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Abstract

Air temperatures (Ta) are rising in a changing climate, increasing extreme temperature
events. Examining how Ta increases are influencing extreme temperatures at the soil sur-
face and belowground in the soil profile can refine our understanding of the ecological
consequences of rising temperatures. In this paper, we validate surface and soil temperature
(Ts: 0-100-cm depth) simulations in the SOILWAT2 model for 29 locations comprising 5
ecosystem types in the central and western USA. We determine the temperature character-
istics of these locations from 1980 to 2015, and explore simulations of Ta and Ts change
over 2030-2065 and 2065-2100 time periods using General Circulation Model (GCM)
projections and the RCP 8.5 emissions scenario. We define temperature extremes using a
nonstationary peak over threshold method, quantified from standard deviations above the
mean (0-0: an event >~ 51% of extreme events; 2-0 :>~ 98%). Our primary objective is
to contrast the magnitude (°C) and frequency of occurrence of extreme temperature events
between the twentieth and twenty-first century. We project that temperatures will increase
substantially in the twenty-first century. Extreme Ta events will experience the largest
increases by magnitude, and extreme T's events will experience the largest increases by pro-
portion. On average, 2-0 extreme Ts events will increase by 3.4 °C in 2030-2065 and by
5.3 °C in 2065-2100. Increases in extreme Ts events will often exceed +10 °C at 0-20 cm
by 2065-2100, and at 0—-100 cm will often exceed 5.0 standard deviations above 1980-2015
values. 2-0 extreme Ts events will increase from 0.9 events per decade in 1980-2015 to 23
events in 2030-2065 and 38 events in 2065-2100. By 2065-2100, the majority of months
will experience extreme events that co-occur at 0—100 cm, which did not occur in 1980-
2015. These projections illustrate the non-analog temperature increases that ecosystems will
experience in the twenty-first century as a result of climate change.
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1 Introduction

Projections for increasing air temperatures (Ta: °C) are among the most robust and con-
sistent of those made by General Circulation Models (GCMs) for scenarios of twenty-first
century climate change (IPCC 2013). Increasing Ta is predicted to impact ecosystems
through multiple pathways including increasing evaporative demand and increasing aridity
(IPCC 2013; Gutzler and Robbins 2011), lengthening the growing season and altering phe-
nology (Julien and Sobrino 2009; Petrie et al. 2015), and by changing the rate and magnitude
of biological processes including ecosystem respiration and nutrient cycling (Yuste et al.
2007; Hamdi et al. 2013). Increasing Ta and extreme Ta events are already being observed
and attributed to climate change (King et al. 2016), and predicting their future patterns and
impacts is the subject of research in many ecosystems (see Betts et al. 2000 and Selig et al.
2010 for examples). Of future climate changes, temperature change at the land surface and
belowground in the soil profile (Ts: °C) has been documented at multiple locations over the
past 20 years (Garcia-Suarez and Butler 2006; Qian et al. 2011; Svilicic et al. 2016). The
ecological impacts of these increases are less understood, especially those resulting from
extreme Ts events. Thus, Ts change is a major knowledge gap that increases uncertainty of
future climate change impacts to ecosystems.

Recent observations of increasing temperature effects on ecosystems include declines in
coniferous forests across western North America (Williams et al. 2013), earlier growing sea-
son onset leading to increased plant vulnerability to freezing (Wheeler et al. 2014), reduced
efficiency of plant gas exchange and evaporative cooling (Noia Junior et al. 2018), and
exceedance of species’ thermal tolerance limits (O’Sullivan et al. 2017). In contrast, Collins
etal. (2017) and Ratajczak et al. (2019) found that grassland communities in the Chihuahuan
Desert and central Great Plains, respectively, were only responsive to multiple global change
drivers, including enhanced temperatures, when they co-occurred with other disturbances.
These divergent findings underscore the need to better understand the role that belowground
temperatures play on ecological processes, and to identify the characteristics of ecosys-
tems that will shape their sensitivity to future Ts changes. As an additional component of
temperature change, climate-driven extreme events are in many cases more meaningful for
biological processes than change to mean conditions are (Katz and Brown 1992). We pos-
tulate that Ts extremes may therefore be an underrecognized component of extreme climate
events and may have ecological impacts that have previously been attributed to other climate
variables (Barron-Gafford et al. 2012; Bradford et al. 2014a).

Of potential ecological impacts, predictions for increasing global temperatures to alter
belowground rates of biological functioning are of high concern (Darrouzet-Nardi et al.
2015; Alster et al. 2020). Soil microbial activity and heterotrophic soil respiration have been
found to decline with elevated Ts in some ecological regions and increase in others, leading
to unknown and potentially divergent impacts if these changes occur across broad regions
(Hamdi et al. 2013; Bradford et al. 2016). Declines in belowground biological mobilization
of plant available soil nutrients would have severe impacts to arid and semiarid (dryland)
ecosystems, and could potentially lead to a decline in net primary production and a shift
in ecosystem carbon budget towards more years of net carbon loss (Belnap 2002; Rudgers
et al. 2018). Belowground rates of biological functioning are also associated with soil water
infiltration and plant photosynthesis (Whitney et al. 2017; Rudgers et al. 2018), as well
as increased soil stability for vegetation persistence and expansion (Rodriguez-Caballero
et al. 2018; Chung et al. 2019). Although the extent of temperature-driven declines in
belowground biological functioning is still being elucidated, these declines could constitute
an additional stress agent to many ecosystems, and may be an important mechanism that
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shapes global ecological trends in species range shifts, deterioration and desertification, and
ecological state transitions (D’Odorico et al. 2013; Bell et al. 2014).

