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Abstract

Air temperatures (Ta) are rising in a changing climate, increasing extreme temperature

events. Examining how Ta increases are influencing extreme temperatures at the soil sur-

face and belowground in the soil profile can refine our understanding of the ecological

consequences of rising temperatures. In this paper, we validate surface and soil temperature

(Ts: 0–100-cm depth) simulations in the SOILWAT2 model for 29 locations comprising 5

ecosystem types in the central and western USA. We determine the temperature character-

istics of these locations from 1980 to 2015, and explore simulations of Ta and Ts change

over 2030–2065 and 2065–2100 time periods using General Circulation Model (GCM)

projections and the RCP 8.5 emissions scenario. We define temperature extremes using a

nonstationary peak over threshold method, quantified from standard deviations above the

mean (0-σ : an event >∼ 51% of extreme events; 2-σ :>∼ 98%). Our primary objective is

to contrast the magnitude (◦C) and frequency of occurrence of extreme temperature events

between the twentieth and twenty-first century. We project that temperatures will increase

substantially in the twenty-first century. Extreme Ta events will experience the largest

increases by magnitude, and extreme Ts events will experience the largest increases by pro-

portion. On average, 2-σ extreme Ts events will increase by 3.4 ◦C in 2030–2065 and by

5.3 ◦C in 2065–2100. Increases in extreme Ts events will often exceed +10 ◦C at 0–20 cm

by 2065–2100, and at 0–100 cm will often exceed 5.0 standard deviations above 1980–2015

values. 2-σ extreme Ts events will increase from 0.9 events per decade in 1980–2015 to 23

events in 2030–2065 and 38 events in 2065–2100. By 2065–2100, the majority of months

will experience extreme events that co-occur at 0–100 cm, which did not occur in 1980–

2015. These projections illustrate the non-analog temperature increases that ecosystems will

experience in the twenty-first century as a result of climate change.
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1 Introduction

Projections for increasing air temperatures (Ta: ◦C) are among the most robust and con-

sistent of those made by General Circulation Models (GCMs) for scenarios of twenty-first

century climate change (IPCC 2013). Increasing Ta is predicted to impact ecosystems

through multiple pathways including increasing evaporative demand and increasing aridity

(IPCC 2013; Gutzler and Robbins 2011), lengthening the growing season and altering phe-

nology (Julien and Sobrino 2009; Petrie et al. 2015), and by changing the rate and magnitude

of biological processes including ecosystem respiration and nutrient cycling (Yuste et al.

2007; Hamdi et al. 2013). Increasing Ta and extreme Ta events are already being observed

and attributed to climate change (King et al. 2016), and predicting their future patterns and

impacts is the subject of research in many ecosystems (see Betts et al. 2000 and Selig et al.

2010 for examples). Of future climate changes, temperature change at the land surface and

belowground in the soil profile (Ts: ◦C) has been documented at multiple locations over the

past 20 years (Garcia-Suarez and Butler 2006; Qian et al. 2011; Svilicic et al. 2016). The

ecological impacts of these increases are less understood, especially those resulting from

extreme Ts events. Thus, Ts change is a major knowledge gap that increases uncertainty of

future climate change impacts to ecosystems.

Recent observations of increasing temperature effects on ecosystems include declines in

coniferous forests across western North America (Williams et al. 2013), earlier growing sea-

son onset leading to increased plant vulnerability to freezing (Wheeler et al. 2014), reduced

efficiency of plant gas exchange and evaporative cooling (Noia Junior et al. 2018), and

exceedance of species’ thermal tolerance limits (O’Sullivan et al. 2017). In contrast, Collins

et al. (2017) and Ratajczak et al. (2019) found that grassland communities in the Chihuahuan

Desert and central Great Plains, respectively, were only responsive to multiple global change

drivers, including enhanced temperatures, when they co-occurred with other disturbances.

These divergent findings underscore the need to better understand the role that belowground

temperatures play on ecological processes, and to identify the characteristics of ecosys-

tems that will shape their sensitivity to future Ts changes. As an additional component of

temperature change, climate-driven extreme events are in many cases more meaningful for

biological processes than change to mean conditions are (Katz and Brown 1992). We pos-

tulate that Ts extremes may therefore be an underrecognized component of extreme climate

events and may have ecological impacts that have previously been attributed to other climate

variables (Barron-Gafford et al. 2012; Bradford et al. 2014a).

Of potential ecological impacts, predictions for increasing global temperatures to alter

belowground rates of biological functioning are of high concern (Darrouzet-Nardi et al.

2015; Alster et al. 2020). Soil microbial activity and heterotrophic soil respiration have been

found to decline with elevated Ts in some ecological regions and increase in others, leading

to unknown and potentially divergent impacts if these changes occur across broad regions

(Hamdi et al. 2013; Bradford et al. 2016). Declines in belowground biological mobilization

of plant available soil nutrients would have severe impacts to arid and semiarid (dryland)

ecosystems, and could potentially lead to a decline in net primary production and a shift

in ecosystem carbon budget towards more years of net carbon loss (Belnap 2002; Rudgers

et al. 2018). Belowground rates of biological functioning are also associated with soil water

infiltration and plant photosynthesis (Whitney et al. 2017; Rudgers et al. 2018), as well

as increased soil stability for vegetation persistence and expansion (Rodriguez-Caballero

et al. 2018; Chung et al. 2019). Although the extent of temperature-driven declines in

belowground biological functioning is still being elucidated, these declines could constitute

an additional stress agent to many ecosystems, and may be an important mechanism that
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shapes global ecological trends in species range shifts, deterioration and desertification, and

ecological state transitions (D’Odorico et al. 2013; Bell et al. 2014).

