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Abstract

We study the question of dualizability in higher Morita categories of locally pre-
sentable tensor categories and braided tensor categories. Our main results are that the
3-category of rigid tensor categories with enough compact projectives is 2-dualizable,
that the 4-category of rigid braided tensor categories with enough compact projectives is
3-dualizable, and that (in characteristic zero) the 4-category of braided multi-fusion cat-
egories is 4-dualizable. Via the cobordism hypothesis, this produces respectively two-,
three- and four-dimensional framed local topological field theories. In particular, we pro-
duce a framed three-dimensional local topological field theory attached to the category
of representations of a quantum group at any value of q.

Contents

1 Introduction 436
1.1 Morita categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 437
1.2 Rigidity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 438
1.3 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 439
1.4 Summary of known dualizability results . . . . . . . . . . . . . . . . . . . . . . . . 440
1.5 Applications to topological field theories . . . . . . . . . . . . . . . . . . . . . . . . 441
1.6 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 447

2 Preliminaries 448
2.1 Presentable linear categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 448
2.2 Dualizability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 450
2.3 Tensor categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 451
2.4 Braided tensor categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453

3 The Morita theory BrTens 455
3.1 Models for higher Morita theories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455
3.2 Relation to locally constant factorization algebras . . . . . . . . . . . . . . . . 456
3.3 Braided tensor categories as objects . . . . . . . . . . . . . . . . . . . . . . . . . . . 457
3.4 Central algebras as 1-morphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 459
3.5 Centered bimodules as 2-morphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . 462
3.6 Functors and natural transformations as 3- and 4-morphisms . . . . . . . 464
3.7 Symmetric monoidal structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 465

Received 11 August 2018, accepted in final form 19 August 2020, published online 9 March 2021.
2010 Mathematics Subject Classification 17B37, 18M15, 18M05, 16D90, 57K16, 57K31 (primary).
Keywords: quantum groups, braided tensor categories, higher categories, topological field theories.

AB was supported during this work by RTG 1670 ‘Mathematics Inspired by String Theory and Quantum Field
Theory’. DJ is supported by the European Research Council (ERC) under the European Union’s Horizon 2020
research and innovation programme (grant agreement no. 637618). NS is supported by NSF grant DMS-1454767.
This journal is c○ Foundation Compositio Mathematica 2021.

#JJ*I
��000 ��D:+A�"  )+"��)+ �J +DI �#JJ*I
���)A )+"��� �����4����	��8�����
��
�)0(C)�� ��!+)D�#JJ*I
��000 ��D:+A�"  )+"��)+  �.1�.�1���1.6 �0�7�.1�.�1�320.4��)(����/.(�������J���
��
�	��I.:% �J�J)�J# �,�D:+A�" �,)+ �J +DI�)!�.I ���L�AC�:C ��J

http://www.compositio.nl/
http://www.ams.org/msc/
http://www.compositio.nl/
https://www.cambridge.org/core/terms
https://doi.org/10.1112/S0010437X20007630
https://www.cambridge.org/core


A. Brochier, D. Jordan and N. Snyder

4 The rigid Morita theories 465
4.1 Characterizations of rigidity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 465
4.2 The Morita theory RigidTens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 467
4.3 The Morita theory RigidBrTens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 468
4.4 The Morita theory BrFus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 469

5 Dualizability in Tens and BrTens 470
5.1 Dualizability over the enveloping algebra . . . . . . . . . . . . . . . . . . . . . . . 470
5.2 Relative Eilenberg–Watts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 472
5.3 Cp-rigid implies dualizable over Ce . . . . . . . . . . . . . . . . . . . . . . . . . . . . 473
5.4 Cp-rigid tensor categories are 2-dualizable . . . . . . . . . . . . . . . . . . . . . . 474
5.5 Cp-rigid braided tensor categories are 3-dualizable . . . . . . . . . . . . . . . . 475
5.6 Braided multi-fusion categories are 4-dualizable . . . . . . . . . . . . . . . . . . 477

Acknowledgements 478
References 478

1. Introduction

This paper establishes dualizability results for the higher Morita categories of locally presentable
tensor categories and braided tensor categories. Roughly speaking, a higher category is called
fully dualizable if its objects have duals and its morphisms have adjoints at all levels. More
generally, a higher category is k-dualizable if all objects have duals and all morphisms of degree
less than k have adjoints. The Baez–Dolan cobordism hypothesis [BD95] hypothesizes that local
(or fully extended) topological field theories (TFTs) in a given dimension, valued in some target
higher symmetric monoidal category, are classified by its fully dualizable objects, that is, those
objects lying in some fully dualizable subcategory. Here ‘local’ means that it is extended all the
way down to points, that is, the TFTs assign objects of the target to 0-manifolds, 1-morphisms
to one-dimensional bordisms, 2-morphisms to two-dimensional bordisms with corners, and so on.
Lurie’s influential work [Lur09] outlined a proof of the cobordism hypothesis; several more recent
works [AF17, AFR18] have aimed to give an independent proof. In light of this classification, it
is therefore a very interesting question to produce examples of fully dualizable higher categories,
and k-dualizable higher categories more generally.

Of particular interest are the higher Morita theories of En-algebras. These generalize the
classical Morita theory – the 2-category of associative algebras, bimodules, and bimodule homo-
morphisms – to the setting of En-algebras in some symmetric monoidal m-category S, that
is, algebras in S over the little n-disks operad. An En-algebra may be regarded as carrying n
mutually distributing associative algebra structures in S, and so the resulting Morita theory of
En-algebras is most naturally regarded as an (n + m)-category. The first general construction
of a higher Morita theory was the (n + 1)-category of En-algebras in a (possibly non-discrete)
1-category S. This construction was outlined in [Lur09], and carried out in independent works
[Hau17, Sch14]. The further construction of the (n + m)-categorical higher Morita theory of
En-algebras in an m-category S was given in [JS17].1

1 By ‘n-category’ we will mean more precisely an (∞, n)-category, in the complete Segal space axiomatization,
in order to match Johnson-Freyd and Scheimbauer’s construction. We will say ‘discrete n-category’ when the
only invertible higher morphisms are identities. However, following the remark in [DSS19, § I.5], all our main
arguments take place in discrete 2-categories and so are model independent and we can work with ordinary
bicategories.

436

#JJ*I
��000 ��D:+A�"  )+"��)+ �J +DI �#JJ*I
���)A )+"��� �����4����	��8�����
��
�)0(C)�� ��!+)D�#JJ*I
��000 ��D:+A�"  )+"��)+  �.1�.�1���1.6 �0�7�.1�.�1�320.4��)(����/.(�������J���
��
�	��I.:% �J�J)�J# �,�D:+A�" �,)+ �J +DI�)!�.I ���L�AC�:C ��J

https://www.cambridge.org/core/terms
https://doi.org/10.1112/S0010437X20007630
https://www.cambridge.org/core


On dualizability of braided tensor categories

When we specialize the coefficients S appearing in these constructions to be the (discrete)
2-category Pr of locally presentable k-linear categories, we obtain a (discrete) 3-category Tens
of tensor categories, regarded as E1-algebras in Pr, and a (discrete) 4-category BrTens of
braided tensor categories, regarded as E2-algebras in Pr.2 Our main results in this paper involve
identifying natural subcategories of Tens and BrTens consisting of rigid tensor and braided
tensor categories, respectively, with enough compact projectives, and proving that these are
2- and 3-dualizable, respectively. In the braided tensor case, we further identify a subcategory
of braided multi-fusion categories, and we show this is fully dualizable. Taken together with the
cobordism hypothesis, our results give rise to new topological field theories in dimensions 2, 3,
and 4. In the tensor case this generalizes results of [DSS19] for finite rigid tensor categories, is a
non-derived analogue of [BN09, Gai15], and extends to tensor and braided tensor categories the
dualizability results of [BCJ15] for presentable categories.

The rest of the introduction is outlined as follows. We begin by recalling what the Morita
categories of tensor and braided tensor categories are, briefly discuss the notion of rigidity, as
it appears in the infinite/presentable setting, and state our main results. Then we discuss the
relationship of our results to previous results on dualizability of tensor categories. We next
briefly discuss what we expect to be true about oriented TFTs attached to braided tensor
categories, which we will return to in future work. Finally, we discuss the relationship of the
three-dimensional TFTs coming from braided tensor categories via the cobordism hypothesis
to a number of well-known constructions, some of which are at present only conjecturally well
defined.

1.1 Morita categories
Our primary objects of interest are tensor categories and braided tensor categories, and their
higher Morita theories. Following the general framework laid out in [Hau17, Sch14, JS17], § 3 of
the present paper is devoted to the case S = Pr, where we can spell out explicitly the data of
all higher morphisms, and the composition laws.

Definition-Proposition 1.1. There exists of a 3-category Tens, whose:

• objects are tensor categories;
• 1-morphisms are bimodule categories between such;
• 2-morphisms are bimodule functors between such;
• 3-morphisms are natural transformations between such.

The symmetric monoidal product on Tens is the so-called Deligne–Kelly tensor product
of the underlying categories, equipped with its natural tensor structure. The composition of
1-morphisms is the balanced (or relative) Deligne–Kelly tensor products of bimodules.

Compositions of 2- and 3-morphisms are composition of functors and of natural transforma-
tions in the usual sense.

