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(gc) for all years (Fig. 5), both conifers showed a positive connection 
between canopy conductance and soil moisture, with no significant 
difference in gc–SM20 slopes between spruce and pine (F = 3.29, P =
0.061). Such connection was absent for aspen, as the slope in Fig. 5 was 
itself not significant, and therefore significantly lower than those for 
spruce and pine. The linearized equations (in log-scale; see Fig. 5) used 
to represent the linkage between canopy conductance and soil moisture 
could be expressed as a power relationship for each tree species, as 
follows: 

gc = 0.344 SM0.1102
20 (Populus tremuloides) (5)  

gc = 0.031 SM0.6497
20 (Picea engelmannii) (6)  

gc = 0.016 SM0.8382
20 (Pinus flexilis) (7) 

Daily mean canopy conductance (Gc) of all species linearly declined 
with decreasing soil moisture, and the Gc–SM20 slopes for spruce (F =
28.95, P < 0.001) and pine (F = 43.85, P < 0.001) were significantly 
higher than that for aspen (Fig. S8). 

4. Discussion 

4.1. Differential sap flow response to soil drying among co-occurring 
species 

Drought-induced forest die-off has been reported for many forest 
ecosystems (Allen et al., 2010), including those in western North 
America. While large-scale tree mortality has been connected to deep 
soil drying during the 2012–2015 California drought (Goulden and 
Bales, 2019), information is still needed on how coexisting tree species 
may respond differently to water stress, especially in sky-island 

environments. Our study area did not experience exactly the same 
timing and intensity of dry and wet periods recorded elsewhere in the 
western US (Wang et al., 2017), since the lowest cool-season precipi
tation was recorded in 2018, and 2014 was characterized by the highest 
growing-season rainfall (Table 1 and Fig. S2c). Yet field conditions over 
the five years of our study captured most of the long-term seasonal 
variability of precipitation (Table 1 and Fig. S2b). 

Sap flow data highlighted species-specific reduction of transpiration 
in response to declining soil moisture (Figs. 2 and S4). Our observations 
were in agreement with the notion that broad-leaved tree species are 
generally less resistant to drought than co-occurring coniferous species 
(Brinkmann et al., 2016; Pataki et al., 2000). Although such differences 
among species are often linked to hydraulic and functional traits (Adams 
et al., 2017; Choat et al. 2012), our data revealed that species-specific 
decline in sap flow was not uniform every year, and depended on 
depth-specific soil moisture and its recharge by previous cool-season or 
current warm-season precipitation. 

Variable year-to-year summer rainfall led to different seasonal dy
namics of soil moisture depletion (Fig. S3c). Overall, the multi-year 
trajectories and magnitudes of decline in sap flow for quaking aspen 
closely tracked growing-season depletion of soil moisture (Figs. 1, 2 and 
S4). Therefore, interannual variability of sap flow decline in response to 
soil drying suggested that quaking aspen relies primarily on shallower 
water sources when compared to the conifer species. The root system of 
quaking aspen is relatively shallow, and the majority of functional 
lateral roots can extend over 30 m into open areas (Burns and Honkala, 
1990). Stable isotopic analysis has been used to suggest that quaking 
aspen mainly taps water from shallow ground layers, with little plas
ticity (i.e., ability to switch water source) during drought stress 
(Anderegg et al., 2013). 

Increased cool-season precipitation (October–May) normally 
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4.2. Species-specific sensitivity of canopy conductance to soil drought 

Categorizing plants into isohydric and anisohydric water-use stra
tegies, often inferred from stomatal sensitivity to atmospheric evapo
rative demand, has been proposed as a key mechanism underlying 
drought-induced tree mortality (Klein, 2014; McDowell et al., 2008). 

However, iso- and aniso-hydric behavior can be more dependent on the 
environment where the plant lives than due to inherent properties of the 
species (Hochberg et al., 2018). The two co-occurring conifers at our 
study site downregulated stomatal conductance with decreasing soil 
moisture, whereas aspen exhibited insignificant stomatal adjustment in 
response to soil drought (Figs. 4, 5, S8 and Table S1). In other words, our 
observations indicate that soil drought exerts a weak control over can
opy conductance of quaking aspen compared with two conifers in a sky- 
island ecosystem. This insensitive stomatal behavior to soil drying is in 
accordance with leaf-level measurements, in which quaking aspen 
exhibited little stomatal control over water loss, and had open stomata 
during severe droughts (Tobiessen and Kana, 1974; Kaufmann, 1982). 

Divergent stomatal behavior under soil drought involves sensing 
mechanisms and processes driving the stomatal adjustment in response 
to changing soil water availability (Brodribb and McAdam, 2013). 
Chemical root-to-shoot signaling has been shown to trigger responses in 
guard cell membrane channels and transporters, which will induce a loss 
in guard cell turgor and thereby stomata closure in water-stressed 
gymnosperms (Schachtman and Goodger, 2008). Under severe soil 
drying, this mechanism should induce a lower minimum conductance 
for conifers, which facilitates the maintenance of hydraulic integrity and 
thereby reduces the risk of hydraulic failure and mortality (Blackman 
et al., 2019; Hammond and Adams, 2019). At the same time, this 
mechanism usually results in a delay of stomata reopening after rewa
tering, and therefore implies a slower post-drought transpiration re
covery of gymnosperms (i.e. low capacity to regain pre-drought 
transpiration rates; Brodribb and McAdam, 2013). If acute drought oc
curs, negative effects of soil moisture-dependent stomata regulation on 
transpiration recovery may persist and severely affect tree internal 
carbon balances (Galiano et al., 2011; McDowell et al., 2008), inducing 
long-term legacy effects and triggering mortality in conifers (DeSoto 
et al., 2020). 

Insensitive stomatal response of quaking aspen to soil drought sug
gests that the species may respond passively through changes in leaf 
water potential induced by vapor pressure deficit (Brodribb and McA
dam, 2013; Loewenstein and Pallardy, 1998). Soil moisture- 
independent stomatal regulation confers quaking aspen the ability to 
immediately reopen stomata as soon as soil is rehydrated by a rainfall 
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event. This strategy reflects the “fast” ecological trait of this species, i.e. 
being able to maintain higher water conductance and to acquire re
sources during temporarily favorable conditions (Pappas et al., 2018). 
On the other hand, limited stomata adjustments and relatively higher 
minimum conductance under severe soil drying suggest that quaking 
aspen should approach hydraulic failure and mortality more rapidly 
than the coexisting conifers (Blackman et al., 2019; Hammond and 
Adams, 2019). 

5. Conclusions 

Thanks to a unique dataset of continuous, multi-year, sub-hourly sap 
flow and environmental observations, we uncovered species-specific 
transpiration responses in a sky-island ecosystem. Seasonal transpira
tion decline in response to soil drought was connected with soil moisture 
in the upper soil layer for quaking aspen, whereas ample cool-season 
precipitation, and therefore deeper soil water, reduced summer tran
spiration decline of Engelmann spruce and limber pine. Our results 
imply niche partitioning of the rhizosphere in water-limited forests, 
which may diminish drought impacts on the ecosystem as a whole 
(Grossiord et al., 2014). Further, canopy conductance of quaking aspen 
was not sensitive to reduced soil water availability compared to the 

conifers, which potentially increases the threat of hydraulic failure and 
subsequent mortality for quaking aspen. These findings provide a 
physiological basis for understanding species-specific risk of drought- 
induced die-offs among co-occurring tree species in semiarid, high- 
elevation ecosystems, hence they have a direct connection with 
designing science-driven best-management conservation strategies spe
cifically tailored to such fascinating areas in a changing world. 
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