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The carbon balance of peatlands is predicted to shift from a sink to a source this century. However, peatland ecosystems are still
omitted from the main Earth system models that are used for future climate change projections, and they are not considered in
integrated assessment models that are used in impact and mitigation studies. By using evidence synthesized from the literature
and an expert elicitation, we define and quantify the leading drivers of change that have impacted peatland carbon stocks dur-
ing the Holocene and predict their effect during this century and in the far future. We also identify uncertainties and knowledge
gaps in the scientific community and provide insight towards better integration of peatlands into modelling frameworks. Given
the importance of the contribution by peatlands to the global carbon cycle, this study shows that peatland science is a critical
research area and that we still have a long way to go to fully understand the peatland-carbon-climate nexus.

influence on annual carbon (C) cycling dynamics at the global
scale. To some extent, this is true: their net C exchange with
the atmosphere (a sink of ~0.14 Gtyr™") (ref. ') is equivalent to ~1%
of human fossil fuel emissions, or 3-10% of the current net sink
of natural terrestrial ecosystems”. However, and despite occupy-
ing only 3% of the global land area’, peatlands contain about 25%
(600 GtC) of the global soil C stock’, which is equivalent to twice
the amount in the world’s forests®. This large and dense C store is the
result of the slow process of belowground peat accumulation under
saturated conditions that has been taking place over millennia, par-
ticularly following the Last Glacial Maximum (LGM), as peatlands
spread across northern ice-free landscapes®. Given their ability to
sequester C over long periods of time, peatlands acted as a cooling
mechanism for Earth’s climate throughout most of the Holocene®’.
Should these old peat C stores rejoin today’s active C cycle, they
would create a positive feedback on warming. However, the fate of
the global peat C store remains disputed, mainly because of uncer-
tainties that pertain to permafrost dynamics in the high latitudes
as well as land-use and land-cover changes (LULCC) in the boreal,
temperate and tropical regions®.
Peatland C stocks and fluxes have yet to be incorporated into
Earth system models (ESMs), although they are beginning to be
implemented in global terrestrial models”’. As these models are

Peatlands are often regarded as stable systems, with limited

moving towards the integration of permafrost dynamics, LULCC
and other disturbances (such as fire), the absence of peatland C
dynamics could lead to many problems in the next generation of
models (Fig. 1a). For example, the omission of organically rich soils
was a key contributor to the inaccurate estimates of organic soil mass,
heterotrophic respiration and methane (CH,) emissions in recent
Climate Model Intercomparison Project Phase 5 (CMIP5) simula-
tions''. Likewise, the successful integration of permafrost dynamics
into land surface models necessitates the inclusion of peatlands,
as the latter occupy approximately 10% of the northern perma-
frost area and account for at least 20% of the permafrost C stocks'?,
of which a sizable fraction is susceptible to wildfire”. LULCC
scenarios must also account for temperate and tropical peatland
degradation to derive better estimates of C fluxes'* and associ-
ated impacts on radiative forcing". The inclusion of peatlands in
ESMs should help address the complexity of the interacting,
cross-scale drivers of change that control peat C dynamics and
quantify their contribution to a positive C cycle feedback, now and
in the future.

Peatland conversion and restoration are also not considered
in integrated assessment models (IAM:s), although there is grow-
ing anthropogenic pressure on peatland ecosystems worldwide'*"".
Atmospheric carbon dioxide (CO,) emissions associated with
degraded peatlands account for 5-10% (0.5-1GtC) of the global
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Fig. 1| Integrating peatland knowledge in climate change modelling frameworks. a,b, Conceptual structure of an Earth system model (a) and an
integrated assessment model (b). The ESM emphasizes peatland carbon, energy, water and nutrient pools, and exchanges with the atmosphere, aquatic
systems and the world's oceans. The IAM focuses on the importance of considering peatlands in policy options and land management decisions, as these
carbon-rich ecosystems can contribute substantially to strategies for GHG emission reduction. ES, ecosystem services; GDP, gross domestic product; grey
arrows, fluxes with important contribution from peatlands; white arrows, non-peatland fluxes.

annual anthropogenic CO, emissions'®", despite their small geo-
graphic footprint (Fig. 1b). Although the preservation of pristine
peat deposits would be ideal, the restoration of degraded sites, par-
ticularly through rewetting, could prevent additional CO, release to
the atmosphere and reduce the risk of peat fires***'. Even if restora-
tion leads to C neutrality (that is, sites stop losing C but do not start
gaining it), their GHG-saving potential would be similar to that of
the most optimistic sequestration from biochar and cover cropping
from all agricultural soils combined'***. As IAMs move towards the
integration of nature-based climate solutions to limit global tem-
perature rise, peatland restoration and conservation are poised to
gain in importance in those models, as well as in the international
political arena®. In turn, the socio-economic scenarios developed
in IAMs could help inform the role of management interventions in
future peatland use and could guide policy options to best inform
the implementation of GHG emission control strategies for decision
makers. Ultimately, these model outputs will help predict the effect
of peatland management on the global C cycle.

