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We present an exploratory lattice QCD investigation of the differences between the valence quark

structure of the pion and its radial excitation πð1300Þ in a fixed finite volume using the leading-twist

factorization approach. We present evidences that the first pion excitation in our lattice computation is a

single particle state that is likely to be the finite volume realization of πð1300Þ. An analysis with reasonable
priors result in better estimates of the excited state PDF and the moments, wherein we find evidence that the

radial excitation of pion correlates with an almost two-fold increase in the momentum fraction of valence

quarks. This proof-of-principle work establishes the viability of future lattice computations incorporating

larger operator basis that can resolve the structural changes accompanying hadronic excitation.
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I. INTRODUCTION

The parton structure of the pion has garnered both

experimental [1–10] as well as theoretical efforts [11–

20]. A better determination of the quark structure of pion is

also part of the goals of upcoming experimental facilities

[21,22]. In addition to experimental determinations, due to

the recent breakthroughs in computing parton structure

using the Euclidean lattice QCD simulations via leading-

twist perturbative factorization approaches (large momen-

tum effective theory [23,24], short-distance factorization of

the pseudo distribution [25,26], current-current correlators

[27–29], which has also been dubbed as good lattice cross

sections [29], and Refs [30–34] for extensive reviews on the

methodology), the valence quark structure of the pion has

also been investigated from first-principle QCD computa-

tions [35–42]. The large-x behavior of the valence pion

PDF has been an unresolved issue that has been approached

using all the above lines of attack, with the promise of being

settled in the near future by lattice computations with finer

lattices, realistic physical pion masses and with the usage of

highly boosted pion states to reduce higher-twist effects

that might be amplified [43–45] near x ¼ 1.

The considerable interest in the quark structure of the

pion is due to its special role as the Nambu-Goldstone

boson of chiral symmetry breaking in QCD. The grand goal

of this research direction is to understand the aspects of

mass-gap generation in QCD via the quark-gluon inter-

action within the pion. The large-x behavior of the pion

PDF has been proposed to hold the key to make this

connection (c.f., [46]). While the enigmatic aspect of QCD

is the presence of nonvanishing mass-gap between the

vacuum and the ground-states of various quantum numbers

even in the chiral limit (except the pseudoscalar, which is an

exception), it is equally enigmatic that there are nonzero

mass-gaps among the excited states in the tower of excited

spectrum as well. To contrast, if the trace-anomaly was

absent in QCD, there would not be mass-gaps between the

vacuum and the various ground-states, nor between

the excited states. Given the stark dissimilarity between

the vanishing mass of a pion in the chiral limit and the

nonvanishing masses of its excited states in the same limit,

it is reasonable to expect any differences between the quark

and gluon structures of the ground-state pion and its excited

states could help us understand the mechanism behind

spontaneous symmetry-breaking and the mass-gap gener-

ation better. In this respect, there have been prior lattice

computations to study the decay constants of the pion and

its radial excitation [47,48], where the decay constant of the

radial excitation is expected to vanish in the chiral limit
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unlike that of the ground-state pion [49,50]. Closely related

to the decay constant, the distribution amplitudes of the

pion and its radial excitation have also been previously

studied using the Dyson-Schwinger equation [51]. With the

lattice computation of PDFs now possible, a novel theo-

retical research direction to study not just the differences

between the long-distance behaviors of the ground and the

excited states, but to study the differences in their internal

structural properties is promising. In this respect, we should

also point to a previous study [52] of the Δþ baryon on the

lattice, which differs by both mass and angular momentum

from that of the proton. Since there is also experimental

thrust to understand exotic gluon excitations of mesons in

Jefferson Lab 12 GeV program [53], studies as the present

one on the parton structure of simpler radial excitations,

might be helpful phenomenologically by providing a case

to contrast the exotic transitions with.

It is the aim of this paper to point to the possibility of

studying the structural differences between the pion and its

radial excitation [54], πð1300Þ. In this paper, we will

provide reasonable evidences to justify that the excited

state that we observe on the lattice shows properties of a

single particle state with similar mass to that of πð1300Þ, a
broad resonance state with decay-width of 200 to 600 MeV,

which has been rendered stable in the fixed finite volume of

this lattice computation. Then, we will show interesting

features in the excited state bilocal quark bilinear matrix

elements and the extracted PDFs and its moments, all under

the justified hypothesis that the first excited state on the

lattice is indeed πð1300Þ.

II. DETAILS ON TWO-POINT FUNCTION

ANALYSIS AND EVIDENCES FOR πð1300Þ AS THE

FIRST-EXCITED STATE

In Refs. [35,37], we previously studied the valence PDF

of a 300 MeV pion at two fine lattice spacings of 0.04 fm

and 0.06 fm. In those studies, we utilized the Wilson-

Clover valence quark action and the HISQ sea quark action.