In contrast to changes in rainfall—the detailed properties (mean, variation, extremes) of
which are the subject of substantial ecological research—temperature change is often sim-
plified as a factor that is regulated by moisture availability. Research focusing on extreme
precipitation- and temperature-driven events such as hot-drought and heat pulses are a good
example of this focus, and provide a useful framework for understanding multifactor climate
change impacts to ecosystems, agriculture, and human health (Bradford et al. 2017; Mora
et al. 2017). Yet, this focus on multifactor effects may fail to identify independent effects
of increasing temperatures, especially those associated with change to Ts. We propose that
the current gap in understanding Ts impacts to ecosystems can begin to be addressed by
insight in two areas: (1) Detailed characterization of change to the properties of Ta and Ts
extreme events in scenarios of climate change; and (2) Better understanding of how increas-
ing extreme Ts events at the land surface (Ts: 0-cm depth) and belowground (Ts: 14 cm)
are influenced by increasing Ta. The way that climate extremes influence ecological pro-
cesses across multiple levels of spatial organization (belowground to atmospheric linkages,
local to regional spatial scales) is becoming more clear (Diffenbaugh et al. 2005; Reichstein
et al. 2013), and T's extremes may be an important, but largely unrecognized, component of
these processes.

There are a number of plausible reasons explaining why Ts extremes have received
less attention than Ta extremes. First, continuous, long-term measurements of Ts have not
yet been sustained for sufficient time periods to observe a large number of belowground
extreme events, making their attribution to observed ecological responses difficult compared
to aboveground events (Moran et al. 2008). Even at a single location, the time and costs of
field campaigns and infrastructure to continuously measure aboveground and belowground
variables are prohibitive and may only capture a small number of extreme events. Further-
more, it is impossible to both measure belowground dynamics (such as Ts) and characterize
belowground conditions (such as soil texture) at the exact same location because soils must
be destructively sampled to be characterized. It is also presumable that Ts extremes have
not been prioritized because temperature propagation belowground is dampened by the
high thermal inertia of soil, such that extreme events do not occur or that they may not be
ecologically-meaningful (Eitzinger et al. 2000). Field experiments that manipulate below-
ground temperatures are also relatively rare (see Yuste et al. 2007 and Noia Junior et al.
2018 for exceptions), and it is difficult to attribute belowground measurements to ecological
processes even in an experimental setting. Thus, although there has been evidence for some
time that Ts patterns and extreme Ts events impact ecosystems, the number of identified Ts
impacts remains relatively low.

By examining how Ta increases are influencing extreme temperatures at the soil sur-
face and belowground in the soil profile that control ecosystem dynamics, we can refine
our understanding of the ecological consequences of rising temperatures. In this study,
we used the SOILWAT?2 model to contrast patterns in the magnitude (°C), frequency of
occurrence (events 10 year™!) and distribution (proportion of events in different classifica-
tions) of Ta and Ts extremes between historical time periods (1980-2015), and projections
of twenty-first century climate change for two time periods (2030-2065, 2066-2100) for
mesic and semiarid ecosystems in the central and western USA. We were specifically inter-
ested in the maximum of extreme temperatures occurring during the April-October growing
season. Our objectives were to (1) identify the primary climatic and landscape factors shap-
ing Ts; (2) contrast expected increases in the magnitude and occurrence of extreme Ts
events to expected increases in the magnitude and occurrence of extreme Ta events in the
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twenty-first century; and (3) determine how the frequency of Ts events considered
“extreme” by historical standards will change in the future, and over what timescales and
depths in the soil profile these changes will occur. Because Ta is mechanistically linked
to Ts, we tested the hypothesis that land surface and soil factors shaping the belowground
propagation of temperature through the soil profile reduce the frequency and magnitude of
extreme Ts events, but that rising temperatures will increase correlation between extreme
Ta and Ts events in the future. Forecasts of extreme Ta and Ts events offer new insight on
the suite of climate-associated changes that ecosystems will experience in coming decades
and will help to sharpen research that seeks to identify the ecological consequences of these
changes.

2 Site description

We forecast Ta and Ts extremes for 29 locations comprising 5 broad ecosystem classes
in the central and western USA: desert grasslands and shrublands (Desert: 3 locations),
semiarid grasslands and shrublands (Semiarid: 8 locations), mesic grasslands (Mesic: 4
locations), woodlands and shrublands (Wood-shrub: 8 locations), and coniferous forests
(Forest: 6 locations; Table 1, Fig. 1). We chose locations to span a broad range of cli-
mate conditions, vegetation communities, aboveground biomass, soil properties, and site
characteristics (Table 1). The factors across which these locations vary can all influence
belowground temperature propagation, but we note that they lack the within-ecosystem
diversity needed to elucidate how these factors shape temperature across finer levels of land-
scape and vegetation heterogeneity. From 1980 to 2015 (36 years at each location), average
annual precipitation (P: mm) ranged from an average low of 81 mm (Desert: NV 53136)
to a high of 2781 mm (Forest: WA Wrc; Table 1). Ta was higher in southern compared to
northern locations, although elevation also shaped these values (Table 1). Soil depth was
highest at Mesic locations, often reaching depths > 150 cm, and was lowest in Desert and
Wood-shrub locations, in one case <100 cm (Wood-shrub: NM Spj) (Soil Survey Staff
2016).

3 Methods
3.1 Site selection, field data, and field data filtering

Our study locations had multiple years of P, Ta, and Ts data. The majority of these locations
(22) were part of the National Oceanic and Atmospheric Administration (NOAA) United
States Climate Reference Network (USCRN), and were instrumented identically (https://
www.ncdc.noaa.gov/crn/). Most USCRN locations had Ts data available at four depths:
5 cm, 20 cm, 50 cm, and 100 cm, and we used data from 2010 to 2014 for these locations
when available. Because USCRN forest locations were not located within a forest canopy,
we obtained within-canopy meteorological and Ts data for six forests from the Ameri-
flux Network (http://ameriflux.ornl.gov/). These locations were comprised of open- and
closed-canopy coniferous forests dominated by species including ponderosa pine, Douglas
fir, and western Hemlock (Table 1). We also added an additional pifion pine and juniper-
dominated location from the Sevilleta Long-Term Ecological Research (LTER) Network
(NM Spj) (http://sev.lternet.edu/). Data range, measurement depths, and instrumentation
at the Ameriflux and LTER locations differed from those of USCRN locations, but their
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Table 1 Site characteristics and variables influencing belowground temperature, averaged for 0—100-cm soil depths. Biomass values are combined near-surface living plant
biomass, dead plant biomass, and litter. Values in italics indicate the mean and standard deviation of site characteristics and variables for each ecosystem type

