Chapter 18 )
UYV Origin of Discrete Symmetries Gzt

Michael Ratz

Abstract We discuss the possible UV origin of discrete symmetries. We review
the (i) interpretation of discrete R symmetries as discrete remnants of the Lorentz
group; (ii) additional discrete transformations arising in orbifold compactifications,
some of which have only been found recently; (iii) the stringy/gauge origin of family
symmetries; (iv) CP violation from strings. These notes are based on an invited talk
by the author at FHEP 2019 in Hyderabad.

18.1 Discrete Symmetries in Particle Physics

Discrete symmetries play a key role in our understanding of particle physics. The
perhaps most prominent examples are the discrete transformations C, P and 7. There
are many more examples such as the matter parity in supersymmetric models (a.k.a.
R parity), and the left-right parity of left-right symmetric and Pati—Salam models.
In addition, attempts to solve the flavor puzzle often utilize discrete symmetries.

This raises several questions. How reliable are these symmetries? Are they also
symmetries of the quantum theory? Our current understanding strongly suggests that
all discrete symmetries need ultimately to be gauged [1]. Therefore it is imperative
to seek a better understanding of the UV origin of discrete symmetries.

Mathematically all continuous gauge symmetries entail extra dimensions. That
is, they correspond to “movements” along the fiber of a fiber bundle. Moreover, in
strings e.g. the heterotic Eg x Eg may be thought of being the result of 16 extra
dimensions compactified on a Narain lattice [2]. These observations suggest that one
may obtain a similar understanding (or interpretation) of discrete symmetries.
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An obvious option is to obtain discrete symmetries by breaking a continuous gauge
symmetry (spontaneously) to a discrete subgroup. The emerging discrete symmetry
is then clearly gauged. This breaking can occur by a field acquiring a vacuum expec-
tation value (VEV), or by compactification, which is also a spontaneous breaking (if
done consistently), just not in four dimensions.

18.2 Discrete Symmetries to Complete the MSSM

Let us start with a discussion of the role of discrete symmetries in the context of
the minimal supersymmetric extension of the standard model (MSSM). Discrete
R symmetries are instrumental for supersymmetric phenomenology. To see this,
consider the most general superpotential that is consistent with the standard model
gauge symmetries up to dimension 5,

Waauge imvariant = M hqhy, + ki Ly,
+ 18 lghde? + Yfff qghdd? + v8f qghuu(;
+ Agrk églfef + )L;,f,( qufd,f + Agf-k ugd_cfdf
+icgr Bl Bl + K0 409 1 Gile + g uSuGdi el . (18.1)

Here, the boldface math letters represent the MSSM superfields in a suggestive
convention. The «; terms in the first line have to vanish, or at least to be very small.
The so—called u parameter needs to be roughly of the order of the electroweak scale,
and will be discussed below in more detail. The couplings in the second line need to be
all present since they are (up to threshold corrections and multiplication by the ratio
of Higgs VEVs (h,)/(hy)) given by the Yukawa couplings of the standard model.
On the other hand, the terms in the third line need to vanish or to be very small.!
All the ki, Agpi, Mgy and A%, terms may be forbidden by imposing R parity [31.2
This raises the question of where this Z, symmetry, which we will denote Zé\” in the
following, comes from. What is more, and what is sometimes not appreciated very
much, Zé\" is not the full story. Rather, some of the Ké(,l}k ¢ terms in the last line need
to be suppressed as much as < 1078 /Mp [5]. On the other hand, the «gs b, £, h, L s
term is the so—called Weinberg operator, and the leading candidate for an operator
that gives rise to realistic, suppressed neutrino masses.

This raises the question of how one can control the dangerous operators while
keeping the desired ones. It turns out that, under arguably rather moderate assump-
tions, the choices are highly restricted. In detail, let us make the following assump-
tions and requirements:

1. SO(10) unification of matter is not an accident;
2. the u term is forbidden by a symmetry but appears after SUSY breaking;
3. want to preserve gauge coupling unification;

One may allow one of the ofks A; fk OF A;,’ 7k tO be relatively unsuppressed.

