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A lattice QCD approach to quark orbital angular momentum in the proton based on generalized
transverse momentum-dependent parton distributions (GTMDs) is enhanced methodologically by
incorporating a direct derivative technique. This improvement removes a significant numerical bias that
had been seen to afflict results of a previous study. In particular, the value obtained for Ji quark orbital
angular momentum is reconciled with the one obtained independently via Ji’s sum rule, validating the
GMTD approach. Since GTMDs simultaneously contain information about the quark impact parameter
and transverse momentum, they permit a direct evaluation of the cross product of the latter. They are
defined through proton matrix elements of a quark bilocal operator containing a Wilson line; the choice in
Wilson line path allows one to continuously interpolate from Ji to Jaffe-Manohar quark orbital angular
momentum. The latter is seen to be significantly enhanced in magnitude compared to Ji quark orbital

angular momentum, confirming previous results.
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I. INTRODUCTION

The manner in which the spin of the proton arises from
the spins and orbital angular momenta of its quark and
gluon constituents has been the object of sustained study.
Efforts to resolve this so-called proton spin puzzle were
sparked by the finding, in EMC experiments [1,2], that the
quark spins alone fail to provide a satisfactory account of
the proton’s overall spin. Naturally, also the methods of
lattice QCD have been brought to bear on the problem, with
the standard calculational scheme relying on Ji’s sum rule
[3]. The sum rule relates the total quark angular momentum
J to specific moments of generalized parton distributions
(GPDs), and by combining this with a calculation of the
quark spin S [4,5], one can then also isolate the quark
orbital angular momentum L =J — S [6-12]. The more
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recent studies have furthermore begun to gain control over
the gluon angular momentum [10-12] and gluon spin [13]
contributions.

The aforementioned indirect approach to quark orbital
angular momentum is limited specifically to the Ji decom-
position of proton spin associated with Ji’s sum rule.
However, the definition of quark orbital angular momen-
tum in QCD is not unique, since the matter degrees of
freedom in a gauge theory cannot be unambiguously
separated from the gauge degrees of freedom. Quarks
necessarily carry gauge fields along with them, and it is
a matter of definition to what extent these are included in
the evaluation of quark orbital angular momentum. In
addition to the Ji decomposition of proton spin, another
widely studied decomposition scheme is the one due to
Jaffe and Manohar [14]. It possesses the conceptual
advantage of allowing for a partonic interpretation of the
angular momentum distributions.

A formulation that offers a direct path to evaluating quark
orbital angular momentum and that encompasses both of
the aforementioned decompositions is the one in terms of
generalized transverse momentum-dependent parton distri-
butions (GTMDs) [15-17]. GTMDs, as functions of quark
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transverse momentum k; as well as momentum transfer
Ay, are related, through the Fourier conjugate pair (A7, br)
(with by denoting the quark impact parameter), to Wigner
functions that allow one to sample directly orbital angular
momentum by x kr. GTMDs are defined through a quark
bilocal operator containing a Wilson line, and it is the
choice of path of the Wilson line that allows one to access
different definitions of quark orbital angular momentum. In
particular, it was realized in [18] that Jaffe-Manohar orbital
angular momentum is associated with a staple-shaped path
in the limit of infinite staple length, an operator type
extensively studied in the context of standard transverse
momentum-dependent parton distributions (TMDs). On the
other hand, Ji orbital angular momentum results from
using a straight path [19-22]. It should be noted that
an alternative proposal to access Jaffe-Manohar orbital
angular momentum using a gauge-fixed formulation was
put forward in [23].

An initial lattice QCD exploration of the GTMD
approach to quark orbital angular momentum was under-
taken in [24]. By varying the staple length of a staple-
shaped Wilson line path in small steps, a quasicontinuous,
gauge-invariant interpolation between the Ji and Jaffe-
Manohar limits was realized. In performing this study, it
was possible to take recourse to concepts and methods from
standard lattice TMD studies [25-29], since, as noted
above, the same operator structure enters; GTMD matrix
elements only differ by their additional dependence on the
momentum transfer Az. Jaffe-Manohar quark orbital angu-
lar momentum was seen to be significantly enhanced in
magnitude relative to its Ji counterpart. The results obtained
in [24] were, however, affected by one substantial short-
coming: Although the relative comparison between Ji and
Jaffe-Manohar quark orbital angular momentum could be
expected to be trustworthy, in absolute terms, the orbital

|

angular momenta were significantly underestimated for a
technical reason. Namely, the weighting by b7 in orbital
angular momentum bz x ky corresponds to computing a
derivative with respect to Ay of the relevant GTMD matrix
element. This derivative was realized via a finite difference
over a momentum interval that was much too large to yield
an accurate estimate. This became directly apparent in
comparing the result for Ji quark orbital angular momentum
with the corresponding result obtained using Ji’s sum rule.
The discrepancy amounted to approximately a factor of 2.
The present work resolves this discrepancy by incorporat-
ing a direct derivative method to evaluate the A derivative.
This methodological improvement removes the described
bias by construction and will be seen to reconcile the results
obtained through the GTMD approach and through Ji’s
sum rule. This validates the GTMD approach as imple-
mented here.

