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A lattice QCD approach to quark orbital angular momentum in the proton based on generalized

transverse momentum-dependent parton distributions (GTMDs) is enhanced methodologically by

incorporating a direct derivative technique. This improvement removes a significant numerical bias that

had been seen to afflict results of a previous study. In particular, the value obtained for Ji quark orbital

angular momentum is reconciled with the one obtained independently via Ji’s sum rule, validating the

GMTD approach. Since GTMDs simultaneously contain information about the quark impact parameter

and transverse momentum, they permit a direct evaluation of the cross product of the latter. They are

defined through proton matrix elements of a quark bilocal operator containing a Wilson line; the choice in

Wilson line path allows one to continuously interpolate from Ji to Jaffe-Manohar quark orbital angular

momentum. The latter is seen to be significantly enhanced in magnitude compared to Ji quark orbital

angular momentum, confirming previous results.

DOI: 10.1103/PhysRevD.102.074505

I. INTRODUCTION

The manner in which the spin of the proton arises from

the spins and orbital angular momenta of its quark and

gluon constituents has been the object of sustained study.

Efforts to resolve this so-called proton spin puzzle were

sparked by the finding, in EMC experiments [1,2], that the

quark spins alone fail to provide a satisfactory account of

the proton’s overall spin. Naturally, also the methods of

lattice QCD have been brought to bear on the problem, with

the standard calculational scheme relying on Ji’s sum rule

[3]. The sum rule relates the total quark angular momentum

J to specific moments of generalized parton distributions

(GPDs), and by combining this with a calculation of the

quark spin S [4,5], one can then also isolate the quark

orbital angular momentum L ¼ J − S [6–12]. The more

recent studies have furthermore begun to gain control over

the gluon angular momentum [10–12] and gluon spin [13]

contributions.

The aforementioned indirect approach to quark orbital

angular momentum is limited specifically to the Ji decom-

position of proton spin associated with Ji’s sum rule.

However, the definition of quark orbital angular momen-

tum in QCD is not unique, since the matter degrees of

freedom in a gauge theory cannot be unambiguously

separated from the gauge degrees of freedom. Quarks

necessarily carry gauge fields along with them, and it is

a matter of definition to what extent these are included in

the evaluation of quark orbital angular momentum. In

addition to the Ji decomposition of proton spin, another

widely studied decomposition scheme is the one due to

Jaffe and Manohar [14]. It possesses the conceptual

advantage of allowing for a partonic interpretation of the

angular momentum distributions.

A formulation that offers a direct path to evaluating quark

orbital angular momentum and that encompasses both of

the aforementioned decompositions is the one in terms of

generalized transverse momentum-dependent parton distri-

butions (GTMDs) [15–17]. GTMDs, as functions of quark
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transverse momentum kT as well as momentum transfer

ΔT , are related, through the Fourier conjugate pair ðΔT ; bTÞ
(with bT denoting the quark impact parameter), to Wigner

functions that allow one to sample directly orbital angular

momentum bT × kT . GTMDs are defined through a quark

bilocal operator containing a Wilson line, and it is the

choice of path of the Wilson line that allows one to access

different definitions of quark orbital angular momentum. In

particular, it was realized in [18] that Jaffe-Manohar orbital

angular momentum is associated with a staple-shaped path

in the limit of infinite staple length, an operator type

extensively studied in the context of standard transverse

momentum-dependent parton distributions (TMDs). On the

other hand, Ji orbital angular momentum results from

using a straight path [19–22]. It should be noted that

an alternative proposal to access Jaffe-Manohar orbital

angular momentum using a gauge-fixed formulation was

put forward in [23].

An initial lattice QCD exploration of the GTMD

approach to quark orbital angular momentum was under-

taken in [24]. By varying the staple length of a staple-

shaped Wilson line path in small steps, a quasicontinuous,

gauge-invariant interpolation between the Ji and Jaffe-

Manohar limits was realized. In performing this study, it

was possible to take recourse to concepts and methods from

standard lattice TMD studies [25–29], since, as noted

above, the same operator structure enters; GTMD matrix

elements only differ by their additional dependence on the

momentum transfer ΔT. Jaffe-Manohar quark orbital angu-

lar momentum was seen to be significantly enhanced in

magnitude relative to its Ji counterpart. The results obtained

in [24] were, however, affected by one substantial short-

coming: Although the relative comparison between Ji and

Jaffe-Manohar quark orbital angular momentum could be

expected to be trustworthy, in absolute terms, the orbital

angular momenta were significantly underestimated for a

technical reason. Namely, the weighting by bT in orbital

angular momentum bT × kT corresponds to computing a

derivative with respect to ΔT of the relevant GTMD matrix

element. This derivative was realized via a finite difference

over a momentum interval that was much too large to yield

an accurate estimate. This became directly apparent in

comparing the result for Ji quark orbital angular momentum

with the corresponding result obtained using Ji’s sum rule.

The discrepancy amounted to approximately a factor of 2.

