
Chapter 18

UV Origin of Discrete Symmetries

Michael Ratz

Abstract We discuss the possible UV origin of discrete symmetries. We review

the (i) interpretation of discrete R symmetries as discrete remnants of the Lorentz

group; (ii) additional discrete transformations arising in orbifold compactifications,

some of which have only been found recently; (iii) the stringy/gauge origin of family

symmetries; (iv) CP violation from strings. These notes are based on an invited talk

by the author at FHEP 2019 in Hyderabad.

18.1 Discrete Symmetries in Particle Physics

Discrete symmetries play a key role in our understanding of particle physics. The

perhaps most prominent examples are the discrete transformations C, P and T . There

are many more examples such as the matter parity in supersymmetric models (a.k.a.

R parity), and the left–right parity of left–right symmetric and Pati–Salam models.

In addition, attempts to solve the flavor puzzle often utilize discrete symmetries.

This raises several questions. How reliable are these symmetries? Are they also

symmetries of the quantum theory? Our current understanding strongly suggests that

all discrete symmetries need ultimately to be gauged [1]. Therefore it is imperative

to seek a better understanding of the UV origin of discrete symmetries.

Mathematically all continuous gauge symmetries entail extra dimensions. That

is, they correspond to “movements” along the fiber of a fiber bundle. Moreover, in

strings e.g. the heterotic E8 × E8 may be thought of being the result of 16 extra

dimensions compactified on a Narain lattice [2]. These observations suggest that one

may obtain a similar understanding (or interpretation) of discrete symmetries.
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An obvious option is to obtain discrete symmetries by breaking a continuous gauge

symmetry (spontaneously) to a discrete subgroup. The emerging discrete symmetry

is then clearly gauged. This breaking can occur by a field acquiring a vacuum expec-

tation value (VEV), or by compactification, which is also a spontaneous breaking (if

done consistently), just not in four dimensions.

18.2 Discrete Symmetries to Complete the MSSM

Let us start with a discussion of the role of discrete symmetries in the context of

the minimal supersymmetric extension of the standard model (MSSM). Discrete

R symmetries are instrumental for supersymmetric phenomenology. To see this,

consider the most general superpotential that is consistent with the standard model

gauge symmetries up to dimension 5,

Wgauge invariant = μ hd hu + κi ℓi hu

+ Y g f
e ℓg hd eC

f + Y
g f

d qg hd dC

f + Y g f
u qg hu uC

f

+ λg f k ℓgℓ f eC

k + λ′
g f k ℓgq f dC

k + λ′′
g f k uC

g dC

f dC

k

+ κg f huℓg huℓ f + κ
(1)

g f kℓ qgq f qkℓℓ + κ
(2)

g f kℓ uC

g uC

f dC

k eC

ℓ . (18.1)

Here, the boldface math letters represent the MSSM superfields in a suggestive

convention. The κi terms in the first line have to vanish, or at least to be very small.

The so–called μ parameter needs to be roughly of the order of the electroweak scale,

and will be discussed below in more detail. The couplings in the second line need to be

all present since they are (up to threshold corrections and multiplication by the ratio

of Higgs VEVs 〈hu〉/〈hd〉) given by the Yukawa couplings of the standard model.

On the other hand, the terms in the third line need to vanish or to be very small.1

All the κi , λg f k , λ′
g f k and λ′′

g f k terms may be forbidden by imposing R parity [3].2

This raises the question of where this Z2 symmetry, which we will denote Z
M
2 in the

following, comes from. What is more, and what is sometimes not appreciated very

much, Z
M
2 is not the full story. Rather, some of the κ

(i)
g f kℓ terms in the last line need

to be suppressed as much as � 10−8/MP [5]. On the other hand, the κg f huℓg huℓ f

term is the so–called Weinberg operator, and the leading candidate for an operator

that gives rise to realistic, suppressed neutrino masses.