The present study also uses pion mass m, = 317 MeV,
which is significantly lower than the mass m, = 518 MeV
used in the initial exploration [24].

II. GTMD APPROACH TO QUARK ORBITAL
ANGULAR MOMENTUM

As laid out in detail in [24] (cf. also [16,17]), the
longitudinal quark orbital angular momentum component
L5 in a longitudinally polarized proton propagating in the
3-direction with momentum P can be evaluated within
lattice QCD in units of the number of valence quarks n via

Ly 1 gl (@(a?) - ®(—az))

o a T ®(ag,) + ®(—a?,)

(1)

Ap=0

(summation over i, j implied), with the proton matrix
element

@(z7) = (P + Ar/2,S = &\ (~z7/2)r " Ul=27/2, 27/2ly(2r/2)|P — Ar/2,S = &3). (2)

Here, ¢; denotes the unit vector in the longitudinal
direction, whereas ¢; is a unit vector in a transverse
direction; a denotes the lattice spacing. The momentum
transfer A7 and the operator separation zy are purely
transverse and orthogonal to each other. U is a Wilson
line connecting the quark operators y and w; its path
remains to be specified. This structure can be understood as
follows: In the limit z; — 0, the operator in ®(z7) reduces
to the light-cone + component of the vector current, and
therefore, at Ay = 0, ®(z7) simply counts valence quarks
(up to a normalization factor 2P"). This motivates the
denominator in (1). Note the use of the nonlocal current
with separation @, matching the numerator; this will be
revisited below. Consider now taking the A; derivative of
®(z7) and evaluating at Ay = 0. The momentum transfer
A7 is Fourier conjugate to the quark impact parameter b,

[

and therefore, this operation amounts to weighting the
counting of quarks by their impact parameter by. Likewise,
the operator separation z is Fourier conjugate to the quark
transverse momentum ky. Thus, taking the derivative with
respect to z7 and evaluating at z; = 0 amounts to weighting
the counting of quarks by their transverse momentum k.
The numerator in (1), together with the division by q, is the
appropriate finite-difference realization of such a zy
derivative; at finite lattice cutoff a, distances smaller than
a cannot be resolved. In aggregate, therefore, (1) evaluates
the total L; = by X kp of the quarks in the proton,
normalized to the number of valence quarks n.

An important role in the evaluation of quark orbital
angular momentum falls to the Wilson line U in (2). In a
gauge theory, the matter degrees of freedom cannot be
treated in complete isolation; they necessarily carry gauge
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FIG. 1. Path of the gauge connection U [cf. (3)] in the
correlator (2).

fields with them, and the evaluation of quark orbital angular
momentum depends on a definition of what part of the
overall gauge field to apportion to quarks as one decomposes
orbital angular momentum into a quark and a gluon part. The
path of the Wilson line U carries this information. In the
following, staple-shaped paths

U=Ul[-z/2.nv—z/2,nv + 2/2,2/2] 3)

will be considered, in which the points listed in the argument
of U are connected by straight Wilson lines, as illustrated in
Fig. 1. The direction of the staple legs is defined by the vector
v, with their length scaled by the parameter 7. For 5 = 0, the
path reduces to a straight line between —z/2 and z/2. For
ease of notation, in the following, # will also be allowed to be
negative to reverse the direction of the staple (keeping v
fixed). This class of gauge links contains two important
limits: # =0 corresponds to the Ji decomposition of
proton spin [19-22], whereas # — *oo0, with v pointing
in a lightlike direction, corresponds to the Jaffe-Manohar
decomposition of proton spin [18,20,22]. By varying 7
continuously, a gauge-invariant interpolation between these
two decompositions can be obtained.

The operator in (2), extracting information about quark
momentum from the proton state, is of the standard form
used in the definition of TMDs [30-32]. The matrix element
(2) only differs from the standard TMD correlator by the
introduction of the nonvanishing momentum transfer Ay in
the external states, defining a GTMD correlator [15]
in which the quark momentum information is supplemented
by quark impact parameter information. Consequently,
considerations from the standard TMD framework can be
applied [33] in treating the TMD operator in (2). Physically,
the staple-shaped gauge link path incorporates the effect of
final state interactions on the struck quark in a semi-inclusive
deep inelastic scattering process. The staple legs represent
semiclassical quark paths along which gluon exchanges
with the proton remnant are summed.' Generalized to the
impact parameter-dependent case, the staple-shaped gauge
link path thus incorporates into the quark orbital angular
momentum the torque accumulated by the struck quark as it
is leaving the proton [20]. For = 0, this torque vanishes.

