results may be viewed as the first unconditional upper bounds for the
average size of ℓ-torsion in class groups as the field varies over extensions of Q of fixed degree d ∈ {2, 3, 4, 5}
(and non-D4 in the case d = 4).

Let K be a degree d field extension of Q with absolute discriminant DK = | discK/Q|. We will denote
the class group by ClK and the ℓ-torsion subgroup by ClK [ℓ]. We note the trivial pointwise upper bound
(see for example [Nar80, Thm 4.4])

(1.1) |ClK [ℓ]| ≤ |ClK | ≪d,ε D
1/2+ε
K ,

for every ε > 0. (Throughout, ε > 0 is allowed to be arbitrarily small (possibly taking a different value in
different occurrences), and A ≪ B indicates that |A| ≤ cB for an implied constant c, which we allow in any
instance to depend on ℓ, d, ε.)

It is conjectured that

(1.2) |ClK [ℓ]| ≪ Dε
K

for every ε > 0, but improving on the trivial bound (1.1) has proved difficult. (Impetus for this conjecture may
be found in Duke [Duk98], Zhang [Zha05, page 10], and Brumer and Silverman [BS96, “Question CL(ℓ, d)”].)
For K quadratic, Gauss’s genus theory [Gau01] implies (1.2) in the case ℓ = 2. Recently, [BST+17] obtained
nontrivial upper bounds for 2-torsion in fields of degree d for all d ≥ 3, proving |ClK [2]| ≪ D0.2784...+ε

K for

d = 3, 4 and |ClK [2]| ≪ D
1/2−1/2d+ε
K for d ≥ 5. For ℓ = 3, after initial incremental improvement in [HV06],

[Pie05], [Pie06] over the trivial bound (1.1) for quadratic fields, Ellenberg and Venkatesh proved [EV07,
Prop. 3.4, Cor. 3.7] that

(1.3) |ClK [3]| ≪ D
1/3+ε
K
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holds for both quadratic and cubic fields, and moreover there is a positive constant δ > 0 such that

(1.4) |ClK [3]| ≪ D
1/2−δ+ε
K

holds for quartic fields. (In particular, one may take δ = 1/168 in (1.4) for quartic fields with Galois closure
having Galois group A4 or S4.) At this time, these are the best bounds in the literature that are unconditional
and hold for all such fields.

In the realm of average results, there is little known, with the exceptions being spectacular successes. For
3-torsion in quadratic fields, Davenport and Heilbronn [DH71] proved

(1.5)
∑

deg(K)=2
0<DK≤X

|ClK [3]| ∼
(

2

3ζ(2)
+

1

ζ(2)

)

X,

in which the first contribution is from fields with discK/Q > 0 and the second is from fields with discK/Q <
0; this has recently been improved to reflect second order terms by [BST13], [TT13] and [Hou]. For 2-torsion
in cubic fields, Bhargava [Bha05] proved the asymptotic

(1.6)
∑

deg(K)=3
0<DK≤X

|ClK [2]| ∼
(

5

48ζ(3)
+

3

8ζ(3)

)

X,

in which each isomorphism class of fields is counted once, and the first contribution is from fields with
discK/Q > 0 and the second is from fields with discK/Q < 0. For 4-torsion in quadratic fields, Fouvry and
Klüners [FK06] have determined the asymptotics, for each non-negative integer k,

(1.7)
∑

deg(K)=2
0<DK≤X

|Cl2K [2]|k ∼ (ck + p−k(ck+1 − ck))X,

where ck is the number of vector subspaces of Fk
2 . See also the recent work of Klys [Kly16] giving analogous

results on 3-torsion in cyclic cubic fields, and the recent work of Milovic on 16-rank in quadratic fields, e.g.
[Mil15].

Turning to conditional results, Klys’s results [Kly16] extend to p-torsion in cyclic degree p fields under
GRH and Smith [Smi16] has results on 8-torsion averages in quadratic fields under GRH as well. In the case of
quadratic fields, Wong [Won99b] proved that, conditional on the Birch–Swinnerton-Dyer conjecture and the

Riemann Hypothesis, |ClK [3]| ≪ D
1/4+ε
K . Before the proof of (1.3), Soundararajan noted (as communicated

in [HV06]) that one could prove |ClK [3]| ≪ D
1/3+ε
K for K quadratic if one assumed the truth of the Riemann

Hypothesis for only the L-function L(s, χ) of the quadratic character χ associated to the quadratic field
K. The key idea of the latter bound was the use of many small primes that split in K; the role of the
Riemann Hypothesis was to guarantee the existence of sufficiently many such primes. This approach has
been generalized by Ellenberg and Venkatesh [EV07] to number fields of any degree; we recall the key result
in the special case of field extensions of Q:

Theorem A (Lemma 2.3 of [EV07]). Let K be a field extension of Q of degree d, and let ℓ be a positive
integer. Let δ < 1

2ℓ(d−1) . Suppose that {p1, . . . , pM} are M prime ideals in OK with Norm(pj) ≤ Dδ
K that

are unramified in K/Q and are not extensions of ideals from any proper subfield K0 ( K.Then

(1.8) |ClK [ℓ]| ≪d,ℓ,ε D
1/2+ε
K M−1.

(Here we recall the convention in [EV07] that an ideal p in OK is said to be an extension of a prime ideal
from a subfield K0 ( K if there is a prime ideal p0 in OK0 such that p = p0OK .)

Upon assuming GRH, an application of the effective Chebotarev theorem of Lagarias and Odlyzko [LO75]

guarantees, for any fixed η > 0, the existence of ≫ Dη−ε
K rational primes of size ≤ Dη

K that split completely
in K. Upon choosing η = 1

2ℓ(d−1) −ε0 for arbitrarily small ε0 > 0, one obtains the following bound, currently

the state of the art for conditional pointwise upper bounds for |ClK [ℓ]|:
Theorem B (Prop. 3.1 of [EV07]). Let K be a field extension of Q of degree d and ℓ a positive integer.
Assuming GRH,

(1.9) |ClK [ℓ]| ≪d,ℓ,ε D
1
2− 1

2ℓ(d−1)
+ε

K ,
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for any ε > 0.

One may attempt to remove the conditionality by proving results that hold on average, or for all but
a small exceptional family. In this vein, in the case of imaginary quadratic fields, Soundararajan [Sou00]
noted that for all but at most one imaginary quadratic field K with DK ∈ [X, 2X ], one has the bound
|ClK [ℓ]| ≪ X1/2−1/2ℓ+ε, for any prime ℓ. Also in the imaginary quadratic case, a recent result of Heath-
Brown and Pierce [HBP17] provides an upper bound for averages (and in addition higher moments) of
|ClK [ℓ]|, for example proving for any prime ℓ ≥ 5 that

(1.10)
∑′

deg(K)=2
0<DK≤X

|ClK [ℓ]| ≪ X
3
2− 3

2ℓ+2+ε,

with the sum restricted to imaginary quadratic fields.
In this paper, we prove unconditional results for |ClK [ℓ]| that are as strong as (1.9) for all sufficiently

large positive integers ℓ, and hold for all but a zero-density family of quadratic, cubic, non-D4-quartic, or
quintic field extensions of Q.

For this we work with families of fields. Let Nd(X) denote the number of degree d extensions of Q with
0 < DK ≤ X , in which each isomorphism class is counted once; it is conjectured that for an appropriate
constant cd,

(1.11) Nd(X) ∼ cdX.

Importantly for our work, this is known to be true for d = 2 (classical), d = 3 by Davenport and Heilbronn
[DH71], d = 4 by Cohen, Diaz y Diaz, and Olivier [CDyDO02] and Bhargava [Bha05], and d = 5 by Bhargava
[Bha10]. Throughout our work, in the case of d = 4, we restrict our attention to non-D4-quartic fields (that
is, quartic extensions whose Galois closure does not have Galois group D4); see Remark 4.1. Thus we let

Ñ4(X) denote the further restricted count of non-D4-quartic extensions of Q; then (1.11) is also known to

hold for Ñ4(X), with a different constant [Bha05].
As a consequence of the field counts (1.11) combined with the trivial bound (1.1), a trivial average bound

for |ClK [ℓ]| is

(1.12)
∑

deg(K)=d

0<DK≤X

|ClK [ℓ]| ≪d,ε X
3/2+ε.

Our approach to improve upon (1.12) is to show that “most” degree d fields K contain sufficiently many
small primes that split completely in K for Theorem A to give a good upper bound for |ClK [ℓ]|. Roughly
speaking, we will show that there is some small δ0 > 0 such that for all but at most O(X1−δ0) of the degree
d fields K with 0 < DK ≤ X , at least a fixed positive proportion of the primes p ≤ Xδ0 split completely in
K. (Under GRH, the small set of exceptional fields is in fact empty.)

Our main results are as follows:

Theorem 1.1. Let d ∈ {2, 3, 4, 5} and let ℓ be any positive integer with ℓ ≥ ℓ(d) where

ℓ(2) = ℓ(3) = 1, ℓ(4) = 8, ℓ(5) = 25.

Then for all but Od,ℓ,ε(X
1− 1

2ℓ(d−1)
+ε) degree d fields K/Q with DK ≤ X (and non-D4 in the case d = 4),

|ClK [ℓ]| ≪d,ℓ,ε D
1
2− 1

2ℓ(d−1)
+ε

K ,

for all ε > 0. For d = 4, 5, in the remaining cases of positive integers ℓ < ℓ(d), for all but Od,ε(X
1−δ0(d)+ε)

degree d fields K/Q with 0 < DK ≤ X (and non-D4 in the case d = 4),

|ClK [ℓ]| ≪d,ℓ,ε D
1
2−δ0(d)+ε

K ,

for all ε > 0, where we may take

δ0(d) =

{

1/48 if d = 4

1/200 if d = 5.
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Remark 1.1. Theorem 2.1 states a version of this result in terms of bounding the number of exceptional
fields that fail to have many small split primes. One notes from Theorem 2.1 that for sufficiently large ℓ, the
limiting reagent is not the availability of small completely split primes, but the constraint δ < (2ℓ(d− 1))−1

in Theorem A.

As immediate corollaries, we note:

Corollary 1.1.1. Let d ∈ {2, 3, 4, 5}. As K ranges over degree d extensions of Q with discriminant 0 <
DK ≤ X (and non-D4 in the case d = 4),

∑

deg(K)=d

0<DK≤X

|ClK [ℓ]| ≪d,ε X
3
2− 1

2ℓ(d−1)
+ε,

for all integers ℓ ≥ ℓ(d), where ℓ(2) = ℓ(3) = 1, ℓ(4) = 8, ℓ(5) = 25.

Corollary 1.1.2. For positive integers ℓ ≤ 7, averaging over non-D4-quartic fields,
∑′

deg(K)=4
0<DK≤X

|ClK [ℓ]| ≪d,ε X
3
2− 1

48+ε.