In contrast to changes in rainfall—the detailed properties (mean, variation, extremes) of

which are the subject of substantial ecological research—temperature change is often sim-

plified as a factor that is regulated by moisture availability. Research focusing on extreme

precipitation- and temperature-driven events such as hot-drought and heat pulses are a good

example of this focus, and provide a useful framework for understanding multifactor climate

change impacts to ecosystems, agriculture, and human health (Bradford et al. 2017; Mora

et al. 2017). Yet, this focus on multifactor effects may fail to identify independent effects

of increasing temperatures, especially those associated with change to Ts. We propose that

the current gap in understanding Ts impacts to ecosystems can begin to be addressed by

insight in two areas: (1) Detailed characterization of change to the properties of Ta and Ts

extreme events in scenarios of climate change; and (2) Better understanding of how increas-

ing extreme Ts events at the land surface (Ts: 0-cm depth) and belowground (Ts: 1+ cm)

are influenced by increasing Ta. The way that climate extremes influence ecological pro-

cesses across multiple levels of spatial organization (belowground to atmospheric linkages,

local to regional spatial scales) is becoming more clear (Diffenbaugh et al. 2005; Reichstein

et al. 2013), and Ts extremes may be an important, but largely unrecognized, component of

these processes.

There are a number of plausible reasons explaining why Ts extremes have received

less attention than Ta extremes. First, continuous, long-term measurements of Ts have not

yet been sustained for sufficient time periods to observe a large number of belowground

extreme events, making their attribution to observed ecological responses difficult compared

to aboveground events (Moran et al. 2008). Even at a single location, the time and costs of

field campaigns and infrastructure to continuously measure aboveground and belowground

variables are prohibitive and may only capture a small number of extreme events. Further-

more, it is impossible to both measure belowground dynamics (such as Ts) and characterize

belowground conditions (such as soil texture) at the exact same location because soils must

be destructively sampled to be characterized. It is also presumable that Ts extremes have

not been prioritized because temperature propagation belowground is dampened by the

high thermal inertia of soil, such that extreme events do not occur or that they may not be

ecologically-meaningful (Eitzinger et al. 2000). Field experiments that manipulate below-

ground temperatures are also relatively rare (see Yuste et al. 2007 and Noia Junior et al.

2018 for exceptions), and it is difficult to attribute belowground measurements to ecological

processes even in an experimental setting. Thus, although there has been evidence for some

time that Ts patterns and extreme Ts events impact ecosystems, the number of identified Ts

impacts remains relatively low.
By examining how Ta increases are influencing extreme temperatures at the soil sur-

face and belowground in the soil profile that control ecosystem dynamics, we can refine

our understanding of the ecological consequences of rising temperatures. In this study,

we used the SOILWAT2 model to contrast patterns in the magnitude (◦C), frequency of

occurrence (events 10 year−1) and distribution (proportion of events in different classifica-

tions) of Ta and Ts extremes between historical time periods (1980–2015), and projections

of twenty-first century climate change for two time periods (2030–2065, 2066–2100) for

mesic and semiarid ecosystems in the central and western USA. We were specifically inter-

ested in the maximum of extreme temperatures occurring during the April–October growing

season. Our objectives were to (1) identify the primary climatic and landscape factors shap-

ing Ts; (2) contrast expected increases in the magnitude and occurrence of extreme Ts

events to expected increases in the magnitude and occurrence of extreme Ta events in the
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twenty-first century; and (3) determine how the frequency of Ts events considered

“extreme” by historical standards will change in the future, and over what timescales and

depths in the soil profile these changes will occur. Because Ta is mechanistically linked

to Ts, we tested the hypothesis that land surface and soil factors shaping the belowground

propagation of temperature through the soil profile reduce the frequency and magnitude of

extreme Ts events, but that rising temperatures will increase correlation between extreme

Ta and Ts events in the future. Forecasts of extreme Ta and Ts events offer new insight on

the suite of climate-associated changes that ecosystems will experience in coming decades

and will help to sharpen research that seeks to identify the ecological consequences of these

changes.

2 Site description

We forecast Ta and Ts extremes for 29 locations comprising 5 broad ecosystem classes

in the central and western USA: desert grasslands and shrublands (Desert: 3 locations),

semiarid grasslands and shrublands (Semiarid: 8 locations), mesic grasslands (Mesic: 4

locations), woodlands and shrublands (Wood-shrub: 8 locations), and coniferous forests

(Forest: 6 locations; Table 1, Fig. 1). We chose locations to span a broad range of cli-

mate conditions, vegetation communities, aboveground biomass, soil properties, and site

characteristics (Table 1). The factors across which these locations vary can all influence

belowground temperature propagation, but we note that they lack the within-ecosystem

diversity needed to elucidate how these factors shape temperature across finer levels of land-

scape and vegetation heterogeneity. From 1980 to 2015 (36 years at each location), average

annual precipitation (P: mm) ranged from an average low of 81 mm (Desert: NV 53136)

to a high of 2781 mm (Forest: WA Wrc; Table 1). Ta was higher in southern compared to

northern locations, although elevation also shaped these values (Table 1). Soil depth was

highest at Mesic locations, often reaching depths > 150 cm, and was lowest in Desert and

Wood-shrub locations, in one case <100 cm (Wood-shrub: NM Spj) (Soil Survey Staff

2016).

3 Methods

3.1 Site selection, field data, and field data filtering

Our study locations had multiple years of P, Ta, and Ts data. The majority of these locations

(22) were part of the National Oceanic and Atmospheric Administration (NOAA) United

States Climate Reference Network (USCRN), and were instrumented identically (https://

www.ncdc.noaa.gov/crn/). Most USCRN locations had Ts data available at four depths:

5 cm, 20 cm, 50 cm, and 100 cm, and we used data from 2010 to 2014 for these locations

when available. Because USCRN forest locations were not located within a forest canopy,

we obtained within-canopy meteorological and Ts data for six forests from the Ameri-

flux Network (http://ameriflux.ornl.gov/). These locations were comprised of open- and

closed-canopy coniferous forests dominated by species including ponderosa pine, Douglas

fir, and western Hemlock (Table 1). We also added an additional piñon pine and juniper-

dominated location from the Sevilleta Long-Term Ecological Research (LTER) Network