This raises the question of how one can control the dangerous operators while

keeping the desired ones. It turns out that, under arguably rather moderate assump-

tions, the choices are highly restricted. In detail, let us make the following assump-

tions and requirements:

1. SO(10) unification of matter is not an accident;

2. the μ term is forbidden by a symmetry but appears after SUSY breaking;

3. want to preserve gauge coupling unification;

1One may allow one of the λg f k , λ′
g f k or λ′′

g f k to be relatively unsuppressed.

2Despite its name, this symmetry is not a true R symmetry, but equivalent to matter parity [4].
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Table 18.1 Z
R
4 charges

q uC dC
ℓ eC hu hd ν

C

Z
R
4 1 1 1 1 1 0 0 1

4. standard model Yukawa couplings and Weinberg operator are allowed.

It turns out that, under these assumptions, the symmetry is unique [6, 7]: it is an order

four R symmetry, Z
R
4 , which has been first proposed in [8].3 The charge assignment

is very simple, see Table 18.1.

They are obviously consistent with SO(10) grand unification, where matter fields

sit in one irreducible representation, the 16–plet, and the Higgs fields come from the

10–plet.

It is instructive to see how anomaly matching [10, 11] works for Z
R
4 , or, more

generally, Z
R
M symmetries. Assume you start from a unified gauge group, SU(5) or

higher. Then, at this level there is only one anomaly coefficient,

ASU(5)2−Z
R
M

= Amatter
SU(5)2−Z

R
M

+ Aextra
SU(5)2−Z

R
M

+ 5qθ , (18.2)

where Amatter
SU(5)2−Z

R
M

is the contribution from the matter fields, Aextra
SU(5)2−Z

R
M

a possible

extra contribution, and 5qθ the contribution from the gauginos.4 Now assume some

mechanism breaks SU(5) (or larger) down to the standard model gauge symmetry

GSM = SU(3)C × SU2L × U(1)Y . Then the anomaly coefficients become

(18.3a)

(18.3b)

Here we have kept but crossed out the contributions from the extra gauginos which

are in SU(5) but not GSM (and which are sometimes called X and Y bosons). We see

that if something breaks SU(5) down to GSM, and removes the contributions from

the extra gauginos, due to anomaly matching we need to have massless fields that

do not come in complete GUT representations. That is, ’t Hooft anomaly matching

for (discrete) R symmetries implies the presence of split multiplets below the GUT

scale!

Where can such R symmetries come from? It can be shown with elementary

group–theoretical methods that they can not arise from 4–dimensional models of

grand unification [12]. In more detail, assuming (i) a GUT model in four dimensions

based on G ⊃ SU(5), (ii) GUT symmetry breaking is spontaneous, and (iii) there is

3The fact that only R symmetries can forbid the μ term has been motivated in [9].
4Our conventions are such that the superpotential has R charge 2.
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only finite number of fields, one can show that one either has to break the R symmetry

at the high scale, or has light exotic charged states.

What does light mean? Light means of the order of R symmetry breaking. Why

and how is the R symmetry broken? R symmetries are necessarily broken because,

in order to warrant an almost vanishing vacuum energy, the superpotential needs to

acquire a VEV. This VEV determines the gravitino mass,

〈W 〉 ∼ m3/2 M2
P � m3/2 ∼

〈W 〉

M2
P

. (18.4)

However, as the superpotential carries R charge 2, there is a residual Z2 symme-

try, which, in the case of Z
R
4 , coincides with matter parity. Let us briefly discuss

the implications for the Wgauge invariant of (18.1). We see that the R parity violating

couplings κi , λg f k , λ′
g f k and λ′′

g f k are zero because of the exact residual symmetry.

By construction, the standard model Yukawa couplings and Weinberg operator are

allowed, and one can easily check that each of these terms carries R charge 2. What

about the μ term and the κ
(i)
g f kℓ couplings? They appear after R symmetry breaking.

However, since the order parameter of R symmetry breaking is the gravitino mass,

one finds that, in the framework of gravity mediation,

μ ∼ m3/2 and κ
(i)
g f kℓ ∼

m3/2

M2
P

≪
10−8

MP

. (18.5)

The statement on the μ term can be thought of as the Kim–Nilles [13] and Giudice–

Masiero [14] mechanisms being at work, but the Z
R
4 offers an explanation for why

these are the only contributions.