For positive integers ℓ ≤ 24, averaging over quintic fields,
∑

deg(K)=5
0<DK≤X

|ClK [ℓ]| ≪d,ε X
3
2− 1

200+ε.

Our strategy is as follows. Recall that Nd(X) denotes the number of degree d fields K over Q, up to
isomorphism, with 0 < DK ≤ X , and let Nd(X ; p) denote the number of degree d fields K over Q, up to
isomorphism, with 0 < DK ≤ X , such that the rational prime p splits completely in K. (For d = 4 we define

Ñ4(X ; p) analogously, restricting to non-D4-quartic fields.) Suppose we know that for each fixed prime p,
Nd(X ; p) is a positive proportion of Nd(X), so p splits completely in a positive proportion of the fields.
Then one would expect the fields in which the primes split completely to distribute somewhat evenly, so
that “most fields” have the property that “near the average number” of primes split completely in them; that
is, one would expect that the primes do not conspire to cause many fields to fail the criterion of Theorem
A. We will make this argument precise by developing a flexible “Chebyshev sieve” (Lemma 3.1, related to
Chebyshev’s inequality); the crucial input to the sieve will be asymptotics for Nd(X ; p) with power-saving
error and explicitly given dependence on p (Lemma 2.2, Theorem C, Theorems 2.3 and 2.4).

Counting quadratic fields may be accomplished by a simple classical argument (given in an appendix,
Section 8). Power-saving error terms for Nd(X) were first found in the cases d = 3, 4 by Belabas, Bhargava,
and Pomerance [BBP10], and first found in the case d = 5 by Shankar and Tsimerman [ST14]. In the case
d = 3, Bhargava, Shankar, and Tsimerman [BST13] and Taniguchi and Thorne [TT13] have also proved
a second main term and improved the power-saving error term. For the refined estimates that we require
on Nd(X ; p), we quote the necessary asymptotics for d = 3 from [TT13], while for d = 4, 5 we prove the
necessary estimates using the methods and results from [BBP10] and [ST14]. In fact, in Sections 4 and 5,
we give the field counting asymptotics for fields with any chosen splitting types at a finite set of primes with
the expectation that they could be useful in other applications; see Theorems 4.1 and 5.1. Our counting
theorems improve upon analogous results that appear in four recent papers, three [Yan09, CK15, SST15b]
in the area of finding symmetry groups of families of L-functions (see [SST15a] for a general overview of
the area) and one [OT14] studying the distribution of ramified primes in small-degree number fields. See
Sections 4 and 5 for detailed comparisons to these previous works.

2. Anatomy of the proof

2.1. Reduction to counting bad fields. We now outline the strategy in more detail; for the sake of
motivation, we focus temporarily on proving upper bounds on average. Let us fix d and define for any degree
d field K over Q and any real parameter Y ≥ 1,

N(K;Y ) = #{rational primes p ≤ Y that split completely in K}.

4



(Implicitly, in the case d = 4 we further restrict to non-D4-quartic fields.) Let us fix a positive integer ℓ and
a parameter δ1 < 1

2ℓ(d−1) , to be chosen precisely later. Then by Theorem A, for any X ≥ 1,
∑

X<DK≤2X

|ClK [ℓ]| ≪
∑

X<DK≤2X

D
1/2+ε
K N(K;Dδ1

K )−1

≪ X1/2+ε
∑

X<DK≤2X

N(K;Xδ1)−1.

Now given real parameters X ≥ 1 and 1 ≤ M ≤ Y , we define B0
d(X ;Y,M) to be the set

B
0
d(X ;Y,M) = {K/Q, deg(K) = d, X < DK ≤ 2X : at most M primes p ≤ Y split completely in K},

(with the usual further restriction in the case d = 4).
We denote by π(Y ) the number of rational primes p ≤ Y , and let us regard 1 ≤ M ≤ π(Xδ1) as fixed for

the moment, to be specified later. Then we may make the decomposition

∑

X<DK≤2X

|ClK [ℓ]| ≪ X1/2+ε









∑

X<DK≤2X

K 6∈B0
d
(X;Xδ1 ,M)

N(K;Xδ1)−1 +
∑

K∈B0
d
(X;Xδ1 ,M)

N(K;Xδ1)−1









.

Since N(K;Xδ1) ≥ M if K 6∈ B
0
d(X ;Xδ1 ,M), we have

∑

X<DK≤2X

|ClK [ℓ]| ≪ X1/2+ε









∑

X<DK≤2X

K 6∈B0
d
(X;Xδ1 ,M)

M−1 +
∑

K∈B0
d
(X;Xδ1 ,M)

1









,

and we may conclude that

(2.1)
∑

X<DK≤2X

|ClK [ℓ]| ≪ X3/2+εM−1 +#B
0
d(X ;Xδ1,M)X1/2+ε.

Then upon defining (with the usual further restriction in the case d = 4) the set
(2.2)

Bd(X ;Y,M) = {K/Q, deg(K) = d, 0 < DK ≤ X : at most M primes p ≤ Y split completely in K},
we may trivially replace the expression #B0

d(X ;Xδ1,M) in (2.1) by #Bd(2X ;Xδ1,M) and only increase
the right-hand side.

We now suppose that we can bound from above the cardinality of the “bad set” Bd(2X ;Xδ1,M) for
appropriate δ1 and M . Note that one expects via the Chebotarev density theorem that a positive proportion
of the primes up to Xδ1 split completely in K, so that a reasonable choice for M will be proportional to
π(Xδ1). Precisely, we suppose that there is a small fixed δ2 > 0 such that for every X ≥ 1 and an appropriate
choice of M with Xδ1/ logX ≪ M ≪ Xδ1/ logX we have

(2.3) #Bd(2X ;Xδ1,M) ≪ X1−δ2+ε,

for all ε > 0. Then upon summing over O(logX) ranges and applying (2.1) and (2.3) within each range, we
see that for any X ≥ 1,

∑

0<DK≤X

|ClK [ℓ]| ≤
∑

0≤j≤⌈log2 X⌉

∑

2j−1<DK≤2j

|ClK [ℓ]|

≪
∑

0≤j≤⌈log2 X⌉

{

(2j−1)3/2+ε(2(j−1)δ1)−1 log 2j +#Bd(2
j ; 2(j−1)δ1 ,M)(2j−1)1/2+ε

}

≪ logX
∑

0≤j≤⌈log2 X⌉

{

(2j)3/2−δ1+ε + (2j)3/2−δ2+2ε
}

≪ X3/2−δ+3ε,(2.4)

where δ = min{δ1, δ2} and ε > 0 is arbitrarily small. Thus we see that an upper bound of the form (2.3) is
the key to obtaining an average result in the shape of Corollaries 1.1.1 and 1.1.2; this upper bound plays a
similarly crucial role in obtaining the results of Theorem 1.1, as we show in Section 7.
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Ultimately, we will prove the following version of (2.3), which controls the number of possible bad fields:

Theorem 2.1. Let Bd(X ;Y,M) be defined as in (2.2). Set

(2.5) δ0(d) =



















1/6 if d = 2

2/25 if d = 3

1/48 if d = 4

1/200 if d = 5.

For each d = 2, 3, 4, 5, there is a constant 0 < c0(d) < 1 such that for every 0 < δ ≤ δ0(d) and every X ≥ 1,

#Bd(X ; (X/2)δ,
1

2
c0(d)

(X/2)δ

log(X/2)δ
) ≪ X1−δ+ε

for every ε > 0.

Remark 2.1. The methods of this paper also prove an analogous theorem if the condition “split completely”
in the definition (2.2) is replaced by another fixed splitting type.

2.2. Counting bad fields via a sieve and counts for fields with local conditions. We prove Theorem
2.1 via a sieve we develop for this purpose; to describe the strategy, we first recall the simplest classical setting
of a sieve. Let A be a finite set of elements of cardinality N , and let P denote the set of all rational primes.
We assume a certain property of interest has been specified so that each element a ∈ A either satisfies it or
not, with respect to p, for each p ∈ P. For each prime p ∈ P we let Ap denote the finite subset of A that
satisfies the fixed property with respect to the prime p. Moreover we assume we know that for each p there
exists a real number 0 ≤ δp < 1 and a real number Rp with |Rp| ≤ N such that

(2.6) #Ap = δpN +Rp.

In simplest terms, a classical aim of a sieve is to provide an upper bound for the number of elements in the
set A such that the designated property fails for all primes p ≤ z, for some fixed threshold z. Thus one
could use a sieve to provide an upper bound for

#(A \
⋃

p≤z

Ap).

For example, to sieve for prime numbers, the set A is a finite set of integers, and the property is that p|a.
Slightly more generally, one could apply a classical sieve such as the Turán sieve to count

(2.7) #(A \
⋃

p∈P0

Ap)

for an arbitrary fixed finite set of primes P0.
In our application, the set A is the set of fields K/Q of degree d with DK ∈ (0, X ] and the property is

that p splits completely in K, so that Ap is the subset of fields in which the prime p splits completely. In
this setting, assuming we possess an appropriate understanding of #Ap as in (2.6), then (2.7) would allow
us to count those degree d fields K with DK ∈ (0, X ] in which a fixed set of primes fail to split completely.
But in order to bound the bad set Bd(X ;Xδ1,M) we require more flexibility: a field belongs to this set if all
the primes in a sufficiently large set fail to split completely in K, but the relevant large set of primes might
be different for two different bad fields K. Thus we develop in Section 3 a flexible new sieve that allows us
to count elements a ∈ A that fail to lie in Ap for many p, without specifying which p fail for any given a.

The key input to any sieve is an understanding of Ap that provides the expression (2.6). In our case, this
requires an understanding of Nd(X), Nd(X ; p), and Nd(X ; pq) for two distinct primes p, q; here Nd(X ; pq)
counts the number of degree d fields K/Q in which both p and q split completely. In the case of quartic

fields, we let Ñ4(X), Ñ4(X ; p) and Ñ4(X ; pq) denote the analogous quantities, restricted to non-D4-quartic
fields K/Q.

We now summarize the key results we will require for the sieve. For quadratic fields, we record:

6



Lemma 2.2. There exists a constant c2 > 0, such that for e = e1 or e = e1e2 for distinct primes e1, e2,

N2(X) = c2X +O(X1/2)(2.8)

N2(X ; e) = δec2X +O(eX1/2)(2.9)

where δe is a multiplicative function defined for any prime e by

(2.10) δe =
1

2

1

(1 + e−1)
.

For completeness, we record a simple proof of this classical result in an appendix (Section 8); the error
terms given here can be improved (see for example the survey [Pap05]) but will suffice for our application.