Here, we review the main agents of change of peatland C stocks
and fluxes, including drivers that can induce rapid peatland C losses
(peat fire, land-use change (LUC), and permafrost thaw) and grad-
ual drivers that can lead to rapid, nonlinear responses in peatland
ecosystems (temperature increase, water table drawdown, sea-level
rise, and nutrient addition) (Fig. 2). We use an expert elicitation
to assess the perceived importance of these agents of change on C
stocks, and ask one question: ‘What is the relative role of each agent
of change in shifting the peatland C balance in the past, present
and future?’ Estimates are based on responses from 44 peat experts
(see Supplementary Information for details). Four time periods are
studied: post-LGM (21,000 yr BP to 1750 cE), Anthropocene (1750-
2020 cE), remainder of this century (2020-2100 cE) and far future
(2100-2300 cE). The confidence and expertise levels are tallied for
each of the experts’ responses (Supplementary Tables S6 and S9),
along with the sources that guided their estimates (Supplementary
Information Appendix 4). Arithmetic means and 80% central ranges
(10th to 90th percentiles) are presented (below and in Fig. 3), as well
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Temperature

The primary driver of northern peatland carbon
accumulation over the Holocene. Warming can
i to il in plant ivity and
peat burial in some regions, but to enhanced
decomposition and carbon loss in others.
Temperature works in tandem with moisture.
Peatlands have spread across vast landscapes

during deglacial warming and may spread towards

the poles under warming scenarios.

Atmospheric pollution

Nitrogen deposition promotes plant production and
accelerates peat decomposition. A threshold beyond
which peat moss can no longer compete with rooted
plants (shrubs) has been suggested; such
conditions would lead to plant community changes
and a loss in recalcitrance. While mineral dust and
CO, fertilization may enhance peatland

biomass production, sulfur compounds have caused
peat erosion and vegetation changes in coal-

Sea level

A control on peatland initiation in regions of
land uplift and/or lowering sea levels.
Isostatic uplift produces new substrates for
peatland expansion. While rapid sea level
rise inundates existing peatlands, moderate
sea level rates may allow for peats to keep
pace and accrete additional material. Coastal
erosion is also known to accompany sea level
rise.

Fire

Peat burning leads to direct losses of plant
and peat carbon. A peat fire can be followed
by rapid carbon recovery from increased
plant production. Drier conditions may
render peatlands more vulnerable to fire

and di in addition to ing
permafrost thaw. Peatlands tend to recover
from fires, although an increase in frequency
and/or intensity could lead to deeper burns

burning parts of the world.

and harder recovery.

Moisture

Permafrost

Aggradation slows down peat accumulation
and preserves existing deposits by

stopping decomposition. Degradation may lead
to collapse and rewetting, which stimulates
plant production and can lead to large CH,
emissions. If the meltwater drains away,
enhanced peat decomposition is expected. A
transient carbon sink may be found where
conditions are wet enough to promote plant
growth and peat burial.

A necessary condition for peat development that
also plays a key role in regulating peat carbon

ion rates and ic flex exchange.
Surface wetness and moisture balance also control
plant communities, which in turn impact the ratio of
CO, versus CH, emitted to the atmosphere. Moisture
balance is intricately connected to, and feedbacks
with, peatland hydrology, plant productivity and
peat decomposition, which are also impacted by
temperature.

Land use

Drainage and conversion of peatlands for
agriculture, silviculture, harvest and other uses lead
to a loss of the capacity to store carbon. In many
cases large carbon losses to the atmosphere also
occur due to intensified peat decomposition. The
adoption of international agreements or

regulations on peat use could lead to the
implementation of restoration practices and
protection schemes that may halt carbon losses.