Where can one get this Z
R
4 from? As already mentioned, not from 4D GUTs.

However, they do arise in orbifold compactifications of the heterotic string [15, 16],

which we discuss in what follows.

18.3 Orbifold Compactifications of the Heterotic String

A toroidal orbifold emerges by dividing a torus by some of its non–freely acting sym-

metries. The resulting space is smooth everywhere except for the orbifold fixed points

(cf. Fig. 18.1). In general, these fixed points are special points at which (a) the gauge

symmetry gets broken (b) localized “matter” fields live. Just by looking at Fig. 18.1

it is tempting to suspect that orbifold compactifications have plenty of discrete sym-

metries. In fact, as we shall discuss in Sect. 18.4, additional discrete transformations

arise, some of which have only been noted recently; 2. Section 18.5, family sym-

metries appear naturally; 3. Section 18.6, some compacifications have built–in CP

violation. With regards to the discussion in Sect. 18.2, discrete R symmetries emerge

as discrete remnants of the Lorentz group. The so–called H–momentum conserva-

tion rule [17, 18] can be interpreted as an R symmetry [19]. It turns out that it is
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Fig. 18.1 Cartoon of an orbifold

rather straightforward to construct an explicit string model with the exact spectrum

of the MSSM and a residual Z
R
4 symmetry [20, 21]. As discussed in Sect. 18.2,

this symmetry is instrumental to understand why the Higgs pair is massless prior

to supersymmetry breaking. The alert reader may wonder how a discrete remnant

of the Lorentz symmetry may appear anomalous. This is because some the residual

symmetries in orbifolds are diagonal subgroups of the symmetries of the upstairs

theory. Of course, in string theory, these anomalous looking symmetries are never

really anomalies, but cancelled by the Green–Schwarz mechanism [22].

18.4 Discrete Remnants of Orbifolding

Given the phenomenological success of the orbifold models, it is imperative to care-

fully analyze the residual symmetries these constructions have. The standard lore

used to be that the surviving symmetry consists of the transformations that commute

with the orbifold action. This turns out to be not entirely correct [23].

Consider a higher–dimensional gauge theory with gauge fields V
μ

a (x, y) T
(CW)
a ,

where T
(CW)
a denote the generators in the Cartan–Weyl basis. Now compactify on an

orbifold with action on the extra coordinates y and generators

y
P

�→ ϑ y and T
(CW)
a

P
�→ P T

(CW)
a P−1 . (18.6)

We demand that performing first a gauge transformation and then the orbifold trans-

formation, or reversing the order of the operations leads to the result,



144 M. Ratz

Fig. 18.2 Simple roots of

SU(3)

(18.7)

Using Schur’s lemma, this leads to the condition that P−1U−1 P U is in the center

of the group G [23], which is weaker than the traditional condition that P commutes

with U .

Note that even if one demands that P commutes with U , some important symme-

tries have been missed in the past, with the perhaps most important example being the

so–called left–right parity or D–parity of the Pati–Salam [24] or left–right symmetric

model [25],

(18.8)

It is known that this Z2 can be obtained in 4D SO(10) GUTs by giving a VEV

to a 54–plet [26, 27]. However, it has been only noted recently that this symmetry

is automatically there if one breaks SO(10) by the action of a Z2 orbifold [23]. This

symmetry illustrates a generic feature of these discrete remnants: they are typically

outer automorphisms of the continuous residual gauge symmetry.

An example in which the fact that the “survival” condition is weaker than previ-

ously assumed is important in the T
2/Z3 orbifold with an SU(3) gauge symmetry.