In contrast, the results for cubic, quartic, and quintic fields are deep. For cubic fields, we cite work of
Taniguchi and Thorne [TT13]:

Theorem C (Theorems 1.1, 1.3 [TT13]). There exist constants c3 > 0, c′3 < 0 such that for e = e1 or
e = e1e2 for distinct primes e1, e2,

N3(X) = c3X + c′3X
5/6 +O(X7/9+ε)(2.11)

N3(X ; e) = δec3X + δ′ec
′
3X

5/6 +O(e8/9X7/9+ε)(2.12)

where δe and δ′e are multiplicative functions defined for any prime e by

(2.13) δe =
1

6

1

(1 + e−1 + e−2)
, δ′e =

1

6
+O(e−1/3).

For quartic fields, we have:

Theorem 2.3. There exists a constant c4 > 0 such that for e = e1 or e = e1e2 for distinct primes e1, e2,

Ñ4(X) = c4X +O(X23/24+ε)(2.14)

Ñ4(X ; e) = δec4X +O(e1/2+εX23/24+ε)(2.15)

where δe is a multiplicative function defined for any prime e by

(2.16) δe =
1

24

1

(1 + e−1 + 2e−2 + e−3)
.

We note (2.14) is due to [BBP10, Theorem 1.3]; we deduce (2.15) in Section 4, using the methods of
Belabas, Bhargava, and Pomerance [BBP10], which build on the work of Bhargava [Bha05] that obtained
the original count of S4-quartic fields with an o(X) error term. See Theorem 4.1 for our most general result
of this type, of which Theorem 2.3 is a special case.

For quintic fields, we have:

Theorem 2.4. There exists a constant c5 > 0 such that for e = e1 or e = e1e2 for distinct primes e1, e2,

N5(X) = c5X +O(X199/200+ε)(2.17)

N5(X ; e) = δec5X +O(e1/2+εX79/80+ε +X199/200+ε)(2.18)

where δe is a multiplicative function defined for any prime e by

(2.19) δe =
1

120

1

(1 + e−1 + 2e−2 + 2e−3 + e−4)
.

We note (2.17) is due to [ST14]; we deduce (2.18) in Section 5, using the methods of Shankar and
Tsimerman [ST14], which build on the work of Bhargava [Bha10] that obtained the original count of S5-
quintic fields with an o(X) error term. (We also fill in a missing step from [ST14].) See Theorem 5.1 for our
most general result, of which Theorem 2.4 is a special case.

We remark that the techniques for counting number fields that produced these results for Nd(X ; e) continue
to be refined, and we may expect that the error terms will continue to be reduced. Thus in our subsequent
computations involving Nd(X ; e) we have worked more generally with error terms of the form O(eσXτ ),
so that it will be immediately clear how improvements in counting fields will lead to refinements of our
results. (In particular, improved error terms for smoothed versions of the counting functions Nd(X ; e) would
suffice for our application.) We note that the mechanism we employ will apply equally well to higher degree
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extensions of Q (or extensions of a fixed number field, using the more general form of Theorem A available
in [EV07, Lemma 2.3]) if suitable results for Nd(X) and Nd(X ; e) (or their analogues for extensions of a
fixed number field) become available. In addition, one might consider other families of fields for which
precise asymptotics are known, such as abelian fields over Q with a fixed Galois group, ordered either by
discriminant [Wri89, FLN15] or by conductor [Woo10]. It would be an interesting question to see whether
the existing methods can be refined to produce an appropriate power-saving error term with sufficiently
explicit dependence on a finite number of local conditions.

3. The Chebyshev sieve

We now develop in a fully general setting a new sieve that allows us to give an upper bound for the
number of elements a belonging to a set A that satisfy a desired property with respect to p for “few” p
(without specifying for which p it is satisfied). We will see that the principal idea is probabilistic, relating
to Chebyshev’s inequality, thus we dub it the Chebyshev sieve.

As before, let A be a finite set of cardinality N , let P denote the set of all rational primes, and let Ap

denote the finite subset of A that satisfies the fixed property with respect to the prime p. For a fixed real
parameter z ≥ 1, we let

P (z) =
∏

p∈P

p≤z

p

and we define for each a ∈ A the quantity

N(a) = #{p|P (z) : a ∈ Ap}.

Next, we set

(3.1) M(z) =
1

N

∑

a∈A

N(a) =
1

N

∑

p|P (z)

#Ap

to be the mean number of sets Ap (with p ≤ z) to which a typical element a ∈ A belongs. (In non-vacuous
cases, M(z) is nonzero.) We would expect that a typical element a ∈ A has N(a) being about size M(z),
and we want to bound from above the number of a ∈ A which have N(a) being unusually small, that is,
less than a fixed small proportion of M(z).

Given 1 ≤ M ≤ z, we define E (A ; z,M) to be the set of elements a ∈ A such that at most M primes
p|P (z) have a ∈ Ap. (Or in other words, E (A ; z,M) is the set of elements a ∈ A such that N(a) ≤ M .)
Then we set

E(A ; z,M) = #E (A ; z,M).

Our sieve lemma will provide us with an upper bound for E(A ; z, 12M(z)); that is, the number of elements
in A that lie in Ap for fewer than half the mean number of p.

For the purposes of the lemma, we introduce the following notation. Given distinct primes p, q we let
Apq = Ap ∩ Aq, and let Rp,q denote the quantity such that

#Apq = δpδqN +Rp,q.

(For notational convenience, we will interpret Rp,p as Rp.) Finally, we set

U(z) =
∑

p|P (z)

δp.

We now state the key sieve lemma.

Lemma 3.1 (Chebyshev Sieve). With the setting described above,

E(A ; z,
1

2
M(z)) ≤ 4N

M(z)2






U(z) +

1

N

∑

p,q|P (z)

|Rp,q|+
2U(z)

N

∑

p|P (z)

|Rp|+





1

N

∑

p|P (z)

|Rp|





2





.
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3.1. Proof of the sieve lemma. We note that the sieve inequality we prove is related to the classical
Turán sieve (see for example Theorem 4.1.1 of [CM06]), and can be seen as an application of Chebyshev’s
inequality

P(|X − µ| ≥ α) ≤ σ2/α2,

for X a random variable with mean µ and variance σ2, applied to the random variable N(a) when a is drawn
uniformly from A .

We prove the lemma directly. We begin by noting that

1

N
E(A ; z,

1

2
M(z))(

1

2
M(z))2 ≤ 1

N

∑

a∈E (A ;z, 12M(z))

(N(a)−M(z))2 ≤ 1

N

∑

a∈A

(N(a)−M(z))2.

It then suffices to prove the variance term on the right-hand side satisfies

(3.2)
1

N

∑

a∈A

(N(a)−M(z))2 ≤ U(z) +
1

N

∑

p,q|P (z)

|Rp,q|+ 2U(z)





1

N

∑

p|P (z)

|Rp|



+





1

N

∑

p|P (z)

|Rp|





2

.

We first note from (3.1) that the mean satisfies

(3.3) M(z) =
1

N

∑

p|P (z)

#Ap =
1

N

∑

p|P (z)

(δpN +Rp) = U(z) +
1

N

∑

p|P (z)

Rp.

We now consider the left-hand side of (3.2), which we trivially expand as

(3.4)
1

N

∑

a∈A

N(a)2 − 2

N

∑

a∈A

N(a)M(z) +M(z)2 =
1

N

∑

a∈A

N(a)2 −M(z)2.

The first term on the right-hand side of (3.4) is equal to

1

N

∑

p,q|P (z)

#(Ap ∩ Aq) =
1

N







∑

p|P (z)

δpN +
∑

p,q|P (z)
p 6=q

δpδqN +
∑

p,q|P (z)

Rp,q







=
∑

p|P (z)

δp +





∑

p|P (z)

δp





2

−
∑

p|P (z)

δ2p +
1

N

∑

p,q|P (z)

Rp,q

=
∑

p|P (z)

δp(1− δp) + U(z)2 +
1

N

∑

p,q|P (z)

Rp,q.

On the other hand, we may expand M(z)2 via (3.3) and see that after cancellation of the U(z)2 factor, the
right-hand side of (3.4) is equal to

∑

p|P (z)

δp(1− δp) +
1

N

∑

p,q|P (z)

Rp,q − 2U(z)





1

N

∑

p|P (z)

Rp



−





1

N

∑

p|P (z)

Rp





2

.

As Rp may be either positive or negative, we take absolute values; then using the fact that δp ≤ 1 we see
the resulting inequality simplifies to (3.2), thus proving the lemma.

4. Asymptotic count of non-D4-quartic fields

In this section we will prove the following, of which Theorem 2.3 is a special case.
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Theorem 4.1. Let P be a finite set of primes. For each prime p ∈ P we choose a splitting type at p and
assign a corresponding density as follows:

δp :=
1

24
(1 + p−1 + 2p−2 + p−3)−1 for p = ℘1℘2℘3℘4

δp :=
1

4
(1 + p−1 + 2p−2 + p−3)−1 for p = ℘1℘2℘3

δp :=
1

3
(1 + p−1 + 2p−2 + p−3)−1 for p = ℘1℘2 with ℘2 inertia degree 3

δp :=
1

8
(1 + p−1 + 2p−2 + p−3)−1 for p = ℘1℘2 with ℘i inertia degree 2

δp :=
1

4
(1 + p−1 + 2p−2 + p−3)−1 for p = ℘1

δp :=
p−1 + 2p−2 + p−3

(1 + p−1 + 2p−2 + p−3)
for p ramified.

Let δP :=
∏

p∈P δp and let e =
∏

p∈P p. Let Ñ4(X ;P ) be the number of non-D4 quartic fields with absolute
discriminant at most X such that for each p ∈ P , the prime p splits in the quartic field in the splitting type
chosen for p above. There exists a constant c4 > 0 such that

Ñ4(X ;P ) = δP c4X +O(e1/2+εX23/24+ε),(4.1)

where the implied constant in the O term is absolute (does not depend on P ). Moreover, we may choose
more than one splitting type at each prime and let δp be the sum of the corresponding densities and the result
still holds.

Bhargava [Bha05] first determined the asymptotic count of non-D4-quartic fields, and Belabas, Bhargava,
and Pomerance [BBP10] gave a power-saving asymptotic for this count. We will follow the method of
[BBP10], additionally requiring our chosen splitting types. While the main term for such a restricted count
appears in [Bha05, Theorem 3] (at least for one prime, and the same argument would work for more primes),
we require a power-saving error term with explicit dependence on the primes. In fact, such results have
appeared at least four times recently, but we will improve upon the exponents in all of these results and
remove various hypotheses that don’t hold in the situation in which we need to apply the bound. Yang [Yan09,

Proposition 3.1.7] proved such a power-saving error of the form Ñ4(X ;P ) = δP c4X + O(e2X143/144+ε).
([Yan09, Proposition 3.1.7] only states this for one local condition, but [CK15, Section 7] remarked it can be
extended to finitely many local conditions.) Lemke Oliver and Thorne [OT14, Theorem 2.1] proved a power-

saving error (in which we may only specify that p is ramified) of Ñ4(X ;P ) = δP c4X +O(e9/10X239/240+ε).