'To be specific, this interpretation pertains to the forward in
time, 7 > 0 branch in the convention adopted below, where v
points in the direction opposite to the proton momentum. Note
that the quark orbital angular momentum is an even function of #.

From the formal point of view, the TMD operator
contains divergences that are absorbed into renormalization
and soft factors in the standard TMD framework; these
factors appear multiplicatively in the continuum theory
[30,32-34]. They are identical for all four instances of ® in
(1) and the ratio is therefore designed to cancel them (of
course, these factors do not depend on Az, which only
enters through the external states). This is the chief
motivation for forming the ratio (1) and employing the
nonlocal operator with separation a in the denominator; in
this way, operators in the numerator and denominator
match already at finite lattice spacing. Setting the number
of valence quarks n to the appropriate integer serves as the
renormalization condition. Nonetheless, since the operator
separations in (1) are proportional to the lattice spacing,
additional ultraviolet divergences arise as the lattice spac-
ing goes to zero. This is equivalent to the observation in
momentum space that, even if one has constructed a
renormalized TMD, k;r moments thereof may still diverge
as one lets z7, which acts as a regulator on k7 integrals, go
to zero. The specific scheme to control that divergence
adopted in (1) amounts to identifying the transverse
momentum cutoff z; with the lattice resolution a. To
connect (1) with its counterpart in other renormalization
schemes such as the standard MS scheme, an additional
matching would be required that is not available at present.
The numerical results presented below suggest that this
unquantified systematic uncertainty is minor. The scale
evolution of quark orbital angular momentum has been
discussed in detail recently in [35], giving an estimate of the
variation expected in the regime in which the lattice
calculation is performed. The numerical calculation to
follow is carried out at a single lattice spacing a; it would
be interesting to extend it to several lattice spacings to
directly observe the scale evolution of the results.

It should be noted that the multiplicative nature of the
renormalization factors in the continuum theory does not
straightforwardly extend to the lattice theory. In general, the
breaking of chiral symmetry engendered by the Wilson
fermion discretization used in this work generates operator
mixing within the class of TMD operators [29,36-38] that
precludes a simple factoring out of renormalization factors
and cancellation in the ratio (1). Also these effects will not
be studied quantitatively in the present work, and they
constitute a further systematic uncertainty. A study of the
Sivers shift ratio [29], in which the same TMD operator
appears as in (2), revealed no significant operator mixing
effects at the level of statistical accuracy achieved in the
calculation; that study included the gauge ensemble used
also in the present work. This suggests that operator mixing
effects also do not introduce a dominant systematic bias in
the results obtained here.

A standard way to regulate the rapidity divergences [39]
contained in the TMD operator for lightlike staple direction
v is to take v off the light cone into the spacelike
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region [30,32], while maintaining a zero transverse com-
ponent, vy = 0. A convenient Lorentz-invariant way to
characterize the direction of v is the Collins-Soper-type
parameter

N v-P
Ve @

on which the numerical results obtained below will also
depend. Ultimately, one is interested in their large-C
behavior; this corresponds to v approaching the light cone.
Choosing v to be spacelike simultaneously facilitates a
straightforward connection to the standard lattice QCD
methodology for evaluating hadronic matrix elements:
Given that the temporal dimension in lattice QCD is
Euclidean, serving to project out the hadronic ground state,
the operators of which one evaluates matrix elements
cannot be extended in physical time. However, once a
spacelike vector v is adopted, the problem at hand can be
boosted to a Lorentz frame in which v is purely spatial, and
thus the entire TMD operator in (2) exists at a single time.
The lattice calculation can be performed in that frame.
Maintaining vy = 0 in the lattice frame, v will point purely
in the (negative) 3-direction, v = —¢;. In that case, é =
Ps;/m (where m is the proton mass). Consequently,
achieving large 8 requires large proton momentum com-
ponent Ps; this represents a significant challenge—cf. [28]
for a study in the context of the Boer-Mulders effect. On the
other hand, in the special case # = 0, the dependence on the
staple direction v disappears; Ji quark orbital angular
momentum is boost invariant. The corresponding results
obtained below will indeed be seen to be independent of P5
(or, equivalently, ¢, if one formally maintains v = —&; in
the lattice frame).