We refer the reader to [35,37] for complete discussion on

the lattice set-up used for the computation. In this section,

we discuss the numerical evidences in these previous

computations that the first excited state, occurring in the

spectral decompositions of the two-point and the three-

point functions, is likely to be a single particle state, and

that it corresponds to the first pion radial excitation,

πð1300Þ. We will do this by first showing that the excited

state energy obtained by the two- and three-state fits to the

pion two-point function is consistent with a single particle

energy-momentum dispersion relation. Then, we will

notice that the mass of this state obtained from the Pz ¼
0 correlator lies close to 1.3 GeV, the pole mass of πð1300Þ,
and the discrepancy is only about 200 MeV. A source of

this discrepancy could simply be the heavier than physical

pion mass used in this work. Another source could be that

the first excited state is computed in a fixed finite volume,

and it can differ from the pole mass of the actual resonance

in the infinite volume limit. Below, we elaborate further.

In this work, we solely concentrate on the a ¼ 0.04 fm

lattice spacing ensemble used in [35], which consists of

Lt × L3 lattices with Lt ¼ L ¼ 64. We used Gaussian

smeared-source smeared-sink setup (SS), as well as the

smeared-source point-sink setup (SP) to determine the two-

point functions of pion,

C2ptðtsÞ ¼ hπðP; tsÞπ†ðP; 0Þi: ð1Þ

In the above construction, we used momentum (boosted)

quark smearing [55] to improve the signal for the boosted

hadrons. We have discussed the details of the parameters

used in the source-sink construction, as well as our analysis

methods for the two-point function in our previous pub-

lication Ref. [35]. It is worth pointing out that we were able

to obtain a visible signal for the first excited state in the

a ¼ 0.04 fm computation, that we will describe in the next

section, because the smearing radius of the quark sources

was kept constant in lattice units instead of in physical

units; namely, for the a ¼ 0.06 fm ensemble with an

optimal tuning, the radius of Gaussian source was

0.312 fm, whereas on the a ¼ 0.04 fm ensemble, our

choice resulted in a radius of 0.208 fm which is smaller

than the optimal one.

We analyzed the spectral content of the two-point

function through fits to the two- and three-state Ansatz;

namely

C2ptðtsÞ ¼
X

Nstate−1

i¼0

jAij2ðe−Eits þ e−EiðLt−tsÞÞ; ð2Þ

with Nstate ¼ 2 and 3 respectively. The amplitudes Ai and

the energies Ei are the fit parameters in this analysis. The

reason for using two different choices of source and sink is

two fold; first, the SP correlator has a larger contribution

from the excited state and second, to check for the

consistency between the energies extracted using the two

independent set of correlators.We checked for the robustness

of the fit parameters by varying the range of source-sink

separation, ts ∈ ½tmin; tmax�, used in the fits and by making

sure that the parameters have plateaued. In [35], we studied

only pions boosted along the z-direction. For this work, we
also used pions boosted with spatial momenta P ¼
ðPx; Py; PzÞ with non-zero Py and Px for the two-point

function analysis, and obtained their ground state pion

energy E0 as a function of P using two-state fits to both

SP and SS correlators. We were able to isolate the ground

state energy well using a fit range shorter than

ts ∈ ½0.56 fm; 32a�, whose values were consistent between
both the SS and SP correlators. The resulting values of the

ground-state E0ðPÞ followed the continuum dispersion

relation,
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E0ðPÞ2 ¼ M2
π þ jPj2; ð3Þ

withMπ ¼ 0.3 GeV, to a very good accuracy even up to our

largest momentum jPj ¼ 2.42 GeV on our fine lattice.

Having demonstrated that the actual lattice results for the

ground state satisfied our expectations about a single particle

pion state,we simply used the values ofE0ðPÞ fromEq. (3) to

fix the values of E0 in the spectral decomposition in Eq. (2)

and determined the other free parameters; namely the

amplitudes of the ground and first excited state, and the

energy of the first excited state.

We determined the first excited state energy E1ðPÞ using
(1) two-state fits to the SS and SP correlators with fixed

value taken from the dispersion relation for E0, and (2) by

using three-state fits to the SS correlator with fixed E0 and

imposing a prior on E1 with the central value and width of

the prior set to the best fit value of E1 and its error obtained

from the two-state fit to the SP correlator. In Fig. 1, we

show the dependence of E1 on the fit range ½tmin; 32a�.
Each panel corresponds to the six different momenta

P ¼ ð0; 0; PzÞ, and for each momentum, we have shown

the tmin dependence of E1 from the two-state fit. The best fit

values of E1 plateau for ts ≥ 10a. First, we notice that the
best fit value of E1ðPz ¼ 0Þ ¼ 1.456ð92Þ GeV, numeri-

cally lies close to the central value of the 1.3 GeV physical

mass of the pion radial excitation. This difference of about

200 MeV between the lattice result and physical value for

the first excited state is also close to the 150 MeV differ-

ence between the mass of pion in our lattice computation

and physical pion mass. This observation initially lead us to

identify the first excited state on the lattice with the pion

radial excitation.