(NM Spj) (http://sev.lternet.edu/). Data range, measurement depths, and instrumentation

at the Ameriflux and LTER locations differed from those of USCRN locations, but their

https://www.ncdc.noaa.gov/crn/
https://www.ncdc.noaa.gov/crn/
http://ameriflux.ornl.gov/
http://sev.lternet.edu/
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Table 1 Site characteristics and variables influencing belowground temperature, averaged for 0–100-cm soil depths. Biomass values are combined near-surface living plant

biomass, dead plant biomass, and litter. Values in italics indicate the mean and standard deviation of site characteristics and variables for each ecosystem type

Site Ecosystem Ecosystem Elevation MAP MAT Biomass Sand % Clay Bulk density Thermal conductivity Heat capacity

ID type classification (mm) (cm) (◦C) (g m−2) (%) (%) (g cm−3) (w m−1 · K) (J m−3 · K)

NM 03048 Desert Grassland 1477 169 15.3 308 49 4 1.76 7.2e−4 0.23

NM 03074 Desert Shrubland 1319 174 15.7 278 37 19 1.83 7.8e−4 0.25

NV 53136 Desert Shrubland 1001 81 18.1 395 22 1 1.83 7.1e−4 0.21

Mean 1266 ± 242 141 ± 52 16.4 ± 1.5 327 ± 61 36 ± 14 8 ± 10 1.81 ± 0.04 7.1e−4 ± 0.4e−4 0.23 ± 0.02

CO 03063 Semiarid Grassland 1337 237 12.4 338 16 13 1.64 8.2e−4 0.30

CO 94074 Semiarid Grassland 1643 331 9.3 301 17 5 1.79 7.4e−4 0.25

MT 04140 Semiarid Grassland 1545 443 5.8 360 13 11 1.66 9.0e−4 0.32

ND 94084 Semiarid Grassland 561 479 3.7 332 27 20 1.72 9.0e−4 0.37

OR 04125 Semiarid Grassland 684 227 12.2 418 18 31 1.86 7.7e−4 0.26

TX 03054 Semiarid Grassland 1141 319 15.5 391 31 15 1.67 7.5e−4 0.29

WA 04136 Semiarid Grassland 691 446 8.0 551 18 9 1.74 8.1e−4 0.30

WY 94088 Semiarid Grassland 1765 786 5.8 578 28 17 1.73 9.0e−4 0.43

Mean 1171 ± 476 409 ± 180 9.1 ± 4.0 409 ± 103 21 ± 7 15 ± 8 1.73 ± 0.07 8.2e−4± 0.7e−4 0.32 ± 0.06

IA 54902 Mesic Grassland 281 849 10.4 603 5 30 1.45 8.9e−4 0.46

IL 54808 Mesic Grassland 213 899 11.2 650 7 25 1.52 8.1e−4 0.36

NE 94996 Mesic Grassland 418 691 11.6 490 21 26 1.57 8.5e−4 0.42

SD 04990 Mesic Grassland 486 662 7.9 465 54 10 1.65 8.6e−4 0.43

Mean 350 ± 125 775 ± 116 10.3 ± 1.7 552 ± 89 22 ± 23 23 ± 9 1.55 ± 0.08 8.5e−4 ± 0.3e−4 0.42 ± 0.04

CA 04222 Woodland Coastal 432 976 16.3 350 32 9 1.77 7.5e−4 0.25

CA 53150 Woodland Coastal 2018 837 10.4 350 13 6 1.72 7.6e−4 0.23

CO 03061 Woodland Juniper 2449 388 9.1 1225 26 19 1.73 7.9e−4 0.32
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Table 1 (continued)

Site Ecosystem Ecosystem Elevation MAP MAT Biomass Sand % Clay Bulk density Thermal conductivity Heat capacity

ID type classification (mm) (cm) (◦C) (g m−2) (%) (%) (g cm−3) (w m−1 · K) (J m−3 · K)

NM Pj Woodland Pinon-juniper 1911 281 13.0 1225 33 5 2.04 7.3e−4 0.21

CO 03060 Shrubland Sagebrush 2561 501 6.4 528 30 39 1.56 8.4e−4 0.37

ID 04127 Shrubland Sagebrush 1204 268 10.0 453 22 16 1.74 7.4e−4 0.30

OR 04128 Shrubland Sagebrush 1397 224 8.2 387 27 23 1.60 7.7e−4 0.31

UT 04138 Shrubland Sagebrush 1509 283 9.5 458 21 12 1.69 8.6e−4 0.39

Mean 1685 ± 700 470 ± 286 10.4 ± 3.1 622 ± 377 26 ± 7 16 ± 11 1.73 ± 0.14 7.8e−4± 0.5e−4 0.30 ± 0.06

AZ Fmf Forest Ponderosa 2160 524 9.7 1319 19 32 1.57 8.5e−4 0.27

CA Blo Forest Ponderosa 1315 1401 11.2 1319 25 19 1.81 7.8e−4 0.25

OR Me2 Forest Ponderosa 1253 590 7.3 1147 13 4 1.68 8.4e−4 0.36

OR Mrf Forest Spruce 263 1243 9.6 1147 8 28 1.48 8.2e−4 0.33

WA Wrc Forest Spruce 371 2781 9.4 1780 43 13 1.71 8.4e−4 0.39

WY Gle Forest Spruce 3190 1464 −0.2 6965 38 12 1.65 8.9e−4 0.42

Mean 1425 ± 1110 1334 ± 817 7.8 ± 4.1 2280 ± 2307 24 ± 14 18 ± 11 1.65 ± 0.11 8.4e−4± 0.4e−4 0.34 ± 0.07
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Fig. 1 Site locations and ecosystem type

inclusion enabled us to include additional ecosystems in our study. We removed erroneous

and flagged Ta and Ts data for each site, and resulting gaps were < 0.7% of total obser-

vations, with the exception of AZ-Fmf and CA-Blo which were ∼ 5.0%. We compiled Ta

and Ts data to daily averages, and gapfilled Ta using MicroMet preprocessor and moving-

average time series model methodologies (Henn et al. 2013). We did not gapfill Ts data, and

limited our analysis to days when these data were available, and to days when upper soil

layers were unfrozen (mean daily Ts > 2 ◦C).