On a lattice of finite extent with periodic boundary
conditions in the spatial directions, momenta are quantized.
Therefore, performing direct calculations only of the matrix
element ®(z7) [cf. (2)] limits the accuracy in determining
its derivative with respect to Az, by forcing one to evaluate
finite differences over, in practice, substantial momentum
increments. In the initial study [24] of quark orbital angular
momentum in the proton employing the GTMD approach
laid out here, this was the dominant source of systematic
uncertainty. It introduced a bias in the overall magnitude of
the numerical data approaching a factor of 2. Although
relative comparisons performed in [24], such as the one
between Ji and Jaffe-Manohar orbital angular momentum,
can be expected to be robust with respect to this bias, in
absolute terms, the Ji orbital angular momentum extracted
in [24] displayed a significant discrepancy compared to the
value obtained independently via Ji’s sum rule. To remedy
this dominant systematic bias, and thereby achieve agree-
ment with the result obtained via Ji’s sum rule within the
statistical fluctuations, is the principal objective and
advance of the present work. Other systematic uncertain-
ties, such as the ones associated with renormalization

discussed further above, are, in comparison, minor and
are accordingly deferred to future work.

To completely remove the systematic bias originating
from finite-difference evaluations of the A, derivative of
®(z7), a direct derivative method is adopted in the present
work. The detailed implementation of the method will be
described in the next section, following [40], where the
method was first laid out in detail. Heuristically, the method
is based on the observation that arbitrarily small increments
in overall momenta can be achieved by twisting the spatial
boundary conditions of the quarks or, equivalently, cou-
pling the quarks to a constant U(1) background gauge field.
For the purpose of computing a momentum derivative, this
gauge field can be infinitesimally small and can therefore
be treated perturbatively. In effect, this generates an addi-
tional vector current insertion in the diagram one would
calculate to obtain ®(zy). Thus, by instead directly
performing a lattice calculation of the diagram containing
the additional vector current insertion, one directly accesses
the Ay derivative of ®(z7), excluding any systematic bias.
A moderate price one pays is that the additional operator
insertion will tend to somewhat increase the statistical
fluctuations in the calculation.

III. LATTICE METHODOLOGY

To obtain the proton matrix element ®(z7) [cf. (2)], one
calculates three-point functions C 3pl[@] together with two-
point functions C,, which are projected onto a definite
proton momentum p’ = P + A;/2 at the proton sink, as
well as a definite momentum transfer A, at the operator
insertion in C3,[O):

C3pt[b](t’ tf? plv p)

=) e PRy (17, %) O(1,y)71(0,0))].
Xpy

(5)

Coplty ') = Y™™ Pty (n(ty. x,)A(0,0))].  (6)

By momentum conservation, a definite source momentum
p =P —A;/2 is thereby implied in C3pt[0]. The proton
interpolating fields n (¢, x) are constructed in practice using
Wuppertal-smeared quarks, to be discussed in more detail
below, such as to optimize overlap with the true proton
state. The projector Iy =3 (1 +74)3 (1 —iysys) selects
states polarized in the 3-direction. As already discussed
further above, the lattice calculation is performed in a
Lorentz frame in which the TMD operator O, specified in
(2), exists at the single time #; in particular, v = —és,
corresponding to = Ps;/m. In general, the three-point
function C3pt[0} contains both connected contributions, in
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which O is inserted into a valence quark propagator, as well
as disconnected contributions, in which O is inserted into a
sea quark loop. In the present investigation, only the former
are taken into account. The latter contributions, which are
associated with significantly higher computational cost, are
expected to be minor and are excluded. In the isovector
u — d quark channel, the disconnected contributions cancel
exactly; in that case, no systematic uncertainty is associated
with neglecting the disconnected diagrams.

Having calculated the three-point and two-point func-
tions, the matrix element (2) is obtained from the ratio

CsplO](1, 11,9, P)
)
2pt fﬁp)

®(z7), (7)

which exhibits plateaus in ¢ for 0 < t < t, yielding ®(z7).
Here, E(p) = E(p’) denotes the energy of the initial and
final proton states. Note that, for general choices of initial
and final momenta, the ratio (7) has to be replaced by a
more general expression [6,7]; it is the specific symmetric
choice of the initial and final momenta p = P — A;/2 and
p’' = P+ A;/2 that allows one to use the simple ratio (7)
here. For finite temporal separations, residual excited state

|

contributions will contaminate the extraction of plateaus
from (7). Control over these can be obtained by employing
a sequence of source-sink separations 7;. In the present
study, data for only one source-sink separation f; =
1.14 fm were gathered, and therefore it will not be possible
to estimate excited state effects quantitatively. Previous
form factor studies on the same gauge ensemble [41,42]
showed that the importance of excited state effects depends
substantially on the specific observable considered. In
some cases, the systematic bias at the separation t; =
1.14 fm was seen to be smaller than the statistical fluctua-
tions; in other cases, it exceeded the latter by factors up to
2-3. Controlling for excited state effects will certainly be
desirable in future investigations.