Similarly, we have the following definition-proposition.

Definition-Proposition 1.2. There exists a 4-category BrTens, whose:

• objects are braided tensor categories;
• 1-morphisms are tensor categories with central structures;

2 In this paper we take these as the definition of tensor category and braided tensor category, and we will state
explicitly when we assume a tensor category to be abelian or rigid.
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• 2-morphisms are centered bimodule categories;
• 3-morphisms are bimodule functors of such;
• 4-morphisms are natural transformations of such.

The symmetric monoidal product in BrTens is again the Deligne–Kelly tensor product of
the underlying categories. The composition of 1- and 2-morphisms is defined using the balanced
Deligne–Kelly tensor product. Composition of 3- and 4-morphisms is composition of functors
and natural transformations in the usual sense. See § 3 for complete definitions.

1.2 Rigidity
With these definitions in hand, our main results identify certain appropriately dualizable sub-
categories of Tens and BrTens. A key notion in these theorems is that of rigidity. In the setting
of finite tensor categories, rigidity of a tensor category is the requirement that all its objects are
dualizable – that is, have left and right dual objects, equipped with evaluation and coevaluation
maps mimicking those associated to the dual of a vector space. In the infinite setting, some care
is needed to define the correct notion of rigidity: for instance, we wish to include the category of
vector spaces as an example of a rigid tensor category, although it contains infinite-dimensional
vector spaces, which are not dualizable. This leads us to our next definition-proposition.

Definition-Proposition 1.3. Suppose that a tensor category A has enough compact projec-
tives. Then the following conditions on A are equivalent.

(i) All compact projective objects of A are dualizable.
(ii) A generating collection of compact projective objects of A are dualizable.
(iii) The multiplication functor, T : A ! A → A, has a cocontinuous right adjoint TR, and the

canonical lax bimodule structure on TR is strong.

We will say that A is cp-rigid if it has enough compact projectives, and if any of the above
conditions is satisfied.

Remark 1.4. Note that we only define cp-rigidity of A under the standing assumption that the
underlying category has enough compact projectives. We will follow this convention throughout
the paper, so that a tensor or braided tensor category declared to be cp-rigid in particular has
enough compact projectives. Nonetheless in the main theorems we explicitly include the condition
of having enough compact projectives in order to avoid any possible confusion.

Remark 1.5. The reader should compare the notion of cp-rigidity above with that of [Gai15,
Appendix D], in the setting of dg-categories. There a dg-category is called rigid if it satisfies
the third condition above and if the right adjoint to the unit is cocontinuous. Dropping this last
condition leads to what is called ‘semi-rigidity’ in [BN09].

Remark 1.6. Another reasonable notion is compact-rigidity, meaning that all compact objects
have duals. This more closely matches the traditional notion of rigidity appearing in finite tensor
category literature, in the following sense: for a finite tensor category in the traditional sense (that
all objects are dualizable), its ind-completion is compact-rigid. Clearly, compact-rigid implies
cp-rigid, but the former is more restrictive.

Even in the finite setting cp-rigidity is better behaved in some important ways, as was pointed
out to us by Theo Johnson-Freyd. For example, if A is a finite-dimensional, non-semisimple
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algebra in Vect then A-mod-A is not compact-rigid even though it is Morita equivalent to Vect.
By contrast, A-mod-A is cp-rigid, because it is generated by the compact projective bimodule
A ⊗ A, which is dualizable (because it is projective – and indeed free – as both a left and right
A-module).

The simplest instance to see the distinction is A = C[x]/x2; here it is not hard to see that
the only indecomposable dualizable objects are the projective bimodule A ⊗ A and the unit
bimodule AAA. In particular, the one-dimensional bimodule C where x acts by zero on both
sides is compact but not dualizable.

Remark 1.7. Similarly, cp-rigid is better behaved over imperfect fields than compact-rigid, since
compact-rigid is not preserved by the Deligne–Kelly tensor product (see [Del07, Proposition
5.17]) while cp-rigid is preserved.

A specific counterexample from [DSS19] arises from an inseparable field extension L/K.
Recall that a finite-dimensional module over a finite-dimensional algebra is dualizable if,
and only if, it is projective; hence, A-mod-A is compact-rigid if, and only if, every finite-
dimensional bimodule is projective as a left and as a right module which happens if, and only if,
A is semisimple. Thus L-mod-L is compact-rigid (since L is semisimple) but its tensor square
L-mod-L ! L-mod-L ∼= (L ⊗ L)-mod-(L ⊗ L) is not compact-rigid, since L ⊗ L is not semisim-
ple. However, as pointed out to us by Theo Johnson-Freyd, (L ⊗ L)-mod-(L ⊗ L) is cp-rigid in
the sense of this paper.

1.3 Main results
We can now state our main results.

Theorem 1.8. There exists a sub-3-category RigidTens ⊂ Tens, whose:

• objects are cp-rigid tensor categories with enough compact projectives;
• 1-morphisms are bimodule categories with enough compact projectives;
• 2-morphisms are bimodule functors between such;
• 3-morphisms are natural transformations between such.

Moreover, RigidTens is 2-dualizable.

Theorem 1.9. There exists a sub-4-category RigidBrTens ⊂ BrTens, whose:

• objects are cp-rigid braided tensor categories with enough compact projectives;
• 1-morphisms are cp-rigid tensor categories with central structures, and enough compact

projectives;
• 2-morphisms are centered bimodule categories, with enough compact projectives;
• 3- and 4-morphisms are as in BrTens.

Moreover, RigidBrTens is 3-dualizable.

It is already known from [DSS19] that multi-fusion categories over a field of characteristic
zero are 3-dualizable. We show that the analogous statement holds for 4-dualizability in BrTens.

Theorem 1.10. Over a field of characteristic zero, there exists a sub-4-category BrFus ⊂
BrTens, whose:

• objects are braided multi-fusion categories;
• 1-morphisms are multi-fusion categories with compatible central structures;
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• 2-morphisms are finite and semisimple bimodule categories with compatible centered
structures;

• 3-morphisms are compact-preserving functors between such;
• 4-morphisms are natural transformations between such.

Moreover, BrFus is fully (i.e. 4-) dualizable.

As in [DSS19] over a field of characteristic p, this theorem holds with semisimplicity replaced
by the stronger condition of ‘separability’.

Remark 1.11. The statements of the main Theorems 1.8–1.10 are somewhat simplified for the
sake of exposition. More precisely, we first prove in § 4 that each desired subcategory is indeed
closed under the monoidal structure and the composition of morphisms at each level. We then
construct adjoints in § 5 to k-morphisms in the required degrees.

1.4 Summary of known dualizability results
We now recall what has already been proved regarding dualizability in higher Morita theories,
and explain where our results fit.

Dualizability in low dimensions is a general and purely topological phenomenon. It was proved
in [Lur09] that any E1-algebra A (in any S) is 1-dualizable, with dual being the opposite algebra
Amop. (Here the m stands for multiplication, as opposed to taking the opposite of composition or
of the braiding.) This result was generalized in [GS18] to arbitrary n, establishing that the entire
pointed higher Morita category of En-algebras is fully n-dualizable; for objects this was proved
in [Sch14]. This is also expected to hold for unpointed higher Morita categories of [Hau17]. In
other words, it follows from purely topological considerations that every object of the Morita
theory of En-algebras is n-dualizable, in particular that Tens is 1-dualizable and BrTens is
2-dualizable.

Turning attention to our ‘coefficients’ Pr, it was proved in [BCJ15] that C ∈ Pr is 1-dualizable
if it has enough compact projectives.3 It is well known that C ∈ Pr is 2-dualizable if it is the ind-
completion of a finite and semisimple category (and the converse holds, under the assumption
there are enough compact projectives; see [Til98] and [BDSV15, Appendix]).

In [DSS19] it was shown that finite tensor categories are 2-dualizable and that in character-
istic zero multi-fusion categories – finite semisimple rigid tensor categories – are fully (i.e. 3-)
dualizable. In characteristic p it was shown that separable tensor categories (i.e. multi-fusion
categories of non-zero global dimension) are fully dualizable. Here we show that the first of these
results generalizes beyond the finite setting.4 In the infinite setting we have no improved suffi-
cient condition for 3-dualizability beyond multi-fusion (respectively, separable) categories from
[DSS19], see Remark 1.13.

A necessary condition for A ∈ Tens to be 2-dualizable, or for A ∈ BrTens to be 3-dualizable,
is that A be 1-dualizable in Pr. Absent a general characterization of dualizability in Pr, we take
the criterion of having enough compact projectives, from [BCJ15], which is in any case a versatile

3 The converse assertion, that this is a necessary condition, is proved there only for categories of comodules for a
coalgebra; the status of the converse in general does not appear to be known.
4 Although our results show finiteness is not necessary for the 2-dualizability theorem in [DSS19], many of the
other results and conjectures of [DSS19] – such as the topological description of the Radford isomorphism, the
conjectured SO(3) action on finite tensor categories, and the conjectured non-compact local TFT – do use finiteness
in an essential way.
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Table 1. Sufficient conditions for dualizability. Dualizability in low dimensions is topological,
while dualizability in higher dimensions references dualizability conditions in Pr. Cp-rigidity
provides the additional compatibility in middle dimensions.