Shankar, Södergren, and Templier [SST15b] proved Ñ4(X ;P ) = δP c4X +O(e12X23/24+ε) when P contains
a single prime.

The exposition of the method in [Bha05] and [BBP10] is quite clear, so we will focus here on the particular
aspects of the computation we need. Instead of directly counting quartic fields, the method, equivalently,
counts maximal quartic orders. The parametrization of quartic rings with their cubic resolvents due to
Bhargava [Bha04] (see also [BBP10, Theorem 4.1]) gives an injection from the set of isomorphism classes of
maximal quartic orders to the set of GL2(Z)×SL3(Z) classes of pairs of ternary quadratic forms with integral
coefficients. Pairs of integral ternary quadratic forms comprise a 12 dimensional lattice VZ = Z12. Counting
GL2(Z) × SL3(Z) classes of lattice points in Z12 is the same as counting lattice points in a fundamental
domain for GL2(Z)× SL3(Z) on R12. In this paper, we need to count only these lattice points in particular
translates of sublattices of Z12. We collect some basic facts about the lattice translates corresponding to our
desired fields, apply the geometry of numbers result from [BBP10] to count the necessary lattice points, and
then work to minimize the resulting error terms.

As in [Bha05, Section 2.2] and [BBP10, Section 4] we use a certain random fundamental domain for the
action of GL2(Z) × SL3(Z) on R12. For a positive integer m, let L be a translate v +mVZ (v ∈ VZ) of the
sublattice mVZ of VZ. Let N ′(L;X) denote the expected number of lattice points in L, with first coordinate
non-zero and discriminant less than X , in a random fundamental domain. (This notion of expected value
for a random fundamental domain is defined as in [Bha05, Equation (5)], with S the set of points of L with
first coordinate non-zero, but without the “abs. irr.” condition that appears in [Bha05, Equation (5)]. See
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also [BBP10, p. 198].) Let NS4(q;X) be the number of classes in VZ corresponding to isomorphism classes
of S4-quartic orders and whose index in their maximal order is divisible by q and whose discriminant is less
than X . We have the following result that estimates these counts.

Theorem D (Theorem 4.11 of [BBP10]). Let L be a translate v +mVZ (v ∈ VZ). Let (a, b, c, d) denote the
smallest positive first four coordinates of any element of L. Then

N ′(L,X) =
NS4(1;X)

m12
+O(

∑

S

X(|S|+αS+βS+γS+δS)/12

m|S|aαSbβScγSdδS
+ logX)

where S ranges over the non-empty proper subsets of the set of 12 coordinates on VZ, and αS , βS , γS , δS ∈ [0, 1]
are real constants that depend only on S and satisfy |S|+ αS + βS + γS + δS ≤ 11.

Let q be square-free and (q, e) = 1. First, we will assume that we have chosen unramified splitting types
at each prime in P . Now, we will start by counting the expected number N ′(q, e;X) of lattice points in a
random fundamental domain that satisfy the following conditions: (1) their first coordinate is non-zero, (2)
their discriminant is less than X , (3) their corresponding quartic ring is not maximal at each prime dividing
q and is maximal and of chosen splitting type at primes in P . We do this by summing Theorem D over the
collection T of translates of eq2VZ that give quartic rings that are not maximal at each prime dividing q,
and are maximal and with chosen local splitting at each p ∈ P . (See [Bha04, Section 4] for a description
of which pairs of ternary quadratic forms correspond to quartic rings that are maximal or split in a certain
way at a prime.)

Given (a, b, c, d) ∈ [1, eq2]4, we need to bound the number of translates in T that have (a, b, c, d) as the
smallest positive first four coordinates of any element. By [BBP10, Corollary 4.8], there are O(6ω(q)q14)
translates of q2VZ that are congruent to (a, b, c, d) modulo q2 and whose lattice points correspond to quartic
rings that are not maximal at each prime dividing q. Since VZ is 12 dimensional, there are e8 translates of
eVZ congruent to (a, b, c, d) modulo e. Thus by the Chinese Remainder Theorem, there are O(6ω(q)q14e8)
translates in T that have (a, b, c, d) as the smallest positive first four coordinates of any element.

For q square-free, we define ν(q) to be the multiplicative function defined for a prime p by

ν(p) := p−2 + 2p−3 + 2p−4 − 3p−5 − 4p−6 − p−7 + 3p−8 + 3p−9 − p−10 − p−11.

This is the density of lattice points that correspond to quartic rings non-maximal at p [BBP10, Lemma 4.4].
Then #T = ν(q)q24e12ΓP , where

ΓP :=
∏

p∈P

δp(1− ν(p)),

and 0 ≤ δp ≤ 1 is the density of lattice points corresponding to quartic rings that are split as we chose at p
as a subset of those corresponding to quartic rings that are maximal at p [Bha04, Lemma 23].

If q2 > X , then all the classes counted by N ′(q, e;X) have discriminant 0, and by [BBP10, Lemma 4.10],
in this case there are O(X11/12+ε) such classes.

So now we consider the case when q2 ≤ X , in which case by Theorem D,

N ′(q, e;X)

= ν(q)ΓPNS4(1;X) +O





∑

(a,b,c,d)∈[1,eq2]4

6ω(q)q14e8

(

∑

S

X(|S|+αS+βS+γS+δS)/12

(eq2)|S|aαSbβScγSdδS
+ logX

)



 .
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We have

∑

(a,b,c,d)∈[1,eq2]4

6ω(q)q14e8

(

∑

S

X(|S|+αS+βS+γS+δS)/12

(eq2)|S|aαSbβScγSdδS
+ logX

)

= 6ω(q)q14e8



e4q8 logX +
∑

S

X(|S|+αS+βS+γS+δS)/12

(eq2)|S|

∑

(a,b,c,d)∈[1,eq2]4

1

aαSbβScγSdδS





≤ 6ω(q)q14e8

(

e4q8 logX +
∑

S

X(|S|+αS+βS+γS+δS)/12

(eq2)|S|
(

(eq2)4−αS−βS−γS−δS log4(eq2)
)

)

= 6ω(q)q22e12

(

logX +
∑

S

(X1/12e−1q−2)(|S|+αS+βS+γS+δS) log4(eq2)

)

.

Since 0 ≤ |S|+ αS + βS + γS + δS ≤ 11, and recalling that q2 ≤ X , the above is

= O
(

6ω(q)q22e12
(

(X1/12e−1q−2)11 log4(eq2) + log4(eq2) + logX
))

= O
(

e1+εX11/12+ε + q22e12+εXε
)

.

Let NS4(q, e;X) be the number of classes in VZ, or equivalently lattice points in a fundamental domain,
corresponding to isomorphism classes of S4-quartic orders, whose index in their maximal order is divisible by
q and whose discriminant is less than X , and that are maximal and of chosen splitting type at p ∈ P . Now,
by inclusion-exclusion, as in the proof of [BBP10, Theorem 4.13], we have that the number of isomorphism
classes of maximal S4-quartic orders splitting as chosen for p ∈ P and having (absolute) discriminant less
than X is given by

∑′

q≥1

µ(q)NS4(q, e;X)

where the sum is restricted to square-free q that are relatively prime to e.
Now we compare NS4(q, e;X) and N ′(q, e;X). Note that the difference is that N ′(q, e;X) excludes those

lattice points with first coordinate 0, and NS4(q, e;X) excludes those lattice points that do not correspond
to orders in S4-quartic fields. So by [BBP10, Lemmas 4.9 and 4.10], we have

|NS4(q, e;X)−N ′(q, e;X)| = O(X11/12+ε).

Thus by our previous computation for N ′(q, e;X),

(4.2) NS4(q, e;X) = ν(q)ΓPNS4(1;X) +O
(

e1+εX11/12+ε + q22e12+εXε
)

.

So for a fixed Q (to be chosen in terms of X, e later), we sum over square-free q with (q, e) = 1 as in (4.2),
obtaining

∑′

q≥1

µ(q)NS4(q, e;X) =
∑′

1≤q≤Q

µ(q)NS4(q, e;X) +
∑′

q>Q

µ(q)NS4(q, e;X)

=
∑′

1≤q≤Q

µ(q)ν(q)ΓPNS4(1;X) +O(E1) +O(E2)

=
∑′

q≥1

µ(q)ν(q)ΓPNS4(1;X) +O(E1) +O(E2) +O(E3)

=
∏

p

(1− ν(p))
∏

p∈P

δpNS4(1;X) +O(E1) +O(E2) +O(E3)
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where

E1 =
∑′

1≤q≤Q

(

e1+εX11/12+ε + q22e12+εXε
)

E2 =
∑′

q>Q

µ(q)NS4(q, e;X)

E3 =
∑′

q>Q

ν(q)ΓPNS4(1;X).

(Note that we handle the terms slightly differently than in [BBP10], so that E3 above does not correspond
to their E3 term.)

We have E1 = O(e1+εQX11/12+ε + Q23e12+εXε). By [BBP10, Lemma 4.3], we have NS4(q, e;X) =
O(Xq−2+ε), and so E2 = O(XQ−1+ε). We have E3 = O(Q−1+εX), since by [BBP10, Lemma 4.2], we have
NS4(1;X) = O(X), and by definition ν(q) = O(q−2+ε).

If e ≤ X1/12, then we take Q = X1/24e−1/2, and we have
∑′

q≥1

µ(q)NS4(q, e;X) =
∏

p

(1 − ν(p))
∏

p∈P

δpNS4(1;X) +O(e1/2+εX23/24+ε).

By [BBP10, Lemma 4.2], we have that
∏

p

(1− ν(p))NS4(1;X) = c4X +O(X23/24+ε),

for some positive constant c4. Thus we conclude that the number of isomorphism classes of maximal S4-
quartic orders with our chosen splitting types at p ∈ P and having (absolute) discriminant less than X
is

δP c4X +O(e1/2+εX23/24+ε).

If e > X1/12, then the number of isomorphism classes of maximal S4-quartic orders with chosen splitting
types for p ∈ P and having (absolute) discriminant less than X is O(X) by [BBP10, Lemma 4.2], which we
may then also write as

δP c4X +O(e1/2+εX23/24+ε).

There are at most O(X7/8+ε) quartic extensions with DK < X with Galois closure having Galois group
C4,K4 or A4 (Baily [Bai80], and Wong [Won99a]). So we can conclude Theorem 4.1 holds for unramified
splitting types. This argument shows we can also choose more than one splitting type at each p, and sum
the corresponding densities.