Consider now evaluating the Ay derivative of ®(z7) at
A7 =0, as called for by (1). First, note that the two-point
function Cy is an even function of Ay; therefore, only the

derivative of the three-point function Cs,[0] is needed,’
while one can directly use Cyy(t/,P) in (7). To proceed,
it is useful to write C3p[[(A)] explicitly in terms of the

appropriate propagators, combining the coordinates for
ease of notation into four-vectors, e.g., (1,y) =

Cin[O)(t. 1.9, p) = D _erPHilv=xs/204r (8)
X,y
: <tr[Sf£Z)l (O;Xf)Gsm-pt(va Y= ZT/2)7/+ U(y - ZT/2’ y+ ZT/Z)Gpl—sm (y + Z7/2’ O)D
= Ze—ixf-Pe—i(xf—(y—zT/2>>-Ar/zei(y+zr/2J<Ar/2 (9)
LR
’ <tr[(y5Gpt—sm(y - ZT/zv xf)ySSIri:: (O;xf))TYJrU(y - ZT/2» y + ZT/Z)Gpt—sm(y + ZT/27 0)]>
_ Ze—ixf-P (10)

Xpy

: <t1‘[(}/5 Gpt—sm (y_ZT/z’xf;AT/z)ySSFj;

Here, S”" denotes the standard sequential source formed at
the smk fime tf, as described in detail, e.g., in the Appendix
of [44]; Gpgm(r. 5) is the standard quark propagator from a
smeared source to a point sink. In the second step, the ys-
hermiticity of the propagators was used, and in the third
step, the twisted propagator

GPt—sm(r7 S5 q) = e_i(r_S).qGPt—sm(r’ S) (1 1)

was introduced. Thus, the Ay dependence has been entirely
absorbed into the twisted propagators, and it is their
derivatives one needs in order to obtain the Ay derivative

*In applications requiring higher derivatives with respect to
momentum transfer, such as calculations of charge radii [43], also
derivatives of the two-point function enter.

(0:) Y U(y=27/2.y+27/2) Gprosm (y +27/2.0:=A7/2)]).

of C3pl[@]. Following [40,43], in the absence of smearing,
the derivative of the twisted point-to-point propagator can
be cast in the form

0
67qj Gpt—pt(r’ S5 q)

= =i Gpupa (1. D) Gy (2. 5).

(12)

where the sum extends over the four-dimensional coor-
dinate z, and the vector current insertion acts as

q=0

i + - 1+}’j -
F(/Gpt—pt(z’ 5) = Uj (z— ej) TGpt pt(Z €js 5)
1—y/ R
—Uj(z)TGptpt(z+e,,s) (13)
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Supplementing the point-to-point propagator with a smear-
ing kernel,

GPt—sm(r7 S5 q) = e_i(r_S)'qZGPt'Pt(r’ u>K(u’ S)

— ZGPt_p[(r, u; qQ)K (u, s3q) (14)

where also the twisted smearing kernel

K(u,s;q) = e =)4K (u, s) (15)

has been introduced, one has the derivative

0
—Gosm(7, 83 ‘
8qj pt-s ( q) =0

= ZGpt—pt(r’ 2) _iZF{/Gpt—pt(Z’ u)K (u, s)
z u
+iK(z 5:q) ] (16)
aqj 9 b q:o b

where the derivative of the twisted smearing kernel will be
treated below. Thus, in order to calculate the A, derivative
of C3pt[0], one has to evaluate two additional propagators
compared to a standard calculation of C3pt[@} itself. In the
latter case, one needs to evaluate the forward propagator
from a smeared source K and the backward propagator
from the smeared sequential source K}/SS"::; now, one

additionally needs propagators from the sources

0
lFVGpt oK+ oq K

s

q=0

4 i 0
. it
— lr{/Gpt»leYSSlripol + <8_qJK

Jrssze )
q=0

It remains to construct the derivative of the twisted
smearing kernel [43]. A single step of (twisted) Wuppertal
smearing is defined by

1

Ko(u,s3q) = =)

<5u s +a Z u)5u+e .8

U 2,->6u_z,..s]) (18)

1 j
1 T 6a <5u s T az U u+Ej,s
+ e U (u - zj)(su_gj,so (19)

so that its derivative at zero momentum is

0
Ki(u,s) = o0 —Ky(u,s;q) .
q=

= (iU W)z, — iU (u

€:)6u—z s
1+6a ej) u e_/-.s]