The present work resolves this discrepancy by incorporat-

ing a direct derivative method to evaluate the ΔT derivative.

This methodological improvement removes the described

bias by construction and will be seen to reconcile the results

obtained through the GTMD approach and through Ji’s

sum rule. This validates the GTMD approach as imple-

mented here.

The present study also uses pion mass mπ ¼ 317 MeV,

which is significantly lower than the mass mπ ¼ 518 MeV

used in the initial exploration [24].

II. GTMD APPROACH TO QUARK ORBITAL

ANGULAR MOMENTUM

As laid out in detail in [24] (cf. also [16,17]), the

longitudinal quark orbital angular momentum component

L3 in a longitudinally polarized proton propagating in the

3-direction with momentum P can be evaluated within

lattice QCD in units of the number of valence quarks n via

L3

n
¼ 1

a
ϵij

∂

∂ΔT;j
ðΦðae⃗iÞ −Φð−ae⃗iÞÞ

Φðae⃗iÞ þΦð−ae⃗iÞ

�

�

�

�

ΔT¼0

ð1Þ

(summation over i, j implied), with the proton matrix

element

ΦðzTÞ ¼ hPþ ΔT=2; S ¼ e⃗3jψ̄ð−zT=2ÞγþU½−zT=2; zT=2�ψðzT=2ÞjP − ΔT=2; S ¼ e⃗3i: ð2Þ

Here, e⃗3 denotes the unit vector in the longitudinal

direction, whereas e⃗i is a unit vector in a transverse

direction; a denotes the lattice spacing. The momentum

transfer ΔT and the operator separation zT are purely

transverse and orthogonal to each other. U is a Wilson

line connecting the quark operators ψ̄ and ψ ; its path

remains to be specified. This structure can be understood as

follows: In the limit zT → 0, the operator in ΦðzTÞ reduces
to the light-cone þ component of the vector current, and

therefore, at ΔT ¼ 0, ΦðzTÞ simply counts valence quarks

(up to a normalization factor 2Pþ). This motivates the

denominator in (1). Note the use of the nonlocal current

with separation a, matching the numerator; this will be

revisited below. Consider now taking the ΔT derivative of

ΦðzTÞ and evaluating at ΔT ¼ 0. The momentum transfer

ΔT is Fourier conjugate to the quark impact parameter bT,

and therefore, this operation amounts to weighting the

counting of quarks by their impact parameter bT. Likewise,
the operator separation zT is Fourier conjugate to the quark

transverse momentum kT . Thus, taking the derivative with

respect to zT and evaluating at zT ¼ 0 amounts to weighting

the counting of quarks by their transverse momentum kT .
The numerator in (1), together with the division by a, is the
appropriate finite-difference realization of such a zT
derivative; at finite lattice cutoff a, distances smaller than

a cannot be resolved. In aggregate, therefore, (1) evaluates

the total L3 ¼ bT × kT of the quarks in the proton,

normalized to the number of valence quarks n.
An important role in the evaluation of quark orbital

angular momentum falls to the Wilson line U in (2). In a

gauge theory, the matter degrees of freedom cannot be

treated in complete isolation; they necessarily carry gauge
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fields with them, and the evaluation of quark orbital angular

momentum depends on a definition of what part of the

overall gauge field to apportion to quarks as one decomposes

orbital angularmomentum into a quark and a gluon part. The

path of the Wilson line U carries this information. In the

following, staple-shaped paths

U≡U½−z=2; ηv − z=2; ηvþ z=2; z=2� ð3Þ

will be considered, in which the points listed in the argument

ofU are connected by straight Wilson lines, as illustrated in

Fig. 1. The direction of the staple legs is defined by thevector

v, with their length scaled by the parameter η. For η ¼ 0, the

path reduces to a straight line between −z=2 and z=2. For
ease of notation, in the following, ηwill also be allowed to be

negative to reverse the direction of the staple (keeping v
fixed). This class of gauge links contains two important

limits: η ¼ 0 corresponds to the Ji decomposition of

proton spin [19–22], whereas η → �∞, with v pointing

in a lightlike direction, corresponds to the Jaffe-Manohar

decomposition of proton spin [18,20,22]. By varying η

continuously, a gauge-invariant interpolation between these

two decompositions can be obtained.

The operator in (2), extracting information about quark

momentum from the proton state, is of the standard form

used in the definition of TMDs [30–32]. The matrix element

(2) only differs from the standard TMD correlator by the

introduction of the nonvanishing momentum transfer ΔT in

the external states, defining a GTMD correlator [15]

in which the quark momentum information is supplemented

by quark impact parameter information. Consequently,

considerations from the standard TMD framework can be

applied [33] in treating the TMD operator in (2). Physically,

the staple-shaped gauge link path incorporates the effect of

final state interactions on the struck quark in a semi-inclusive

deep inelastic scattering process. The staple legs represent

semiclassical quark paths along which gluon exchanges

with the proton remnant are summed.
1
Generalized to the

impact parameter-dependent case, the staple-shaped gauge

link path thus incorporates into the quark orbital angular

momentum the torque accumulated by the struck quark as it

is leaving the proton [20]. For η ¼ 0, this torque vanishes.