Site Ecosystem Ecosystem Elevation MAP MAT Biomass Sand % Clay Bulk density Thermal conductivity ~Heat capacity
D type classification (mm) (cm) (©) (gm~?) (%) (%) (gecm™) (wm™! . K) (Im™3.K)
NM 03048 Desert Grassland 1477 169 15.3 308 49 4 1.76 7.2e4 0.23

NM 03074 Desert Shrubland 1319 174 15.7 278 37 19 1.83 7.8¢7* 0.25

NV 53136  Desert Shrubland 1001 81 18.1 395 22 1 1.83 7.1e* 0.21

Mean 1266 £242 141+52 164+15 327461 36+14 8+10 1.81+0.04 7.1e™*+ 0.4e™* 0.23+£0.02
CO 03063 Semiarid  Grassland 1337 237 124 338 16 13 1.64 8.2e* 0.30

CO 94074 Semiarid  Grassland 1643 331 9.3 301 17 5 1.79 7.4e4 0.25

MT 04140 Semiarid  Grassland 1545 443 5.8 360 13 11 1.66 9.0e* 0.32

ND 94084  Semiarid  Grassland 561 479 3.7 332 27 20 1.72 9.0e* 0.37

OR 04125 Semiarid  Grassland 684 227 12.2 418 18 31 1.86 7.7e 4 0.26

TX 03054 Semiarid  Grassland 1141 319 15.5 391 31 15 1.67 7.5¢~* 0.29

WA 04136  Semiarid  Grassland 691 446 8.0 551 18 9 1.74 8.1e™* 0.30

WY 94088 Semiarid  Grassland 1765 786 5.8 578 28 17 1.73 9.0e~* 0.43

Mean 11714476 4094180 9.1+4.0 4094103 21+7 1548 1.73+£0.07 82 *+0.7¢* 0.32 £ 0.06
1A 54902  Mesic Grassland 281 849 10.4 603 5 30 1.45 8.9¢ 4 0.46

IL 54808  Mesic Grassland 213 899 11.2 650 7 25 1.52 8.le™* 0.36

NE 94996  Mesic Grassland 418 691 11.6 490 21 26 1.57 8.5¢~* 0.42

SD 04990  Mesic Grassland 486 662 7.9 465 54 10 1.65 8.6e~* 0.43

Mean 3504125 7754116 103+17 552489 22423 2349 155+0.08 85 *+ 03¢ 0.42 £ 0.04
CA 04222 Woodland  Coastal 432 976 16.3 350 32 9 1.77 7.5¢4 0.25

CA 53150 Woodland  Coastal 2018 837 10.4 350 13 6 1.72 7.6e~* 0.23

CO 03061 Woodland  Juniper 2449 388 9.1 1225 26 19 1.73 7.9¢~* 0.32
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Table1 (continued)

Site Ecosystem Ecosystem Elevation MAP MAT Biomass Sand % Clay Bulk density Thermal conductivity Heat capacity
ID type classification (mm) (cm) °C) (gm2) (%) (%) (gem™3) (wm™!' - K) (Im3.K)
NM Pj Woodland  Pinon-juniper 1911 281 13.0 1225 33 5 2.04 73e4 0.21

CO 03060 Shrubland Sagebrush 2561 501 6.4 528 30 39 1.56 8.4e4 0.37

ID 04127  Shrubland Sagebrush 1204 268 10.0 453 22 16 1.74 7.4e™* 0.30

OR 04128 Shrubland Sagebrush 1397 224 8.2 387 27 23 1.60 7.7e~* 0.31

UT 04138 Shrubland Sagebrush 1509 283 9.5 458 21 12 1.69 8.6e* 0.39

Mean 1685 700 470 +£286 104 +3.1 6224377 267 16411 1.73+0.14 7.8¢*+0.5¢* 0.30 £ 0.06
AZFmf  Forest Ponderosa 2160 524 9.7 1319 19 32 1.57 8.5¢* 0.27

CA Blo Forest Ponderosa 1315 1401 11.2 1319 25 19 1.81 7.8¢4 0.25

OR Me2  Forest Ponderosa 1253 590 7.3 1147 13 4 1.68 8.4e* 0.36
ORMrf  Forest Spruce 263 1243 9.6 1147 8 28 1.48 8.2¢™* 0.33

WA Wrc  Forest Spruce 371 2781 9.4 1780 43 13 1.71 8.4e4 0.39

WY Gle  Forest Spruce 3190 1464 —-0.2 6965 38 12 1.65 8.9¢* 0.42

Mean 1425+ 1110 1334+ 817 7.8 +4.1 228042307 24+14 18+ 11 1.65+0.11 8.4e *+0.4e™* 0.34 £ 0.07
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Fig. 1 Site locations and ecosystem type

inclusion enabled us to include additional ecosystems in our study. We removed erroneous
and flagged Ta and Ts data for each site, and resulting gaps were < 0.7% of total obser-
vations, with the exception of AZ-Fmf and CA-Blo which were ~ 5.0%. We compiled Ta
and Ts data to daily averages, and gapfilled Ta using MicroMet preprocessor and moving-
average time series model methodologies (Henn et al. 2013). We did not gapfill Ts data, and
limited our analysis to days when these data were available, and to days when upper soil
layers were unfrozen (mean daily Ts > 2 °C).