3.2 SOILWAT2 parameters and simulation

We simulated daily values of Ts from 0 to 100 cm using the SOILWAT2 model (Schlaepfer

and Andrews 2019; Schlaepfer and Murphy 2019). SOILWAT2 is a daily time step, one-

dimensional, multiple soil layer, process-based, water balance simulation model. The model

translates meteorological conditions from observations and spatial data products into a full

suite of ecosystem water balance processes as well as Ts. We estimated parameters for

the meteorology of each study location (cloud cover, wind speed, solar radiation) using

monthly National Oceanic and Atmospheric Administration, National Centers for Environ-

mental Information Climate Atlas data (https://www.ncdc.noaa.gov/climate-information/

climate-us). For Desert, Semiarid, Mesic, and Wood-shrub locations, we estimated veg-

etation composition, aboveground biomass, and phenology from Bradford et al. (2014b),

and estimated these parameters for Forest locations using averages from the nearest three

United States Department of Agriculture Forest Service Forest Inventory Analysis (FIA)

sites (http://www.fia.fs.fed.us/). We estimated parameters for soil characteristics at each

location (% gravel, % sand, % clay) using gridded United States Department of Agricul-

ture, Natural Resources Conservation Service STATSGO data (http://water.usgs.gov/GIS/

metadata/usgswrd/XML/ussoils.xml).

We compiled meteorological conditions used to drive SOILWAT2 from historical cli-

mate observations and downscaled future climate forecasts implemented across regionally

https://www.ncdc.noaa.gov/climate-information/climate-us
https://www.ncdc.noaa.gov/climate-information/climate-us
http://www.fia.fs.fed.us/
http://water.usgs.gov/GIS/metadata/usgswrd/XML/ussoils.xml
http://water.usgs.gov/GIS/metadata/usgswrd/XML/ussoils.xml
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appropriate general circulation models (GCMs). Simulations from 1980 to 2015 were driven

using a 1/8-degree gridded climate product (Maurer et al. 2002). Values from 2030–2065 to

2066–2100 were developed from independent simulations across 11 GCMs using the RCP

8.5 emissions scenario (CMIP5; Maurer et al. 2007). We used a hybrid-delta downscaling

approach to generate daily weather projections from GCMs required to drive SOILWAT2

(Tohver et al. 2014), a workflow that has been demonstrated in several previous studies

(Petrie et al. 2017; Schlaepfer et al. 2017; Bradford and Bell 2017). GCMs were selected to

represent the most independent (Knutti et al. 2013) and best performing (Rupp et al. 2013)

subset of GCMs for the western USA. To represent diversity in GCM projections, our anal-

ysis focuses on GCM results based on the magnitude of future Ta projections. These include

the median of the 11 GCMs (CESM1-CAM5: median) and also include results from the

median of the 3 models with the highest future Ta projections (IPSL-CM5A-MR: high), and

from the median of the 3 models with the lowest future Ta projections (inmcm4: low).

To compare SOILWAT2-predicted versus field observed values of Ts from 5 to 100 cm,

we used a modified version of Mielke’s r from Duveiller et al. (2015), which reduces the

r correlation coefficient in response to additive and multiplicative biases, instead of major-

axis regressions or slope-intercept techniques, which are less-adept at accounting for these

biases. We calculated root mean square error (RMSE) between observed and predicted val-

ues to provide an easily-interpretable estimate of error in Ts. We plotted observed (y-axis)

versus simulated (x-axis) values based on the findings of Pineiro et al. (2008). We used 5-day

floating mean temperature values for our analysis, which provided the best parity between

observation number and model fit. Across soil depths from 5 to 100 cm, April–October

values of Mielke’s r ranged from 0.85 to 0.99 and RMSE ranged from 0.91 to 3.26 ◦C (Sup-

plementary Table 1, Supplementary Fig. 1). Field data were only used for model validation

and were not included in our analyses.

3.3 Analysis

We contrasted patterns in Ta and Ts between 1980 and 2015 and projections of future cli-

mate change for the months of April–October for 2030–2065 and 2065–2100. This analysis

uses the peak over threshold (POT) technique of Coelho et al. (2008) for daily tempera-

ture values, which identifies extremes based on the distribution of observed daily values

that occur above a floating mean value (L-value), such that a month with ≥20 daily val-

ues above the floating mean will have one or more daily values above the 95th percentile

from all values from that month, and therefore has one or more daily values that are sta-

tistically extreme (Fig. 2a; see Appendix for a review). The highest observed or simulated

daily value below the 95th percentile is the extreme threshold value (◦C), which constitutes

the boundary between events above and below the 95th percentile (U-value; Fig. 2a). We

focused our analyses on the magnitude and distribution of extreme threshold values, which

captures monthly temperature extremes without focusing on the magnitude of a few number

of simulated events, which are highly uncertain. This statistical determination of extreme

events by POT differs from colloquial definitions of “extreme events,” but is a robust anal-

ysis of high temperature patterns that is nonstationary (e.g., extreme events are shaped by

above-average temperature values across a 5-year floating mean), and is often very similar

in magnitude to events above the threshold (Fig. 2a).

We calculated the extreme threshold value (U-value) at each of our 29 study locations

in each month using 5-day floating mean (target day ± 2 days) values for each tempera-

ture variable (Ta, Ts 0–100 cm), which corresponds to the time window of best fit in the

SOILWAT2 model. In previous testing of this method, we determined that relatively short
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Fig. 2 Example calculation of the monthly extreme threshold value at 5 cm soil depth for a single location

(ID 04127) in July from 1980 to 2015 (panel a), and analysis of the extreme threshold anomaly (<0-σ , 0-σ ,

2-σ ) over this time period (panel b)

floating mean values can be used accurately and also maximize the time period of analysis,

and we therefore calculated a 5-year floating mean (L-value; target year ± 2 years) for each

temperature variable in each month independently, and calculated an extreme threshold for

each month when ≥20 values above the 5-year floating mean occurred. If <20 daily values

above the floating mean occurred, there was no extreme threshold value in that particular

month and therefore no extreme event. This analysis allows for a different threshold value

in each month (April–October), and a maximum of 70 extreme events per decade. We refer

to months with an extreme threshold value as having experienced an extreme temperate (Ta,

Ts) event (Fig. 2a).