From the formal point of view, the TMD operator

contains divergences that are absorbed into renormalization

and soft factors in the standard TMD framework; these

factors appear multiplicatively in the continuum theory

[30,32–34]. They are identical for all four instances of Φ in

(1) and the ratio is therefore designed to cancel them (of

course, these factors do not depend on ΔT , which only

enters through the external states). This is the chief

motivation for forming the ratio (1) and employing the

nonlocal operator with separation a in the denominator; in

this way, operators in the numerator and denominator

match already at finite lattice spacing. Setting the number

of valence quarks n to the appropriate integer serves as the

renormalization condition. Nonetheless, since the operator

separations in (1) are proportional to the lattice spacing,

additional ultraviolet divergences arise as the lattice spac-

ing goes to zero. This is equivalent to the observation in

momentum space that, even if one has constructed a

renormalized TMD, kT moments thereof may still diverge

as one lets zT , which acts as a regulator on kT integrals, go

to zero. The specific scheme to control that divergence

adopted in (1) amounts to identifying the transverse

momentum cutoff zT with the lattice resolution a. To

connect (1) with its counterpart in other renormalization

schemes such as the standard MS scheme, an additional

matching would be required that is not available at present.

The numerical results presented below suggest that this

unquantified systematic uncertainty is minor. The scale

evolution of quark orbital angular momentum has been

discussed in detail recently in [35], giving an estimate of the

variation expected in the regime in which the lattice

calculation is performed. The numerical calculation to

follow is carried out at a single lattice spacing a; it would
be interesting to extend it to several lattice spacings to

directly observe the scale evolution of the results.

It should be noted that the multiplicative nature of the

renormalization factors in the continuum theory does not

straightforwardly extend to the lattice theory. In general, the

breaking of chiral symmetry engendered by the Wilson

fermion discretization used in this work generates operator

mixing within the class of TMD operators [29,36–38] that

precludes a simple factoring out of renormalization factors

and cancellation in the ratio (1). Also these effects will not

be studied quantitatively in the present work, and they

constitute a further systematic uncertainty. A study of the

Sivers shift ratio [29], in which the same TMD operator

appears as in (2), revealed no significant operator mixing

effects at the level of statistical accuracy achieved in the

calculation; that study included the gauge ensemble used

also in the present work. This suggests that operator mixing

effects also do not introduce a dominant systematic bias in

the results obtained here.

A standard way to regulate the rapidity divergences [39]

contained in the TMD operator for lightlike staple direction

v is to take v off the light cone into the spacelike

FIG. 1. Path of the gauge connection U [cf. (3)] in the

correlator (2).

1
To be specific, this interpretation pertains to the forward in

time, η ≥ 0 branch in the convention adopted below, where v
points in the direction opposite to the proton momentum. Note
that the quark orbital angular momentum is an even function of η.
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region [30,32], while maintaining a zero transverse com-

ponent, vT ¼ 0. A convenient Lorentz-invariant way to

characterize the direction of v is the Collins-Soper-type

parameter

ζ̂ ¼ v · P
ffiffiffiffiffiffiffiffi

jv2j
p ffiffiffiffiffiffi

P2
p ð4Þ

on which the numerical results obtained below will also

depend. Ultimately, one is interested in their large-ζ̂

behavior; this corresponds to v approaching the light cone.

Choosing v to be spacelike simultaneously facilitates a

straightforward connection to the standard lattice QCD

methodology for evaluating hadronic matrix elements:

Given that the temporal dimension in lattice QCD is

Euclidean, serving to project out the hadronic ground state,

the operators of which one evaluates matrix elements

cannot be extended in physical time. However, once a

spacelike vector v is adopted, the problem at hand can be

boosted to a Lorentz frame in which v is purely spatial, and

thus the entire TMD operator in (2) exists at a single time.

The lattice calculation can be performed in that frame.

Maintaining vT ¼ 0 in the lattice frame, v will point purely

in the (negative) 3-direction, v≡ −e⃗3. In that case, ζ̂ ¼
P3=m (where m is the proton mass). Consequently,

achieving large ζ̂ requires large proton momentum com-

ponent P3; this represents a significant challenge—cf. [28]

for a study in the context of the Boer-Mulders effect. On the

other hand, in the special case η ¼ 0, the dependence on the

staple direction v disappears; Ji quark orbital angular

momentum is boost invariant. The corresponding results

obtained below will indeed be seen to be independent of P3

(or, equivalently, ζ̂, if one formally maintains v≡ −e⃗3 in

the lattice frame).

On a lattice of finite extent with periodic boundary

conditions in the spatial directions, momenta are quantized.