In Fig. 1, we also show the value of E1ðPÞ expected

from a single particle dispersion relation with a mass

M1 ¼ E1ðP ¼ 0Þ ¼ 1.5 GeV. We find that the best fit

values of E1 indeed approach the expected continuum

values for nonzero momenta. This shows that the first

excited state is likely to be a single particle eigenstate, and

not a pseudo single particle state that effectively captures a

continuum of multiparticle states. In the case of pion, such a

possible multiparticle excited state is a three pion state with

zero angular momentum and with their total isospin being

1. For our ensemble, we estimate the invariant mass of such

a state to be 0.9 GeV, which is much smaller than the first

excited state we are finding. One possibility is that the

Gaussian source we are using does not have an overlap with

the three pion state due to its vastly different delocalized

spatial distribution compared to a localized single particle

state. To summarize our evidence for observing πð1300Þ,
we plot the energy-momentum dispersion relation for the

ground state and the first excited state in the left panel of

Fig. 2. ForE1, we have shown its estimates from the two-state

fits with prior onE0, and from three-state fits with prior onE0

andE1 as described above—these are shownas theblue filled

and open squares in the figure, and they can be seen to agree

well with each other. We find that bothE0 andE1 agree with

their respective single particle dispersion curves. From the

three-state fits with priors on E0 and E1, we were able to

estimate the second excited state E2, which must capture the

tower of excited states above πð1300Þ. In the right panel of

Fig. 2, we have shown these estimates for E2 as the black

triangle points, and shown it in comparison toE0 andE1. We

will use results on the spectrum from the three-state fit in the

further analysis of three-point functions.

FIG. 1. The dependence of the first-excited state energy E1ðPÞ on the range ½tmin; 32� used in the two-state fits to the SS correlator is

shown. The different panels are for six different values of momentum P ¼ ð0; 0; PzÞ. For large tmin, the best fit values have a tendency to

approach the dispersion values, E1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P2
z þM2

1

p

with M1 ¼ 1.5 GeV, shown as the horizontal lines.
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Having demonstrated that the first-excited state observed

in our computation is likely to be the first radial excitation

of pion, we will henceforth work under the assumption that

this is indeed the case, and ask for the properties of this

excited state given this justified assumption. In the rest of

the paper, we will refer to the first excited state in our lattice

computation by π0, rather than calling it as πð1300Þ. This is
because the mass of the first excitation on our lattice is not

1300 MeV, and for the sake of brevity. We will also simply

label the first excited state mass M1 as Mπ0 .

III. EXTRACTION OF EXCITED STATE BILOCAL

QUARK BILINEAR MATRIX ELEMENT

The quantity that is central to both the quasi-PDF [23]

and the pseudo-PDF [25] formalisms of extracting the

PDFs is the forward hadron matrix element of a bilocal

operator involving the quark and antiquark spatially sep-

arated by distance z along the direction of the fast moving

hadron. In order to determine the required bilocal quark

bilinear matrix elements of the boosted π and π0, we

computed the three-point function

C3ptðz; τ; tsÞ ¼ hπSðP; tsÞOðz; τÞπ†SðP; 0Þi; ð4Þ

with both the source and sink smeared. The bilocal operator

involving quark and antiquark separated spatially by

distance z is

Oðz; τÞ ¼
X

x

½ūðxþ LÞγtWzðxþ L; xÞuðxÞ

− d̄ðxþ LÞγtWzðxþ L; xÞdðxÞ�; ð5Þ

where x ¼ ðτ;xÞ with τ being the time slice where the

operator is inserted, and the quark-antiquark being dis-

placed along the z-direction by L ¼ ð0; 0; 0; zÞ. The bilocal
operator is made gauge-invariant by using a straight Wilson

line Wz constructed out of 1-HYP smeared gauge links.