3.2 SOILWAT2 parameters and simulation

We simulated daily values of Ts from 0 to 100 cm using the SOILWAT?2 model (Schlaepfer
and Andrews 2019; Schlaepfer and Murphy 2019). SOILWAT? is a daily time step, one-
dimensional, multiple soil layer, process-based, water balance simulation model. The model
translates meteorological conditions from observations and spatial data products into a full
suite of ecosystem water balance processes as well as Ts. We estimated parameters for
the meteorology of each study location (cloud cover, wind speed, solar radiation) using
monthly National Oceanic and Atmospheric Administration, National Centers for Environ-
mental Information Climate Atlas data (https://www.ncdc.noaa.gov/climate-information/
climate-us). For Desert, Semiarid, Mesic, and Wood-shrub locations, we estimated veg-
etation composition, aboveground biomass, and phenology from Bradford et al. (2014b),
and estimated these parameters for Forest locations using averages from the nearest three
United States Department of Agriculture Forest Service Forest Inventory Analysis (FIA)
sites (http://www.fia.fs.fed.us/). We estimated parameters for soil characteristics at each
location (% gravel, % sand, % clay) using gridded United States Department of Agricul-
ture, Natural Resources Conservation Service STATSGO data (http://water.usgs.gov/GIS/
metadata/usgswrd/XML/ussoils.xml).

We compiled meteorological conditions used to drive SOILWAT?2 from historical cli-
mate observations and downscaled future climate forecasts implemented across regionally

@ Springer


https://www.ncdc.noaa.gov/climate-information/climate-us
https://www.ncdc.noaa.gov/climate-information/climate-us
http://www.fia.fs.fed.us/
http://water.usgs.gov/GIS/metadata/usgswrd/XML/ussoils.xml
http://water.usgs.gov/GIS/metadata/usgswrd/XML/ussoils.xml

Climatic Change

appropriate general circulation models (GCMs). Simulations from 1980 to 2015 were driven
using a 1/8-degree gridded climate product (Maurer et al. 2002). Values from 2030-2065 to
20662100 were developed from independent simulations across 11 GCMs using the RCP
8.5 emissions scenario (CMIP5; Maurer et al. 2007). We used a hybrid-delta downscaling
approach to generate daily weather projections from GCMs required to drive SOILWAT?2
(Tohver et al. 2014), a workflow that has been demonstrated in several previous studies
(Petrie et al. 2017; Schlaepfer et al. 2017; Bradford and Bell 2017). GCMs were selected to
represent the most independent (Knutti et al. 2013) and best performing (Rupp et al. 2013)
subset of GCMs for the western USA. To represent diversity in GCM projections, our anal-
ysis focuses on GCM results based on the magnitude of future Ta projections. These include
the median of the 11 GCMs (CESM1-CAMS5: median) and also include results from the
median of the 3 models with the highest future Ta projections (IPSL-CMS5A-MR: high), and
from the median of the 3 models with the lowest future Ta projections (inmcm4: low).

To compare SOILWAT?2-predicted versus field observed values of Ts from 5 to 100 cm,
we used a modified version of Mielke’s r from Duveiller et al. (2015), which reduces the
r correlation coefficient in response to additive and multiplicative biases, instead of major-
axis regressions or slope-intercept techniques, which are less-adept at accounting for these
biases. We calculated root mean square error (RMSE) between observed and predicted val-
ues to provide an easily-interpretable estimate of error in Ts. We plotted observed (y-axis)
versus simulated (x-axis) values based on the findings of Pineiro et al. (2008). We used 5-day
floating mean temperature values for our analysis, which provided the best parity between
observation number and model fit. Across soil depths from 5 to 100 cm, April-October
values of Mielke’s r ranged from 0.85 to 0.99 and RMSE ranged from 0.91 to 3.26 °C (Sup-
plementary Table 1, Supplementary Fig. 1). Field data were only used for model validation
and were not included in our analyses.

3.3 Analysis

We contrasted patterns in Ta and Ts between 1980 and 2015 and projections of future cli-
mate change for the months of April-October for 2030-2065 and 2065-2100. This analysis
uses the peak over threshold (POT) technique of Coelho et al. (2008) for daily tempera-
ture values, which identifies extremes based on the distribution of observed daily values
that occur above a floating mean value (L-value), such that a month with >20 daily val-
ues above the floating mean will have one or more daily values above the 95th percentile
from all values from that month, and therefore has one or more daily values that are sta-
tistically extreme (Fig. 2a; see Appendix for a review). The highest observed or simulated
daily value below the 95th percentile is the extreme threshold value (°C), which constitutes
the boundary between events above and below the 95th percentile (U-value; Fig. 2a). We
focused our analyses on the magnitude and distribution of extreme threshold values, which
captures monthly temperature extremes without focusing on the magnitude of a few number
of simulated events, which are highly uncertain. This statistical determination of extreme
events by POT differs from colloquial definitions of “extreme events,” but is a robust anal-
ysis of high temperature patterns that is nonstationary (e.g., extreme events are shaped by
above-average temperature values across a 5-year floating mean), and is often very similar
in magnitude to events above the threshold (Fig. 2a).

We calculated the extreme threshold value (U-value) at each of our 29 study locations
in each month using 5-day floating mean (target day £ 2 days) values for each tempera-
ture variable (Ta, Ts 0-100 cm), which corresponds to the time window of best fit in the
SOILWAT2 model. In previous testing of this method, we determined that relatively short

@ Springer



Climatic Change

a v
«® no extremes =—— L-value (floating mean)
below L-value —— U-value (extreme threshold)
o e above L-value A
— @ above U-value i 7 /\.
%) N : /- : ; ~4 é l A
= 4 N= A it T
E 9 . . s ! -
(s}
[Te}
»
F & -
o | ID 04127, July
FrT T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T
1980 1985 1990 1995 2000 2005 2010 2015

Year

Anomaly: < 0-c
e Anomaly: 0-c
Anomaly: 2-¢

Extreme anomaly, 5 cm T
2-6
o
/5
\:
-~
|

e
N\

©
S
B

ID 04127, July

rrrr 0 1rrrrrrr1r1rrrT T rTrT T T TrTrTT T T T T T T T T T T
1980 1985 1990 1995 2000 2005 2010 2015

Year

Fig. 2 Example calculation of the monthly extreme threshold value at 5 cm soil depth for a single location
(ID 04127) in July from 1980 to 2015 (panel a), and analysis of the extreme threshold anomaly (<0-o, 0-o,
2-0') over this time period (panel b)

floating mean values can be used accurately and also maximize the time period of analysis,
and we therefore calculated a 5-year floating mean (L-value; target year =+ 2 years) for each
temperature variable in each month independently, and calculated an extreme threshold for
each month when >20 values above the 5-year floating mean occurred. If <20 daily values
above the floating mean occurred, there was no extreme threshold value in that particular
month and therefore no extreme event. This analysis allows for a different threshold value
in each month (April-October), and a maximum of 70 extreme events per decade. We refer
to months with an extreme threshold value as having experienced an extreme temperate (Ta,
Ts) event (Fig. 2a).