Therefore, performing direct calculations only of the matrix

element ΦðzTÞ [cf. (2)] limits the accuracy in determining

its derivative with respect to ΔT , by forcing one to evaluate

finite differences over, in practice, substantial momentum

increments. In the initial study [24] of quark orbital angular

momentum in the proton employing the GTMD approach

laid out here, this was the dominant source of systematic

uncertainty. It introduced a bias in the overall magnitude of

the numerical data approaching a factor of 2. Although

relative comparisons performed in [24], such as the one

between Ji and Jaffe-Manohar orbital angular momentum,

can be expected to be robust with respect to this bias, in

absolute terms, the Ji orbital angular momentum extracted

in [24] displayed a significant discrepancy compared to the

value obtained independently via Ji’s sum rule. To remedy

this dominant systematic bias, and thereby achieve agree-

ment with the result obtained via Ji’s sum rule within the

statistical fluctuations, is the principal objective and

advance of the present work. Other systematic uncertain-

ties, such as the ones associated with renormalization

discussed further above, are, in comparison, minor and

are accordingly deferred to future work.

To completely remove the systematic bias originating

from finite-difference evaluations of the ΔT derivative of

ΦðzTÞ, a direct derivative method is adopted in the present

work. The detailed implementation of the method will be

described in the next section, following [40], where the

method was first laid out in detail. Heuristically, the method

is based on the observation that arbitrarily small increments

in overall momenta can be achieved by twisting the spatial

boundary conditions of the quarks or, equivalently, cou-

pling the quarks to a constantUð1Þ background gauge field.
For the purpose of computing a momentum derivative, this

gauge field can be infinitesimally small and can therefore

be treated perturbatively. In effect, this generates an addi-

tional vector current insertion in the diagram one would

calculate to obtain ΦðzTÞ. Thus, by instead directly

performing a lattice calculation of the diagram containing

the additional vector current insertion, one directly accesses

the ΔT derivative of ΦðzTÞ, excluding any systematic bias.

A moderate price one pays is that the additional operator

insertion will tend to somewhat increase the statistical

fluctuations in the calculation.

III. LATTICE METHODOLOGY

To obtain the proton matrix element ΦðzTÞ [cf. (2)], one
calculates three-point functions C3pt½Ô� together with two-

point functions C2pt, which are projected onto a definite

proton momentum p0 ¼ Pþ ΔT=2 at the proton sink, as

well as a definite momentum transfer ΔT at the operator

insertion in C3pt½Ô�:

C3pt½Ô�ðt; tf;p0;pÞ
¼

X

xf ;y

e−ixf ·p
0þiy·ðp0−pÞtr½Γpolhnðtf;xfÞÔðt; yÞn̄ð0; 0Þi�;

ð5Þ

C2ptðtf;p0Þ ¼
X

xf

e−ixf ·p
0
tr½Γpolhnðtf;xfÞn̄ð0; 0Þi�: ð6Þ

By momentum conservation, a definite source momentum

p ¼ P − ΔT=2 is thereby implied in C3pt½Ô�. The proton

interpolating fields nðt;xÞ are constructed in practice using
Wuppertal-smeared quarks, to be discussed in more detail

below, such as to optimize overlap with the true proton

state. The projector Γpol ¼ 1
2
ð1þ γ4Þ 12 ð1 − iγ3γ5Þ selects

states polarized in the 3-direction. As already discussed

further above, the lattice calculation is performed in a

Lorentz frame in which the TMD operator Ô, specified in

(2), exists at the single time t; in particular, v ¼ −e⃗3,

corresponding to ζ̂ ¼ P3=m. In general, the three-point

function C3pt½Ô� contains both connected contributions, in
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which Ô is inserted into a valence quark propagator, as well

as disconnected contributions, in which Ô is inserted into a
sea quark loop. In the present investigation, only the former
are taken into account. The latter contributions, which are
associated with significantly higher computational cost, are
expected to be minor and are excluded. In the isovector
u − d quark channel, the disconnected contributions cancel
exactly; in that case, no systematic uncertainty is associated
with neglecting the disconnected diagrams.
Having calculated the three-point and two-point func-

tions, the matrix element (2) is obtained from the ratio

2Eðp0ÞC3pt½Ô�ðt; tf;p0;pÞ
C2ptðtf;p0Þ → ΦðzTÞ; ð7Þ

which exhibits plateaus in t for 0 ≪ t ≪ tf, yieldingΦðzTÞ.
Here, EðpÞ ¼ Eðp0Þ denotes the energy of the initial and
final proton states. Note that, for general choices of initial
and final momenta, the ratio (7) has to be replaced by a
more general expression [6,7]; it is the specific symmetric
choice of the initial and final momenta p ¼ P − ΔT=2 and
p0 ¼ Pþ ΔT=2 that allows one to use the simple ratio (7)
here. For finite temporal separations, residual excited state

contributions will contaminate the extraction of plateaus

from (7). Control over these can be obtained by employing

a sequence of source-sink separations tf. In the present

study, data for only one source-sink separation tf ¼
1.14 fm were gathered, and therefore it will not be possible

to estimate excited state effects quantitatively. Previous

form factor studies on the same gauge ensemble [41,42]

showed that the importance of excited state effects depends

substantially on the specific observable considered. In

some cases, the systematic bias at the separation tf ¼
1.14 fm was seen to be smaller than the statistical fluctua-

tions; in other cases, it exceeded the latter by factors up to

2–3. Controlling for excited state effects will certainly be

desirable in future investigations.