PEATLANDS

Agents of change

Fig. 2 | The main agents of change impacting the global peatland carbon balance globally. With expert elicitation combined with a literature review, the
importance of each agent in the past, present and future is assessed semi-quantitatively in this study (see Supplementary Information Appendix 5 for a
high-resolution image without text details and a brief review of each agent of change).

as other measures of central tendencies (Supplementary Tables S4
and S5). Central values provide order-of-magnitude estimates that
may be useful to the reader, but the strength of this elicitation is
in its ability to identify where experts agree and disagree, and to
recognize ranges of responses across experts. Therefore, the elicita-
tion findings can inform how integrating peatlands into modelling
frameworks such as ESMs and IAMs could advance peatland pro-
cess understanding and further test hypotheses that emerge from
different schools of thought.

Drivers of peatland carbon stocks since the Last Glacial
Maximum

For the post-LGM time period, experts consider temperature to
be the most important long-term driver of peat accumulation
in extra-tropical peatlands (arithmetic mean = 524 GtC; 10th to
90th percentiles = 60 GtC to 890 GtC) (Fig. 3). A positive moisture
balance is deemed a necessary condition for peatland develop-
ment, maintenance and C preservation (238 (10 to 570) GtC).
Several respondents comment that it is difficult, if not impossi-
ble, to separate the respective roles of these two agents of change
(Supplementary Information Appendix 3). This exemplifies the
need to integrate peatlands in ESMs, as cross-scale interactions
between agents of change on peatland C dynamics could then be
evaluated further. Permafrost is also thought to be of importance
owing to its capacity to inhibit peat decay in northern high-latitude
peatlands (218 (—14 to +531) GtC). That said, experts note that
permafrost also probably contributes to lower C accumulation rates
(when compared to non-permafrost sites); permafrost also possibly
contributes to peat erosion in regions where wind-drifted snow and
ice crystals can abrade dry peat surfaces*. The large range of values
for permafrost (Extended Data Fig. 1) stems from the fact that some
respondents attribute the entire permafrost peatland C pool to the
presence of permafrost itself, whereas others attribute the C pool
mainly to temperature and moisture, with permafrost aggradation
playing the secondary role of protecting C stocks. Experts suggest
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that, in the tropics, long-term peat C sequestration is driven mainly
by moisture availability (268 (24 to 360) GtC), with wetter condi-
tions slowing down peat decomposition. Temperature (43 (0 to 128)
GtC) and sea level (7 (—13 to +52) GtC) are identified as second-
ary agents promoting peat formation and growth. Estimates for the
net role of sea level on tropical C stocks are near zero because
some of the high C accumulation rates following sea-level rise in
certain regions are counterbalanced by C losses owing to conti-
nental shelf flooding and associated peat erosion or burial in other
regions™ (Fig. 3).

These results are largely corroborated by the literature review. On
the basis of extensive paleo records, we know that peatlands have
spread across vast landscapes following the LGM*. As long as suffi-
cient moisture conditions are maintained, warmer and longer grow-
ing seasons can contribute to increases in plant productivity and
peat burial in many extra-tropical regions*~%, but can contribute to
enhanced decomposition and carbon loss in the tropics®* where
the growing season length and temperature are not limiting factors
for photosynthesis"’'. Indeed, water saturation is a key control on
oxygen availability in peat and on plant community composition,
and therefore an important determinant for CO, and CH, emissions
and for net ecosystem C balance in both intact and drained peat-
lands worldwide*—**. Soil moisture excess is a necessary condition
for long-term peat development; surface wetness must remain suf-
ficient to minimize aerobic respiration losses and to provide con-
ditions that inhibit the activity of phenol oxidase®. In the tropical
and mid-latitude regions, water table depth is recognized as the
main agent driving long-term peat accumulation®. The literature
review tells us that, at the regional scale, sea-level rise may lead to
either net C losses™ or net C gains*. For example, sea-level decline
in the tropics*' and land uplift following deglaciation in the North*:
contributed to peat expansion over the past 5,000 years. Conversely,
in the (sub-)tropics, sea-level rise can drive up groundwater levels
regionally, which allows coastal peatlands to expand and accrete at
greater rates*>*. This process, which took place during the previous
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Fig. 3 | Expert assessment of the global peatland carbon balance over
time. Changes in carbon stocks are shown for the extra-tropical northern
region (blue) and the (sub-)tropical region (yellow) for the post-LGM
(21,000 yr 8p to 1750 ck), Anthropocene (1750-2020 ck), near future and
remainder of this century (2020-2100 ck), and far future (2100-2300 ck).
Agents of change: temperature (T), moisture (M), sea level (SL), fire (F),
land use (LU), permafrost (P), nitrogen deposition (N) and atmospheric
pollution (AP). Coloured bars, arithmetic means; error bars, 80% central
range. Positive values represent carbon sinks to the atmosphere (see
Extended Data Fig. 1 for individual survey responses).