(20)

If the smearing kernel K is given by N steps of Wuppertal
smearing,

K(u,s;q) = Z

KO(WN—l,SQ(l), (21)

Ko(u, w1, q)KO(Wl » Wos q) .

then its derivative at zero momentum can be computed
iteratively as
K' = (KY) = Kok} + Ko(K)'Y.  (22)
The numerical data for the present study were generated
using a 2 4 1-flavor isotropic clover fermion ensemble
on 323 x 96 lattices generated by Edwards, Jo6, and
Orginos with lattice spacing a = 0.114 fm and pion mass
m, = 317 MeV. The present investigation is therefore also
significantly closer to the physical limit than the initial
exploration [24]. A total of 23224 data samples was
gathered on 968 gauge configurations. The Euclidean
temporal separation between proton sources and sinks
was 7y = 10a. HYP smearing was applied to the lattice
links used in constructing the Wilson line U in (2). This
leads to the renormalization and soft factors associated with
the operator in (2) corresponding more closely to their tree-
level values even before their cancellation in the ratio (1).
Three spatial proton momenta were used, P-L/(2x) =
(0,0,np) with np =0, 1, 2, where L = 32a denotes the
spatial lattice extent. Although the corresponding range of
the Collins-Soper parameter Z’ =0, 0.315, 0.63 is limited,
and one cannot a priori expect to obtain a good indication
of the large-é’ behavior with data in this range, it will be
seen below that the results for Jaffe-Manohar orbital
angular momentum already appear to stabilize in the region
of the two nonzero values of gA“ . Corroboration concerning
this suggested early onset of asymptotic behavior by future

studies including larger gA“ would certainly be desirable.

IV. NUMERICAL RESULTS

Considering initially the special case of a straight Wilson
line, 7 =0, corresponding to Ji quark orbital angular
momentum, Fig. 2 displays the results obtained in the
isovector case at the three available values of é’ . Recall that
¢ is defined here through v = —€; in the lattice frame
even when 7 = 0; with that definition, on the other hand,
Ji quark orbital angular momentum should then be
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FIG.2. Jiquark orbital angular momentum, i.e., the # = 0 limit,

for the three values of £ probed, with the average plotted at & = oo
(open square). The filled diamond represents the value extracted
at the same pion mass in the MS scheme at the scale > = 4 GeV?
via Ji’s sum rule [7]. The isovector u — d quark combination was
evaluated. The shown uncertainties are statistical jackknife errors.

independent of £, since » does not in fact enter its
construction. This is borne out by the data in Fig. 2.
The residual apparent trend in the data may be due to the
deviation between the lattice dispersion relation and the
continuum dispersion relation used in the data analysis but
is also consistent with statistical fluctuation.

Performing a 2 fit of a constant in ¢ to the data yields the
average value plotted at £ = oo, taken here to label the
physical limit. This result is confronted with an indepen-
dent lattice determination of Ji quark orbital angular
momentum via Ji’s sum rule at the same pion mass, in
the MS scheme at the scale u> =4 GeV? [7]. The two
determinations are in good agreement; the discrepancy
observed in the initial exploration [24] is entirely resolved.
This validates the use of the GTMD approach, properly
implemented in particular with respect to taking the Ay
derivative in (1), to calculating quark orbital angular
momentum in the proton. The result corroborates the
assumption that the various further systematic uncertainties
noted above, i.e., stemming from renormalization and
matching, operator mixing, or excited state contaminations
are minor and do not bias the result beyond the statistical
uncertainty.

Departing from the # = 0 limit, one probes the torque
[20] due to final state interactions accumulated by a quark
struck in a deep inelastic scattering process as it exits the
proton. The n = £oo limit corresponds to Jaffe-Manohar
orbital angular momentum. By varying » gradually, a
gauge-invariant, continuous interpolation between the Ji
and Jaffe-Manohar limits can be exhibited. This is shown in
Fig. 3, again for the isovector u — d quark channel and for
the three values of ¢ probed. Note that the plots are
normalized to the magnitude of the Ji quark orbital angular
momentum, i.e., the result obtained at = 0.
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FIG. 3. Quark orbital angular momentum as a function of staple

length parameter #, normalized to the magnitude of Ji quark
orbital angular momentum, i.e., the result obtained at # = 0. This
quantity is even under # — —, corresponding to time reversal.
Accordingly, the || — oo extrapolated values are obtained by
averaging the # > 0 and n < 0 plateaus, which are determined by
fitting to the |5||v|/a =7, ..., 9 range. The isovector u — d quark
combination is shown, with the three panels corresponding to the
three available values of L:“ . The shown uncertainties are statistical
jackknife errors.