Consider now evaluating the ΔT derivative of ΦðzTÞ at
ΔT ¼ 0, as called for by (1). First, note that the two-point

function C2pt is an even function of ΔT ; therefore, only the

derivative of the three-point function C3pt½Ô� is needed,
2

while one can directly use C2ptðtf;PÞ in (7). To proceed,

it is useful to write C3pt½Ô� explicitly in terms of the

appropriate propagators, combining the coordinates for

ease of notation into four-vectors, e.g., ðt; yÞ≡ y:

C3pt½Ô�ðt; tf;p0;pÞ ¼
X

xf ;y

e−ixf ·Pþiðy−xf=2Þ·ΔT ð8Þ

· htr½Snn̄
Γpol

ð0; xfÞGsm-ptðxf; y − zT=2ÞγþUðy − zT=2; yþ zT=2ÞGpt-smðyþ zT=2; 0Þ�i

¼
X

xf ;y

e−ixf ·Pe−iðxf−ðy−zT=2ÞÞ·ΔT=2eiðyþzT=2Þ·ΔT=2 ð9Þ

· htr½ðγ5Gpt-smðy − zT=2; xfÞγ5Snn̄†Γpol
ð0; xfÞÞ†γþUðy − zT=2; yþ zT=2ÞGpt-smðyþ zT=2; 0Þ�i

¼
X

xf ;y

e−ixf ·P ð10Þ

·htr½ðγ5Gpt-smðy−zT=2;xf;ΔT=2Þγ5Snn̄†Γpol
ð0;xfÞÞ†γþUðy−zT=2;yþzT=2ÞGpt-smðyþzT=2;0;−ΔT=2Þ�i:

Here, Snn̄
Γpol

denotes the standard sequential source formed at

the sink time tf, as described in detail, e.g., in the Appendix

of [44]; Gpt-smðr; sÞ is the standard quark propagator from a

smeared source to a point sink. In the second step, the γ5-

hermiticity of the propagators was used, and in the third

step, the twisted propagator

Gpt-smðr; s;qÞ ¼ e−iðr−sÞ·qGpt-smðr; sÞ ð11Þ

was introduced. Thus, the ΔT dependence has been entirely

absorbed into the twisted propagators, and it is their

derivatives one needs in order to obtain the ΔT derivative

of C3pt½Ô�. Following [40,43], in the absence of smearing,

the derivative of the twisted point-to-point propagator can

be cast in the form

∂

∂qj
Gpt-ptðr; s;qÞ

�

�

�

�

q¼0

¼ −i
X

z

Gpt-ptðr; zÞΓj
VGpt-ptðz; sÞ;

ð12Þ

where the sum extends over the four-dimensional coor-

dinate z, and the vector current insertion acts as

Γ
j
VGpt-ptðz; sÞ ¼ U†

jðz − e⃗jÞ
1þ γj

2
Gpt-ptðz − e⃗j; sÞ

−UjðzÞ
1 − γj

2
Gpt-ptðzþ e⃗j; sÞ: ð13Þ

2
In applications requiring higher derivatives with respect to

momentum transfer, such as calculations of charge radii [43], also
derivatives of the two-point function enter.
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Supplementing the point-to-point propagator with a smear-

ing kernel,

Gpt-smðr; s;qÞ ¼ e−iðr−sÞ·q
X

u

Gpt-ptðr; uÞKðu; sÞ

¼
X

u

Gpt-ptðr; u;qÞKðu; s;qÞ ð14Þ

where also the twisted smearing kernel

Kðu; s;qÞ ¼ e−iðu−sÞ·qKðu; sÞ ð15Þ

has been introduced, one has the derivative

∂

∂qj
Gpt-smðr; s;qÞ

�

�

�

q¼0

¼
X

z

Gpt-ptðr; zÞ
�

−i
X

u

Γ
j
VGpt-ptðz; uÞKðu; sÞ

þ ∂

∂qj
Kðz; s;qÞ

�

�

�

�

q¼0

�

; ð16Þ

where the derivative of the twisted smearing kernel will be

treated below. Thus, in order to calculate the ΔT derivative

of C3pt½Ô�, one has to evaluate two additional propagators

compared to a standard calculation of C3pt½Ô� itself. In the

latter case, one needs to evaluate the forward propagator

from a smeared source K and the backward propagator

from the smeared sequential source Kγ5S
nn̄†
Γpol

; now, one

additionally needs propagators from the sources

− iΓ
j
VGpt-ptK þ ∂

∂qj
K

�

�

�

�

q¼0

;