Because the POT technique identifies extreme events in many months, we further cat-

egorized these events by calculating their anomaly from the long-term mean and standard

deviation of extreme threshold values (Anomaly =
observed−mean

std.dev.
). A 0-σ anomaly corre-

sponds and extreme threshold > the mean and <2 standard deviations above the mean,

and designates a median extreme event. Across the locations of our study, these events

were higher than ∼ 51% of extreme events (Fig. 2b, Supplementary Fig. 2, Supplementary

Table 2). A 2-σ anomaly corresponds to unusually high extreme thresholds ≥2 standard
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deviations above the mean and was higher than ∼ 98% of extreme events (Fig. 2b, Sup-

plementary Figs. 2, 3, Supplementary Table 2). 0-σ and 2-σ extreme events were analyzed

separately in our analyses (e.g., 2-σ were not part of the 0-σ ).

This research focuses on contrasting extreme events between twenty-first century time

periods (2030–2065, 2065–2100) and one historical time period (1980–2015). We did this

in two ways: (method 1) By comparing the properties of extreme events within each time

period, which provides a measure of the increasing magnitude of future events but main-

tains a similar frequency; and (method 2) By calculating extreme event anomalies (0-σ ,

2-σ ) in future time periods (2030–2065, 2065–2100) using the historical mean and stan-

dard deviation of extreme events in the past (1980–2015). This provides an estimate of the

changing distribution of extreme events and of the changing frequency of months with a

0-σ or 2-σ extreme event (e.g. the changing occurrence of 0-σ and 2-σ extreme events in

the future, based on past events). Our analysis focused on 3 types of extreme event anoma-

lies: (1) Anomalies in 1980–2015 that were calculated from the 1980 to 2015 mean and

standard deviation (providing baseline values for analysis of future patterns); (2) Anomalies

in 2030–2065 and 2065–2100 that were calculated from the mean and standard deviation

of values within each corresponding time period (method 1 above); and (3) Anomalies in

2030–2065 and 2065–2100 that were calculated from the mean and standard deviation of

extreme events in 1980–2015 (method 2 above). Our analyses were generated from data for

each study location (Table 1) and from SOILWAT2 simulations, and were conducted using

R-package statistical computing software (R Development Core Team 2019).

3.4 Determination of factors influencing soil temperatures

We used a multimodel comparison analysis (Akaike information criterion (AIC)) to better

understand the factors shaping Ts patterns across our 5 broad ecosystem types. AIC provides

a measure of relative quality across linear models and maintains transferability between

models (Chatfield 1995; Sarle 1995) by penalizing model complexity and the inclusion

of covarying predictor variables (Burnham and Anderson 2002, 2004; Wenger and Olden

2012). We developed a set of orthogonal surface and soil variables for each ecosystem type,

and refined this set to a group of 5 explanatory variables with R2
<0.32. Variables included

5-day average maximum Ta (Ta max: ◦C), aboveground living and dead plant biomass (g

m−2), soil clay content from 0 to 100 cm (%), soil bulk density from 0 to 100 cm (g cm−3),

and soil thermal conductivity from 0 to 100 cm (w m−1 · K). Although these soil vari-

ables have some interactive potential (soil clay content is a component of bulk density, for

example), we expected that these interactions were low, and we did not observe nonlinear

significant relationships (R2 ≥ 0.4) between these variables. Our univariate AIC analy-

sis identified the dominant linear model explaining variation in Ts for different ecosystem

types. To better identify the linear models that had a sub-dominant influence on Ts, we

removed the top variable for our multivariate analysis.

4 Results

4.1 Factors influencing soil temperatures: 1980–2015

Maximum air temperature (Ta max) was the best univariate predictor of Ts from 5 to 100-cm

depth for all ecosystem types in our study (Supplementary Table 3). Multivariate predic-



Climatic Change

tors included aboveground biomass (Desert, Wood-shrub, Forest), as well as physical soil

characteristics including soil clay content (Desert, Semiarid, Mesic), bulk density (Semi-

arid, Mesic, Wood-shrub, Forest), and thermal conductivity (Semiarid, Mesic, Wood-shrub,

Forest; Supplementary Table 3). AIC results capture the factors associated with differences

between the locations in each ecosystem type and do not necessarily capture the relative

influence of these factors to Ts patterns at each individual location. Thus, although local

variation in landscape factors (biomass, soils, etc.) impart differences in the propagation of

Ts in the soil profile, Ts is most strongly associated with Ta max across all of our study

locations. Based on this result, we use Ta max to present change to Ta in all of our analyses

(Ta max = Ta hereafter).

4.2 Ta and Ts extreme events: 1980–2015

Extreme Ta and Ts events occurred from 1980 to 2015 across all locations. Extreme events

were of the highest magnitude above (Ta) and near the soil surface (0–5 cm) and declined

from 0 to 100 cm (Fig. 3; Supplementary Table 4). 0-σ and 2-σ extreme Ts events occurred

at frequencies of ∼ 22–29 and ∼ 0–1.4 events per decade, respectively (Supplementary

Table 4). Extreme Ts events did not usually occur at lower soil depths (50–100 cm) due

to low Ts variation in these soil layers, and therefore few values above the floating mean

(Fig. 3e, f). Co-occurrence of extreme Ts events at multiple soil depths in the same month

was infrequent; ∼ 53% of months experienced fewer than 2 0-σ events, and ∼ 98% of

months experienced fewer than 2 2-σ events (Fig. 4). That is, when a 0-σ or 2-σ Ts extreme

event occurred, it was uncommon for another extreme event to co-occur at any other depth

in the soil profile.