Since we are interested only in the parton distribution

function in this paper, we used P ¼ ð0; 0; PzÞ that is along
the direction of Wilson line for the three-point function

computations. We used,

Pz ¼
2π

aL
nz; ð6Þ

with nz ¼ 0, 1, 2, 3, 4, 5. The spectral decomposition of the

three-point function

C3ptðts; τ; z; PzÞ ¼
X

i;j

A�
iAjhijðz; PzÞe−Eiðts−τÞ−Ejτ; ð7Þ

contains information on all the matrix elements between ith
and jth states with the pion quantum number

hijðz; PzÞ ¼ hEi; PzjOðzÞjEj; Pzi: ð8Þ

FIG. 2. Observation of particlelike dispersion for the ground-state and first excited state in the pion correlator. Left: the energies of first

two excited states as extracted from two-state and three-state fits to the pion two-point function are shown as a function of the magnitude

of spatial momentum jPj. The red circles are for the ground state pion using two-state fit to the SS correlator. The blue symbols are for

E1; the filled ones correspond to estimates from two-state fits and the open ones to the estimates from three-state fits with priors based on

the estimates from the SP correlator. The values of E1 from the two types of fits agree well with the particlelike dispersion
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jPj2 þ E1ð0Þ2
p

(blue band). Right: the second excited state E2 from the three-state fits are shown in addition to E0 and E1.
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We obtained the values of the amplitudes jAij and the

energies Ei from the analyses of C2pt. We fixed them to the

central values from the three-state fits. One can extract

the matrix elements hij by fitting the ts and τ dependence of

C3pt data to the spectral decomposition above, with hij
being the unknown fit parameters. In practice, for the cross-

terms such as A�
0A1h01, we simply treated the real part of

such whole factors together as the fit parameters, whereas

for the diagonal terms only the magnitudes jAij enter, and
therefore, we were able to resolve the diagonal matrix

elements hii without any phase ambiguity.

We implemented this analysis by first forming the

standard ratio

Rðts; τ; z; PzÞ≡
C3ptðts; τ; z; PzÞ
C2ptðts;PzÞ

; ð9Þ

so that the leading term in this ratio as ts → ∞ is the ground

state matrix element h00. In [35], we presented detailed

analysis of the ratio R using both the two-state and three-

state fits. In that work, we found that a simple two-state fit

was enough to obtain h00 which was consistent with a more

elaborate three-state fit as well as with the summation

method. On the one hand, a simple two-state fit is not

justified here, as we are interested in the first excited state,

and therefore, at least one more state other than the first

excited state should be included in the analysis. On the

other hand, a full three-state analysis involving 9 indepen-

dent fit parameters will make the determinations of h11
noisy. Therefore, we experimented with variations of the

three-state fit by reducing the number of parameters in the

fit and by imposing prior on the ground state matrix

element h00 from the two-state fit. We first performed

the full three-state fit with 9 parameters, which we call as

the fit of type-1. Then, in a fit of type-2, we imposed a prior

on h00 keeping all other fit parameters of the full state fit to

be free; for the prior and its width we took the value of h00
and its statistical error from the two-state analysis of the

three-point function. In a fit of type-3, in addition to

imposing the prior on h00, we also assumed that we can

ignore the second-excited state matrix element h22, thereby

reducing the fit parameters to 8 (or effectively 7, due to the

prior). In all the three Ansatze, we kept all the matrix

elements which involved the first excited state.

In Fig. 3, we show π0 matrix element, h11, as a function

of z at the three largest momenta. The different colored

symbols are the extrapolations using the above three types

of three-state Ansatz. For nz ¼ 3, the type-1, nine-param-

eter three-state fit actually performs better than when

constraints are imposed. However, this is not true at the

higher nz ¼ 4, 5 momenta, which are crucial to ensure that

the momenta are larger than the π0 mass. For nz ¼ 3, the

type-2 fit results in noisier estimates of h11 compared to

type-1, whereas the type-3 fit results are consistent with

type-1 results with a slight reduction in errors. Therefore,

we find that the type-3 Ansatz leads to a reasonable

reduction in the statistical errors with only the assumption

that h22 matrix element can be ignored. In fact, from the

unconstrained type-1 fits, we found that the resulting values

for h22 were consistent with zero and it was merely making

the results noisier. Therefore, the usage of type-3 Ansatz to

obtain better estimates of h11 seems to be justified. We tried

reducing the number of parameters further by ignoring the

cross-terms h12 and h21, but it resulted in unreasonably

ultraprecise estimations of h11, showing that such con-

straints rule out most of the parameter space—it would

have been a positive outcome if there was a strong

theoretical underpinning to ignoring the cross-terms, but

in the absence of such a justification, we avoided using

such stricter constraints. From the fit results for nz ¼ 5

shown in the rightmost panel of Fig. 3, the usage of type-3

fit renders h11 at this momentum usable. In the analysis of

PDF that follows, we will use the values of h11 obtained

using type-3 Ansatz for the extrapolations, and we will also

show results from the type-1 fits to contrast it against.