Because the POT technique identifies extreme events in many months, we further cat-
egorized these events by calculating their anomaly from the long-term mean and standard
deviation of extreme threshold values (Anomaly = W). A 0-0 anomaly corre-
sponds and extreme threshold > the mean and <2 standard deviations above the mean,
and designates a median extreme event. Across the locations of our study, these events
were higher than ~ 51% of extreme events (Fig. 2b, Supplementary Fig. 2, Supplementary
Table 2). A 2-0 anomaly corresponds to unusually high extreme thresholds >2 standard
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deviations above the mean and was higher than ~ 98% of extreme events (Fig. 2b, Sup-
plementary Figs. 2, 3, Supplementary Table 2). 0-o and 2-0 extreme events were analyzed
separately in our analyses (e.g., 2-0 were not part of the 0-0).

This research focuses on contrasting extreme events between twenty-first century time
periods (2030-2065, 2065-2100) and one historical time period (1980-2015). We did this
in two ways: (method 1) By comparing the properties of extreme events within each time
period, which provides a measure of the increasing magnitude of future events but main-
tains a similar frequency; and (method 2) By calculating extreme event anomalies (0-o,
2-0) in future time periods (2030-2065, 2065-2100) using the historical mean and stan-
dard deviation of extreme events in the past (1980-2015). This provides an estimate of the
changing distribution of extreme events and of the changing frequency of months with a
0-0 or 2-0 extreme event (e.g. the changing occurrence of 0-o and 2-¢ extreme events in
the future, based on past events). Our analysis focused on 3 types of extreme event anoma-
lies: (1) Anomalies in 1980-2015 that were calculated from the 1980 to 2015 mean and
standard deviation (providing baseline values for analysis of future patterns); (2) Anomalies
in 2030-2065 and 2065-2100 that were calculated from the mean and standard deviation
of values within each corresponding time period (method 1 above); and (3) Anomalies in
2030-2065 and 2065-2100 that were calculated from the mean and standard deviation of
extreme events in 1980-2015 (method 2 above). Our analyses were generated from data for
each study location (Table 1) and from SOILWAT?2 simulations, and were conducted using
R-package statistical computing software (R Development Core Team 2019).

3.4 Determination of factors influencing soil temperatures

We used a multimodel comparison analysis (Akaike information criterion (AIC)) to better
understand the factors shaping Ts patterns across our 5 broad ecosystem types. AIC provides
a measure of relative quality across linear models and maintains transferability between
models (Chatfield 1995; Sarle 1995) by penalizing model complexity and the inclusion
of covarying predictor variables (Burnham and Anderson 2002, 2004; Wenger and Olden
2012). We developed a set of orthogonal surface and soil variables for each ecosystem type,
and refined this set to a group of 5 explanatory variables with R* <0.32. Variables included
5-day average maximum Ta (Ta max: °C), aboveground living and dead plant biomass (g
m_z), soil clay content from O to 100 cm (%), soil bulk density from O to 100 cm (g cm_3),
and soil thermal conductivity from 0 to 100 cm (w m~! - K). Although these soil vari-
ables have some interactive potential (soil clay content is a component of bulk density, for
example), we expected that these interactions were low, and we did not observe nonlinear
significant relationships (R2 > 0.4) between these variables. Our univariate AIC analy-
sis identified the dominant linear model explaining variation in Ts for different ecosystem
types. To better identify the linear models that had a sub-dominant influence on Ts, we
removed the top variable for our multivariate analysis.

4 Results
4.1 Factors influencing soil temperatures: 1980-2015

Maximum air temperature (Ta max) was the best univariate predictor of Ts from 5 to 100-cm
depth for all ecosystem types in our study (Supplementary Table 3). Multivariate predic-
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tors included aboveground biomass (Desert, Wood-shrub, Forest), as well as physical soil
characteristics including soil clay content (Desert, Semiarid, Mesic), bulk density (Semi-
arid, Mesic, Wood-shrub, Forest), and thermal conductivity (Semiarid, Mesic, Wood-shrub,
Forest; Supplementary Table 3). AIC results capture the factors associated with differences
between the locations in each ecosystem type and do not necessarily capture the relative
influence of these factors to Ts patterns at each individual location. Thus, although local
variation in landscape factors (biomass, soils, etc.) impart differences in the propagation of
Ts in the soil profile, Ts is most strongly associated with Ta max across all of our study
locations. Based on this result, we use Ta max to present change to Ta in all of our analyses
(Ta max = Ta hereafter).

4.2 Taand Ts extreme events: 1980-2015

Extreme Ta and Ts events occurred from 1980 to 2015 across all locations. Extreme events
were of the highest magnitude above (Ta) and near the soil surface (0-5 cm) and declined
from 0 to 100 cm (Fig. 3; Supplementary Table 4). 0-c and 2-o extreme Ts events occurred
at frequencies of ~ 22-29 and ~ 0-1.4 events per decade, respectively (Supplementary
Table 4). Extreme Ts events did not usually occur at lower soil depths (50-100 cm) due
to low Ts variation in these soil layers, and therefore few values above the floating mean
(Fig. 3e, ). Co-occurrence of extreme Ts events at multiple soil depths in the same month
was infrequent; ~ 53% of months experienced fewer than 2 0-o events, and ~ 98% of
months experienced fewer than 2 2-o events (Fig. 4). That is, when a 0-o0 or 2-0 Ts extreme
event occurred, it was uncommon for another extreme event to co-occur at any other depth
in the soil profile.