− iΓ
j
VGpt-ptKγ5S

nn̄†
Γpol

þ
�

∂

∂qj
K

�

�

�

�

q¼0

�

γ5S
nn̄†
Γpol

: ð17Þ

It remains to construct the derivative of the twisted

smearing kernel [43]. A single step of (twisted) Wuppertal

smearing is defined by

K0ðu; s;qÞ ¼ e−iðu−sÞ·q
1

1þ 6α

�

δu;s þ α
X

3

j¼1

½UjðuÞδuþe⃗j;s

þ U†
jðu − e⃗jÞδu−e⃗j;s�

�

ð18Þ

¼ 1

1þ 6α

�

δu;s þ α
X

3

j¼1

½eiqjUjðuÞδuþe⃗j;s

þ e−iq
j

U†
jðu − e⃗jÞδu−e⃗j;s�

�

ð19Þ

so that its derivative at zero momentum is

K0
0ðu; sÞ≡

∂

∂qj
K0ðu; s;qÞ

�

�

�

q¼0

¼ α

1þ 6α
½iUjðuÞδuþe⃗j;s

− iU†
jðu − e⃗jÞδu−e⃗j;s�:

ð20Þ

If the smearing kernel K is given by N steps of Wuppertal

smearing,

Kðu; s;qÞ ¼
X

w1;w2;…;wN−1

K0ðu; w1;qÞK0ðw1; w2;qÞ…

K0ðwN−1; s;qÞ; ð21Þ

then its derivative at zero momentum can be computed

iteratively as

K0 ≡ ðKN
0 Þ0 ¼ K0

0K
N−1
0 þ K0ðKN−1

0 Þ0: ð22Þ

The numerical data for the present study were generated

using a 2þ 1-flavor isotropic clover fermion ensemble

on 323 × 96 lattices generated by Edwards, Joó, and

Orginos with lattice spacing a ¼ 0.114 fm and pion mass

mπ ¼ 317 MeV. The present investigation is therefore also

significantly closer to the physical limit than the initial

exploration [24]. A total of 23224 data samples was

gathered on 968 gauge configurations. The Euclidean

temporal separation between proton sources and sinks

was tf ¼ 10a. HYP smearing was applied to the lattice

links used in constructing the Wilson line U in (2). This

leads to the renormalization and soft factors associated with

the operator in (2) corresponding more closely to their tree-

level values even before their cancellation in the ratio (1).

Three spatial proton momenta were used, P · L=ð2πÞ ¼
ð0; 0; nPÞ with nP ¼ 0, 1, 2, where L ¼ 32a denotes the

spatial lattice extent. Although the corresponding range of

the Collins-Soper parameter ζ̂ ¼ 0, 0.315, 0.63 is limited,

and one cannot a priori expect to obtain a good indication

of the large-ζ̂ behavior with data in this range, it will be

seen below that the results for Jaffe-Manohar orbital

angular momentum already appear to stabilize in the region

of the two nonzero values of ζ̂. Corroboration concerning

this suggested early onset of asymptotic behavior by future

studies including larger ζ̂ would certainly be desirable.

IV. NUMERICAL RESULTS

Considering initially the special case of a straight Wilson

line, η ¼ 0, corresponding to Ji quark orbital angular

momentum, Fig. 2 displays the results obtained in the

isovector case at the three available values of ζ̂. Recall that

ζ̂ is defined here through v ¼ −e⃗3 in the lattice frame

even when η ¼ 0; with that definition, on the other hand,

Ji quark orbital angular momentum should then be
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independent of ζ̂, since v does not in fact enter its

construction. This is borne out by the data in Fig. 2.

The residual apparent trend in the data may be due to the

deviation between the lattice dispersion relation and the

continuum dispersion relation used in the data analysis but

is also consistent with statistical fluctuation.

Performing a χ2 fit of a constant in ζ̂ to the data yields the

average value plotted at ζ̂ ¼ ∞, taken here to label the

physical limit. This result is confronted with an indepen-

dent lattice determination of Ji quark orbital angular

momentum via Ji’s sum rule at the same pion mass, in

the MS scheme at the scale μ2 ¼ 4 GeV2 [7]. The two

determinations are in good agreement; the discrepancy

observed in the initial exploration [24] is entirely resolved.

This validates the use of the GTMD approach, properly

implemented in particular with respect to taking the ΔT

derivative in (1), to calculating quark orbital angular

momentum in the proton. The result corroborates the

assumption that the various further systematic uncertainties

noted above, i.e., stemming from renormalization and

matching, operator mixing, or excited state contaminations

are minor and do not bias the result beyond the statistical

uncertainty.

Departing from the η ¼ 0 limit, one probes the torque

[20] due to final state interactions accumulated by a quark

struck in a deep inelastic scattering process as it exits the

proton. The η ¼ �∞ limit corresponds to Jaffe-Manohar

orbital angular momentum. By varying η gradually, a

gauge-invariant, continuous interpolation between the Ji

and Jaffe-Manohar limits can be exhibited. This is shown in

Fig. 3, again for the isovector u − d quark channel and for

the three values of ζ̂ probed. Note that the plots are

normalized to the magnitude of the Ji quark orbital angular

momentum, i.e., the result obtained at η ¼ 0.