The bilocal operator O needs to be multiplicatively

renormalized [56–58]. The details pertaining to renormal-

ization as applied to our computations are described in

detail in [35,37]. One possibility is to determine the

renormalization factors Zγtγt
ðz; PRÞ in the RI-MOM

scheme [59–61] using off-shell quarks at momentum

PR ¼ ðPR
z ; P

R
⊥
Þ,

FIG. 3. The bare matrix element, h11ðz; PzÞ, for the first excited state of pion is shown using three different types of three-state fits. The
panels from left to right correspond to nz ¼ 3, 4, 5 momenta respectively. The three types are distinguished by the colored symbols.
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hR
π0π0ðz; Pz; P

RÞ ¼ Zγtγt
ðz; PRÞh11ðz; PzÞ

Zγtγt
ð0; PRÞh11ð0; PzÞ

; ð10Þ

In addition to the multiplicatively renormalizing the oper-

ator, the ratio with the corresponding matrix element at

z ¼ 0, helps reduce lattice corrections and any overall

systematical corrections, so that the expectation value of

the isospin charge of the pion is 1 by construction at all

momenta. Another possibility is to form renormalization

group invariant ratios [26,35,62,63] between the bare

matrix elements at two different momenta,

Mπ0π0ðz; Pz; P
0
zÞ ¼

�

h11ðz; PzÞ
h11ðz; P0

zÞ

��

h11ð0; P0
zÞ

h11ð0; PzÞ

�

: ð11Þ

In the above ratio, the UV divergence of the operator is

exactly canceled between the two bare matrix elements.

Similar to an improved version of the RI-MOM scheme we

defined in Eq. (10), the double ratio at nonzero z and z ¼ 0

matrix elements in the above equation ensures that the

isospin charge is normalized to 1. Since the UV divergence

does not depend on the external states, the two matrix

elements in the ratio need not be for the same hadron.

Therefore, we also construct the following ratio using the

ground state pion matrix element as

Mπ0πðz; Pz; P
0
zÞ ¼

�

h11ðz; PzÞ
h00ðz; P0

zÞ

��

h00ð0; P0
zÞ

h11ð0; PzÞ

�

: ð12Þ

For the above ratio, we take our determination of h00ðz; P0
zÞ

from [35]. In the next section, wewill discuss the relation of

the above matrix elements to the PDF via the one-loop

leading-twist perturbative matching.

Before performing any double ratio, we can use the

z ¼ 0 renormalized matrix element to perform a simple

cross-check. The pion source πðPz; tsÞ can excite only one

unit of the isospin charge, and hence each of the states that

occurs in the spectral decomposition of the pion two-point

function will carry unit isospin (up to terms due to wrap-

around effects, which are negligible for heavy excited

states). Therefore, measuring the isospin of our first excited

state before imposing any normalization condition serves a

cross-check of the excited state extrapolations. In Fig. 4, we

show Zγtγt
ðz ¼ 0; PRÞh11ðz ¼ 0; PzÞ as a function of Pz

after renormalization in RI-MOM scheme. It is the isospin

charge modulo the quark wave function renormalization

which is nearly 1 at this lattice spacing [37]. At Pz ¼ 0, our

ground-state matrix element determination suffers from 2%

lattice periodicity effects [35], that in turn affects all the

fitted parameters in the three-state fit, particularly resulting

in a value of Zγtγt
h11 slightly larger than 1. At all other

nonzero Pz, the extracted isospin of the first excited state is

consistent with 1, lending more confidence in the reliability

of our extrapolations.

IV. COMPARISON OF THE PDFS OF π AND π
0

We used our estimates of h11 from the type-1 and type-3

fits to obtain the PDF of π0. For this, we used the twist-2 OPE
expressions [62] corresponding to the renormalized matrix

elements described above. For the RI-MOM matrix element

at renormalization scale PR, the twist-2 expression is

hR
π0π0ðz; Pz; P

RÞ ¼ 1þ
X

cRIn ðμ; PR; z2Þhxniπ0
ð−iPzzÞn

n!
;

ð13Þ

where the sum above runs over only the even values of n for
the valence PDF of the pion and its excitations due to the

isospin symmetry. The 1-loop expression for the RI-MOM

Wilson coefficients is given in [35] using results in [31,64].

The terms hxniπ0ðμÞ ¼
R

1
0
xnfvðx; μÞdx are the moments

1
of

the valence PDF fvðx; μÞ of the first excited state in the MS

scheme at factorization scale μ. Wewill consistently use μ ¼
3.2 GeV for all the determinations in this paper. The twist-2

OPE expression for the ratio scheme [62] is

Mπ0π0ðz; Pz; P
0
zÞ ¼

1þP

cnðμ2z2Þhxniπ0 ð−iPzzÞn
n!

1þP

cnðμ2z2Þhxniπ0 ð−iP
0
zzÞn

n!

; ð14Þ

using the expressions for the Wilson coefficients cn given in
[62,65]. Here, we also present results using a variant of the

ratio schemeMπ0π described in the last section, and it has the

leading twist expression,

Mπ0πðz; Pz; P
0
zÞ ¼

1þ
P

cnðμ2z2Þhxniπ0 ð−iPzzÞn
n!