Here the torus lattice coincides with the root lattice of SU(3) (Fig. 18.2). The asso-

ciated gauge embedding is

P =

⎛

⎝

ω 0 0

0 ω2 0

0 0 1

⎞

⎠ ∈ SU(3) , (18.9)

where P3 = �. The condition for unbroken gauge symmetries is

[P, U(k)] = exp

(

2π i k

3

)

� where k ∈ {0, 1, 2} . (18.10)
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Fig. 18.3 Geometric origin

of family symmetries

Therefore, the residual symmetries are

U(0) =

⎛

⎝

ei(α+β) 0 0

0 ei(α−β) 0

0 0 e−2iα

⎞

⎠ and U(1) =

⎛

⎝

0 0 1

1 0 0

0 1 0

⎞

⎠ . (18.11)

So SU(3)
Z

orb.
3

−−−→
[

U(1) × U(1)

]

⋊ Z3. The explanation of the additional Z3 factor

in terms of gauge symmetries completes the analysis by Beye et al. [28, 29], who

explore the gauge origin of family symmetries in string theory. Away from the critical

radius Rcrit the U(1) symmetries get broken to Z3 subgroups such that

SU(3)
Z

orb.
3

−−−→

[

[

U(1) × U(1)

]

⋊ Z3

]

⋊ Z2
R �=Rcrit

−−−−−→

[

[

Z3 × Z3

]

⋊ Z3

]

⋊ Z2 = �(54) .

The Z2 factor is the outer automorphism of SU(3). This explicitly demonstrates the

gauge origin of the full �(54) flavor symmetry. This will be discussed in more detail

elsewhere.

18.5 Family Symmetries

As discussed in the previous section, family symmetries can arise from orbifolding.

In fact, they arise very naturally in heterotic orbifolds [30, 31]. One way to under-

stand how whey arise is to look at the geometry of compact space. As illustrated

in Fig. 18.3 for the Z3 orbifold plane, the repetition of families may be related to

the geometrical properties of the orbifold such as the existence of equivalent fixed

points. It is then not too surprising that certain permutation symmetries arise. To

obtain the full symmetry group, one has to work a bit harder. In general, they are

obtained as the outer automorphism group of the space group [32, 33]. Even though

the discussion at the end of Sect. 18.4 only concerns the �(54) symmetry, it strongly
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suggests that all the other flavor symmetries derived from string compactifications

originate completely from gauge symmetries.

In what follows, we will discuss that the string–derived �(54) symmetry has

another, rather surprising property.

18.6 CP Violation from Strings

It has been pointed out that there is a deep, group–theoretical connection between

flavor symmetries and CP violation [34]. Certain discrete groups clash with CP

conservation [34, 35] (see [36] for a recent review). There are simple group–theoretic

indicators that allow one to tell CP–violating groups from those which are consistent

with CP apart [35]. All odd order non–Abelian finite groups clash with CP , yet there

are also even–order groups of that type, and intererestingly the above–mentioned

�(54) symmetry belongs to this class.

As discussed above, the �(54) flavor symmetry emerges from the Z3 orbifold

plane. Already the very first string–derived 3–generation models [37] have this sym-

metry (although this has not been spelled out at the time when these models were

found), so this is not at all an exotic property. One therefore expects that these models

have a built–in means of CP violation, which has been confirmed in [38]. That is,

these flavor symmetries, which have been explicitly shown to be gauged and can be

understood as outer automorphisms of the so–called space group, “destroy” CP , an

outer automorphism of the Lorentz group.

18.7 Summary

Given all the strong arguments that all symmetries, including discrete ones, need

to be gauged, in these proceedings we studied to which extent this is the case the

discrete symmetries in string compactifications. While this is straightforward to see

for most of the discrete symmetries, it is a bit harder to make this explicit for flavor

symmetries. Only after a recent careful reanalysis of the residual symmetries of

orbifolding the gauge origin of all symmetry factors could be established.

Altogether we have reviewed the conceivable roles of explicitly string–derived

discrete symmetries in physics beyond the standard model. In particular:

1. Discrete R symmetries can be understood as discrete remnants of the Lorentz

symmetry of compact space. They appear to be instrumental to solve the problems

of supersymmetric extensions of the standard model.

2. There are symmetries after orbifolding that have been missed until recently. These

symmetries comprise the left–right parity of left–right symmetric and Pati–Salam

models, and other outer automorphism symmetries of the low–energy continuous

gauge group.
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3. Discrete flavor symmetries can be completely traced back to continuous gauge

symmetries in higher dimensions. They also provide a possible origin of CP

violation.
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