4.3 Method 1: Ta and Ts extreme events bymagnitude: 2030–2065 and 2065–2100

Projections from the median GCM show that the temperature designating 0-σ extreme

Ta events will increase substantially in the coming century (2030–2065: +5.2–6.8 ◦C;

2065–2100: +7.3–9.7 ◦C; Fig. 3, Supplementary Tables 5, 6). 2-σ extreme Ta events will

experience even greater increases (2030–2065: +6.1–8.8 ◦C; 2065–2100: +8.5–11.4 ◦C;

Fig. 3, Supplementary Tables 5, 6). Compared to Ta, extremes Ts events will experience

lower increases (0-σ in 2030–2065/2065–2100: +3.9 ◦C/+5.8 ◦C; 2-σ in 2030–2065/2065–

2100: +3.4 ◦C/+5.3 ◦C; Fig. 3). Across low, median, and high GCMs, extreme Ts events

will consistently exceed the historical range of variability by as many as 5–15 standard

deviations above the 1980–2015 mean (Fig. 5). Generally, the largest increases in the mag-

nitude of extreme Ts events will occur in Deserts and at shallower soil depths (0–20 cm;

Fig. 3), whereas the largest increases by anomaly (e.g., proportional increases) will occur

at cooler ecosystem types (Semiarid, Mesic, Forest) and at deeper soil depths (50–100 cm;

Fig. 5).

4.4 Method 2: Ta and Ts extreme events by occurrence (distribution and frequency):
2030–2065 and 2065–2100

Projections from the median GCM show that the frequency of months with extreme Ta

and Ts events will increase in the future. In general, increasing temperatures will lead to

a decline in the frequency of months experiencing a 0-σ extreme event, and a commen-

surate increase in the frequency of months experiencing a 2-σ extreme event (Fig. 6).
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Fig. 3 Boxplots illustrating the magnitude (◦C) of months corresponding to 0-σ and 2-σ extreme events

between 1980–2015, 2030–2065, and 2065–2100 (future values from CESM-CAM5: the median of all 11

models). Extreme events are summarized for maximum air temperature (Ta max, panel a) and soil tempera-

tures (0–100-cm depth, panels b–f), summarized for the Desert, Semiarid, Mesic, Woodland-shrubland, and

Forest ecosystem classes of our study. Extreme events in 2030–2100 were calculated from corresponding

future values, capturing increasing future event magnitude (method 1)
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Fig. 4 Pie charts illustrating the proportion of months from April to October with co-occurring 0-σ or 2-σ

extreme Ts events (0–100 cm; maximum 5 depths), summarized for the Desert, Semiarid, Mesic, Woodland-

shrubland, and Forest ecosystem classes of our study. Summaries are presented for 1980–2015, 2030–2065,

and 2065–2100 (CESM1-CAM5, RCP 8.5). Extreme events in 2030–2065 and 2065–2100 were calculated

from 1980 to 2015 values (method 2)

In 2030–2065, the extreme Ta and Ts events (0–20 cm) will increase at the 0-σ level,

whereas extreme Ts events at 50–100 cm will decrease (Fig. 6a; Supplementary Table 6).

In 2065–2100, the frequency of these 0-σ extreme events will decrease, often below

levels experienced in 1980–2015 (Fig. 6a). Declines in 0-σ extreme events will be

offset by corresponding increases in the frequency of 2-σ extreme events, which

will experience the greatest increases in frequency of occurrence (1980–2015: ∼ 0.9

events per decade; 2030–2065: ∼ 23 events per decade (+2600%); 2065–2100:

∼ 38 events (+4300%; Fig. 6b). These increases will be largest in June–July

(not shown).

The monthly co-occurrence of extreme Ts events at multiple depths in the soil profile will

also increase in the twenty-first century. In 1980–2015, ∼ 46% of months did not experience

a 0-σ or 2-σ extreme event at any depth in the soil profile, and it was uncommon for a

location to experience multiple extreme events in the same month (Fig. 4). In 2030–2065,

∼ 69% of months will experience extreme events at 3+ soil depths at the 0-σ level, and

∼ 45% of months will experience 0-σ extreme events throughout the soil profile (Fig. 4).

Co-occurrence will further increase in 2065–2100, such that 2-σ extreme events will occur

at 3+ depths in the majority (53%) of months (Fig. 4). The correlation between extreme Ta

and Ts events will remain similar across twenty-first century time periods, suggesting that

Ta influence on Ts will remain similar between past and future time periods (Supplementary

Fig. 4).
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Fig. 5 Boxplots illustrating extreme event anomalies for 2030–2065 and 2065–2100. Extreme events in

2030–2065 and 2065–2100 were calculated from 1980 to 2015 values (illustrated with a grey bounding box;

method 2). Values include the second-lowest GCM (inmcm4: the median of the 3 lowest future projection

models: low), the median GCM (CESM-CAM5: the median of all 11 models: median), and the second-

highest GCM (IPSL-CM5A-MR: the median of the 3 highest future projection models: high)
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Fig. 6 Boxplots illustrating the frequency (# 10 year−1) of months corresponding to 0-σ (panel a) and 2-

σ (panel b) extreme events between 1980–2015, 2030–2065, and 2065–2100 (future values from CESM-

CAM5: the median of all 11 models) for maximum air temperature (Ta max) and soil temperatures (0–100 cm

depth). Boxplots include all study locations. Extreme events in 2030–2065 and 2065–2100 were calculated

from 1980 to 2015 values (method 2)

5 Discussion

5.1 Extreme temperature events and climate change

Ta max was the primary variable correlated with Ts in the ecosystems of our study, and vari-

ables regulating temperature propagation at the soil surface (aboveground plant biomass)

and belowground (soil clay content, bulk density, thermal conductivity) had sub-dominant

influences (objective 1). This partially supports our hypothesis that the magnitude and

occurrence of extreme Ts events lower in the soil profile is dampened compared to Ta and

Ts in upper soil layers, as extreme Ts events were of higher magnitude and occurred more

frequently at 0–20 cm than at 100 cm for all time periods (1980–2015, 2030–2065, 2065–

2100). In refutation of our hypothesis, we did not find evidence of increased correlation

between Ta and Ts over twenty-first century time periods (Supplementary Fig. 4). Future

change to regional land-atmosphere interactions is expected to intensify climate extremes

including drought and heat waves (Ukkola et al. 2018; Anderegg et al. 2019), and when

combined with the results of our study suggest that local land-atmosphere interactions lead-

ing to altered temperature patterns may differ from those that occur across broad spatial

scales.