Evidently, the torque supplied by the final state inter-

actions is appreciable, as already observed in [24].

Compared to the initial Ji value, quark orbital angular

momentum is enhanced in magnitude as one proceeds

toward the asymptotic Jaffe-Manohar limit. Contrasting

the three panels in Fig. 3, the effect strengthens as the

FIG. 3. Quark orbital angular momentum as a function of staple

length parameter η, normalized to the magnitude of Ji quark

orbital angular momentum, i.e., the result obtained at η ¼ 0. This

quantity is even under η → −η, corresponding to time reversal.

Accordingly, the jηj → ∞ extrapolated values are obtained by

averaging the η > 0 and η < 0 plateaus, which are determined by

fitting to the jηjjvj=a ¼ 7;…; 9 range. The isovector u − d quark

combination is shown, with the three panels corresponding to the

three available values of ζ̂. The shown uncertainties are statistical

jackknife errors.

FIG. 2. Ji quark orbital angular momentum, i.e., the η ¼ 0 limit,

for the three values of ζ̂ probed, with the average plotted at ζ̂ ¼ ∞

(open square). The filled diamond represents the value extracted

at the same pion mass in the MS scheme at the scale μ2 ¼ 4 GeV2

via Ji’s sum rule [7]. The isovector u − d quark combination was

evaluated. The shown uncertainties are statistical jackknife errors.
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Collins-Soper parameter ζ̂ is increased, with Jaffe-Manohar

quark orbital angular momentum enhanced by about 30%

relative to the Ji case for the two nonzero values of ζ̂. This is

somewhat less strong than in the exploration [24]; whether

this is a genuine physical trend associated with the change

in pion mass from 518 to 317 MeV or whether it is an

artifact of the systematic bias in the calculation in [24]

cannot be decided at this point. The fact that the effect

strengthens with rising ζ̂ suggests that it can be expected to

persist into the ζ̂ → ∞ limit. Figure 4 displays the

integrated torque, i.e., the difference between the Jaffe-

Manohar and Ji quark orbital angular momenta,

τ3 ¼
L
ðη¼∞Þ
3

nðη¼∞Þ −
L
ðη¼0Þ
3

nðη¼0Þ ; ð23Þ

as a function of ζ̂, normalized to the magnitude of Ji quark

orbital angular momentum. An extrapolation to the ζ̂ → ∞

limit is also shown. The ad hoc fit ansatz, Aþ B=ζ̂, is not
underpinned by a theoretical argument at this point but is

motivated by the good description it provides of the

considerably more detailed data as a function of ζ̂ available

for the pion Boer-Mulders TMD ratio [28]. Auxiliary

information concerning the expected large-ζ̂ behavior

would be desirable to aid in sharpening the analysis.

The ad hoc extrapolation indeed yields a signal in the

ζ̂ → ∞ limit.

Generalizing to the flavor-separated case, it should be

kept in mind that the additional disconnected contributions

that arise compared to the isovector case have not been

evaluated. These are, however, expected to be minor at

the pion mass mπ ¼ 317 MeV used in this calculation.

Figure 5 shows data analogous to Fig. 3 for one value of ζ̂,

exhibiting the behavior of d-quark and u-quark orbital

angular momentum separately, as well as the total (iso-

scalar) quark orbital angular momentum. Here, the u-quark
data have been normalized to two quarks, i.e., L3=n in the

u-quark case has been multiplied by 2 to compensate for

FIG. 4. Integrated torque accumulated by a quark struck in a

deep inelastic scattering process along its trajectory exiting the

proton, as a function of Collins-Soper parameter ζ̂. The data

pertain to the isovector u − d quark channel and are normalized to

the magnitude of the η ¼ 0 Ji orbital angular momentum. An

ad hoc extrapolation to the ζ̂ → ∞ limit is also exhibited. The

shown uncertainties are statistical jackknife errors.

FIG. 5. Flavor-separated quark orbital angular momentum

as a function of staple length η, analogous to Fig. 3, at fixed

ζ̂ ¼ 0.315. Results are displayed for d quarks and for two u
quarks (i.e., the u-quark data for L3=n have been multiplied by 2

to compensate for n ¼ 2), as well as for the isoscalar total quark

orbital angular momentum, i.e., the sum of the “d” and “2u” data.
All results are still normalized by the magnitude of isovector Ji

orbital angular momentum (thus, at η ¼ 0, the 2u and d data

differ by unity). The shown uncertainties are statistical jackknife

errors.