Despite its name, this symmetry is not a true R symmetry, but equivalent to matter parity [4].
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Table 18.1 Zf charges
q u® dc L eC h, hy vC
ZR 1 1 1 1 1 0 0 1

4. standard model Yukawa couplings and Weinberg operator are allowed.

It turns out that, under these assumptions, the symmetry is unique [6, 7]: it is an order
four R symmetry, ZX, which has been first proposed in [8].° The charge assignment
is very simple, see Table 18.1.

They are obviously consistent with SO(10) grand unification, where matter fields
sit in one irreducible representation, the 16—plet, and the Higgs fields come from the
10—plet.

It is instructive to see how anomaly matching [10, 11] works for 7R or, more
generally, Z& symmetries. Assume you start from a unified gauge group, SU(5) or
higher. Then, at this level there is only one anomaly coefficient,

Asyip-zr = A‘;‘S‘(‘gz,zﬁ + Agﬁré)z,zﬁ +5q0 , (18.2)

matter 1 1 1 extra
where Ag (5p—z8 18 the contribution from the matter fields, A 52—

extra contribution, and 5¢, the contribution from the gauginos.* Now assume some
mechanism breaks SU(5) (or larger) down to the standard model gauge symmetry
Gsm = SUB)¢ x SU2p, x U(1)y. Then the anomaly coefficients become

x a possible
M

SU(5 1
Ao g, = ATz, + AR 2y, + 300+ 8252240,

suU(3)2-z¥k,
(18.3a)
Su(s 1
ASngiszﬁA - A?I?Etze)g—ZRM + Ag)[(}fg)z_ZRM + 2(]9 + g4§ -2-3- qe -
(18.3b)

Here we have kept but crossed out the contributions from the extra gauginos which
are in SU(5) but not Gy (and which are sometimes called X and Y bosons). We see
that if something breaks SU(5) down to Gsm, and removes the contributions from
the extra gauginos, due to anomaly matching we need to have massless fields that
do not come in complete GUT representations. That is, 't Hooft anomaly matching
for (discrete) R symmetries implies the presence of split multiplets below the GUT
scale!

Where can such R symmetries come from? It can be shown with elementary
group-theoretical methods that they can not arise from 4-dimensional models of
grand unification [12]. In more detail, assuming (i) a GUT model in four dimensions
based on G D SU(5), (ii) GUT symmetry breaking is spontaneous, and (iii) there is

3The fact that only R symmetries can forbid the 11 term has been motivated in [9].
4Our conventions are such that the superpotential has R charge 2.
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only finite number of fields, one can show that one either has to break the R symmetry
at the high scale, or has light exotic charged states.

What does light mean? Light means of the order of R symmetry breaking. Why
and how is the R symmetry broken? R symmetries are necessarily broken because,
in order to warrant an almost vanishing vacuum energy, the superpotential needs to
acquire a VEV. This VEV determines the gravitino mass,

W) ~ myp,Mp ~ my, ~ %2} ) (18.4)

My
However, as the superpotential carries R charge 2, there is a residual Z, symme-
try, which, in the case of Z%, coincides with matter parity. Let us briefly discuss
the implications for the 7//1(;‘5111{%e invariant Of (18.1). We see that the R parity violating
couplings k;, Agrk, A ork and A ok are zero because of the exact residual symmetry.
By construction, the standard model Yukawa couplings and Weinberg operator are
allowed, and one can eas1ly check that each of these terms carries R charge 2. What
about the s term and the « f o couplings? They appear after R symmetry breaking.
However, since the order parameter of R symmetry breaking is the gravitino mass,
one finds that, in the framework of gravity mediation,

-8
~ O M 10
12 ms, and Kgsz MI% < MP

(18.5)

The statement on the u term can be thought of as the Kim—Nilles [13] and Giudice—
Masiero [14] mechanisms being at work, but the Z5 offers an explanation for why
these are the only contributions.