Pr Tens BrTens

1 Enough compact projectives Any Any
2 Finite semisimple Cp-rigid Any
3 Multi-fusion Cp-rigid
4 Multi-fusion

one for proofs. Our results assert that, having assumed this form of dualizability in Pr, it suffices
to further assume only that A is cp-rigid, in order to obtain the next degree of dualizability.

To summarize (see Table 1), n-dualizability in higher Morita theories of En-algebras is guar-
anteed by very general theorems [Sch14, Hau17, Lur09], which are really about the topological
En-operads, and in particular apply for any coefficients S. Meanwhile, full dualizability in higher
Morita theories imposes very strong restrictions – in particular, the multi-fusion condition in the
works [DSS19, Fre12a, Fre12b, Wal06]. Our results highlight rigidity as a sufficient condition for
one additional level of dualizability in Tens and BrTens. The ability to drop the strong finite-
ness assumptions, while retaining one level of dualizability – 2-dualizability of tensor categories,
and 3-dualizability of braided tensor categories – is important for applications to geometric rep-
resentation theory and quantum algebra (see below), where categories of interest are typically
neither finite nor semisimple, and where invariants are already known for other reasons not to
extend to top dimension.

Remark 1.12. It is also interesting to compare these results to dualizability for ordinary finite-
dimensional algebras. There 2-dualizability is equivalent to separability; that is, that the
multiplication map has a splitting as a bimodule map. In some sense separability (splitting
of multiplication) looks quite similar to rigidity (cocontinuous right adjoint to multiplication),
but we do not know a common generalization that includes both separability and rigidity.

Remark 1.13. It is natural to ask whether the sufficient conditions from Table 1 can be improved
to necessary and sufficient conditions characterizing dualizability. We make no claims in this
direction in this paper; however, we note that some of these conditions are certainly not necessary.
In particular, as pointed out to us by Dan Freed, if A is a finite-dimensional non-semisimple
algebra then the tensor category A-mod-A is not multi-fusion, but is 3-dualizable because it is
Morita equivalent to Vect (see the proof of [EGNO15, Theorem 7.12.11]).

1.5 Applications to topological field theories
Combining the corbordism hypothesis with Theorems 1.8–1.10 yields the following corollary.

Corollary 1.14. We have the following statements.

(i) Every cp-rigid tensor category gives rise to a local, categorified, framed two-dimensional
TFT assigning that category to the framed point.

(ii) Every cp-rigid braided tensor category gives rise to a local, categorified, framed three-
dimensional TFT assigning that category to the framed point.
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(iii) In the braided multi-fusion case, this framed three-dimensional TFT extends to a framed
four-dimensional TFT.

Here ‘categorified’ means that one obtains vector spaces, as opposed to numbers, for closed
manifolds in top dimension, and these are equipped with actions of mapping class groups.

In the braided case, the resulting TFT produces categories for framed surfaces, which coin-
cide (via the uniqueness assertion in the cobordism hypothesis) with the ‘quantum character
varieties’ computed in [BBJ18a] using the formalism of factorization homology. Extending the
construction of character varieties to dimension 3 was a primary motivation for this work. The
three-dimensional part of the TFT assigns vector spaces to closed 3-manifolds (more generally,
functors between the quantum character theories of incoming and outgoing boundary compo-
nents, to manifolds with boundaries), and we expect those vector spaces, (respectively, functors)
to admit a description via skein modules. Finally, in the braided fusion case the TFT pro-
duces numerical invariants for framed 4-manifolds, which we expect will be closely related to
those obtained by Crane, Kauffman and Yetter [CKY97] in the same manner that the three-
dimensional TFT from [DSS19] is expected to relate to Turaev–Viro invariants [TV92, BW96,
Tur10]. In this section, we outline all of these expected connections and applications in more
detail.

Firstly, let us remark that the second and third statements of Corollary 1.14 (in particular,
their oriented variant to be discussed below) have been anticipated for many years, at least
under the assumption that the input braided tensor category is semisimple. That semisimple
ribbon tensor categories in characteristic zero give local three-dimensional TFTs was known
to Kevin Walker [Wal06] and essentially follows from [MW11, MW12], though these works use
an alternative notion of higher category and of TFT, which are not easily translated to the
more standard ones used in this paper. A variation on their approach is outlined in [Joh15, § 9];
Johnson-Freyd’s proposal uses an axiomatic framework compatible with ours, and seems a likely
candidate to give an independent proof of Corollary 1.14. We discuss this in more detail below.

The statement that ribbon braided fusion categories give a fully local four-dimensional TFT
also appears in unpublished work of Freed and Teleman [Fre12a, Fre12b], and in unpublished
work of Walker [Wal06], so in particular it should follow from the cobordism hypothesis that
they are 4-dualizable. Hence, in the braided fusion case, Theorem 1.10 can be regarded as giving
an independent proof of this widely expected result, but on the other side of the cobordism
hypothesis correspondence from other arguments.

All three constructions are closely related, and should agree exactly in the braided fusion case,
but there are some important differences in general. Firstly, the kind of completion that Morrison
and Walker use (‘the finite representation category’) does not agree with the free cocompletion in
general and so differs from the TFTs in Johnson-Freyd’s approach and ours.5 Secondly and more
importantly, in the skein formalism proposed by [Joh15] (see § 1.5.3 for a detailed discussion)
one must restrict strand types to compact projective objects; in particular, this includes the
unit which corresponds to the empty strand, and thus by a standard argument implies that
all dualizable objects are compact projective. This restriction allows for semisimple cp-rigid
braided tensor categories (finite or infinite), such as quantum groups at generic parameters,
or modularizations of quantum groups at roots of unity, but excludes non-semisimple finite

5 The finite representation category Funadd(Cop, Vectfd) is neither the free cocompletion in the presentable setting
Funadd(Cop, Vect), nor in the finitely cocomplete setting Funadd(Cop, Vect)compact (unless C is finite).
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braided tensor categories in the sense of [EO04], as well as infinite non-semisimple braided tensor
categories, such as the (non-modularized) quantum groups at roots of unity. The reason why the
compact projective assumption appears in the skein- theoretic approach is that, by construction,
any category includes fully faithfully into its free cocompletion as the subcategory of compact
projective objects, so that any attempt to freely cocomplete skein categories renders a category
where the unit is compact projective.

1.5.1 The SO(n) action and oriented TFTs. By the cobordism hypothesis, the space of
n-dualizable objects (i.e. the underlying groupoid or core of the category of fully dualizable
objects) is homotopy equivalent to the space of n-dimensional framed TFTs. By precomposing
with changes of framing, the group O(n) acts on the space of TFTs, and thus on the core of
the category of dualizable objects C×. The second part of the cobordism hypothesis in Lurie’s
formulation says that the oriented field theories correspond precisely to homotopy fixed points for
the SO(n) part of this action. An action of a topological group G on the core of a higher category
C is given by a map BG → BAut(C×), and a homotopy fixed point consists of a trivialization
of a component of this action; this involves both non-trivial conditions on the would-be fixed
points, and the specification of data giving the null homotopy.

The applications we have in mind (discussed in the next three sections) require oriented
theories, so in this section we briefly outline what we expect to be true about the SO(3) action
and its homotopy fixed points for RigidBrTens. We only sketch the main ideas here, as the
details will appear in a forthcoming paper by us; these hinge in turn on work in progress by one
of us and co-authors [DSS]. It is also interesting to ask the corresponding questions about the
SO(2) action on RigidTens, the SO(3) action on Fus, and the SO(4) action on BrFus. The
first two cases are considered in [DSS], while for the final case we do not have an outline of a
proof in mind at present, and so will only speculate below.

The O(n) action on En-algebras is well understood in concrete terms. Namely, O(n) acts on
the En operad itself by the standard action on the little disks, and the O(n) action on En-algebras
comes by precomposing by the action on the operad. In particular, any framed En-algebra6 is a
homotopy fixed point for the SO(n) action in a canonical way. This action is quite special, since it
only involves algebra maps and not Morita equivalences. Similarly, the canonical homotopy fixed
point structures again only involve algebra maps and not Morita equivalences. In particular, not
all the homotopy fixed points in the Morita category are the canonical ones attached to a framed
En-algebra. Nonetheless, those special fixed points give oriented TFTs which are sufficient in
applications.

In the E2 setting, a framed E2-algebra is the same thing as a balanced braided tensor category,
and so any balanced braided tensor category has a canonical SO(2) fixed point structure. This
is enough to get a two-dimensional oriented TFT, as in [BBJ18a]. But for the three-dimensional
TFT, having an SO(2) fixed point structure only yields a ‘combed TFT’, that is, one that depends
on a choice of non-vanishing vector field on the 3-manifold.

It is relatively easy to characterize SO(2) actions and their fixed points owing to the standard
cell decomposition of BSO(2) = CP∞, with a unique cell in each even degree, and with the usual
attaching maps. Since in our case X is the core of a discrete 4-category RigidBrTens, the target
is a homotopy 5-type and by standard arguments we may restrict attention to the 5-type of CP 6.