4.3 Method 1: Ta and Ts extreme events by magnitude: 2030-2065 and 2065-2100

Projections from the median GCM show that the temperature designating 0-c extreme
Ta events will increase substantially in the coming century (2030-2065: +5.2-6.8 °C;
2065-2100: 4-7.3-9.7 °C; Fig. 3, Supplementary Tables 5, 6). 2-0 extreme Ta events will
experience even greater increases (2030-2065: +6.1-8.8 °C; 2065-2100: +8.5-11.4 °C;
Fig. 3, Supplementary Tables 5, 6). Compared to Ta, extremes Ts events will experience
lower increases (0-o in 2030-2065/2065-2100: +3.9 °C/+5.8 °C; 2-0 in 2030-2065/2065—
2100: 43.4 °C/+5.3 °C; Fig. 3). Across low, median, and high GCMs, extreme Ts events
will consistently exceed the historical range of variability by as many as 5-15 standard
deviations above the 1980-2015 mean (Fig. 5). Generally, the largest increases in the mag-
nitude of extreme Ts events will occur in Deserts and at shallower soil depths (0-20 cm;
Fig. 3), whereas the largest increases by anomaly (e.g., proportional increases) will occur
at cooler ecosystem types (Semiarid, Mesic, Forest) and at deeper soil depths (50-100 cm;
Fig. 5).

4.4 Method 2: Ta and Ts extreme events by occurrence (distribution and frequency):
2030-2065 and 2065-2100

Projections from the median GCM show that the frequency of months with extreme Ta
and Ts events will increase in the future. In general, increasing temperatures will lead to
a decline in the frequency of months experiencing a 0-o extreme event, and a commen-
surate increase in the frequency of months experiencing a 2-o extreme event (Fig. 6).
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Fig. 3 Boxplots illustrating the magnitude (°C) of months corresponding to 0-o and 2-o extreme events
between 1980-2015, 2030-2065, and 2065-2100 (future values from CESM-CAMS: the median of all 11
models). Extreme events are summarized for maximum air temperature (Ta max, panel a) and soil tempera-
tures (0—100-cm depth, panels b—f), summarized for the Desert, Semiarid, Mesic, Woodland-shrubland, and
Forest ecosystem classes of our study. Extreme events in 2030-2100 were calculated from corresponding
future values, capturing increasing future event magnitude (method 1)
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Fig. 4 Pie charts illustrating the proportion of months from April to October with co-occurring 0-o or 2-0
extreme Ts events (0—100 cm; maximum 5 depths), summarized for the Desert, Semiarid, Mesic, Woodland-
shrubland, and Forest ecosystem classes of our study. Summaries are presented for 1980-2015, 2030-2065,
and 2065-2100 (CESM1-CAMS, RCP 8.5). Extreme events in 2030-2065 and 2065-2100 were calculated
from 1980 to 2015 values (method 2)

In 2030-2065, the extreme Ta and Ts events (0—20 cm) will increase at the 0-o level,
whereas extreme Ts events at 50-100 cm will decrease (Fig. 6a; Supplementary Table 6).
In 2065-2100, the frequency of these 0-o extreme events will decrease, often below
levels experienced in 1980-2015 (Fig. 6a). Declines in 0-o extreme events will be
offset by corresponding increases in the frequency of 2-0 extreme events, which
will experience the greatest increases in frequency of occurrence (1980-2015: ~ 0.9
events per decade; 2030-2065: ~ 23 events per decade (+2600%); 2065-2100:
~ 38 events (+4300%; Fig. 6b). These increases will be largest in June—July
(not shown).

The monthly co-occurrence of extreme T's events at multiple depths in the soil profile will
also increase in the twenty-first century. In 1980-2015, ~ 46% of months did not experience
a 0-0 or 2-0 extreme event at any depth in the soil profile, and it was uncommon for a
location to experience multiple extreme events in the same month (Fig. 4). In 2030-2065,
~ 69% of months will experience extreme events at 3+ soil depths at the 0-o level, and
~ 45% of months will experience 0-o extreme events throughout the soil profile (Fig. 4).
Co-occurrence will further increase in 20652100, such that 2-o extreme events will occur
at 34 depths in the majority (53%) of months (Fig. 4). The correlation between extreme Ta
and Ts events will remain similar across twenty-first century time periods, suggesting that
Ta influence on Ts will remain similar between past and future time periods (Supplementary
Fig. 4).
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Fig. 5 Boxplots illustrating extreme event anomalies for 2030-2065 and 2065-2100. Extreme events in
2030-2065 and 2065-2100 were calculated from 1980 to 2015 values (illustrated with a grey bounding box;
method 2). Values include the second-lowest GCM (inmcm4: the median of the 3 lowest future projection
models: low), the median GCM (CESM-CAMS: the median of all 11 models: median), and the second-
highest GCM (IPSL-CM5A-MR: the median of the 3 highest future projection models: high)
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Fig. 6 Boxplots illustrating the frequency (# 10 year™!) of months corresponding to 0-o (panel a) and 2-
o (panel b) extreme events between 1980-2015, 2030-2065, and 2065-2100 (future values from CESM-
CAMS: the median of all 11 models) for maximum air temperature (Ta max) and soil temperatures (0—100 cm
depth). Boxplots include all study locations. Extreme events in 20302065 and 2065-2100 were calculated
from 1980 to 2015 values (method 2)

5 Discussion
5.1 Extreme temperature events and climate change

Ta max was the primary variable correlated with Ts in the ecosystems of our study, and vari-
ables regulating temperature propagation at the soil surface (aboveground plant biomass)
and belowground (soil clay content, bulk density, thermal conductivity) had sub-dominant
influences (objective 1). This partially supports our hypothesis that the magnitude and
occurrence of extreme Ts events lower in the soil profile is dampened compared to Ta and
Ts in upper soil layers, as extreme Ts events were of higher magnitude and occurred more
frequently at 0-20 cm than at 100 cm for all time periods (1980-2015, 2030-2065, 2065—
2100). In refutation of our hypothesis, we did not find evidence of increased correlation
between Ta and Ts over twenty-first century time periods (Supplementary Fig. 4). Future
change to regional land-atmosphere interactions is expected to intensify climate extremes
including drought and heat waves (Ukkola et al. 2018; Anderegg et al. 2019), and when
combined with the results of our study suggest that local land-atmosphere interactions lead-
ing to altered temperature patterns may differ from those that occur across broad spatial
scales.