Evidently, the torque supplied by the final state inter-
actions is appreciable, as already observed in [24].
Compared to the initial Ji value, quark orbital angular
momentum is enhanced in magnitude as one proceeds
toward the asymptotic Jaffe-Manohar limit. Contrasting
the three panels in Fig. 3, the effect strengthens as the
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FIG. 4. Integrated torque accumulated by a quark struck in a

deep inelastic scattering process along its trajectory exiting the
proton, as a function of Collins-Soper parameter . The data
pertain to the isovector u — d quark channel and are normalized to
the magnitude of the # = 0 Ji orbital angular momentum. An
ad hoc extrapolation to the é’ — oo limit is also exhibited. The
shown uncertainties are statistical jackknife errors.

Collins-Soper parameter 5 is increased, with Jaffe-Manohar
quark orbital angular momentum enhanced by about 30%
relative to the Ji case for the two nonzero values of f . This is
somewhat less strong than in the exploration [24]; whether
this is a genuine physical trend associated with the change
in pion mass from 518 to 317 MeV or whether it is an
artifact of the systematic bias in the calculation in [24]
cannot be decided at this point. The fact that the effect
strengthens with rising Z’ suggests that it can be expected to
persist into the ¢ — oo limit. Figure 4 displays the
integrated torque, i.e., the difference between the Jaffe-
Manohar and Ji quark orbital angular momenta,

(n=c0) (n=0)

L L

Ty=— 3 (23)
n=e) 5 (1n=0)

as a function of £, normalized to the magnitude of Ji quark
orbital angular momentum. An extrapolation to the £ — oo
limit is also shown. The ad hoc fit ansatz, A + B/ Z’ , 1S not
underpinned by a theoretical argument at this point but is
motivated by the good description it provides of the
considerably more detailed data as a function of ¢ available
for the pion Boer-Mulders TMD ratio [28]. Auxiliary
information concerning the expected large-C behavior
would be desirable to aid in sharpening the analysis.
The ad hoc extrapolation indeed yields a signal in the
¢ - oo limit.

Generalizing to the flavor-separated case, it should be
kept in mind that the additional disconnected contributions
that arise compared to the isovector case have not been
evaluated. These are, however, expected to be minor at
the pion mass m, = 317 MeV used in this calculation.

_ 1'Of my =317 MeV 7 =0315 ]
LI sl H*ﬁ?“*h ﬂHH‘H“HH ]
s\"a [ e isoscalar

su—

+ 2u quarks

00}

-0.5]
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' oA ' —o—
——i —e—
H—— —@—
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= =
H@!

-10F

nlvl/a

FIG. 5. Flavor-separated quark orbital angular momentum
as a function of staple length #, analogous to Fig. 3, at fixed
¢ =0.315. Results are displayed for d quarks and for two u
quarks (i.e., the u-quark data for L3 /n have been multiplied by 2
to compensate for n = 2), as well as for the isoscalar total quark
orbital angular momentum, i.e., the sum of the “d”” and ‘“2u” data.
All results are still normalized by the magnitude of isovector Ji
orbital angular momentum (thus, at # = 0, the 2u and d data
differ by unity). The shown uncertainties are statistical jackknife
errors.

Figure 5 shows data analogous to Fig. 3 for one value of Z,
exhibiting the behavior of d-quark and u-quark orbital
angular momentum separately, as well as the total (iso-
scalar) quark orbital angular momentum. Here, the u-quark
data have been normalized to two quarks, i.e., L3/n in the
u-quark case has been multiplied by 2 to compensate for

B +/f"4

n=0)
e

), (
d/nu

=0
u—
——i

sa »
=~ —02f +/ ]
- L e d quarks
A - e isoscalar ]
-04 [ ¢ 2uquarks my =317 MeV 1

0.0 0.2 04 0.6 08 o0

A

4

FIG. 6. Flavor-separated integrated torque accumulated by a
quark struck in a deep inelastic scattering process, as a function of

¢, analogous to Fig. 4, together with ad hoc extrapolations to
infinite f . Data for d quarks, for two u quarks (i.e., the u-quark
data for 73 have been multiplied by 2 to compensate for n = 2 in
the u-quark case), and their sum, the isoscalar u 4 d quark
combination, are shown. Data are normalized by the magnitude
of isovector Ji quark orbital angular momentum, as in previous
figures. For better visibility, isoscalar data are slightly displaced
horizontally. The shown uncertainties are statistical jackknife
errors.
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n = 2 for u quarks; hence the 2u label. The isoscalar result
was then obtained by simple addition of the d and 2u data.’