6 Note the potentially confusing yet standard terminology here: a framed En-algebra is one which gives invariants
of oriented manifolds, while a plain En-algebra gives invariants of framed manifolds.
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The 2-cell corresponds to the Serre automorphism, which is the value of the loop bordism (an
interval with framing that twists once). From the above description of the SO(2) action we see
that Serre automorphism is given by the double braiding bimodule (see [BBJ18b, Figure 3]). The
4- and 6-cells correspond to certain higher compatibilities that the Serre satisfies, but we will not
need to understand them in detail for what follows. Trivializing this action corresponds to picking
a trivialization of the Serre, plus some data attached to the higher cells. A balancing is exactly
a trivialization of the Serre that comes from a homomorphism instead of an arbitrary bimodule.
The discussion in the previous paragraph guarantees the existence of a canonical choice for the
higher pieces of data.

Since π1(SO(3)) = Z/2Z, we see that BSO(3) has an extra 3-cell which trivializes the square
of the Serre. This is called the belt bordism in [DSS19] because it comes from the belt trick, and
its image under the TFT is called the Radford because of its relationship to Radford’s theorem for
finite tensor categories [Rad76, ENO04]. In the case of BrTens the image of the belt bordism is
given by the Drinfeld trivialization of the quadruple braiding bimodule ([Dri89], [Kas95, Chapter
XIV], [BK01, § 2.2], [EGNO15, § 8.9.]). So, in order to give a trivialization of the SO(3) action,
we must identify the trivialization of the quadruple braiding bimodule given by the Drinfeld
map with the one given by the square of the balancing. In general, such an identification is given
by a natural transformation of bimodule functors. But since these bimodules come from tensor
functors, and the bimodule functors come from tensor natural isomorphisms, a particularly nice
way to give a bimodule natural isomorphism is to simply assert that the two monoidal natural
transformations are equal. This recovers exactly the definition of a ribbon tensor category. So we
see that a ribbon tensor category has a trivialization of the SO(2) action and a trivialization of
the belt bordism. As before, not all homotopy fixed points will be of this form, but these special
homotopy fixed points are sufficient for applications. (See [DSS19, § 3.5] for analogous partial
results.)

We expect it to follow from the main results of [DSS] that in fact a ribbon category has a
canonical SO(3) fixed point structure. This requires understanding the 5-type of BSO(3) and
checking that certain higher cells automatically vanish because we have chosen the trivialization
of the Serre, the higher SO(2) cells, and Radford to be in a very special form (e.g. coming
from algebra maps rather than from bimodules). In a sense this is easier than the corresponding
statement about finite tensor categories, because the higher SO(2) cells are easier to trivialize
here.

We also speculate that a ribbon braided fusion category has a canonical SO(4) fixed point
structure; this result would not follow from the results of [DSS], but rather would involve com-
putations with the 5-type of BSO(4). Nonetheless this result should be true by comparison with
[Wal06] (at least in the unitary case).

1.5.2 The quantum character field theory. Our primary motivating application for Theorem
1.9 is to produce a local three-dimensional topological field theory extending the local two-
dimensional quantum character theory, which was introduced in [BBJ18a]. Let us outline some
expected applications of this extension here.

Recall that the character stack ChG(X) associated to a topological space X and a group G
is a moduli stack of G-local systems on X, equivalently, of representations

π1(X) → G,

444

#JJ*I
��000 ��D:+A�"  )+"��)+ �J +DI �#JJ*I
���)A )+"��� �����4����	��8�����
��
�)0(C)�� ��!+)D�#JJ*I
��000 ��D:+A�"  )+"��)+  �.1�.�1���1.6 �0�7�.1�.�1�320.4��)(����/.(�������J���
��
�	��I.:% �J�J)�J# �,�D:+A�" �,)+ �J +DI�)!�.I ���L�AC�:C ��J

https://www.cambridge.org/core/terms
https://doi.org/10.1112/S0010437X20007630
https://www.cambridge.org/core


On dualizability of braided tensor categories

considered up to the conjugation action of G. It is proved in [BFN10] that the assignment to
X of its G-character stack, accessed through its category of quasi-coherent sheaves, defines an
n-dimensional topological field theory for any n, and that this coincides with the n-dimensional
field theory assigning Rep (G) to a point, where we may regard the E∞-algebra Rep (G) as
an En-algebra for any n. These may then be computed using the machinery of factorization
homology [AF15, AFT17, BD04, Gin15, Lur], which has blossomed in recent years.

In low dimensions, character stacks exhibit rich additional structures. It is a celebrated
result of Atiyah and Bott [AB83] and Goldman [Gol84] that when the group G is reductive,
the underlying variety of the G-character stack of closed surfaces carries canonical symplectic
forms, built using the Killing form for G and the Poincaré pairing for S. Furthermore, any 3-
manifold M with boundary defines a Lagrangian subvariety ChG(M) ⊂ ChG(∂M) with respect to
this symplectic form. This result has been upgraded in the influential papers [Cal15, CPTVV17,
PTVV13] to a so-called 0-shifted symplectic structure on the stack ChG(S) for any closed surface
S, and to a Lagrangian structure on the map

ChG(M) → ChG(∂M).

In [BBJ18a], deformation quantizations of the classical character stack were introduced, more
precisely deformation quantizations of their categories of quasi-coherent sheaves. The con-
struction hinged on the machinery of factorization homology, and as such the assignment
S &→ QChG(S) defined a local two-dimensional topological field theory. These invariants were
computed explicitly for arbitrary punctured surfaces, where they were related to well-known ad-
hoc quantizations of character varieties, most notably the moduli algebras of Alekseev [Ale94,
AGS96].

In the follow-up paper [BBJ18b], the resulting invariants of closed surfaces were computed.
Of special interest is the case of the closed torus T 2. The quantum G-character stack of T 2 was
identified with the category of strongly equivariant Dq(G)-modules. Here the equivariance condi-
tion is with respect to (a quantization of) the conjugation action of G on itself. This identification
allows for the construction of quantum Hamiltonian reduction functors, from the quantum char-
acter variety of the 2-torus, to an algebra of Weyl group-invariant difference operators Dq(H)W

on the Cartan subgroup H of G.
The results of the present paper, together with the general formalism of topological field

theory, yield several interesting new structures on quantum character varieties, most notably in
the case of 3-manifolds with boundary. Suppose that M is a 3-manifold with a 2-torus boundary.
For example, M could be the complement in S3 to a knot K. Then we may regard M as a
cobordism from the empty manifold ∅ to T 2, giving rise to a functor,

Vect = QCV (∅) QCV (M)−−−−−−→ QCV (T 2) Q.H.R.−−−−→ Dq(H)W -mod .

Identifying the functor obtained in this way with its value on the one-dimensional vector space
k ∈ Vect, we obtain from any such M a module for the ring Dq(H)W . The isomorphism class of
such a module is a homeomorphism invariant of M , which may be regarded as a quantization
of the defining Lagrangian of the classical character variety of M . As such, it should provide
a foundational framework for: quantum A-polynomials [Dim13, Gar04, Guk05, GS12], DAHA-
Jones polynomials and skein modules of knots complements [Che13, BS16, Sam17], and refined
Chern–Simons invariants [AS15], among others, each of which yet lacks a topologically invariant
formulation.
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1.5.3 Skein modules, skein algebras, and skein categories. The Poisson algebra of functions
on the classical G-character variety on a punctured surface S has a natural description in terms
of graphs drawn on the surface, with edges labeled by G-modules, and vertices labeled by
G-morphisms. This led to a successful program of deformation quantization of character varieties
via the ‘skein theory’ approach [FG00, PS00, AMR98, RS02], which we now recall.

Given an oriented 3-manifold M , its skein module A(M) is the quotient of the vector space
freely generated by isotopy classes of links in M , modulo ‘skein relations’: these relate vectors
corresponding to tangles obtained by certain basic modifications within a fixed ball (see, for
example, [Lic09] for a survey). Perhaps the best-studied of these are the Kauffman bracket skein
relations [Prz91, Kau01] which derive from the representation theory of Uq(sl2), but there are also
the HOMFLYPT polynomials, which derive from the N → ∞ limit of the representation theories
of Uq(slN ) and the Kauffman polynomial which similarly corresponds to quantum orthogonal
and symplectic families. More generally, one associates to any 3-manifold and any (small) ribbon
tensor category the associated skein module, defined using ribbon graphs labeled by objects and
morphisms of A.

In the case where M = S × I for some surface S, the skein module acquires a natural alge-
bra structure – the ‘skein algebra’ – by concatenating in the interval direction. In the case of
finite-dimensional modules over the quantum group of G, this algebra quantizes the classical
character variety [RS02]. Skein modules for 3-manifolds with boundary naturally inherit the
structure of a module over the skein algebra of their boundary in a similar manner. Allowing
surfaces with marked points, one is naturally led to the so-called skein categories C(S) of Mor-
rison and Walker [Wal06, MW12, MW11]. An object of the skein category is a finite collection
of points of the surface, colored by objects of the ribbon braided tensor category; Homs are
given by relative skein modules in the cylinder [Prz99], that is, ribbon graphs drawn in S × I
ending at the top and bottom of the cylinder compatibly with their markings. In the same
way, one attaches to an arbitrary oriented 3-manifold M with oriented boundary ∂M = S+ ∪ S−
a functor C(S+)op × C(S−) → Vect (sometimes called a ‘bimodule’), which outputs the skein
module in the 3-manifold, relative to the markings on its boundary which define the input
objects.