Now, given P and choices for local splitting types some of which may be ramified, let P1 be the subset
of P for which we choose only unramified splitting types. We can find Ñ4(X ;P1) using the result already

proven. For any subset P2 ⊂ P \ P1, write Ñ4(X ;P1 ∪ P̄2) for the number of non-D4 quartic fields with
absolute discriminant at most X such that for each p ∈ P1 the prime p splits in one of our chosen spitting
type, and for each p ∈ P2 the prime p does not split in one of our chosen splitting types. We can also apply
the result already proven to find Ñ4(X ;P1 ∪ P̄2). Then using inclusion exclusion, we have

Ñ4(X ;P ) =
∑

P2⊂P\P1

(−1)|P2|Ñ4(X ;P1 ∪ P̄2)

= δP c4X +
∑

P2⊂P\P1

(−1)|P2|O(e1/2+εX23/24+ε).

Since each set P2 corresponds to a distinct divisor of e there are O(eε) terms in the sum and Theorem 4.1
follows.

Remark 4.1. On the other hand, the number of D4-quartic fields with DK < X is ∼ cX with c ≈ 0.052326...,
as initially indicated (as an order of magnitude) by Baily [Bai80] and refined with an explicit constant by
Cohen, Diaz y Diaz and Olivier [CDyDO02]. It is an interesting open problem to count D4 fields with local
conditions such as certain primes being split completely, and for now we exclude them from our consideration.
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5. Asymptotic count of quintic fields

In this section we will prove the following, of which Theorem 2.4 is a special case.

Theorem 5.1. Let P be a finite set of primes. For each prime p ∈ P we choose a splitting type at p and
assign a corresponding density as follows:

δp :=
1

120
(1 + p−1 + 2p−2 + 2p−3 + p−4)−1 for p = ℘1℘2℘3℘4℘5

δp :=
1

12
(1 + p−1 + 2p−2 + 2p−3 + p−4)−1 for p = ℘1℘2℘3℘4

δp :=
1

8
(1 + p−1 + 2p−2 + 2p−3 + p−4)−1 for p = ℘1℘2℘3 with ℘2, ℘3 inertia degree 2

δp :=
1

6
(1 + p−1 + 2p−2 + 2p−3 + p−4)−1 for p = ℘1℘2℘3 with ℘3 inertia degree 3

δp :=
1

6
(1 + p−1 + 2p−2 + 2p−3 + p−4)−1 for p = ℘1℘2 with ℘2 inertia degree 3

δp :=
1

4
(1 + p−1 + 2p−2 + 2p−3 + p−4)−1 for p = ℘1℘2 with ℘2 inertia degree 4

δp :=
1

5
(1 + p−1 + 2p−2 + 2p−3 + p−4)−1 for p = ℘1

δp :=
p−1 + 2p−2 + 2p−3 + p−4

(1 + p−1 + 2p−2 + 2p−3 + p−4)
for p ramified.

Let δP :=
∏

p∈P δp and let e =
∏

p∈P p. Let N5(X ;P ) be the number of quintic fields with absolute discrim-
inant at most X such that for each p ∈ P , the prime p splits in the quartic field in the splitting type chosen
for p above. There exists a constant c5 > 0 such that

N5(X ;P ) = δP c5X +O(e1/2+εX79/80+ε +X199/200+ε),(5.1)

where the implied constant in the O term is absolute (does not depend on P ). Moreover, we may choose
more than one splitting type at each prime and let δp be the sum of the corresponding densities and the result
still holds.

Bhargava [Bha10] gave the first asymptotic count of quintic number fields, and Shankar and Tsimerman
[ST14], building on Bhargava’s work, gave the first power-saving error term. Both proofs fundamentally
rely on Bhargava’s [Bha08] parametrization of quintic rings. We will follow the outline of the argument of
[ST14], additionally requiring our chosen splitting conditions. While the main term for such a restricted count
appears in [Bha10, Theorem 3] (at least for one prime, and the same argument would work for more primes),
we require a power-saving error term with explicit dependence on the primes. While such bounds have
appeared in at least three recent papers, we will improve on the exponents in all of them, as well as remove
hypotheses that do not hold in our cases of interest. Lemke Oliver and Thorne [OT14, Theorem 2.1] have
shown, assuming that we choose ramification at each prime p ∈ P , that N5(X ;P ) = δP c5X+O(eX199/200+ε).
Cho and Kim [CK15, Section 6] have recently proven a bound of the sort we desire; it seems they show
N5(X ;P ) = δP c5X + O(e2−εX399/400+ε). Also, Shankar, Södergren, and Templier [SST15b] stated the
bound N5(X ;P ) = δP c5X +O(e40X79/80+ε +X199/200+ε) when P contains a single prime.

Instead of directly counting quintic fields, the method, equivalently, counts maximal quintic orders. Anal-
ogously to the quartic case, we use a parametrization of quintic rings with their sextic resolvents due to
Bhargava [Bha08]. Let VZ = Z40 denote the space of quadruples of 5 × 5 skew-symmetric matrices with
integer coefficients. Then quintic rings with their sextic resolvents are parametrized by GL4(Z) × SL5(Z)
orbits on VZ [Bha08, Theorem 1]. These orbits correspond to lattice points in a fundamental domain for
GL4(Z) × SL5(Z) on R40. As in [Bha10, Section 2.2] and [ST14, Section 2.2], we take a certain random
fundamental domain for the action of GL4(Z)×SL5(Z) on R40. For a subset S ⊂ VZ, let Ndom(S;X) denote
the expected number of elements of S with absolute discriminant less than X and whose associated quintic
ring is an integral domain (i.e. is an order in a quintic field), in a random fundamental domain (as in [ST14,
Equation (1)], summed over the implicit i there). Let N∗(S;X) denote the expected number of elements of
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S with absolute discriminant less than X , in a random fundamental domain (as in the equation after (1) in
[ST14], summed over the implicit i there).

We first consider the case in which only unramified splitting types are chosen. Let a12 denote the (1, 2)
coordinate of the first matrix in a quadruple of 5 × 5 skew-symmetric matrices. For a square-free integer
q relatively prime to e, let Wq,e ⊂ VZ denote the set of elements corresponding to quintic rings that are
not maximal at each prime dividing q and are maximal and of chosen splitting type at primes dividing e.
Recall from [Bha08, Section 12] that Wq,e is defined by congruence conditions modulo q2e (for maximality,
an argument analogous to that in [Bha04, Lemma 22] is necessary). Let Ue ⊂ VZ denote the set of elements
corresponding to quintic rings that are maximal at all primes and of chosen splitting type at the primes
dividing e. Then counting Ndom(Ue;X) will provide us with precisely the count N5(X ; e) we require. We
will count lattice points in Ue by using inclusion-exclusion to reduce to counting lattice points in the Wq,e.

By [Bha10, Equation (27)] (see also [ST14, Equation (4)]), if L is a translate of the lattice mVZ and
m = O(X1/40), then

(5.2) N∗(L ∩ {a12 6= 0};X) = c0m
−40X +O(m−39X39/40),

for some positive absolute constant c0.
Bhargava gives the density of lattice points corresponding to rings maximal at a given prime [Bha08,

Equation (48)] and the density of lattice points corresponding to rings maximal and of each splitting type
[Bha08, Lemma 20]. Using these two computed densities, we conclude that of the (q2e)40 quadruples of 5×5
skew-symmetric matrices mod q2e, we have that Wq,e corresponds to ν(q)q80δP e

40
∏

p∈P (1− ν(p)) of them,
where

ν(p) = 1− (p− 1)8p12(p+ 1)4(p2 + 1)2(p2 + p+ 1)2(p4 + p3 + p2 + p+ 1)(p4 + p3 + 2p2 + 2p+ 1)

p40
,

and we extend this to a multiplicative function ν(q) for square-free q. (Here, ν(p) is the density of lattice
points correspond to rings that are non-maximal at p from [Bha08, Equation (48)].) Note that ν(p) =
p−2 +O(p−3) and thus ν(q) = O(q−2+ε).

We have that δP ≤ 1 and 1 − ν(p) ≤ 1. So, when q2e = O(X1/40), by summing Equation (5.2) over all
the translates of q2eVZ that comprise Wq,e, we find that

N∗(Wq,e ∩ {a12 6= 0};X)(5.3)

= ν(q)q80δP e
40

∏

p∈P

(1− ν(P ))c0q
−80e−40X +O(ν(q)q80δP e

40
∏

p∈P

(1− ν(p))q−78e−39X39/40)

= ν(q)δP
∏

p∈P

(1 − ν(p))c0X +O(ν(q)q2δP e
∏

p∈P

(1− ν(p))X39/40)

= ν(q)δP
∏

p∈P

(1 − ν(p))c0X +O(qεeX39/40),

where in the last identity we have used the fact that ν(q) = O(q−2+ε).
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We then, by inclusion-exclusion as in [ST14, Section 4], have for an appropriate Q (to be chosen later in
terms of X),

Ndom(Ue ∩ {a12 6= 0};X) =
∑′

q≥1

µ(q)Ndom(Wq,e ∩ {a12 6= 0};X)

=
∑′

1≤q≤Q

µ(q)Ndom(Wq,e ∩ {a12 6= 0};X)

+
∑′

q>Q

µ(q)Ndom(Wq,e ∩ {a12 6= 0};X)

=
∑′

1≤q≤Q

µ(q)N∗(Wq,e ∩ {a12 6= 0};X)

+
∑′

1≤q≤Q

µ(q) (Ndom(Wq,e ∩ {a12 6= 0};X)−N∗(Wq,e ∩ {a12 6= 0};X))

+
∑′

q>Q

µ(q)Ndom(Wq,e ∩ {a12 6= 0};X),

where the sums are over square-free q relatively prime to e.
By [ST14, Lemma 3], we have Ndom(Wq,e;X) = O(q−2+εX) and we use this for the sum for q > Q. We

will use Equation (5.3) for the first 1 ≤ q ≤ Q sum. For the second 1 ≤ q ≤ Q sum, note that each lattice
point corresponding to a non-domain of discriminant D is counted with coefficient −

∑

1≤q≤Q,q|D µ(q), which

is O(Dε) = O(Xε), and by [ST14, Equation (8)] there are at most O(X199/200+ε) lattice points corresponding
to non-domains. (This step, or something similar, should be added to the proof in [ST14].)

As a result, as long as Q = O(X1/80e−1/2),

Ndom(Ue ∩ {a12 6= 0};X) =
∑′

q≥1

µ(q)ν(q)δP
∏

p∈P

(1− ν(p))c0X +O(E1) +O(E2) +O(E3),

where

E1 =
∑

1≤q≤Q

O(qεeX39/40)

E2 = O(X199/200+ε)

E3 =
∑

q>Q

q−2+εX

E4 =
∑

q>Q

µ(q)ν(q)δP
∏

p∈P

(1− ν(p))c0X.