We found that the threshold temperature values that designate extreme Ta and Ts events

(method 1: higher magnitude assessed from future projections) will consistently exceed the

magnitude of historical extreme events across all ecosystem classes, analysis locations, soil

depths, and GCM futures. The largest increases in temperature extremes will occur for Ta

and for Ts in upper soil layers, whereas the largest proportional increases by anomaly (not

magnitude) will occur for Ts at 50–100-cm soil depths due to the relatively stable tempera-

tures that these layers experienced historically (objective 2). The largest projected increases
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in extreme Ta and Ts events by magnitude will occur in Semiarid, Mesic, and Wood-shrub

ecosystems. In 2065–2100, Semiarid and Mesic ecosystems will experience similar extreme

Ta and Ts events to those of Deserts in 1980–2015, and Wood-shrub ecosystems will experi-

ence extreme events exceeding those of Mesic and Semiarid ecosystems in 1980–2015. The

distribution of 2-σ extreme events (method 2: future occurrence based on past patterns) will

shift from occurring rarely in 1980–2015 to occurring in the majority of months in 2030–

2065 and 2065–2100. These results portend to a substantial increase in the frequency of

months with extreme high temperatures, and to the increasing co-occurrence of these events

throughout the soil profile (objective 3). Forecasts for increasing Ta corroborate trends pre-

dicted by broader multimodel syntheses (IPCC 2013), and by the 11 GCMs used in this

study. We conclude that the ecosystems of our study are likely to experience change to the

occurrence and magnitude of temperature extremes that—like other predicted increases to

global change drivers—have no contemporary analog.

5.2 Ecological and agricultural significance

The impacts of extreme Ts events could be realized across levels of biological organiza-

tion (Jentsch and Beierkuhnlein 2008; Latimer and Zuckerberg 2019) and may interact

with other driving climate variables to alter the range and persistence of many ecosystems

(Thuiller et al. 2008). Considerable insight continues to be developed at the interface of

climate and land-atmosphere interactions, especially the alteration of interactions between

climate and the water cycle that can amplify or dampen water- and energy-driven pro-

cesses across spatial and temporal scales (Brunsell and Gillies 2003; Anderegg et al. 2019).

We postulate that increasing extreme Ts events could play an important role in shaping

these interactions in the future. Yet, there is a substantial mismatch between the scales

experienced by organisms and the scale at which climate data are collected and modeled

(Potter et al. 2013). Multiple processes determine how broad-scale projections of envi-

ronmental change relate to actual landscapes (Franklin et al. 2013). For example, some

studies have shown that vegetation can play a major role in defining air temperature at

local scales (De Frenne et al. 2013; Frey et al. 2016), implying that vegetation may support

microrefugial conditions allowing species to persist through climate change (Dobrowski

et al. 2015). Contrasting examples of this include the role of favorable landscape charac-

teristics and sheltered microclimates for seedling survival in western US coniferous forests

(Dobrowski et al. 2015; Urza et al. 2019), and enhancement of air temperatures by desert

shrublands that limits the expansion and recovery of desert grasses (D’Odorico et al. 2010).

We found that factors including aboveground plant biomass and physical soil character-

istics had sub-dominant influences on Ts at our point-based simulation locations. It is

likely that spatial variation in these factors—in addition to topography—plays an impor-

tant role in Ts impacts to ecosystems. Better understanding of climate-landscape-ecosystem

relationships and identification of the conditions that are meaningful for ecosystem pro-

cesses are therefore among the most important components of forecasting ecological

change.

Linking fine-scale insight on Ts change broadly across ecological regions will also be

an important aspect of anticipating and preparing for the future. Of potential temperature-

driven impacts to ecosystems, the influence of Ts on soil microbial activity, nutrient

mineralization, and soil respiration is generally expected to decline at the high Ts values

predicted in our study (Yuste et al. 2007; Hamdi et al. 2013). Yuste et al. (2007) found that

short-duration (12 h) near-surface Ts extremes of 30–35 ◦C significantly reduced microbial

activity and soil respiration in ecosystems similar to the Wood-shrub and Forest ecosystem
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classes of our study, and Irina et al. (2019) found that decomposition in ecosystems similar

to the Forests of our study declined with experimental warming from 15 to 25 ◦C. Extreme

Ts has been found to have a greater impact on microbial activity during dry periods than

impacts from water limitation, with severe die-offs of microbial communities occurring at

50 ◦C (Berard et al. 2011). Declines in biological rates of functioning at the soil surface

and belowground would have deleterious impacts to ecosystem stability in dryland regions

that are vulnerable to desertification during sustained periods of low net primary production

(D’Odorico et al. 2013), and the consequences of degraded soil microbial communities may

be important at regional and global scales (Hamdi et al. 2013; Rodriguez-Caballero et al.

2018). The properties of change to Ts and extreme Ts events that we observed in our study

suggests that future impacts biological functioning at the soil surface and belowground

could be even more severe than predictions based solely on change to Ta.

Increasing Ts may also have severe impacts to aboveground ecosystem processes. In a

semiarid ecosystem similar to those of our study, James et al. (2019) suggest a 30% decline

in grass seedling recruitment at a level of elevated Ts that is of lower magnitude than the

values we predicted for the coming century. In Forest ecosystems, it has long been known

that extreme Ts reduces tree seedling germination and survival (Petrie et al. 2016), and val-

ues initiating mortality are again lower than values predicted by our study. Across North

American forests, high temperature extremes early in the growing season may lead to sub-

stantial but divergent influences on carbon exchanges and changing ecosystem sensitivity

to drought (Xu et al. 2019). Increasing Ts could promote the expansion of desert shrubs at

the expense of herbaceous grasses (D’Odorico et al. 2010; He et al. 2015), yet Ts increases

may also have deleterious impacts on the ecophysiology of these expanding shrub species

(Hamerlynck et al. 2000), potentially leading to conditions that do not favor either shrubs

or grasses. In Mesic ecosystems, we postulate that extreme Ts events could limit projected

increases in grassland productivity due to increasing growing season length by reducing

plant photosynthesis and net primary production later in the growing season (Hufkens et al.