interglacial” and other past warm climates, is likely to be most pro-
nounced in the large coastal peatlands of the (sub-)tropics. Tectonic
subsidence can lead to vast accumulations of lignite over millions
of years**, but its conjunction with rapid sea-level rise, rapid sub-
sidence or peat surface collapse due to water abstraction or LUC
can lead to peatland loss'**. In general, sea-level rise has been sug-
gested to be a threat for coastal peatlands***’, as these systems have
limited capacity to move inland because of topography or human
development.

Drivers of peatland carbon stocks during the
Anthropocene

During the Anthropocene, short-term peat C losses across the
northern high latitudes are linked to LUC (-7 (=23 to 0) GtC)
and fire (-3 (-8 to 0) GtC) by the experts (Fig. 3). As for per-
mafrost dynamics, small C gains (2 (0 to 10) GtC) are suggested,
though many experts warn that large and rapid losses of old C
have only recently begun and are expected to increase in the
future (Supplementary Information Appendix 3). Peat drainage for
agriculture, forestry, industrial-scale peat extraction and grazing

were identified as the main sources of anthropogenic pressure on
these peatlands (Fig. 3). The loss of peat C to human activity must
have been considerable during the pre-industrial time and the start
of the industrial era across Europe, but historical reports are too
few to provide a reliable estimate'®. In this case, LULCC simulations
from IAMs could reduce this uncertainty or provide several scenar-
ios. The loss of C to fire is attributed to an increase in both natural
and anthropogenic burning. Similarly, the main suggested causes of
peat C losses in the tropics are LUC (—8 (—14 to —2) GtC) and fire
(—4 (=10 to 0) GtC). Despite these losses, the trend suggests that
northern high-latitude peatlands have persisted as C sinks through-
out the Anthropocene. Experts attribute the net C gain across the
northern high latitudes primarily to greater peat accumulation
rates that are induced by longer and warmer growing conditions
from climate warming (16 (0 to 38) GtC). An increase in moisture
from greater precipitation is suggested as an additional agent that
leads to C gain in the Arctic, although several experts mention C
losses due to drought across the boreal and mid-latitude regions; an
overall increase of 11 (—1 to +31) GtC from moisture is suggested
by the survey respondents. Finally, nitrogen (N) deposition and
other atmospheric pollution are thought to have a negligible impact
(<1 (=1 to +1) GtC) on the peatland C sink capacity worldwide.
The importance of permafrost and fire revealed in the expert
elicitation is reflected in the main findings from the literature
review. For instance, across the northern high-latitude regions,
increasing air temperatures and winter precipitation have been
linked to a greater than 50% reduction in palsa or peat plateau area
since the late 1950s°'~%, although this varies by region*’. In general,
thermokarst landforms such as ponds or collapse-scar wetlands
with saturated soils form when ice-rich peat thaws and collapses.
These mainly anaerobic environments are characterized by high
CH, emissions™*; mass-balance accounting for C stocks indi-
cates as much as 25-60% of ‘old’ permafrost C is lost in the years
to decades that follow thaw**-*". Over time, increased C sequestra-
tion and renewed peat accumulation occur in drained thermokarst
lake basins®-** and collapse-scar wetlands, but it can take decades
to centuries and sometimes millennia for collapse-scar wetlands to
transition from having a positive (warming) to a negative (cooling)
net radiative forcing®®. Moreover, the combustion of peat layers
has led to direct losses of plant and peat C. Fire-derived emis-
sions can be substantial, exceeding biological emissions from peat
decomposition in some years®. The highest emissions are observed
from drained tropical peatlands in extremely dry years such as the
1997 El Nifio period (810-2570 TgCyr™") (ref. ©*) and the 2015 fire
season (380 TgCyr™) (ref. °°) in Indonesia. However, as a result of
drainage, peat fires are observed even in wet years’. Although peat
C losses from northern peat fires are smaller than those from tropi-
cal peat fires (for example, 5TgCyr~ from Alaskan wetlands)®,
there is a need to consider wildfires in permafrost thaw dynamics
because of their effects on soil temperature regime®. Peatland sur-
face drying, as a result of both droughts and human activity, has
been shown to increase the frequency and extent of peat fires'>”,
which could lead to deeper burns and hindered recovery’ as well
as peat water repellency”. In terms of LUC, it is well accepted that
widespread peatland conversion, drainage and mining across the
temperate and tropical regions have led to large C losses””%, in
addition to immediate ecosystem damage and land subsidence*”.
Most peatland management practices result in decreased CH, emis-
sions owing to drainage®, but peatland inundation or rewetting can
lead to episodic CH, releases’®”. Finally, the structure and func-
tion of peatlands are now threatened by increased N availability
and atmospheric phosphorus (P) deposition® from anthropogenic
emissions®'. For example, Sphagnum moss cover dies off after a few
years of sustained N loading®*, and changes in climate can exac-
erbate these negative effects®. Changes in microbial communities
and litter quality associated with N deposition can also contribute to
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increased decomposition® by lowering the peatland surface® and
causing a rise in the water table and CH, emission®. Conversely, a
study reported a net C gain with modest N deposition in a Swedish
peatland, which was driven by a greater increase in plant production
than in decomposition”; this illustrates differences, and perhaps a
threshold response, in C balance response to N deposition.