These terms trivially admit the estimates

E1 = O(Q1+εeX39/40)

E2 = O(X199/200+ε)

E3 = O(Q−1+εX)

E4 = O(Q−1+εX),

where in the last estimate we have used the fact that ν(q) = O(q−2+ε).
We take Q = X1/80e−1/2, and have

Ndom(Ue ∩ {a12 6= 0};X) =
∑′

q≥1

µ(q)ν(q)δP
∏

p∈P

(1− ν(p))c0X +O(e1/2X79/80+ε +X199/200+ε)

=
∏

p

(1 − ν(p))δP c0X +O(e1/2X79/80+ε +X199/200+ε).
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From [Bha10, Lemma 11], we have that Ndom({a12 = 0};X) = O(X39/40), and so

Ndom(Ue ∩ {a12 = 0};X) = O(X39/40).

It follows that

N5(X ;P ) = Ndom(Ue;X) =
∏

p

(1− ν(p))δP c0X +O(e1/2X79/80+ε +X199/200+ε)

We thus conclude Theorem 5.1 holds with, c5 =
∏

p(1 − ν(p))c0 when we only choose unramified splitting
types. As at the end of Theorem 4.1, we can apply the result we have just proven and inclusion-exclusion to
prove Theorem 5.1 in general.

6. Application of the sieve

6.1. Summary of the asymptotic inputs to the sieve. We now turn to the application of the sieve
lemma to degree d field extensions of Q. Note that when applying the sieve, it is crucial to have error terms
with explicit dependence on local conditions (such as we have derived in Theorems 2.3 and 2.4): without
such an explicit dependence, we would not have quantitative control of the right-hand side of the key sieve
inequality in Lemma 3.1, since we would not have an explicit bound for Rp in terms of p.

Let A and Ap (for each rational prime p) be the sets so that #A = Nd(X) and #Ap = Nd(X ; p) (or

Ñ4(X), Ñ4(X ; p) in the case of d = 4). With these definitions, the quantity E(A ; z, 12M(z)) treated in the

sieve (Lemma 3.1), which we will now denote by Ed(A ; z, 12M(z)), is the number of degree d extensions K

of Q with 0 < DK ≤ X (up to isomorphism, and non-D4 when d = 4) such that there are at most 1
2M(z)

primes p ≤ z that split completely in K.
We recall the collection Bd(X ;Y,M) of bad fields, as defined in (2.2). We will think of Y = z = (X/2)δ0

for δ0 > 0 to be chosen precisely later, and define M(z) as in (3.1). In particular, the set of bad fields satisfies

#Bd(X ; (X/2)δ0,
1

2
M((X/2)δ0)) = Ed(A ; (X/2)δ0 ,

1

2
M((X/2)δ0)).

We will need to apply the sieve separately to fields of each degree, since in several cases the count
for Nd(X ; p) takes a somewhat different form, but in an effort to unify the presentation, we re-state the
asymptotics we will assume in more general form. We write the results of Lemma 2.2, Theorem C, Theorems
2.3 and 2.4 as follows.

Quadratic fields: for δe as in (2.10), there is some σ2 > 0 and 0 < τ2 ≤ 1/2 such that

N2(X) = c2X +O(Xτ2+ε)

N2(X ; e) = δec2X +O(eσ2Xτ2+ε).

Cubic fields: for δe, δ
′
e as in (2.13), there is some σ3 > 0 and 0 < τ3 < 5/6 such that

N3(X) = c3X + c′3X
5/6 +O(Xτ3+ε)

N3(X ; e) = δec3X + δ′ec
′
3X

5/6 +O(eσ3Xτ3+ε).

Non-D4-quartic fields: for δe as in (2.16), there is some σ4 > 0 and 0 < τ4 < 1 such that

Ñ4(X) = c4X +O(Xτ4+ε)

Ñ4(X ; e) = δec4X +O(eσ4Xτ4+ε).

Quintic fields: for δe as in (2.19), there is some σ5 > 0 and 0 < τ5 < 1 as well as some 0 < γ < 1 such
that

N5(X) = c5X +O(Xγ+ε)

N5(X ; e) = δec5X +O(eσ5Xτ5) +O(Xγ+ε).

The main result of the sieve in this context is the following:

Proposition 6.1. With the notation as above, we have

Ed(A ; (X/2)δ0,
1

2
M((X/2)δ0)) ≪ X1−δ0+ε,
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for any δ0 such that

(6.1) δ0 ≤











1−τd
1+2σd

if d = 2, 4

min{ 1−τd
1+2σd

, 1/4} if d = 3,

min{ 1−τd
1+2σd

, 1− γ} if d = 5.

Moreover, for any such δ0 there exist positive real constants c0(d) < c1(d) < 1 and Xd = Xd(δ0) ≥ 1 such
that for all X ≥ Xd,

(6.2) c0(d)
(X/2)δ0

log(X/2)δ0
≤ M((X/2)δ0) ≤ c1(d)

(X/2)δ0

log(X/2)δ0
.

The requirement that X ≥ Xd simply is a quantification of the requirement that X be sufficiently large,
and will be incorporated later simply by enlarging certain implicit constants.

Proposition 6.1 immediately provides the upper bound we require for the bad set Bd(X ;Y,M) defined in
(2.2), with an appropriate choice of the parameters Y,M . As there are π(Y ) = Y (log Y )−1 +O(Y (log Y )−2)
primes p ≤ Y , we could of course only expect at most Y (log Y )−1 primes p ≤ Y to split completely in any
given field. Proposition 6.1 shows that, up to a constant factor, this is a reasonable expectation, in that
the mean M((X/2)δ0) is approximately µπ((X/2)δ0), for some µ ∈ [c0(d), c1(d)]; moreover Proposition 6.1
provides an upper bound for the number of fields with DK ≤ X in which at most 1

2M((X/2)δ0) primes

p ≤ (X/2)δ0 split completely.
We will prove Proposition 6.1 case by case.

6.2. Sieve for quadratic fields. For notational convenience, in this section we write σ, τ for σ2, τ2. We
compute that for any prime p,

Rp = #Ap − δp#A = N2(X ; p)− δpN2(X) = O(pσXτ+ε).

Similarly, for distinct primes p, q

Rpq = #Apq − δpδq#A = N2(X ; pq)− δpδqN2(X) = O(pσqσXτ+ε).

Thus since #A ≫ X ,

1

#A

∑

p|P (z)

|Rp| ≪ z1+σXτ−1+ε,
1

#A

∑

p,q|P (z)

|Rpq| ≪ z2+2σXτ−1+ε.

We compute

U(z) =
∑

p|P (z)

δp =
1

2

∑

p|P (z)

1

1 + p−1
,

from which we deduce that

(6.3)
1

3
z(log z)−1 +O(z(log z)−2) ≤ U(z) ≤ 1

2
z(log z)−1 +O(z(log z)−2).

Indeed, letting εp = (1 + p−1)−1, the upper bound follows directly from the prime number theorem and the
fact that 0 < εp < 1, while the lower bound only requires noticing

U(z) ≥ 1

2

∑

p|P (z)

ε2 =
1

3

∑

p|P (z)

1 =
1

3
z(log z)−1 +O(z(log z)−2).

We may compute the mean as in (3.3):

M(z) = U(z) +
1

#A

∑

p|P (z)

Rp = U(z) +O(z1+σXτ−1+ε).

Recalling (6.3) and that z = (X/2)δ0 for a parameter δ0 to be chosen later, we see the last error term will
be < 1

2U(z) for sufficiently large X as long as

(6.4) δ0 <
1− τ

σ
.
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Assuming this, for sufficiently large X we have

c0z(log z)
−1 ≤ 1

2
U(z) ≤ M(z) ≤ 3

2
U(z) ≤ c1z(log z)

−1

for absolute constants 0 < c0 < c1 ≤ 1. We apply Lemma 3.1 to see that

E2(A ; z,
1

2
M(z)) ≪ X1+ε

z2
(

z + z2+2σXτ−1 + z(z1+σXτ−1) + (z1+σXτ−1)2
)

≪ Xε(Xz−1 + z2σXτ),

still assuming (6.4). Balancing the terms in the last expression above would set

(6.5) δ0 = (1− τ)/(1 + 2σ),

which certainly satisfies (6.4); as a consequence, for any δ0 ≤ (1− τ)/(1 + 2σ), we obtain

E2(A ; (X/2)δ0 ,
1

2
M((X/2)δ0)) ≪ X1−δ0+ε,

which proves Proposition 6.1 in the case of quadratic fields.

6.3. Sieve for cubic fields. For notational convenience, in this section we write σ, τ for σ3, τ3. We compute
that

Rp = #Ap − δp#A = c′3(δ
′
p − δp)X

5/6 +O(pσXτ+ε) = O(p−1/3X5/6 + pσXτ+ε).

For distinct primes p, q,

Rpq = c′3(δ
′
pδ

′
q − δpδq)X

5/6 +O(pσqσXτ+ε) = O(p−1/3X5/6 + q−1/3X5/6 + pσqσXτ+ε).

Since #A ≫ X , we may compute that

1

#A

∑

p|P (z)

|Rp| ≪ z2/3X−1/6 + z1+σXτ−1+ε,

1

#A

∑

p,q|P (z)

|Rp,q| ≪ z5/3X−1/6 + z2+2σXτ−1+ε.

Next, we note that

U(z) =
∑

p|P (z)

δp =
1

6

∑

p|P (z)

1

1 + p−1 + p−2
=

1

6

∑

p|P (z)

ep,

say. From this we can deduce (as in the case of quadratic fields) that

(6.6)
2

21
z(log z)−1 +O(z(log z)−2) ≤ U(z) ≤ 1

6
z(log z)−1 +O(z(log z)−2).

Finally, we compute the mean

M(z) = U(z) +
1

#A

∑

p|P (z)

Rp = U(z) +O(z2/3X−1/6 + z1+σXτ−1+ε).

Recalling (6.6) and that z = (X/2)δ0 for a parameter δ0 to be chosen later, we see the last error term will
be < 1

2U(z) for sufficiently large X as long as the analogue of (6.4) holds, in which case

c0z(log z)
−1 ≤ 1

2
U(z) ≤ M(z) ≤ 3

2
U(z) ≤ c1z(log z)

−1.

for absolute constants 0 < c0 < c1 ≤ 1.
We now apply Lemma 3.1, which shows that

E3(A ; z,
1

2
M(z)) ≪ X1+ε

z2

(

z + {z5/3X−1/6 + z2+2σXτ−1}

+z{z2/3X−1/6 + z1+σXτ−1}+ {z2/3X−1/6 + z1+σXτ−1}2
)

.
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As long as δ0 ≤ 1/4, we have z5/3X−1/6 ≪ z; after further simplification and still assuming the analogue of
(6.4), we see that

E3(A ; z,
1

2
M(z)) ≪ Xε(Xz−1 + z2σXτ).

This is optimized by choosing δ0 as in (6.5) as before, which satisfies (6.4). In particular, for any δ0 ≤
min{1/4, (1− τ)/(1 + 2σ)}, we obtain

E3(A ; (X/2)δ0 ,
1

2
M((X/2)δ0)) ≪ X1−δ0+ε,

which proves Proposition 6.1 in the case of cubic fields.