We found that the threshold temperature values that designate extreme Ta and Ts events
(method 1: higher magnitude assessed from future projections) will consistently exceed the
magnitude of historical extreme events across all ecosystem classes, analysis locations, soil
depths, and GCM futures. The largest increases in temperature extremes will occur for Ta
and for Ts in upper soil layers, whereas the largest proportional increases by anomaly (not
magnitude) will occur for Ts at 50-100-cm soil depths due to the relatively stable tempera-
tures that these layers experienced historically (objective 2). The largest projected increases
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in extreme Ta and Ts events by magnitude will occur in Semiarid, Mesic, and Wood-shrub
ecosystems. In 2065-2100, Semiarid and Mesic ecosystems will experience similar extreme
Ta and Ts events to those of Deserts in 1980-2015, and Wood-shrub ecosystems will experi-
ence extreme events exceeding those of Mesic and Semiarid ecosystems in 1980-2015. The
distribution of 2-0 extreme events (method 2: future occurrence based on past patterns) will
shift from occurring rarely in 1980-2015 to occurring in the majority of months in 2030—
2065 and 2065-2100. These results portend to a substantial increase in the frequency of
months with extreme high temperatures, and to the increasing co-occurrence of these events
throughout the soil profile (objective 3). Forecasts for increasing Ta corroborate trends pre-
dicted by broader multimodel syntheses (IPCC 2013), and by the 11 GCMs used in this
study. We conclude that the ecosystems of our study are likely to experience change to the
occurrence and magnitude of temperature extremes that—Ilike other predicted increases to
global change drivers—have no contemporary analog.

5.2 Ecological and agricultural significance

The impacts of extreme Ts events could be realized across levels of biological organiza-
tion (Jentsch and Beierkuhnlein 2008; Latimer and Zuckerberg 2019) and may interact
with other driving climate variables to alter the range and persistence of many ecosystems
(Thuiller et al. 2008). Considerable insight continues to be developed at the interface of
climate and land-atmosphere interactions, especially the alteration of interactions between
climate and the water cycle that can amplify or dampen water- and energy-driven pro-
cesses across spatial and temporal scales (Brunsell and Gillies 2003; Anderegg et al. 2019).
We postulate that increasing extreme Ts events could play an important role in shaping
these interactions in the future. Yet, there is a substantial mismatch between the scales
experienced by organisms and the scale at which climate data are collected and modeled
(Potter et al. 2013). Multiple processes determine how broad-scale projections of envi-
ronmental change relate to actual landscapes (Franklin et al. 2013). For example, some
studies have shown that vegetation can play a major role in defining air temperature at
local scales (De Frenne et al. 2013; Frey et al. 2016), implying that vegetation may support
microrefugial conditions allowing species to persist through climate change (Dobrowski
et al. 2015). Contrasting examples of this include the role of favorable landscape charac-
teristics and sheltered microclimates for seedling survival in western US coniferous forests
(Dobrowski et al. 2015; Urza et al. 2019), and enhancement of air temperatures by desert
shrublands that limits the expansion and recovery of desert grasses (D’Odorico et al. 2010).
We found that factors including aboveground plant biomass and physical soil character-
istics had sub-dominant influences on Ts at our point-based simulation locations. It is
likely that spatial variation in these factors—in addition to topography—plays an impor-
tant role in Ts impacts to ecosystems. Better understanding of climate-landscape-ecosystem
relationships and identification of the conditions that are meaningful for ecosystem pro-
cesses are therefore among the most important components of forecasting ecological
change.

Linking fine-scale insight on Ts change broadly across ecological regions will also be
an important aspect of anticipating and preparing for the future. Of potential temperature-
driven impacts to ecosystems, the influence of Ts on soil microbial activity, nutrient
mineralization, and soil respiration is generally expected to decline at the high Ts values
predicted in our study (Yuste et al. 2007; Hamdi et al. 2013). Yuste et al. (2007) found that
short-duration (12 h) near-surface Ts extremes of 30-35 °C significantly reduced microbial
activity and soil respiration in ecosystems similar to the Wood-shrub and Forest ecosystem
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classes of our study, and Irina et al. (2019) found that decomposition in ecosystems similar
to the Forests of our study declined with experimental warming from 15 to 25 °C. Extreme
Ts has been found to have a greater impact on microbial activity during dry periods than
impacts from water limitation, with severe die-offs of microbial communities occurring at
50 °C (Berard et al. 2011). Declines in biological rates of functioning at the soil surface
and belowground would have deleterious impacts to ecosystem stability in dryland regions
that are vulnerable to desertification during sustained periods of low net primary production
(D’Odorico et al. 2013), and the consequences of degraded soil microbial communities may
be important at regional and global scales (Hamdi et al. 2013; Rodriguez-Caballero et al.
2018). The properties of change to Ts and extreme Ts events that we observed in our study
suggests that future impacts biological functioning at the soil surface and belowground
could be even more severe than predictions based solely on change to Ta.