2016). More broadly, the magnitude of temperature extremes predicted for the twenty-first

century may exceed the thermal tolerance limits of plant leaf metabolism (O’Sullivan et al.

2017), and the thermal tolerance limits of many organisms (Buckley and Huey 2016). These

examples comprise only a subset of potential ecosystem consequences of increasing Ts.

We propose that future ecological change may be best anticipated by determining where

and to what magnitude increasing temperatures will approach and exceed the stress toler-

ance of key species, and incorporating this information into ongoing research on species

demography, distributions, and community dynamics (Kearney and Porter 2009; Dell et al.

2011).
Although we did not evaluate agricultural systems in our study, our study locations over-

lap geographically with important agricultural regions. Extreme Ts events are predicted to

constrain the viability of rainfed agriculture (Bradford et al. 2017) and may have broad

impacts on crop viability. In a review paper, Porter and Semenov (2005) found similar rela-

tionships in the response of multiple crop types to increasing temperatures, with severe

declines in productivity and food quality at Ta values exceeding critical ranges (often 30–

35 ◦C). In Brazil, Noia Junior et al. (2018) found that extreme soil temperature pulses of

30–40 ◦C significantly reduced plant carboxylation and root production, and increased leaf

temperatures. Our results show that Ta values exceeding 35 ◦C will become increasingly

common in agricultural systems in coming decades, and will co-occur alongside extreme Ts

events that also exceed 35 ◦C. It is therefore urgent to understand to what degree increasing

and co-occurring extreme Ta and Ts events could impact agricultural productivity and food

quality.
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5.3 Future directions in extreme temperatures

Although the study locations and ecosystem classes of our study do not represent all of the

diverse ecosystems located in our study region, they provide insight on the future magni-

tude and occurrence of extreme temperatures that ecosystems in the central and western

USA will experience in coming decades. Our research illustrates the changing distribution

of extreme events towards the 0-σ and 2-σ level of events at the monthly time step, which

suggests an increasing duration of high temperature periods but does not resolve these

increases directly. Future projections focused on event duration, perhaps based on tempo-

ral exceedance above locally determined thresholds (similar to those of our study), would

provide additional insight on the multiple properties of extreme temperatures.

Variability in winter climate and especially minimum daily temperatures often has effects

extending into other times of year (Schlaepfer et al. 2012; Petrie et al. 2015; Collins et al.

2017). Increasing winter temperatures are driving notable changes in the rate and magnitude

of soil decomposition and greenhouse gas emissions in high-latitude ecosystems (Tian et al.

2016; Poeplau et al. 2017). We did not evaluate minimum temperatures in this study, in part

due to our interest in high growing season temperatures, and due to the lack of snow data for

our study locations. Of winter processes influencing Ts, soil freezing-thawing and snow-

pack insulation are especially important because they decouple surface and belowground

temperatures from Ta fluctuations (Koren et al. 1999). Both of these processes are simu-

lated by SOILWAT2, but we were unable to validate them for our study locations because

we did not have field observations of snowpack, and freeze-thaw dynamics are difficult to

capture with soil temperature and moisture sensors. We propose that change to minimum

temperatures and minimum temperature extremes deserves more attention (see Wheeler

et al. 2014 and Choler 2018 for examples in cooler regions), specifically through research

that links detailed soil and snowpack dynamics measured in the field to broader scale esti-

mates from Land Surface Models (LSMs) and spatial data products (see Henry et al. 2018

for an example).

6 Conclusions

We validated surface and soil temperature (Ts: 0–100-cm depth) simulations in the SOIL-

WAT2 model for 29 locations comprising 5 ecosystem types in the central and western USA,

and explored simulations of Ta and Ts change over 1980–2015, 2030–2065, and 2065–

2100 time periods. Our analyses focused on temperature extremes, quantified from standard

deviations above the mean. We found that, across the ecosystem types of our study, future

increases to the frequency and magnitude of Ts extreme events have no contemporary ana-

log. Increases in extreme Ts events will often exceed +10 ◦C at 0–20 cm by 2065–2100, and

at 0–100 cm will often exceed 5.0 standard deviations above 1980–2015 values. By 2065–

2100, the majority of months will experience extreme events that co-occur at 0–100 cm,

which did not occur in 1980–2015. Our results suggest that there is a pressing need to incor-

porate belowground temperature change in forecasts of climate-driven ecological change

for the twenty-first century.
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Appendix

We used the peak over threshold (POT) technique of Coelho et al. (2008) to calculate

monthly extreme temperature thresholds from daily values of Ta and Ts. This analysis is

conducted for a timeseries of each month individually (e.g., all days in January from 1980 to

2015). We calculated the monthly extreme temperature threshold using the following steps:

Step 1. Calculate the 5-year floating mean from daily values. Using the 5-year floating

mean results in an analysis window that is 4 years shorter than the time period

length. For example, 1980–2015 has a floating mean for 1982–2013.

Step 2. Rank the daily values in each month (January, 1983, for example) that are above

the corresponding floating mean temperature value from highest to lowest (x = a

vector of ranked daily temperature values).

Step 3. Multiply the number of daily values in x by 0.05 (Obs = number of observations

in x multiplied by 0.05).

Step 4. If Obs < 1.0, there is no extreme threshold value for the corresponding month,

and therefore no extreme event.

Step 5. If Obs ≥ 1.0, the extreme threshold value for the corresponding month is the

Obs+1th value in x. This value is assigned as a monthly extreme event.
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