6.4. Sieve for non-D4-quartic fields. The case of non-D4-quartic fields is very similar to that for real
quadratic fields, thus we only mention the highlights, with σ, τ denoting σ4, τ4. We have

Rp = #Ap − δp#A = O(pσXτ+ε),

Rpq = #Apq − δpδq#A = O(pσqσXτ+ε),

U(z) =
∑

p|P (z)

δp =
1

24

∑

p|P (z)

1

1 + p−1 + 2p−2 + p−3
.

We deduce that

(6.7)
1

3 · 17z(log z)
−1 +O(z(log z)−2) ≤ U(z) ≤ 1

24
z(log z)−1 +O(z(log z)−2).

Next we compute the mean

M(z) = U(z) +
1

#A

∑

p|P (z)

Rp = U(z) +O(z1+σXτ−1+ε).

Recalling (6.7) and that z = (X/2)δ0 , we see that as long as the analogous condition to (6.4) holds and X
is sufficiently large,

c0z(log z)
−1 ≤ 1

2
U(z) ≤ M(z) ≤ 3

2
U(z) ≤ c1z(log z)

−1

for absolute constants 0 < c0 < c1 ≤ 1.
We apply Lemma 3.1 to see that under the assumption (6.4)

E4(A ; z,
1

2
M(z)) ≪ X1+ε

z2
(

z + z2+2σXτ−1 + z(z1+σXτ−1) + (z1+σXτ−1)2
)

≪ Xε(Xz−1 + z2σXτ ),

so that

E4(A ; (X/2)δ0 ,
1

2
M((X/2)δ0)) ≪ X1−δ0+ε

for any δ0 ≤ (1− τ)/(1 + 2σ).

6.5. Sieve for quintic fields. Finally, we apply the sieve to quintic fields, denoting σ5, τ5 by σ, τ . We
compute that for any p = O(Xρ),

Rp = #Ap − δp#A = O(Xε(pσXτ +Xγ)).

For distinct primes p, q,
Rpq = #Apq − δpδq#A = O(Xε(pσqσXτ +Xγ)).

We compute

U(z) =
∑

p|P (z)

δp =
1

120

∑

p|P (z)

1

1 + p−1 + 2p−2 + 2p−3 + p−4
,

from which we deduce that
2

15 · 37z(log z)
−1 +O(z(log z)−2) ≤ U(z) ≤ 1

120
z(log z)−1 +O(z(log z)−2).

The mean may be expressed as

M(z) = U(z) +
1

#A

∑

p|P (z)

Rp = U(z) +O(Xε(z1+σXτ−1 + zXγ−1+ε)).

20



The last term will be < 1
2U(z) for sufficiently large X as long as γ < 1 and the analogous condition to (6.4)

holds. Assuming this, we have

c0z(log z)
−1 ≤ 1

2
U(z) ≤ M(z) ≤ 3

2
U(z) ≤ c1z(log z)

−1

for absolute constants 0 < c0 < c1 ≤ 1.
We apply Lemma 3.1 to see that under the assumptions τ, γ < 1 and (6.4),

E5(A ; z,
1

2
M(z)) ≪ X1+ε

z2
(

z + z2X−1(z2σXτ +Xγ) + zX−1(zσXτ +Xγ) + z2X−2(zσXτ +Xγ)2
)

.

After simplification, this shows

E5(A ; z,
1

2
M(z)) ≪ X1+ε

z2
(z + z2Xγ−1 + z2+2σXτ−1) ≪ Xε(Xz−1 +Xγ + z2σXτ ).

Assuming z = (X/2)δ0 , we may conclude that for any δ0 ≤ min{(1− τ)/(1 + 2σ), 1− γ}, we have

E5(A ; (X/2)δ0 ,
1

2
M((X/2)δ0)) ≪ X1−δ0+ε.

This completes the proof of Proposition 6.1.

7. Proof of the main theorem and corollaries

7.1. Proof of Theorem 2.1. We now derive Theorem 2.1 from Proposition 6.1. By definition, if M1 ≤ M2

then Bd(X ;Y,M1) ⊆ Bd(X ;Y,M2). If X is sufficiently large so that (6.2) holds, say X ≥ Xd(δ), we may
apply (6.2) to write

#Bd(X ; (X/2)δ,
1

2
c0(d)

(X/2)δ

log(X/2)δ
) ≤ #Bd(X ; (X/2)δ,

1

2
M((X/2)δ)) = Ed(A ; (X/2)δ,

1

2
M((X/2)δ)).

We then apply Proposition 6.1 and deduce that for X ≥ Xd(δ),

#Bd(X ; (X/2)δ,
1

2
c0(d)

(X/2)δ

log(X/2)δ
) ≪ X1−δ+ε

for every ε > 0, and for δ constrained by (6.1). When we make the constraints in (6.1) precise by applying
the results of Lemma 2.2, Theorem C, Theorems 2.3 and 2.4, we obtain the parameters defined in (2.5). For
any δ satisfying (2.5), we may remove the explicit assumption that X ≥ Xd(δ) by including an appropriate
implicit constant, so that

(7.1) #Bd(X ; (X/2)δ,
1

2
c0(d)

(X/2)δ

log(X/2)δ
) ≪d,δ,ε X

1−δ+ε

for every X ≥ 1 and every ε > 0.

7.2. Proof of Theorem 1.1. To derive Theorem 1.1 from Theorem 2.1, we proceed via a standard dyadic
argument, which we now make precise. Let ε > 0 be fixed and for this ε, let the implied constant in Theorem
A be denoted by C0 = C0(d, ε), so that (1.8) becomes

(7.2) |ClK [ℓ]| ≤ C0D
1/2+ε
K M−1.

Fix any δ < 1
2ℓ(d−1) . Then if K is a degree d extension of Q with DK ∈ (X, 2X ] that is not in the bad set

B0
d(X ;Xδ, 1

2c0(d)X
δ/ logXδ), we see from (7.2) that

|ClK [ℓ]| ≤ C0(
1

2
c0(d))

−1D
1/2+ε
K X−δ log(Xδ)

≤ C′
0D

1/2−δ+ε
K log(Dδ

K),

where it suffices to take C′
0 = C02

1+δ(12c0(d))
−1. Now we assume that X is sufficiently large, say X ≥

C(d, ℓ, ε), so that for all δ < 1
2ℓ(d−1) , and for all DK ∈ (X, 2X ], we have log(Dδ

K) ≤ Dε
K . Under this

assumption we have

(7.3) |ClK [ℓ]| ≤ C′
0D

1/2−δ+2ε
K
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for all these fields not in B0
d(X ;Xδ, 1

2c0(d)X
δ/ logXδ).

Let F 0
d,ℓ(X ; δ, ε) denote the collection of fields K/Q of degree d with X < DK ≤ 2X that fail the bound

(7.3); we may conclude that for any δ < 1
2ℓ(d−1) and for all X ≥ C(d, ℓ, ε),

(7.4) F 0
d,ℓ(X ; δ, ε) ⊆ B

0
d(X,Xδ,

1

2
c0(d)X

δ/ logXδ).

Now let Fd,ℓ(X ; δ, ε) denote the collection of fields K/Q of degree d with 0 < DK ≤ X that fail the bound
(7.3); then

Fd,ℓ(X ; δ, ε) ⊆
⋃

0≤j≤⌈log2 X⌉
F 0
d (2

j; δ, ε).

Set j0 to be the smallest j such that 2j0 ≥ C(d, ℓ, ε). Then for j ≤ j0, we apply the trivial bound,
#F 0

d,ℓ(2
j , δ, ε) ≪ 2j. (This bound is only “trivial” in the sense that we know by (1.11) how to count fields of

degree d with 0 < DK ≤ X , for d ≤ 5.) For j > j0 we apply (7.4) to write

⋃

j0<j≤⌈log2 X⌉
F 0
d,ℓ(2

j ; δ, ε) ⊆
⋃

j0<j≤⌈log2 X⌉
B

0
d(2

j , 2jδ,
1

2
c0(d)2

jδ/ log 2jδ).

Trivially enlarging each of the last sets to the non-dyadic version Bd(2
j+1, 2jδ, 1

2c0(d)2
jδ/ log 2jδ) and ap-

plying the result of Theorem 2.1 to each such set, we obtain

(7.5) #Fd,ℓ(X ; δ, ε) ≪ C(d, ℓ, ε) +
∑

j0<j≤⌈log2 X⌉
2j(1−δ+ε′) ≪c,d,ℓ,ε,ε′ X

1−δ+ε′ .

which now holds (with a sufficiently large implicit constant) for all X ≥ 1, for all ε′ > 0 arbitrarily small,
and for all δ < min{ 1

2ℓ(d−1) , δ0(d)} where δ0(d) is defined as in (2.5) in Theorem 2.1. For sufficiently large ℓ,

the first constraint on δ is a stronger constraint than the second.
To be precise, we now break down into cases depending on d. For d = 2, Theorem 1.1 is implied in

the case ℓ = 2 by Gauss genus theory, and in the case ℓ = 3 by the known asymptotic (1.5). For integers
ℓ ≥ 4, Theorem 1.1 follows from (7.5), since 1/2ℓ = min{1/6, 1

2ℓ} for ℓ ≥ 4. (Of course, for primes ℓ ≥ 5
and imaginary quadratic fields, Theorem 1.1 is implied by the stronger result (1.10), or indeed by an earlier
result of Soundararajan [Sou00] that at most one imaginary quadratic field K with DK ∈ [X, 2X ] can have

|ClK [ℓ]| ≫ D
1/2−1/2ℓ+ε
K ; see also Corollary 2.2 of [HBP17].) For d = 3, Theorem 1.1 is implied for ℓ = 2

by the known asymptotic (1.6), and for ℓ = 3 by the stronger known result (1.3). The cases ℓ ≥ 4 are
implied by (7.5), since 1/4ℓ = min{2/25, 1

4ℓ} for ℓ ≥ 4. For d = 4, Theorem 1.1 follows from (7.5) since

1/6ℓ = min{ 1
48 ,

1
6ℓ} for ℓ ≥ 8; the remaining cases of ℓ ≤ 7 follow from the choice δ0 = 1/48. Finally, for

d = 5, Theorem 1.1 similarly follows from (7.5) since 1/8ℓ = min{ 1
200 ,

1
8ℓ} for ℓ ≥ 25; the remaining cases of

ℓ ≤ 24 follow from the choice δ0 = 1/200.
Corollaries 1.1.1 and 1.1.2 now follow from Theorem 1.1, or can be derived directly from Theorem 2.1, as

already demonstrated in Section 2.1.