Quantification of future peatland stocks
Experts anticipate that, during the remainder of this century (2020-
2100 cE) and in the far future (2100-2300 cg), the C loss mecha-
nisms presented above will be amplified (Fig. 3). In the northern
high latitudes, whereas C gains are still linked to shifts in tempera-
ture and precipitation (17 (—16 to +47) and 3 (—37 to +32) GtC,
respectively), Closses to fire are expected (—7 (—10 to 0) GtC). Many
respondents suggest that better fire management could mitigate
this. These losses are predicted to be accompanied by additional ones
from permafrost degradation (—30 (—102 to +12) GtC), sea-level
rise that would inundate coastal peatlands (-3 (=9 to +1) GtC),
and LUC (—14 (—38 to +3) GtC). The latter, and primarily drainage
for agriculture, are expected to cause substantial peatland C losses,
although many experts anticipate the rate to decrease with increasing
conservation and restoration efforts. Regional drought-induced C
losses are also suggested for the mid-latitude regions. For the trop-
ics, experts generally agree that every agent of change will negatively
impact C stocks. Net peat C losses are predicted owing to higher
temperatures (—22 (—14 to +4) GtC; the mean is skewed outside
10th-90th percentile range by an outlier), fires (—23 (—54 to —2)
GtC), negative moisture balance (=9 (=31 to +3) GtC) and sea-level
rise (=3 (=5 to 0) GtC). Of particular importance is the evolution of
the El Nifio-Southern Oscillation, as El Nifio droughts may lead to
substantial C losses to the atmosphere. LUC (—13 (—44 to +3) GtC)
is also predicted to play a key role in the future, as it could lead to
the drainage of large peat basins such as the Amazon and Congo.
The confidence of experts in their predictions declines for
the far future (Supplementary Tables S6 and S7, and Extended Data
Fig. 2), in part because of the lack of models capable of simulating
the effect of agents of change on peatland C stocks, but also because
policy and land management decisions will influence the future of
peatlands. In this area, the integration of peatlands into IAMs would
allow the generation of pertinent scenarios to help inform the sci-
ence as well as policy options and land management decisions. A
growing world population may put additional pressure on peatlands
as farming becomes possible at higher latitudes, and further defor-
estation may occur in the tropics, but the need to conserve peat
resources may eventually outweigh these pressures. In this case, the
adoption of policies designed to protect peatlands would greatly
limit C losses. Likewise, the pricing of C could change the way peat-
lands are perceived, valued and managed. These diverging opinions
are all included in our assessment (Supplementary Information
Appendix 3), but explicit IAM simulations would allow exploration
of different policies and socio-economic scenarios. Noteworthy is
that extra-tropical peatlands could play an important role, second
only to the oceans, in reducing the global atmospheric CO, con-
centration if cumulative anthropogenic emissions are kept below
1,000GtC (refs. °*). Mitigation is therefore highly important in
counterbalancing the climate impact of peatland C loss™.