Where can one get this ZX from? As already mentioned, not from 4D GUTs.
However, they do arise in orbifold compactifications of the heterotic string [15, 16],
which we discuss in what follows.

18.3 Orbifold Compactifications of the Heterotic String

A toroidal orbifold emerges by dividing a torus by some of its non—freely acting sym-
metries. The resulting space is smooth everywhere except for the orbifold fixed points
(cf. Fig. 18.1). In general, these fixed points are special points at which (a) the gauge
symmetry gets broken (b) localized “matter” fields live. Just by looking at Fig. 18.1
it is tempting to suspect that orbifold compactifications have plenty of discrete sym-
metries. In fact, as we shall discuss in Sect. 18.4, additional discrete transformations
arise, some of which have only been noted recently; 2. Section 18.5, family sym-
metries appear naturally; 3. Section 18.6, some compacifications have built-in CP
violation. With regards to the discussion in Sect. 18.2, discrete R symmetries emerge
as discrete remnants of the Lorentz group. The so—called H-momentum conserva-
tion rule [17, 18] can be interpreted as an R symmetry [19]. It turns out that it is
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Fig. 18.1 Cartoon of an orbifold

rather straightforward to construct an explicit string model with the exact spectrum
of the MSSM and a residual Zf symmetry [20, 21]. As discussed in Sect. 18.2,
this symmetry is instrumental to understand why the Higgs pair is massless prior
to supersymmetry breaking. The alert reader may wonder how a discrete remnant
of the Lorentz symmetry may appear anomalous. This is because some the residual
symmetries in orbifolds are diagonal subgroups of the symmetries of the upstairs
theory. Of course, in string theory, these anomalous looking symmetries are never
really anomalies, but cancelled by the Green—Schwarz mechanism [22].

18.4 Discrete Remnants of Orbifolding

Given the phenomenological success of the orbifold models, it is imperative to care-
fully analyze the residual symmetries these constructions have. The standard lore
used to be that the surviving symmetry consists of the transformations that commute
with the orbifold action. This turns out to be not entirely correct [23].

Consider a higher-dimensional gauge theory with gauge fields V' (x, y) TV,
where T{“W) denote the generators in the Cartan—Wey] basis. Now compactify on an
orbifold with action on the extra coordinates y and generators

y > 9y and TV L pTEW p1 (18.6)

We demand that performing first a gauge transformation and then the orbifold trans-
formation, or reversing the order of the operations leads to the result,
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Fig. 18.2 Simple roots of e
SU®3)
€1
V() TS P09 vt (x, 971 y) PTY) P2
Juee
uec Vi, oty upTY priut
-
Vi (x,y) Ut -1 L0, vt (x, 91 y) P utuy-1p-1. (18.7)

Using Schur’s lemma, this leads to the condition that P~'U~'P U is in the center
of the group G [23], which is weaker than the traditional condition that P commutes
with U.

Note that even if one demands that P commutes with U, some important symme-
tries have been missed in the past, with the perhaps most important example being the
so—called left-right parity or D—parity of the Pati—Salam [24] or left-right symmetric
model [25],

[SU(4) x SU(2)L x SU(2)R] X Z5 . (18.8)

It is known that this Z, can be obtained in 4D SO(10) GUTs by giving a VEV
to a S4-plet [26, 27]. However, it has been only noted recently that this symmetry
is automatically there if one breaks SO(10) by the action of a Z, orbifold [23]. This
symmetry illustrates a generic feature of these discrete remnants: they are typically
outer automorphisms of the continuous residual gauge symmetry.