1þ
P

cnðμ2z2Þhxniπ ð−iP0
zzÞn

n!

; ð15Þ

FIG. 4. The RI-MOM renormalized local matrix element (mod

Zq ≈ 1) at z ¼ 0with ðPR
z ; P

R
⊥
Þ ¼ ð1.93; 3.34Þ GeV is shown as a

function of Pz for the pion (blue) and π
0 (red) as obtained from the

three-state type-3 fit. The wrap-around effect present in the three-

point function at Pz ¼ 0 is not accounted for in the plot.

1
The nomenclature followed in this paper is such that hxni is

the nth moment.
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where the moments hxniπ are those of the ground state pion.
We take their values from our analysis of the pion valence

PDF and its moments on the same ensemble presented in

[35]. Since the mass of π0 is about 1.5 GeV, we took care of

targetmass correction at leading twist by replacing ðPzzÞn →

ðPzzÞn
Pn=2

k¼0

ðn−kÞ!
k!ðn−2kÞ! ð

M2

π0
4P2

z
Þ
k
in the above expressions [66,67].

We work under the assumption that any target mass correc-

tion that can occur at higher twist are negligible. In order to

justify this further, we eventually used only the matrix

elements at the two highest momenta corresponding toPz ¼
1.93 and 2.42 GeV as we discuss below.

We performed two kinds of analysis. In a model

independent analysis, we fitted the renormalized matrix

elements spanning a range of Pz > P0
z and z ∈ ½zmin; zmax�

using their respective leading twist expressions above, with

the even moments hxniπ0 as the independent fit parameters.

In the second kind of model dependent analysis, we

assumed a two-parameter functional form of valence

excited state PDF,

fvðxÞ ¼ N xαð1 − xÞβ; ð16Þ

and fitted the resulting moments (which are functions of α

and β) to best describe the z and zPz dependences of the

data. This enabled us to reconstruct the x-dependent PDF.
Since the data for the excited state is noisy, we could not

improve the above parametrization by adding additional

small-x terms, as we did for the pion in [35]. In the future,

one needs to perform a similar analysis with multiple

functional forms of the PDFAnsatz to quantify the amount

of systematic error.

We first describe our reconstruction of the PDF using the

two-parameter functional form. In Fig. 5, we put together

the renormalized bilocal matrix elements
2
at different fixed

momenta and show them as a function of zPz. The left,

middle, and the right panels are in the two ratio schemes,

Mπ0π0 and Mπ0π , and in the RI-MOM scheme with

ðPR
z ; P

R
⊥
Þ ¼ ð1.93; 3.34Þ GeV respectively. We have used

the first nonzero momentum, P0
z ¼ 0.48 GeV as the refer-

ence momentum to construct the ratios, which is slightly

aboveΛQCD and also contributes minimally to the statistical

noise. In the top panels, the data from the three highest

momenta are shown, whereas in the bottom panels, only the

two highest momenta, Pz ¼ 1.93 and 2.41 GeV, which are

larger than the excited state mass of 1.5 GeV are shown.

The bands are the expectations based on the best fits using

the two-parameter PDFAnsatz; the bands are colored in the

FIG. 5. The excited state matrix elements renormalized in three different schemes (ratios Mπ0π0 , Mπ0π and RI-MOM hR from left to

right) are shown as a function of zPz. The data points of the same momenta are shown using same colored symbols. The top panels show

largest three momenta and the bottom one includes only the largest two. The bands are the fits using the respective leading-twist OPEs to

data assuming a two-parameter functional form of the PDF.

2
The quantity zPz has also been referred to as the Ioffe-time

[68], and the bilocal matrix element is also referred to as the Ioffe-
time Distribution [25]. In the lack of a short-distance limit or
infinite momentum limit, the matrix element is common and
exactly the same for both LaMET as well as the short-distance
factorization used in pseudo-PDF approach. Therefore, we refer
to the renormalized matrix elements as simply bilocal matrix
elements, without any ambiguity.
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same manner as the corresponding data points at different

momenta. For the cases shown in the top panel, we

performed the fits using all the three momenta shown,

and over a range of quark-antiquark separation

z ∈ ½2a; 0.6 fm�. Given the noisy data compared to that

of the ground state pion, we could not perform an ideal

analysis, where one would want to keep range of z even

smaller than what is used here. We skipped z ¼ a to avoid

the ðPzaÞ2 lattice correction [35]. Overall, the fits can be

seen to perform well regardless of the momenta included in

the analysis. However, upon a close inspection of the

analyses in the top-panel, we find that the evolution of the

data with Pz at different fixed zPz has opposite trends

between the data and the fits; namely, the central values of

the data have a decreasing tendency from Pz ¼ 1.45 GeV

to 2.41 GeV (albeit well within errors), whereas the fitted

bands have the opposite behavior. This indicates the

presence of possible higher twist corrections when matrix

elements at momentum Pz ¼ 1.45 GeV, which is compa-

rable to the mass of the excited state, is included in the

analysis. On the other hand, in the lower-panel, the data at

the two highest momenta are compatible with each other

and the fitted bands are also seen to be describing the data

well. Therefore, to be cautious, we will simply include the

data at the two highest momenta in the analysis henceforth.