Our constructions in the current paper extend the two-dimensional theory of [BBJ18a] to a
three-dimensional theory; however, the factorization homology construction is specific to dimen-
sion 2 (or to dimension n, more generally, when working with En-algebras). Thus it is an
important and interesting question to describe the resulting functors explicitly, in the frame-
work of skein modules of 3-manifolds. In the semisimple case, we outline below a conjectural
answer to this question, following a proposal of [Joh15].

Recall that in [BBJ18a] the role of skein categories is played by factorization homology with
coefficients in a braided tensor category, as the basic ingredient in the construction. Like skein
categories, factorization homology categories feature special objects indexed by points of the
surface colored by representations of the input braided tensor category. Whereas in skein theory
these are taken as a starting point to define the categories, in factorization homology they are
induced via functoriality by disk embeddings into the surface.

Factorization homology categories may be understood therefore as a suitable cocompletion of
the skein categories,7 in that they contain skein categories as a full, generating subcategory, and
they further contain additional objects obtained from those by taking cokernels and direct sums.

7 Subsequent to the posting of this paper on the arXiv, this interpretation was realized explicitly in [Coo19].
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This relationship is analogous to obtaining the category of coherent sheaves on a variety as a
cocompletion of the category of vector bundles.

Assuming the orientability conjectures from § 1.5.1, an oriented 3-manifold M with boundary
S+ , S−, viewed as a cobordism, gives rise to a functor FM between the factorization homology
categories. Because the factorization homology categories are generated by the skein-theoretic
subcategory, in order to give a functor between factorization homology categories, it suffices to
specify its values on this subcategory. We further conjecture, following [Wal06, Joh15], that FM

is given on skein objects X and Y by the formula

Hom(FM (X), Y ) = Skrel
X,Y (M).

Here the right-hand side denotes the relative skein module, spanned by ribbon graphs in M
ending at the points compatibly with the labeling of X and Y . Interpreting presentable k-linear
categories as categorified Hilbert spaces, the Hom functor plays the role of categorified inner
product, and so this gives a sort of ‘matrix coefficient’ for the functor. We note that such a
formula can only be expected to hold in the semisimple case, as it implies that the unit is
compact projective.

1.5.4 Crane–Yetter and Witten–Reshetikhin–Turaev theory. As a consequence of Theorem
1.10, every braided multi-fusion category gives rises to a local framed four-dimensional TFT.
As explained above, starting from a ribbon braided multi-fusion category, also known as a pre-
modular category, one conjecturally obtains an oriented theory, hence numerical invariants of
oriented 4-manifolds. We expect this invariant to recover the one defined by Crane and Yetter
[CY93] in the modular case and by Crane, Kauffman and Yetter [CKY97] in the general pre-
modular case.

In the modular case, unpublished work by Freed and Teleman (see [Fre12a, Fre12b]) and
Walker (see [Wal06]) asserts that the corresponding local theory is invertible and encodes the
anomaly of Witten–Reshetikhin–Turaev theory [RT91, Wit89]. Roughly speaking, this means
that the invertible theory can be upgraded to a relative field theory [FT14, FV15, JS17],
which in particular can be used to define a numerical invariant of pairs (M, [W ]) where W is a
4-manifold with boundary M and [W ] is the cobordism class of W . This invariant is, in turn,
expected to coincide with the Witten–Reshetikhin–Turaev invariant attached to the same data.
We note that the fact that Witten–Reshetikhin–Turaev theory can be thought of as living on
the boundary of an almost trivial four-dimensional theory is apparent from its relation with
Chern–Simons theory [Wit89], and is essentially the approach outlined in [Wal06].

Moving beyond the modular case, non-semisimple versions of the Witten–Reshetikhin–Turaev
invariants have recently been constructed in a series of papers [BBG18, BCGP16, DGP18]. It
is natural to expect that the TFT determined by a finite and factorizable but non-semisimple
braided tensor category, regarded as an object of BrTens, can be related to those in a similar
way. We hope to return to this in future work.8

1.6 Outline
Section 2 contains a recollection on locally presentable tensor and braided tensor categories, as
well as on the notion of dualizability in higher categories. In § 3 we give a detailed description
of the symmetric monoidal Morita 4-category of braided tensor categories. Section 4 is devoted

8 Subsequent to the posting of this paper on the arXiv, this expectation was realized in [BJSS20].
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to the definition of rigidity in our framework, and the proof that restricting to cp-rigid ten-
sor and braided tensor categories, and bimodules with enough compact projective over those,
forms a subcategory of the Morita category. Finally, § 5 contains the proof of some dualizability
statements which are implied by cp-rigidity, and the proof our main results.

2. Preliminaries

In this section we recall a number of basic definitions we will need, and we give a more complete
statement of our main results. Let us fix throughout a field k of characteristic zero. General
references on presentable linear categories include [AR94, BCJ15, MP89].

2.1 Presentable linear categories
Definition 2.1. A category is said to be k-linear if it is enriched and tensored over the category
of k-linear vector spaces.

Definition 2.2. Let C be a k-linear category. An object c ∈ C is called

• compact, if Hom(c,−) commutes with filtered colimits;
• compact projective, if Hom(c,−) is cocontinuous, that is, commutes with arbitrary small

colimits.

Definition 2.3. We say that a k-linear category

• is locally finitely presentable if it admits arbitrary small colimits, and is generated under
filtered colimits by a small subcategory of compact objects;

• has enough compact projectives if it admits arbitrary small colimits, and is generated under
small colimits by a small subcategory of compact projective objects.

In particular, a category which has enough compact projectives in the above sense is locally
finitely presentable.

Remark 2.4. In the k-linear setting an object is compact projective if, and only if, it is com-
pact and is projective in the sense that Hom(p,−) is right exact (preserves finite colimits). As
usual, projective has many equivalent formulations, including one that says p is projective if,
for any morphism f : p → b and any epimorphism e : a → b, f factors through e. We will need
this equivalent formulation in Lemma 4.4. Note that, in general, saying that every short exact
sequence 0 → a → b → p → 0 splits is necessary but not sufficient for p to be projective, though
it is sufficient for abelian categories. See Qiaochu Yuan’s blog posts for clear exposition of these
standard results in the cocomplete setting [Yua15b, Yua15a].

Remark 2.5. The phrase ‘C has enough projectives’ is typically used to mean that every object
X of C has a projective cover. In that case, choosing first a projective cover p : P → X, and
then a projective cover p′ : P ′ → ker(p), we can write X ∼= ker(p′) as a colimit of projectives.
This motivates the terminology ‘enough compact projectives’. Compact objects are also called
‘small’ and compact projectives are also called ‘small projective’ or ‘tiny’ [Kel82, Yet87, BCJ15].
We note that, while a locally finitely presentable category need not be abelian, a category with
enough compact projectives is always abelian, because it can be identified with the presheaf
category on its subcategory of compact projective objects.
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On dualizability of braided tensor categories

In enriched category theory, it is standard to consider λ-locally presentable categories for a
regular cardinal λ (see [AR94] for details); taken together, these form the locally presentable cat-
egories. Locally finite presentable categories correspond to λ = ℵ0, while categories with enough
compact projectives in the above sense correspond to λ = 0 [BCJ15]. For a general regular car-
dinal λ, λ-locally presentable categories are defined similarly to the locally finitely presentable
categories, except that the cardinal λ enters into the notion of compact objects (their Hom
functors preserve only λ-filtered objects), and the notion of generation (the λ-compact objects
generate under λ-filtered colimits). Since we will not require any technical arguments involv-
ing general cardinals, the reader can safely think of locally finitely presentable categories in all
arguments, without loss of generality.

Definition 2.6. We denote by:

• Pr the 2-category of locally presentable categories, cocontinuous functors and natural
transformations;9

• Pr◦ the full 2-subcategory consisting of categories having enough compact projectives.

The 2-category of k-linear categories is symmetric monoidal: given two k-linear categories,
their linear (a.k.a. ‘naive’) tensor product C ⊗D has as its objects pairs of objects of C and D,
and morphisms defined by

HomC⊗D((c1, d1), (c2, d2)) := HomC(c1, c2) ⊗k HomD(d1, d2).

However, the k-linear tensor product of two categories in Pr is not again in Pr. Each of Pr and
Pr◦ nevertheless admit a natural symmetric monoidal structure, extending the k-linear tensor
product, and make the following definition.

Definition 2.7. The Deligne–Kelly [Kel82, Del07, Fra13] tensor product of categories C,D ∈
Pr is another category C ! D ∈ Pr, equipped with a linear functor C ⊗D → C ! D, cocontinuous
in each variable, which is universal for this property, in the sense that we have an equivalence of
groupoids,

HomPr(C ! D, E)× . Linc,c(C ⊗D, E),

where on the left-hand side we throw away non-invertible natural transformations and Linc,c

denotes the groupoid whose objects are k-linear functors which are cocontinuous in each variable,
and whose morphisms are natural isomorphisms.

Proposition 2.8. The Deligne–Kelly tensor product C ! D exists and is again locally
presentable.