FIG. 6. Flavor-separated integrated torque accumulated by a

quark struck in a deep inelastic scattering process, as a function of

ζ̂, analogous to Fig. 4, together with ad hoc extrapolations to

infinite ζ̂. Data for d quarks, for two u quarks (i.e., the u-quark
data for τ3 have been multiplied by 2 to compensate for n ¼ 2 in

the u-quark case), and their sum, the isoscalar uþ d quark

combination, are shown. Data are normalized by the magnitude

of isovector Ji quark orbital angular momentum, as in previous

figures. For better visibility, isoscalar data are slightly displaced

horizontally. The shown uncertainties are statistical jackknife

errors.
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n ¼ 2 for u quarks; hence the 2u label. The isoscalar result

was then obtained by simple addition of the d and 2u data.
3

As observed previously in [24], the strong cancellation

of the u- and d-quark orbital angular momenta in the proton

that has long been known for the η ¼ 0 Ji case [6,7] extends

to nonzero η and the Jaffe-Manohar limit. Only a small

negative contribution to the spin of the proton from quark

orbital angular momentum remains. The data for the flavor-

separated integrated torque [cf. (23)] are collected in Fig. 6

and extrapolated to the ζ̂ → ∞ limit. At the present level of

statistics, scarcely a signal is obtained for the flavor-

separated integrated torque in that limit; the data do appear

compatible with the observations made at fixed ζ̂ ¼ 0.315

from Fig. 5.

V. CONCLUSIONS AND OUTLOOK

The chief advance of the present study is the adoption of

a direct derivative method [40] in the GTMD approach to

evaluating quark orbital angular momentum in the proton in

lattice QCD. The introduction of this method has led to a

reliable quantitative computation of the needed derivative,

with respect to momentum transfer, of the relevant GTMD

matrix element. This is validated by the result obtained

specifically for the quark orbital angular momentum

defined through the Ji decomposition of proton spin; it

agrees well with the corresponding result obtained inde-

pendently in lattice QCD calculations relying on Ji’s sum

rule [7]. The discrepancy observed in the initial exploration

[24] is thus resolved.

The agreement between the quark orbital angular

momentum calculated in this work using the GTMD

approach and the result from the Ji sum rule suggests that

other systematic uncertainties, such as ones associated with

excited state effects, renormalization and matching, as well

as operator mixing are minor and do not rise to the level of

the statistical uncertainties of the present calculation.

In the GTMD approach, one directly computes quark

orbital angular momentum by weighting the appropriate

Wigner function (related to GTMDs via Fourier trans-

formation) by bT × kT, where bT is the quark impact

parameter and kT the quark transverse momentum

[16,17]. The aforementioned derivative with respect to

momentum transfer supplies the weighting by bT, its

Fourier conjugate. The information on kT , on the other

hand, is supplied through the nonlocal TMD operator used

in constructing the relevant proton matrix element (2). The

treatment of renormalization issues thus follows closely the

methods used in more widely explored lattice TMD

calculations [25–29]. Ratios of proton matrix elements

are constructed to cancel renormalization and soft factors

associated with the TMD operator. In effect, one evaluates

quark orbital angular momentum in units of the number of

valence quarks. Operator mixing effects [29,36–38] can

spoil these cancellations, and though they appear not to

play a significant role in the present calculation, these

effects will ultimately have to be brought under control.

The advantage of this nonlocal operator-based GTMD

approach is that one can extend lattice QCD calculations

beyond the Ji decomposition of proton spin and establish a

continuous, gauge-invariant interpolation from Ji [3] to

Jaffe-Manohar [14] quark orbital angular momentum.

The corresponding information is contained in the choice

of Wilson line path in the TMD operator. A straight

Wilson line path yields Ji quark orbital angular momentum

[19–21], and a staple-shaped Wilson line path, in the limit

of infinite staple length, yields its Jaffe-Manohar counter-

part [18,20]. The difference between the two can be

interpreted as the integrated torque accumulated by a quark

struck in a deep inelastic scattering process as it exits the

proton, through final state interactions [20]. It corresponds

to a Qiu-Sterman-type correlator [20–22]. The data

obtained for this term in the present investigation allow

one to observe the gradual accumulation of torque by the

quark until it attains the asymptotic Jaffe-Manohar orbital

angular momentum. The latter is enhanced in magnitude

relative to the initial Ji value, with the integrated torque

adding about one-third of the magnitude of the Ji orbital

angular momentum at the pion mass mπ ¼ 317 MeV used

in this calculation.

To further sharpen the analysis of quark orbital angular

momentum within the GTMD approach, calculations for a

sequence of lattice spacingswould be desirable, to allow for a

direct study of the scale evolution. Also, a more compre-

hensive exploration of the dependence on the Collins-Soper

parameter ζ̂ iswarranted, to clarifywhether the results indeed

already stabilize at the fairly low values of ζ̂ employed in this

work, as suggested by Fig. 4. Ultimately, the large ζ̂ behavior

determines the physical limit. Finally, of course, also further

progress toward the physical pion mass must be made.

The improved calculation of quark orbital angular

momentum based on GTMDs achieved using the present

methodology opens the way to reliably compute other

related quantities, such as quark spin-orbit correlations in

the proton [16,22]. Corresponding calculations are in

progress, employing domain wall fermions to curtail the

operator mixing effects that are induced when the fermion

discretization breaks chiral symmetry.
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[16] C. Lorcé and B. Pasquini, Phys. Rev. D 84, 014015 (2011).
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