In Fig. 6, we show the x-dependent valence PDF of the

excited state, fvðxÞ, that is reconstructed based on the two-

parameter Ansatz fits in the real-space shown as bands in

the bottom panels of Fig. 5. The right panel of Fig. 6 is

based on fits to the matrix elements obtained using type-3

extrapolation, whereas the left one is using the type-1

extrapolation. We have compared the PDF determinations

as obtained from the fits to the matrix elements in the three

different renormalization schemes. For comparison, the

central value of the ground state pion PDF from the same

ensemble [35] is shown as the dashed green line. First, the

usage of type-1 extrapolated matrix elements results in very

noisy PDF that cannot be used to find any hints of structural

differences; within the large errors, the excited pion PDF is

consistent with the ground state PDF. On the other hand, the

usage of type-3 extrapolated matrix element does result in

better determined PDFs. Therefore, let us focus on the right

panel of Fig. 6. The consistency among the estimates from

different renormalization schemes, which differ also in their

matching formulas, is reassuring. UsingMπ0π0 , we found the

PDF is parametrized by fα; βg ¼ f0.4ð3Þ; 1.1ð2Þg. It is very
clear that the PDFof the radial excitation is different from the

ground state—the excited state PDF is consistently above the

pion PDF starting from an intermediate x ≈ 0.3 to large-x.
There is a tendency in the excited state PDF to vanish at

small-x, but it is not conclusive given the errors and also due
to possibly large higher-twist effects contaminating the

small-x regime. Thus, the overall trend seems to be that

the valence PDF of the radial excitation is shifted toward

larger-x compared to the ground state valence PDF. This

points to smaller momentum fraction being carried by gluons

and sea quarks in the radially excited state compared to

the pion.

In Fig. 7, we compare the first four valence PDF

moments of the radial excitation obtained using the

model-dependent and model-independent analyses. The

results for π0 from various fitting procedures are shown

on the left part of the plot, and the values of the valence

PDF moments for the pion, taken from our previous work

on the same ensemble [35], are shown on the right part of

the figure. For the model-independent fits, we used the first

three even moments hx2i, hx4i and hx6i themselves as the

fit parameters. We also imposed the inequality conditions

between the valence moments as discussed in [35]. Similar

to the PDFAnsatz fits, we present the results of the fits over

FIG. 6. The valence parton distribution function fvðx; μÞ of π0 at μ ¼ 3.2 GeV, as reconstructed from real space matrix elements using

fits to simple two-parameter Ansatz fvðx; μÞ ¼ N xαð1 − xÞβ. The results for the valence PDF obtained using the bilocal matrix elements

in three different renormalization schemes are shown using the different colored bands. The results using type-1 and type-3 matrix

elements are shown on the left and right panels respectively. The valence PDF of pion as determined using the same ensemble and

analysis methods as used for π0 is shown as the dashed curve for comparison.
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a z-range of ½2a; 0.6 fm� in Fig. 7; the model-independent

fits to type-1 and type-3 matrix elements are labeled as A

and B in Fig. 7. Since we cannot determine the odd

moments directly by this model-independent procedure,

only the results for hx2i and hx4i are shown for them. The

results for the moments as inferred from the two-parameter

fits, using the relation hxni ¼
R

1
0
xnfvðxÞdx, are also shown

for π0 in Fig. 7; the results from fits to type-1 and type-3

Mπ0π0 are labeled as C and D, whereas the ones from fits to

type-3 Mπ0π matrix element are labeled as E. It is

comforting that the PDF Ansatz fits result in values of

the even moments that are consistent with those from the

model-independent fits. This also gives us the confidence in

the indirect determination of the odd moments via this

procedure. To justify this indirect method, taking the case

of the pion where the phenomenological values of the odd

moments are known, in [35], we found that similar analysis

via fits to PDF Ansatze resulted in values of the odd

moments that agreed reasonably well with the phenom-

enological values.

It is at once striking that the moments of π0 are larger than
that of the pion, especially in the case of the lowest two-

moments hxi and hx2i. Quantitatively, by taking the values

of fhxi; hx2ig from the method “D” in Fig. 7, we see that

they are f0.40ð4Þ; 0.21ð3Þg for π0, which is to be compared

with f0.2289ð96Þ; 0.1083ð47Þg for the pion. This is the

reason we observed the valence PDF of π0 to be above that

of the pion at higher values of x. Therefore, at a scale of

3.2 GeV, only 20% of the π0 momentum fraction comes

from gluons and sea quarks, which forms a larger 56%

component for the ground state pion. Thus, within the

two-parameter PDF Ansatz analysis, it appears that the

valence quarks carry almost twice the momentum fraction

in the radial excitation of the pion compared to its ground

state. This link could simply be a correlation or perhaps be

causal, which needs to be investigated using simpler

models.