Proof. It is shown in [Fra13, Lemma 8], following [Kel82, Chapter 6] (see also [CH16]), that the
Deligne–Kelly tensor product of λ-presentable categories C and D is again λ-presentable, and
is in fact generated under λ-filtered colimits by λ-small colimits of pure tensor products of the
λ-compact generators in each component. "

Corollary 2.9. The Deligne–Kelly tensor product of two categories with enough compact
projectives again has enough compact projectives, and is generated by the pure tensor products
of the compact projective generators in each component.

9 We note that this terminology differs slightly from [BBJ18a], where only natural isomorphisms were allowed.
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Remark 2.10. Most examples considered in the tensor category literature (e.g. [EGNO15]) are
not in Pr, because infinite direct sums are excluded. For example, such literature more commonly
considers finite-dimensional vector spaces rather than all vector spaces. However, these examples
all fit into the setting of finitely cocomplete categories (called Rex), and since the ind-completion
of a Rex category is Pr while the subcategory of compact objects in an Pr category is Rex
one can easily translate any of these examples into our setting. In particular, the ind-completion
of any locally finite category (abelian, finite-dimensional Hom spaces, finite length, and enough
projectives) is Pr. However, if one works directly with finitely cocomplete categories and their
right exact functors this is insufficient to get our dualizability results: under ind-completion right
exact functors correspond to compact-preserving cocontinuous functors, a property which will
typically fail for coevaluation maps. Instead one needs to work with finitely cocomplete categories
and their right exact profunctors (i.e. functors to the ind-completions). The importance of using
profunctors (or bimodules) instead of functors in order to get stronger dualizability results also
appears in [Sta16, Wal06]. See [BBJ18a, § 3] for more details on the relationship between Rex
and Pr.

2.2 Dualizability
We recall the following from [Lur]. Roughly speaking, a symmetric monoidal n-category is said
to be k-dualizable for some 1 # k # n if every object has a dual in the usual sense, and every
i-morphism for 1 # i < k has a left and a right adjoint. This implies, in particular, that every
object is k-dualizable in the sense that its evaluation and coevaluation maps have left and right
adjoint, the units and counits of which themselves have adjoints, and so on.

This is made more precise as follows. Let C be an n-category and let h2C be its homotopy
2-category, that is, the 2-category whose objects and morphisms are the same as C and whose
2-morphisms are isomorphism classes of 2-morphisms of C.

Definition 2.11. Let C be a 2-category and x, y ∈ C. Two morphisms L : x → y and R : y → x
are said to be adjoints if there exists 2-morphisms η : idx → R ◦ L and ε : L ◦ R → idy such that

(Rε) · (ηR) = idR, (εL) · (Lη) = idL.

Example 2.12. The motivating example for the above definition is of course the 2-category of
categories, functors and their natural transformations, where this recovers the usual notion of left
and right adjoints of functors. Another important example related to rigidity comes by regarding
a monoidal category C as a 2-category BC, with a unique object ∗, with End(∗) := C. Then an
object of C, regarded as a 1-morphism of BC, has a left/right adjoint if and only if that object
has a left/right dual as an object of C.

Definition 2.13. Let C be an n-category and let 1 # k < n. The category C is said to have
adjoints for k-morphisms if it satisfies the following inductively defined property:

• if k = 1, then in h2C every morphism has a left and a right adjoint;
• if k > 1, then for every pair of objects x, y ∈ C, the (n − 1)-category Hom(x, y) has adjoints

for (k − 1)-morphisms.

Now let S be a symmetric monoidal n-category and define BS to be the (n + 1)-category
with one object ∗ and morphisms given by End(∗) := S.
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On dualizability of braided tensor categories

Definition 2.14. We say that the category S is k-dualizable if the category BS has adjoints
for k-morphisms.

Remark 2.15. We stress that the notion of adjoints in a (possibly non-discrete) 2-category
requires the zig-zag identities to hold only up to non-specified higher isomorphisms. In other
words, this is a property, not extra structure, which is why it is enough to check this in the (dis-
crete) homotopy 2-category. In particular, although the notion of being k-dualizable is typically
higher categorical, unraveling the definition boils down to checking a list of conditions in various
discrete 2-categories. See the remark in [DSS19, § 1.5].

Remark 2.16. We will use the same left/right conventions for duality and adjoints as in [DSS19,
§ 2.1]. In particular, a bimodule CMD is regarded as a morphism from C to D, and so a left
adjoint of a bimodule CMD is a bimodule DNC with an evaluation map ev : DN !C MC → DDD
and a coevaluation coev : CCC → CM !D MC satisfying the usual zig-zag.

2.3 Tensor categories
The following definitions are standard, but we emphasize that throughout this paper we always
work in Pr. For any details about what ‘the obvious diagrams’ means in some of these definitions,
see [EGNO15].

Definition 2.17. A tensor category is a category A in Pr equipped with a cocontinuous functor
(i.e. a morphism in Pr)

⊗ : A ! A −→ A,

a distinguished object 1A (the unit) and natural isomorphism

αx,y,z : (x ⊗ y) ⊗ z −→ x ⊗ (y ⊗ z)

and

lx : 1A ⊗ x → x rx : x ⊗ 1A → x

such that the following diagram commutes:

(x ⊗ (y ⊗ z)) ⊗ w

((x ⊗ y) ⊗ z) ⊗ w x ⊗ ((y ⊗ z) ⊗ w)

(x ⊗ y) ⊗ (z ⊗ w) x ⊗ (y ⊗ (z ⊗ w))

αx,y,z ⊗ idw αx,y⊗z,w

idx ⊗αy,z,w

αx,y,z⊗w

αx⊗y,z,w

(x ⊗ 1A) ⊗ y x ⊗ (1A ⊗ y)

x ⊗ y

αx,1A,y

rx lx

Remark 2.18. Equivalently, a tensor category is an E1-algebra in Pr.
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Remark 2.19. As is customary, we suppress α, l and r when those are clear from the context, as
they can be uniquely filled in.

Definition 2.20. Given a tensor category C, we define the multiplication opposite Cmop as the
tensor category with reversed multiplication and inverse associativity constraint.

Definition 2.21. Let A be a tensor category. A left (respectively, right) A-module is
a category M ∈ Pr equipped with a cocontinuous functor, ⊗ : A ! M → M (respectively,
⊗ : M ! A → M), together with an associativity constraint and a natural isomorphism
1A ⊗ m → m for m ∈ M making the analogous pentagon diagram commute.

Definition 2.22. Let A,B be tensor categories. An (A–B)-bimodule is a Pr category M which
is simultaneously a left A-module and a right B-module, together with an isomorphism

Γ : (a ⊗ m) ⊗ b −→ a ⊗ (m ⊗ b)

making the obvious diagram commute.

Definition 2.23. Let M, N be two module categories over A. Then a left module functor, or
A-linear functor, is a pair of a functor F : M → N and a natural isomorphism f : F (a ⊗ m) →
a ⊗ F (m) for a ∈ A, m ∈ M making the obvious diagrams commute. Right module and bimodule
functors are defined similarly.

Definition 2.24. Let A be a tensor category and M,N be a right and a left A-module category,
respectively. An A-balanced functor is a pair of a functor from F : M ! N to some Pr category
E and a natural transformation

f : F ((m ⊗ a) ! n) ∼= F (m ! (a ⊗ n))

for a ∈ A, m ∈ M, n ∈ N making the obvious diagrams commute.

Definition 2.25. Let A be a tensor category and let M and N be a right and left A-module,
respectively. The balanced (or relative) Deligne–Kelly tensor product is another category M !A
N ∈ Pr together with an A-balanced functor !A : M ! N → M !A N which induces a natural
equivalence of categories between balanced functors out of M ! N to some category E , and
morphisms in Pr from M !A N to E . The existence of the balanced Deligne–Kelly tensor product
follows from the cocompleteness of Pr; see [BBJ18a, Definition 3.13, Remark 3.14]. Constructions
of the balanced tensor product in special cases appear in [ENO10, DN13, DSS19].

Definition 2.26. A multi-fusion category is a cp-rigid Pr-tensor category, which is semisimple
(in the sense that every object is a possibly infinite direct sum of simple objects) and with finitely
many isomorphism classes of simple objects. A fusion category is a multi-fusion category with
simple unit.

Remark 2.27. More precisely, what we define here is the ind-completion of what is called a
multi-fusion (respectively, fusion) category in the literature. See Remark 2.10. Note that under
the semisimplicity assumption every compact object is projective, so the notions of compact-rigid
and cp-rigid coincide.
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On dualizability of braided tensor categories

2.4 Braided tensor categories
Definition 2.28. A braided tensor category is a tensor category (A,⊗,α) together with a
natural automorphism β of −⊗− making the following diagrams commute:

x ⊗ (y ⊗ z) (y ⊗ z) ⊗ x

(x ⊗ y) ⊗ z y ⊗ (z ⊗ x)

(y ⊗ x) ⊗ z y ⊗ (x ⊗ z)

βx,y⊗z

αy,z,x

idy ⊗βx,z

αy,x,z

βx,y ⊗ idz

αx,y,z

(x ⊗ y) ⊗ z z ⊗ (x ⊗ y)

x ⊗ (y ⊗ z) (z ⊗ x) ⊗ y

x ⊗ (z ⊗ y) (x ⊗ z) ⊗ y

βx⊗y,z

α−1
z,x,y

βx,z ⊗ idy

α−1
x,z,y

idx ⊗βy,z

α−1
x,y,z

Remark 2.29. Equivalently, a braided tensor category is an E2-algebra in Pr.