Increasing Ts may also have severe impacts to aboveground ecosystem processes. In a
semiarid ecosystem similar to those of our study, James et al. (2019) suggest a 30% decline
in grass seedling recruitment at a level of elevated Ts that is of lower magnitude than the
values we predicted for the coming century. In Forest ecosystems, it has long been known
that extreme Ts reduces tree seedling germination and survival (Petrie et al. 2016), and val-
ues initiating mortality are again lower than values predicted by our study. Across North
American forests, high temperature extremes early in the growing season may lead to sub-
stantial but divergent influences on carbon exchanges and changing ecosystem sensitivity
to drought (Xu et al. 2019). Increasing Ts could promote the expansion of desert shrubs at
the expense of herbaceous grasses (D’Odorico et al. 2010; He et al. 2015), yet Ts increases
may also have deleterious impacts on the ecophysiology of these expanding shrub species
(Hamerlynck et al. 2000), potentially leading to conditions that do not favor either shrubs
or grasses. In Mesic ecosystems, we postulate that extreme Ts events could limit projected
increases in grassland productivity due to increasing growing season length by reducing
plant photosynthesis and net primary production later in the growing season (Hufkens et al.
2016). More broadly, the magnitude of temperature extremes predicted for the twenty-first
century may exceed the thermal tolerance limits of plant leaf metabolism (O’Sullivan et al.
2017), and the thermal tolerance limits of many organisms (Buckley and Huey 2016). These
examples comprise only a subset of potential ecosystem consequences of increasing Ts.
We propose that future ecological change may be best anticipated by determining where
and to what magnitude increasing temperatures will approach and exceed the stress toler-
ance of key species, and incorporating this information into ongoing research on species
demography, distributions, and community dynamics (Kearney and Porter 2009; Dell et al.
2011).

Although we did not evaluate agricultural systems in our study, our study locations over-
lap geographically with important agricultural regions. Extreme Ts events are predicted to
constrain the viability of rainfed agriculture (Bradford et al. 2017) and may have broad
impacts on crop viability. In a review paper, Porter and Semenov (2005) found similar rela-
tionships in the response of multiple crop types to increasing temperatures, with severe
declines in productivity and food quality at Ta values exceeding critical ranges (often 30—
35 °C). In Brazil, Noia Junior et al. (2018) found that extreme soil temperature pulses of
3040 °C significantly reduced plant carboxylation and root production, and increased leaf
temperatures. Our results show that Ta values exceeding 35 °C will become increasingly
common in agricultural systems in coming decades, and will co-occur alongside extreme Ts
events that also exceed 35 °C. It is therefore urgent to understand to what degree increasing
and co-occurring extreme Ta and Ts events could impact agricultural productivity and food
quality.

@ Springer



Climatic Change

5.3 Future directions in extreme temperatures

Although the study locations and ecosystem classes of our study do not represent all of the
diverse ecosystems located in our study region, they provide insight on the future magni-
tude and occurrence of extreme temperatures that ecosystems in the central and western
USA will experience in coming decades. Our research illustrates the changing distribution
of extreme events towards the 0-o and 2-o level of events at the monthly time step, which
suggests an increasing duration of high temperature periods but does not resolve these
increases directly. Future projections focused on event duration, perhaps based on tempo-
ral exceedance above locally determined thresholds (similar to those of our study), would
provide additional insight on the multiple properties of extreme temperatures.

Variability in winter climate and especially minimum daily temperatures often has effects
extending into other times of year (Schlaepfer et al. 2012; Petrie et al. 2015; Collins et al.
2017). Increasing winter temperatures are driving notable changes in the rate and magnitude
of soil decomposition and greenhouse gas emissions in high-latitude ecosystems (Tian et al.
2016; Poeplau et al. 2017). We did not evaluate minimum temperatures in this study, in part
due to our interest in high growing season temperatures, and due to the lack of snow data for
our study locations. Of winter processes influencing Ts, soil freezing-thawing and snow-
pack insulation are especially important because they decouple surface and belowground
temperatures from Ta fluctuations (Koren et al. 1999). Both of these processes are simu-
lated by SOILWAT?2, but we were unable to validate them for our study locations because
we did not have field observations of snowpack, and freeze-thaw dynamics are difficult to
capture with soil temperature and moisture sensors. We propose that change to minimum
temperatures and minimum temperature extremes deserves more attention (see Wheeler
et al. 2014 and Choler 2018 for examples in cooler regions), specifically through research
that links detailed soil and snowpack dynamics measured in the field to broader scale esti-
mates from Land Surface Models (LSMs) and spatial data products (see Henry et al. 2018
for an example).

6 Conclusions

We validated surface and soil temperature (Ts: 0—100-cm depth) simulations in the SOIL-
WAT?2 model for 29 locations comprising 5 ecosystem types in the central and western USA,
and explored simulations of Ta and Ts change over 1980-2015, 2030-2065, and 2065-
2100 time periods. Our analyses focused on temperature extremes, quantified from standard
deviations above the mean. We found that, across the ecosystem types of our study, future
increases to the frequency and magnitude of Ts extreme events have no contemporary ana-
log. Increases in extreme Ts events will often exceed +10 °C at 0-20 cm by 2065-2100, and
at 0—100 cm will often exceed 5.0 standard deviations above 1980-2015 values. By 2065—
2100, the majority of months will experience extreme events that co-occur at 0—100 cm,
which did not occur in 1980-2015. Our results suggest that there is a pressing need to incor-
porate belowground temperature change in forecasts of climate-driven ecological change
for the twenty-first century.
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Appendix

We used the peak over threshold (POT) technique of Coelho et al. (2008) to calculate
monthly extreme temperature thresholds from daily values of Ta and Ts. This analysis is
conducted for a timeseries of each month individually (e.g., all days in January from 1980 to
2015). We calculated the monthly extreme temperature threshold using the following steps:

Step 1. Calculate the 5-year floating mean from daily values. Using the 5-year floating
mean results in an analysis window that is 4 years shorter than the time period
length. For example, 1980-2015 has a floating mean for 1982-2013.

Step 2. Rank the daily values in each month (January, 1983, for example) that are above
the corresponding floating mean temperature value from highest to lowest (x = a
vector of ranked daily temperature values).

Step 3. Multiply the number of daily values in x by 0.05 (Obs = number of observations
in x multiplied by 0.05).

Step4. If Obs < 1.0, there is no extreme threshold value for the corresponding month,
and therefore no extreme event.

Step5. If Obs > 1.0, the extreme threshold value for the corresponding month is the
Obs+1th value in x. This value is assigned as a monthly extreme event.
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