V. CONCLUSIONS AND OUTLOOK

In this work, we presented a proof-of-principle compu-

tation of the first excited state of the pion determined in a

fixed finite volume and at a fixed fine lattice spacing. We

argued that the first excited state is most likely to be a single

particle state since its energy satisfies a single particle

dispersion relation. Also, the mass of the state compares

well with the central value of the experimentally observed

radial excitation, which is however a resonance in the

infinite volume limit. Given the observations, we hypoth-

esized that the first excitation on our lattice is that of the

pion radial excitation, πð1300Þ. With a reasonable reduc-

tion in the number of unknown parameters in the three-state

fits to the three-point function involving the bilocal quark

bilinear operator, we were able to extract the boosted

πð1300Þ matrix elements. We performed a model-indepen-

dent analysis to obtain the even valence PDF moments, and

used model-dependent PDFAnsatz fits to reconstruct the x-
dependent valence PDF at a scale of μ ¼ 3.2 GeV. We

found evidences that in indicate that (1) the valence PDF

of πð1300Þ consistently lies above that of the pion for

intermediate and large-x regions, thereby indirectly, imply-

ing a reduced role of gluons and sea quarks in the excited

state. (2) Quantitatively, the lower moments of πð1300Þ
were about twice larger than that of π.

The present work was meant only as a pilot study toward

understanding how the ground and excited states of

hadrons differ. Therefore, this study can be made more

rigorous in at least three major ways: (1) One could either

render the radial excitation to be stable single-particle state

by using a larger unphysical pion mass (e.g., [52]), or one

needs to perform a dedicated finite-size scaling study

of the excited state PDF in order to make connection with

the actual resonance state in the thermodynamic limit.

(2) Usage of larger operator basis in two-point functions

that will lead to a more sophisticated spectroscopy of the

pion correlators leading to a more convincing determina-

tion of the first excited state as well as its quantum

numbers. (3) Incorporating similar techniques for the

three-point function for a reliable determination of the

excited state matrix element without involving any reduc-

tion in number of fit parameters as done here. An

implementation of n-state fits via the generalized eigen-

values problem (GEVP) approaches [69–72] will allow a

more reliable determination of the excited state masses.

(4) The extension of the theoretical framework [73,74] to

determine the infinite volume matrix element of spatially

extended operators within resonance states will make the

FIG. 7. The lowest four valence PDF moments of the pion

radial excitation π0 is compared with those of the ground state

pion π. For the radial excitation, both the even and odd moments

extracted from the two-parameter PDFAnsatz fit are shown along

with direct model independent estimates of even moments:

(A) model-independent fit to type-1 Mπ0π0 . (B) model-indepen-

dent fit to type-3 Mπ0π0 . (C) PDF Ansatz fit to type-1 Mπ0π0 .

(D) PDFAnsatz fit to type-3 Mπ0π0 . (E) PDF Ansatz fit to type-3

Mπ0π . The dashed line connect the central values of π0 moments

to that of π, to aid the eye.
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future studies on the excited hadron parton structure to be

theoretically pristine (see [75,76] for recent works).

As a concluding remark, in the absence of a microscopic

theory of the transition from pion to its radial excitation, we

propose the following momentum differential as a useful

quantity. To motivate the quantity, one can consider a

process, such as π0 → π þ ðππÞS-wave, for a special instance
with both π0 and π after the transition are at rest in the lab

frame, and the difference in their masses carried by other

product states. In such an artificially constructed exper-

imental outcome, one could ask how the change,

ΔPþ ¼ ðMπ0 −MπÞ=
ffiffiffi

2
p

, compares to the change in the

average momentum Δhkþi¼ðMπ0×2hxiπ0−Mπ×2hxiπÞ=
ffiffiffi

2
p

of the two valence partons in π0 and π. This motivates

the construction of the Lorentz invariant ratio,

ζ ¼ 2Mπ0hxiπ0 − 2Mπhxiπ
Mπ0 −Mπ

; ð17Þ

as a measure to correlate the structural changes to the

differences in the masses. Using ΔM ¼ 1.2 GeV, we find

that the fraction ζ ranges from 0.78 to 0.99 given the

variations within 1-σ errors on the first moments we

discussed above. Even if we discount a 2-σ variation,

the fraction is at least 0.68. Even such a simple-minded

modeling of the excitation tells us that the changes to the

dynamics of valence parton could play an major role in

exciting a pion.
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