Definition 2.30. Let A be a braided tensor category. We define the braiding reverse of A
to be the braided tensor category Abop having the same underlying tensor category, but with
braiding isomorphism βx,y replaced by β−1

y,x. We define the tensor reverse of A to be the braided
tensor category Amop having the underlying tensor category Amop with the braiding given by
β−1

x,y : x ⊗op y = y ⊗ x → x ⊗ y = y ⊗op x.

Remark 2.31. The braiding reverse comes from reflecting through the x-axis in the E2 operad
and can be thought of as the opposite in the second multiplication direction. By contrast, the
tensor reverse comes from reflecting through the y-axis. It is not difficult to see that Amop and
Abop are equivalent as braided tensor categories, but there are two natural choices of such an
equivalence. In both cases the underlying functor is the identity functor, but in one case the
monoidal structure is given by βx,y and in the other the monoidal structure is given by β−1

y,x.
These correspond to clockwise and counterclockwise rotation, respectively.

Note that the double opposite (Amop)bop = (Abop)mop has underlying tensor category Amop

but with the braiding given by βW,V . Since (Amop)bop corresponds to rotation by 180 degrees it
is orientation preserving and should not be thought of as an opposite (it is isomorphic to the
original A and not to either of the opposites).

Finally, let us recall the following well-known construction of a braided tensor category out
of a tensor category.
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Definition 2.32. Let (C,⊗,α) be a tensor category. Then its Drinfeld center, or simply center,
is a braided tensor category Z(C) defined as follows.

• Objects are pairs (x,β) where β is a natural isomorphism

βy : x ⊗ y −→ y ⊗ x

making the obvious analogue of the second diagram in Definition 2.28 commute.
• A morphism (x,β) → (x′,β′) is a morphism f : x → x′ such that

∀y ∈ C, (idy ⊗f)βy = β′y ◦ (f ⊗ idy).

• The tensor product of (x,β) and (x′,β′) is the pair (x ⊗ x′, β̃) where

β̃y = α−1
y,x,x′ ◦ (βy ⊗ idx′) ◦ α−1

x,y,x′ ◦ (idx ⊗β′y) ◦ αx,x′,y.

Remark 2.33. Once again this turns out to be a particular case of the general formalism of
En-algebras: to any En-algebra in a sufficiently nice symmetric monoidal 1-category (typically,
non-discrete) one associates its Hochschild cohomology (also called its center), which has a
natural structure of an En+1-algebra.

The following properties of the center are straightforward and well known,

Proposition 2.34 [EGNO15, Example 8.5.2]. Let C be a tensor category. The assignment
(x,β) &→ (x,β−1) induces a braided tensor equivalence

Z(C)mop −→ Z(Cmop).

Proposition 2.35. Let A be a braided tensor category with braiding β. Then there are braided
tensor functors

A −→ Z(A), Abop −→ Z(A)

x &−→ (x,βx,−), x &−→ (x,β−1
−,x)

which assemble into a single braided tensor functor A ! Abop → Z(A).

It is a general fact that the category of modules over an E2-algebra is an E1 (i.e. monoidal)
category. Specializing in the case at hand, this recovers the following well-known proposition.

Proposition 2.36. Let A be a braided tensor category with braiding β.

• Every left A-module category M (which we assume to be strict) has a canonical structure of a
right A-module, with the same action, and associativity constraint given, for a, b ∈ A, m ∈ M,
by

(a ⊗ b) ⊗ m
βa,b−−→ b ⊗ (a ⊗ m).

• Given two left A-modules M,N , the balanced tensor product M !A N where M is given the
above right module structure, turns the category of left A-modules into a monoidal 2-category.
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3. The Morita theory BrTens

In this section we describe in detail objects and the 1-, 2-, 3- and 4-morphisms which comprise
the 4-category BrTens, as well as their various compositions. We do not treat in the same detail
the simpler case of Tens, partly because this case is already well documented [DSS19, ENO10,
Gre10, DGNO10], and partly because a complete definition of Tens may be recovered from
BrTens by considering the endomorphism 3-category of the unit object Vect ∈ BrTens.

3.1 Models for higher Morita theories
There are two closely related models for higher Morita theories of En-algebras. Following a
proposal of Lurie in [Lur09], Scheimbauer gave a geometric construction in [Sch14], using the
framework of locally constant factorization algebras on stratified spaces of the form (Rk ⊂ Rk+1 ⊂
· · · ⊂ Rn) to build an (n + 1)-category of En-algebras. Independently, Haugseng [Hau17] gave an
alternative combinatorial/operadic construction of an (n + 1)-category of En-algebras, building
explicit simplicial sets capturing the basic structures, operations, and coherences capturing the
iterative notion of bimodules for En-algebras.

While there are a number of expected relations between the two constructions, there are
at present writing no theorems providing a functorial relationship between the two models,
and it appears to be a formidable undertaking to construct such a functorial relation precisely.
At the level of their objects only, Lurie’s theorem asserts the equivalence between En-algebras
and locally constant factorization algebras on Rn (see [Lur09, § 5.2.4], and see [Gin15] for an
exposition). However extending Lurie’s equivalence to the entire Morita theory seems to be a
very difficult task.

An important distinction between the two models for higher Morita theories is the role of
pointings, that is, maps from the unit of S to all outputs in the theory. The geometric formu-
lation of Scheimbauer’s constructions endows objects and morphisms at all levels with (strong)
pointings; essentially these arise because the empty open set is initial in the category of open
sets on any manifold, so it induces a canonical map to the value of the factorization alge-
bra on any open set, compatibly with pushforward operations. These pointings are not present
in Haugseng’s work, except in the low degrees where they endow Ek-algebras in the theory
with units.

Subsequently to their introduction, each of these two higher Morita theories was extended in
[JS17] to so-called ‘even higher Morita theories’, in which the symmetric monoidal 1-category S
is replaced by a symmetric monoidal k-category. Correspondingly, instead of an (n + 1)-category
of En-algebras, one obtains an (n + k)-category of En-algebras. One of the main examples high-
lighted in [JS17, Example 8.9] is precisely the one we need in the present work: the 4-category
BrTens, of braided tensor categories, viewed as E2-algebras in the 2-category Pr.

Our theorems establishing dualizability in Tens and BrTens hold only in the unpointed
formulation of Haugseng: in the strongly pointed setting it is shown in [GS18] that En-algebras
are no more than n-dualizable. For this reason, we deploy Haugseng’s model in our constructions
in this section. Nonetheless, each structure appearing in the construction of BrTens can indeed
be understood in the language of locally constant factorization algebras, and this gives useful
geometric motivation for often elaborately phrased categorical definitions. For this reason, we also
outline in § 3.2 the relationship to Scheimbauer’s Morita theory of locally constant factorization
algebras, at an informal level and simply ignoring the issue of pointings.

An important feature of Haugseng’s construction is Theorem 5.49 [Hau17], which states that
the Hom n-categories between two En-algebras A and B can be identified inductively with the
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n-category of En−1-algebras in the En−1-category of (A–B)-bimodules. Applying this description
inductively, in combination with [JS17] in the top degrees, we obtain the following description
of the Morita theory of E2-algebras.

• Objects are given by of E2-algebras A, B, . . . .
• Hom(A,B) consists of E1-algebras C,D, . . . internal to (A–B)-bimodules.
• Hom(C,D) consists of (C–D)-bimodules M, N , . . . internal to (A–B)-bimodules.
• Hom(M,N ) consists of structure-preserving functors F , G, . . . .
• Hom(F, G) consists of structure-preserving natural transformations.

We unwind these definitions completely in the case of BrTens (i.e. in the case S = Pr).
We describe the objects, 1-, 2-, 3- and 4-morphisms in terms of more familiar construc-
tions in the language of braided tensor categories. Many of the algebraic constructions
which arise in this unwinding have appeared already in the study of defects in Wit-
ten–Reshetikhin–Turaev theory [FSV13], independently of the rigorous (∞, 4)-formulation of
BrTens but clearly with this motivation in mind. However, as there does not appear to be
a source with complete details, which we require to formulate our main results, we provide
them here.

3.2 Relation to locally constant factorization algebras
The sections which follow feature a number of purely algebraic constructions, as required by
Haugseng’s framework. On the other hand, it is expected that Haugseng’s framework can be
related to a yet-undefined framework of non-unital locally constant factorization algebras. Hence,
parallel to the rigorous extraction of the algebraic structures we need from Haugseng’s general
construction, we outline in Remarks 3.2, 3.4, 3.10 and 3.14, and in corresponding Figures 1, 2,
3 and 4 how each structure arises also in the locally constant factorization algebra framework.
This relationship is not strictly necessary to the results in the present paper, but may provide
geometric intuition and motivation for our definitions.

To that end, we now briefly recall the notion of locally constant factorization algebras on
topological spaces, and then its refinement to stratified spaces [AFT17, CG16, Gin15, Lur].
A locally constant factorization algebra F on a topological space X, with coefficients in some
symmetric tensor (typically, non-discrete) 1-category S is a pre-cosheaf, satisfying a local con-
stancy condition, carrying a factorization structure, and finally satisfying a sheaf-like condition
for gluing local sections.