As observed previously in [24], the strong cancellation
of the u- and d-quark orbital angular momenta in the proton
that has long been known for the # = 0 Ji case [6,7] extends
to nonzero 7 and the Jaffe-Manohar limit. Only a small
negative contribution to the spin of the proton from quark
orbital angular momentum remains. The data for the flavor-
separated integrated torque [cf. (23)] are collected in Fig. 6

and extrapolated to the ¢ — oo limit. At the present level of
statistics, scarcely a signal is obtained for the flavor-
separated integrated torque in that limit; the data do appear

compatible with the observations made at fixed { = 0.315
from Fig. 5.

V. CONCLUSIONS AND OUTLOOK

The chief advance of the present study is the adoption of
a direct derivative method [40] in the GTMD approach to
evaluating quark orbital angular momentum in the proton in
lattice QCD. The introduction of this method has led to a
reliable quantitative computation of the needed derivative,
with respect to momentum transfer, of the relevant GTMD
matrix element. This is validated by the result obtained
specifically for the quark orbital angular momentum
defined through the Ji decomposition of proton spin; it
agrees well with the corresponding result obtained inde-
pendently in lattice QCD calculations relying on Ji’s sum
rule [7]. The discrepancy observed in the initial exploration
[24] is thus resolved.

The agreement between the quark orbital angular
momentum calculated in this work using the GTMD
approach and the result from the Ji sum rule suggests that
other systematic uncertainties, such as ones associated with
excited state effects, renormalization and matching, as well
as operator mixing are minor and do not rise to the level of
the statistical uncertainties of the present calculation.

In the GTMD approach, one directly computes quark
orbital angular momentum by weighting the appropriate
Wigner function (related to GTMDs via Fourier trans-
formation) by by X ky, where by is the quark impact
parameter and k; the quark transverse momentum
[16,17]. The aforementioned derivative with respect to
momentum transfer supplies the weighting by by, its
Fourier conjugate. The information on kz, on the other
hand, is supplied through the nonlocal TMD operator used
in constructing the relevant proton matrix element (2). The
treatment of renormalization issues thus follows closely the
methods used in more widely explored lattice TMD
calculations [25-29]. Ratios of proton matrix elements
are constructed to cancel renormalization and soft factors
associated with the TMD operator. In effect, one evaluates

This may differ slightly from calculating 3L;,,,4/n,,4 at
finite statistics.

quark orbital angular momentum in units of the number of
valence quarks. Operator mixing effects [29,36-38] can
spoil these cancellations, and though they appear not to
play a significant role in the present calculation, these
effects will ultimately have to be brought under control.

The advantage of this nonlocal operator-based GTMD
approach is that one can extend lattice QCD calculations
beyond the Ji decomposition of proton spin and establish a
continuous, gauge-invariant interpolation from Ji [3] to
Jaffe-Manohar [14] quark orbital angular momentum.
The corresponding information is contained in the choice
of Wilson line path in the TMD operator. A straight
Wilson line path yields Ji quark orbital angular momentum
[19-21], and a staple-shaped Wilson line path, in the limit
of infinite staple length, yields its Jaffe-Manohar counter-
part [18,20]. The difference between the two can be
interpreted as the integrated torque accumulated by a quark
struck in a deep inelastic scattering process as it exits the
proton, through final state interactions [20]. It corresponds
to a Qiu-Sterman-type correlator [20-22]. The data
obtained for this term in the present investigation allow
one to observe the gradual accumulation of torque by the
quark until it attains the asymptotic Jaffe-Manohar orbital
angular momentum. The latter is enhanced in magnitude
relative to the initial Ji value, with the integrated torque
adding about one-third of the magnitude of the Ji orbital
angular momentum at the pion mass m, = 317 MeV used
in this calculation.

To further sharpen the analysis of quark orbital angular
momentum within the GTMD approach, calculations for a
sequence of lattice spacings would be desirable, to allow fora
direct study of the scale evolution. Also, a more compre-
hensive exploration of the dependence on the Collins-Soper
parameter { is warranted, to clarify whether the results indeed
already stabilize at the fairly low values of ¢ employed in this
work, as suggested by Fig. 4. Ultimately, the large é’ behavior
determines the physical limit. Finally, of course, also further
progress toward the physical pion mass must be made.

The improved calculation of quark orbital angular
momentum based on GTMDs achieved using the present
methodology opens the way to reliably compute other
related quantities, such as quark spin-orbit correlations in
the proton [16,22]. Corresponding calculations are in
progress, employing domain wall fermions to curtail the
operator mixing effects that are induced when the fermion
discretization breaks chiral symmetry.
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