Insights from the expert elicitation and their limits

Expert assessment is critical for informing decisions that require
judgements that go beyond established knowledge and model
simulations™. For this reason, expert opinion is often used in envi-
ronmental assessments, either as a means to assess confidence levels
or rank potential outputs’ or as data points that offer estimates that
could not be provided otherwise’**. This expert assessment also
highlights key knowledge gaps and uncertainties, for example in the
impact of permafrost aggradation and degradation on the future

NATURE CLIMATE CHANGE | www.nature.com/natureclimatechange

peatland C balance (see Supplementary Information and Extended
Data Fig. 1). Our dataset reflects two main schools of thought that
are anchored in conflicting evidence from the literature: rapid C
loss from deep peats and slow recovery of the peatlands following
permafrost thaw™>*’, and net C gain from rapidly recovering plant
production owing to warm and moist conditions following thaw"*.

Our results indicate low to medium confidence in future C flux
estimates. Confidence levels are highest for the post-LGM and
Anthropocene time periods, in part reflecting the majority of paleo
researchers among the survey respondents, and in part because of
compounded uncertainties that pertain to future levels of GHG
emissions from the energy and land systems, patterns of LUC and so
on, as these emissions are affected by social, economic, political and
policy drivers (Supplementary Information Appendix 3). The overall
confidence level for the post-LGM and Anthropocene is medium (a
value of 3 on a scale of 1 to 5); even respondents who rate themselves
highly as experts (score of 4 or 5) give low to medium confidence
to some of their answers, which could suggest great uncertainty
based on current literature (Supplementary Tables S6 and S7, and
Extended Data Figs. 2 and 3). For the remainder of this century and
the far future, confidence drops to low (a value of 2), which probably
reflects the low confidence in our projection of human-based deci-
sions (Supplementary Information Appendix 3 and Extended Data
Fig. 2). Areas of research for which expertise is lowest include LUC,
N deposition and atmospheric pollution (Supplementary Tables S8
and S9, and Extended Data Fig. 2), which may have contributed to
some of the low confidence levels mentioned above. Here again,
results from the expert elicitation provide a unique opportunity to
generate pertinent socio-economic scenarios that will help inform
our science, policy options and land management decisions.

Although the present assessment may be used as a bridge towards
policy (as decisions need to be made even when uncertainty is high
and confidence is low), we are not interested in offering ‘consensus
statements’ on peatland C storage. Rather, our intent is to contribute
a novel perspective that identifies the central tendencies, commu-
nicates uncertainties and highlights contradictions; we anticipate
this will improve understanding of the peat C process and press
the community to add organic soils and peatland plant functional
types in ESMs and IAMs (see Supplementary Information for fur-
ther discussion). Overall, results from the expert elicitation can help
determine which ecosystem mechanisms and properties should
be prioritized and integrated into ESMs; in turn, those model out-
puts will help constrain the peat-carbon-climate feedback, inform
future data collection strategies and advance understanding by fur-
ther testing different hypotheses. As such, the inclusion of peatland
process understanding in models, and particularly better attribu-
tion of the role of each agent of change in peatland C dynamics,
would help increase confidence in C flux predictions. Modelling
efforts that include peatland dynamics would improve ESM and
IAM outputs and benefit the peatland and climate research com-
munities in a positive feedback loop.
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Extended Data Fig. 1| All survey results (individual data points). Each individual response is shown as a spot. Positive values represent peatland
sinks, negative values represent peatland sources to the atmosphere. When a range of values was given, the midpoint is used. Codes for drivers:
T = temperature, M = moisture balance, SL = sea level, F = fire, LU = land use, P = permafrost, N = nitrogen deposition, AP = atmospheric pollution.
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Extended Data Fig. 2 | All self-reported confidence and expertise levels, organized by time period and peatland region. Blue (yellow) bars represent
high-latitude (tropical) peatlands. Confidence and expertise values specified in the survey were 1= very low, 2 = low, 3 = medium, 4 = high, 5 = very high.
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Extended Data Fig. 3 | Comparison of survey results from all respondents vs. those from highly self-rated experts. Data shown as mean and 10th - 90th
percentiles. High-latitude peatland results shown in blue (dark = all data, light = E>2). Tropical peatland data shown in yellow (dark yellow = all data, light
beige = E>2). Positive values represent peatland sinks, negative values represent peatland sources to the atmosphere. Codes for drivers: T = temperature,
M = moisture balance, SL = sea level, F = fire, LU = land use, P = permafrost, N = nitrogen deposition, AP =atmospheric pollution.
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