8. Appendix: counting quadratic fields

In this appendix we prove the following result, from which Lemma 2.2 may be deduced immediately.

Proposition 8.1. Let P be a finite set of primes. For each prime p ∈ P we choose a splitting type at p and
assign a corresponding density as follows:

δp :=
1

2
(1 + p−1)−1 for p = p1p2

δp :=
1

2
(1 + p−1)−1 for p = p1

δp := (p+ 1)−1 for p ramified.

Let e =
∏

p∈P p and δe =
∏

p∈P δp. Let N±
2 (X ;P ) denote the number of real (respectively imaginary)

quadratic extensions of Q with fundamental discriminant |DK | ≤ X such that for each p ∈ P , the prime p
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splits in the quadratic field with splitting type chosen for p above. Then

(8.1) N±
2 (X ;P ) = δe

(

1

3
+

1

6

)

1

ζ(2)
X +O(e

√
X).

We remark that in (8.1), the first term is contributed by fundamental discriminants ≡ 1 (mod 4) and the
second by fundamental discriminants ≡ 0 (mod 4). We prove the proposition explicitly for N+

2 (X ;P ), and
omit the analogous argument for N−

2 (X ;P ). Upon combining the counts for real and imaginary fields, this
implies Lemma 2.2 as a special case.

The proof is a simple elaboration on the classical method for counting square-free integers ≤ X . Recall
that, for a fundamental discriminant D, a prime p is ramified in Q(

√
D) precisely when p|D; otherwise a

prime p ∤ D splits in Q(
√
D) if the Kronecker symbol

(

D
p

)

evaluates as +1, and is non-split if
(

D
p

)

= −1

(see e.g. [Hua82, Theorem 10.3, Chapter 16]). Thus for each unramified p ∈ P we assign εp ∈ {−1,+1}
according to the specified splitting type of p. Let P0 be the set of ramified primes in P and set P ′ = P \P0;
define e0 =

∏

p∈P0
p and e′ =

∏

p∈P ′ p. Then we may write

N+
2 (X ;P ) = #{fundamental discriminants 1 ≤ n ≤ X : e0|n,

(

n

p

)

= εp, ∀p ∈ P ′}.

We will find a count for this by sieving for fundamental discriminants (that is, elements that are free of odd
squares) in the following two sets:

A(1) = {1 ≤ n ≤ X : n ≡ 1 (mod 4), e0|n,
(

n

p

)

= εp, ∀p ∈ P ′}

A(0) = {1 ≤ n ≤ X : n ≡ 8, 12 (mod 16), e0|n,
(

n

p

)

= εp, ∀p ∈ P ′}.

More generally, fix a power g and define for any b (mod 2g) the set

A = {1 ≤ n ≤ X : n ≡ b (mod 2g), e0|n,
(

n

p

)

= εp, ∀p ∈ P ′}.

For each odd prime q let Aq = {n ∈ A : q2|n}. Note that certainly Aq is empty as soon as q >
√
X; we let

M be the index of the greatest prime qM ≤
√
X . We will denote by Aq the complement A \ Aq. We will

deduce Proposition 8.1 from the following lemma:

Lemma 8.2. Let A be as above, with P = P0 ∪ P ′ a set of odd primes. Then
⋂

q odd

Aq =
X

3 · 2g−2ζ(2)

∏

p∈P ′

δp
∏

p∈P0

δp +O(e
√
X),

with δp as defined in Proposition 8.1.

If the set P specified in Proposition 8.1 is a set of odd primes, then the proposition follows immediately
from this lemma, by applying it to A(1) with g = 2, b = 1 and then partitioning A(0) into two disjoint sets
with g = 4 and b = 8 or 12, respectively, and applying the lemma to each.

If 2 belongs to the set P specified in Proposition 8.1, then we consider separately the case when 2 is
specified to be ramified or unramified. If 2 ∈ P0 then A(1) is empty. We already have 2|n for every n ∈ A(0),
so we set P00 = P0 \ {2} and apply Lemma 8.2 to A(0) with P = P00 ∪ P ′ (as before, separating A(0) into
two disjoint sets and applying the lemma to each). We obtain

⋂

q odd

Aq = 2 · X

3 · 4ζ(2)
∏

p∈P ′

δp
∏

p∈P00

δp +O(e
√
X) = δ2 ·

X

2ζ(2)

∏

p∈P ′

δp
∏

p∈P00

δp +O(e
√
X),

with δ2 = 1/3, as claimed.
If 2 ∈ P ′ then A(0) is empty. We recall that for p = 2 and n ≡ 1 (mod 4), the Kronecker symbol

(

n
2

)

= +1

if n ≡ 1 (mod 8) and −1 if n ≡ 5 (mod 8). Thus if 2 ∈ P ′, we set P ′′ = P ′ \ {2} and A(1) becomes

A(1) = {1 ≤ n ≤ X : n ≡ b (mod 8), e0|n,
(

n

p

)

= εp, ∀p ∈ P ′′},
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with b = 1 if the original specification was ε2 = +1 and b = 5 if ε2 = −1. Applying Lemma 8.2, we see that

⋂

q odd

Aq =
X

3 · 2ζ(2)
∏

p∈P ′′

δp
∏

p∈P0

δp +O(e
√
X) = δ2 ·

X

2ζ(2)

∏

p∈P ′′

δp
∏

p∈P0

δp +O(e
√
X),

with δ2 = 1/3, again as claimed. This proves Proposition 8.1.
We now prove Lemma 8.2. By the inclusion-exclusion principle,

(8.2)
⋂

q odd

Aq =

M
∑

m=0

(−1)m
∑

q1<···<qm

|Aq1 ∩ · · · ∩ Aqm |,

in which for the m = 0 term we sum the full set |A|. A priori, any fixed term in (8.2) can be written as

|Aq1 ∩ · · · ∩ Aqm | = #{n ≤ X : q21 · · · q2m|n, n ≡ b (mod 2g), e0|n,
(

n

p

)

= εp, ∀p ∈ P ′}.

Denote the set on the right-hand side by S, and let Q := {q1, . . . , qm}. We first observe that if any p ∈ P ′

belongs to Q then the set S must be empty. Thus we may reduce to considering the case in which P ′ and
Q are disjoint, in which case we will prove that

(8.3) #S =
1

2g
X

q21 · · · q2m
gcd(q1 · · · qm, e0)

e0

∏

p∈P ′

1

2

(

p− 1

p

)

+ O(e′).

First note that if a prime p in P0 belongs to Q as well, then the condition q21 · · · q2m|n already specifies that
p is ramified. Thus upon defining e00 =

∏

p∈P0\Q p, we may deduce that

(8.4) S = {k ≤ X(q21 · · · q2me00)
−1 : k ≡ b(q21 · · · q2me00)

−1 (mod 2g),

(

k

p

)

= ε′p, ∀p ∈ P ′},

where for each p ∈ P ′ we have defined ε′p = εp

(

e00
p

)

.

We note that for any integer K ≥ 1 and any residue class b modulo 2g, the quantity

#{k ≤ K : k ≡ b (mod 2g),

(

k

p

)

= ε′p, ∀p ∈ P ′}

may be expressed as

∑

a (mod e′)
(a,e′)=1





∏

p∈P ′

1

2

(

1 + ε′p

(

a

p

))





∑

k≤K

k≡a (mod e′)
k≡b (mod 2g)

1

=
1

2|P ′|

∑

a (mod e′)
(a,e′)=1

∏

p∈P ′

(

1 + ε′p

(

a

p

))(

K

2ge′
+O(1)

)

=





∏

p∈P ′

p− 1

p





K

2g+|P ′| + 0 +O(e′);

all the intermediate terms vanish by orthogonality of characters. Applying this to S in (8.4), we obtain

#S =
X

q21 · · · q2me00

1

2g+|P ′|

∏

p∈P ′

(

p− 1

p

)

+O(e′),

proving (8.3).
Applying (8.3) to the inclusion-exclusion in (8.2) shows that

⋂

q odd

Aq =
∑

d≤
√

X

(d,2e′)=1

µ(d)





X

2gd2
gcd(d, e0)

e0

∏

p∈P ′

1

2

(

p− 1

p

)

+O(e′)



 .
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The error term contributes O(e
√
X), while the main term contributes

X
1

2g





∏

p∈P ′

1

2

(

p− 1

p

)





∞
∑

d=1
(d,2e′)=1

µ(d)

d2
gcd(d, e0)

e0
+O(X

∑

d>
√
X

1

d2
).

Here the error term is O(
√
X), with an implied constant which may be taken to be independent of P .

We now simplify the main term. We note that since P consists of odd primes and (e0, e
′) = 1, upon

setting d = δf with δ = gcd(d, e0), we have

∞
∑

d=1
(d,2e′)=1

µ(d)

d2
gcd(d, e0)

e0
=

∑

δ|e0

∞
∑

f=1

(δf,2e′)=(f,e0)=1

µ(δf)

δ2f2

δ

e0

=
1

e0





∑

δ|e0

µ(δ)

δ











∞
∑

f=1

(f,2e′e0)=1

µ(f)

f2






.

The sum over δ|e0 is a multiplicative function with respect to e0. For p prime we have

∑

δ|p

µ(δ)

δ
= 1− 1

p

and thus for e0 square-free we may compute by multiplicativity that

1

e0

∑

δ|e0

µ(δ)

δ
=

∏

p∈P0

p− 1

p2
.

We next recall that for any ℜ(s) > 1 and any distinct primes q1, . . . , qr,
(

r
∏

i=1

(1 − 1

qsi
)ζ(s)

)−1

=
∏

p6∈{q1,...,qr}

(

1− 1

ps

)

=

∞
∑

d=1
(d,

∏
qi)=1

µ(d)

ds
.

Thus
∞
∑

f=1

(f,2e′e0)=1

µ(f)

f2
= (1 − 1

22
)−1

∏

p∈P

(1− 1

p2
)−1 1

ζ(2)
.

Assembling this all together, we see that

⋂

q odd

Aq =
X

2g
(1 − 1

22
)−1 1

ζ(2)

∏

p∈P ′

(

p− 1

2p

1

1− 1
p2

)

∏

p∈P0

(

p− 1

p2
1

1− 1
p2

)

+O(e
√
X).

This reduces to
⋂

q odd

Aq =
X

3 · 2g−2ζ(2)

∏

p∈P ′

1

2

1

(1 + p−1)

∏

p∈P0

1

1 + p
+O(e

√
X),

proving Lemma 8.2, with δp as in Proposition 8.1.
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