An example in which the fact that the “survival” condition is weaker than previ-
ously assumed is important in the T?/Zj3 orbifold with an SU(3) gauge symmetry.
Here the torus lattice coincides with the root lattice of SU(3) (Fig. 18.2). The asso-
ciated gauge embedding is

w00
P=|00"0] €SUQ, (18.9)
001
where P3 = J¥. The condition for unbroken gauge symmetries is

2mwik
[P,Ugp] = exp (T)Hﬁ where k € {0,1,2}. (18.10)
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Fig. 18.3 Geometric origin family
of family symmetries
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Therefore, the residual symmetries are

ci@th) 0 001
U(()) = 0 ei@=h) ¢ and U(]) = 100] . (18.11)
0 0 e e 010

Zorb.
SoSUGR) —— [U(l) X U(l)] X Z3. The explanation of the additional Z3 factor
in terms of gauge symmetries completes the analysis by Beye et al. [28, 29], who
explore the gauge origin of family symmetries in string theory. Away from the critical
radius R the U(1) symmetries get broken to Z3 subgroups such that

orb.

SUB) ——s HU(]) x U(l)] " 23] w0 Zy PRt

[[23 x Z3i| x 23] W7o = A(54) .

The Z, factor is the outer automorphism of SU(3). This explicitly demonstrates the
gauge origin of the full A(54) flavor symmetry. This will be discussed in more detail
elsewhere.

18.5 Family Symmetries

As discussed in the previous section, family symmetries can arise from orbifolding.
In fact, they arise very naturally in heterotic orbifolds [30, 31]. One way to under-
stand how whey arise is to look at the geometry of compact space. As illustrated
in Fig. 18.3 for the Z; orbifold plane, the repetition of families may be related to
the geometrical properties of the orbifold such as the existence of equivalent fixed
points. It is then not too surprising that certain permutation symmetries arise. To
obtain the full symmetry group, one has to work a bit harder. In general, they are
obtained as the outer automorphism group of the space group [32, 33]. Even though
the discussion at the end of Sect. 18.4 only concerns the A (54) symmetry, it strongly
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suggests that all the other flavor symmetries derived from string compactifications
originate completely from gauge symmetries.

In what follows, we will discuss that the string—derived A(54) symmetry has
another, rather surprising property.

18.6 CP Violation from Strings

It has been pointed out that there is a deep, group—theoretical connection between
flavor symmetries and CP violation [34]. Certain discrete groups clash with CP
conservation [34, 35] (see [36] for arecent review). There are simple group—theoretic
indicators that allow one to tell CP—violating groups from those which are consistent
with CP apart [35]. All odd order non—Abelian finite groups clash with CP, yet there
are also even—order groups of that type, and intererestingly the above—mentioned
A(54) symmetry belongs to this class.

As discussed above, the A(54) flavor symmetry emerges from the Z; orbifold
plane. Already the very first string—derived 3—generation models [37] have this sym-
metry (although this has not been spelled out at the time when these models were
found), so this is not at all an exotic property. One therefore expects that these models
have a built—in means of CP violation, which has been confirmed in [38]. That is,
these flavor symmetries, which have been explicitly shown to be gauged and can be
understood as outer automorphisms of the so—called space group, “destroy” CP, an
outer automorphism of the Lorentz group.

18.7 Summary

Given all the strong arguments that all symmetries, including discrete ones, need
to be gauged, in these proceedings we studied to which extent this is the case the
discrete symmetries in string compactifications. While this is straightforward to see
for most of the discrete symmetries, it is a bit harder to make this explicit for flavor
symmetries. Only after a recent careful reanalysis of the residual symmetries of
orbifolding the gauge origin of all symmetry factors could be established.

Altogether we have reviewed the conceivable roles of explicitly string—derived
discrete symmetries in physics beyond the standard model. In particular:

1. Discrete R symmetries can be understood as discrete remnants of the Lorentz
symmetry of compact space. They appear to be instrumental to solve the problems
of supersymmetric extensions of the standard model.

2. There are symmetries after orbifolding that have been missed until recently. These
symmetries comprise the left—right parity of left—right symmetric and Pati—Salam
models, and other outer automorphism symmetries of the low—energy continuous

gauge group.
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3. Discrete flavor symmetries can be completely traced back to continuous gauge
symmetries in higher dimensions. They also provide a possible origin of CP
violation.
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conference, and to Patrick Vaudrevange for comments. This work is supported by NSF Grant No.
PHY-1719438.
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