Let us detail these notions one at a time. Firstly, to say that F is a pre-cosheaf means that
F assigns an object F(U) ∈ S for every open set U ⊂ X; and for every inclusion U1 ⊂ U2, a
morphism F(U1) → F(U2), compatibly with respect to composition of inclusions. Secondly, to
say that F is ‘locally constant’ is to further require that whenever an inclusion of open sets is a
retract, the induced functor is an equivalence in S. Thirdly, factorization algebras are required to
map disjoint unions of open sets to tensor products in S. This is where the name ‘factorization’
comes from, and it may be regarded as a ‘non-commutative’ multiplicative structure on F , in
that only sections which are spatially disjoint on X multiply using the symmetric structure on S.
Finally, F must satisfy certain sheaf-like gluing conditions, but only with respect to so-called
Weiss (a.k.a. factorizing) coverings.

More generally, given a stratified space, that is, a filtration

∅ = X−1 ⊂ X0 ⊂ X1 ⊂ · · · ⊂ Xn = X,
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On dualizability of braided tensor categories

(a) (c)

(b) (d )

Figure 1. Braided tensor categories as locally constant factorization algebras on R2. (a) depicts
a basic open set; its inclusion onto R2 is a retract, so it is assigned the category A canonically.
(b) depicts an embedding D2 , D2 ↪→ D2, which induces the product functor T : A ! A → A.
(c) depicts an isotopy (with this choice of representatives, it is an identity) between two composite
disk embeddings D , D , D ↪→ D, which induces the associator natural isomorphism α on A.
(d) depicts an isotopy between two disk inclusions, which induces the braiding isomorphism σ
on A.

of X by closed submanifolds Xi of dimension i, we may consider locally constant factorization
algebras with respect to the stratification. This means the same as above, except that we only
require that retracts U1 ↪→ U2 be equivalences, when U1 and U2 are good neighborhoods of some
closed stratum Xi. Here, a neighborhood is called good if for some i, U ∩ Xi 3= ∅, and U is
contained in a single component of X\Xi−1.

The ordinary case of locally constant factorization algebras on topological spaces is recovered
as a special case when Xi = ∅ for all but the final Xi.

3.3 Braided tensor categories as objects
Following [Hau17, JS17], given a symmetric monoidal m-category S, there is a symmetric
monoidal (m + n)-category of En-algebras in S. Specializing to the case S = Pr, and the case
n = 2, it is well known (see, for example, [Fie92, Fre17, Lur]) that E2-algebras in Pr are identified
with braided tensor categories. Hence these form the objects of BrTens, as desired.

This identification requires fixing some conventions which we now do. To identify E2-algebras
in S with E1-algebras in E1-algebras in S, we regard the x-direction multiplication as giving an
E1-algebra structure on the E1-algebra structure in the y-direction. In order to regard an E2-
algebra as a braided tensor category we use multiplication in the x-direction as the tensor product
and define the braiding via 180-degree clockwise rotation.

Remark 3.1. In particular, the y-direction is the ‘underlying’ E1-algebra when under this identi-
fication of E2-algebra as E1-algebras in E1-algebras; however, the x-direction is the ‘underlying’
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(a) (c)

(b) (d )

Figure 2. Central algebras as locally constant factorization algebras on (R ⊂ R2).(a) depicts
the three basic open sets DA, DB, DC on (R ⊂ R2): disks disjoint from R are governed by the
braided tensor category structure on A and B in each connected region, while disks intersecting
R are governed by the tensor structure of C. (b) depicts a disk embedding DA , DB ↪→ DC ; this
induces a functor F : A ! B → C. (c) depicts an isotopy between two disk embeddings DA ,
DA , DB , DB → DC ; this induces an isomorphism J : F (−⊗−) ∼−→ F (−) ⊗ F (−), upgrading F
to a tensor functor. (d) depicts an isotopy between two disk embeddings DA , DC → DC ; this
induces a half-braiding on the image of F , and hence a lift F : A → Z(C). The analogous half-
braiding on B induces a lift F : Bbop → Z(C), owing to the differing orientation of the bottom
region relative to R.

(a) (b)

Figure 3. (a) depicts the basic open sets on the stratified space (R , R ⊂ R2): a locally con-
stant factorization algebra F is defined by labeling the basic opens as indicated. (b) depicts a map,
π : (R , R ⊂ R2) → (R ⊂ R2), of stratified spaces collapsing the region between the two lines.
The composition is defined as C ◦D := π∗(F). Excision yields an equivalence C ◦D . C !A2 D,
as categories, with structure maps given as in Proposition 3.9.
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On dualizability of braided tensor categories

(a) (b) (c)

Figure 4. (a) depicts the stratified space (R0 ⊂ R ⊂ R2). (b) depicts the five basic open sets
appearing in the stratification. (c) depicts an isotopy between two composite disk inclusions;
this induces the central structure on the bimodule M, identifying the action of A on M through
C and through D. The analogous isotopy on B gives the same structure for the induced Bbop

action.

E1-algebra when we apply the forgetful functor to obtain an E1-algebra in S. This choice is
needed in order to match up with standard braided tensor category conventions in the next
subsection.

Remark 3.2. As a special case of Lurie’s theorem, the data of a braided tensor category coincides
with that which defines a locally constant factorization algebra on R2. See Figure 1.

3.4 Central algebras as 1-morphisms
We now turn our attention to 1-morphisms. Again following [Hau17, JS17], a 1-morphism C
from an E2-algebra A to an E2-algebra B is an E1-algebra in (A–B)-bimodules with respect
to the ‘inner’ multiplication on A and B thought of as E1-algebras in E1-algebras. Under
our conventions, this means that multiplication in C is in the horizontal direction, and the
(A–B)-bimodule structure is given by vertical multiplication.10 The goal of this section is to
translate these definitions into the language of braided tensor categories.

Recall from Proposition 2.36 that for a braided tensor category A, the 2-category A -mod
carries a monoidal structure. Given a pair A and B of braided tensor categories, we obtain,
similarly, a monoidal structure on the 2-category of (A–Bbop)-module categories. Here we use
bop instead of mop because we are looking at (A–B)-bimodules with respect to the vertical
direction.

We can capture this structure more explicitly in the notion of an (A–B)-central algebra,
defined below. For motivation, we recall the analogous but simpler situation in the category of
vector spaces. Given a commutative algebra A over k, an A-algebra can be defined either as
an algebra object in the monoidal category A -mod, or equivalently as a k-algebra B together
with an algebra morphism A −→ Z(B). This motivates the following definition-proposition
[DGNO10].

Definition-Proposition 3.3. Given a braided tensor category A, the following two notions
are naturally equivalent:

• an E1-algebra in the monoidal 2-category of A-modules equipped with the balanced tensor
product over A;

10 We warn the reader that [GS18] uses the opposite convention where the 1-morphisms live on vertical lines.
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• a tensor category C, together with a braided tensor functor,

(F, J) : A → Z(C).

from A to the Drinfeld center, Z(C), of C.

We will refer to either notion as an A-algebra C, or alternatively as an A-central structure on C.

Proof. This is a standard and straightforward verification. An algebra in A -mod is equivalently
a tensor category C equipped with an A-balancing on the multiplication which is compatible with
the associativity constraint. One checks that the functor A → C given by acting on the unit 1C
is a tensor functor, with central structure induced by the balancing. Conversely, given a tensor
functor F : A → C, C becomes an A-module via left multiplication, and a central structure on
F is then the same as a balancing on the multiplication of C. "

Conventions. (a) Given a tensor functor F : A → C, an A-central structure on C may be given
by specifying half-braiding natural isomorphisms σ : F (X) ⊗ Y → Y ⊗ F (X). We will call such
a half-braiding natural isomorphism a central structure on F , and call F a central functor.

(b) For a pair A, B of braided tensor categories, we will abbreviate the phrases ‘(A ! Bbop)-
algebra’ as ‘(A–B)-algebra’ and ‘(A ! Bbop)-central structure’ as ‘(A–B)-central structure’.

Remark 3.4. In operadic terms, the triple (A, C, F ) is precisely the data which defines an algebra
over the Swiss cheese operad [Vor99, Idr17]. The data of an (A–B)-central algebra can also be
understood in terms of locally constant factorization algebras on the stratified space (R ⊂ R2).
See Figure 2.

Example 3.5. Given a braided tensor category A, there is a canonical braided tensor functor
A ! Abop → Z(A) (see Proposition 2.35) Therefore A can be seen as an (A–A)-algebra, a (A !
Abop)-Vect-algebra and a Vect-(A ! Abop)-algebra. In the Morita category, those are respectively
the identity of A, and the evaluation and coevaluation realizing Abop as the dual of A.

For later use, we record the following lemma, which is a straightforward categorification of
the analogous statement for algebras over commutative algebras:

Lemma 3.6. Let C be an A-algebra. Then the forgetful functor from A -mod to Pr induces an
equivalence from the category of C-modules in A -mod to the category of C-modules in Pr.

Proof. The inverse functor is given as follows. Given a C-module M, equip it with an A-module
structure using the monoidal functor FC : A → C. This turns M into a C-module in A -mod, in
such a way that forgetting this structure simply recovers M as a C-module. Conversely, if M is
a C-module in A -mod, then by definition for all a ∈ A and m ∈ M the balanced structure on
the action functor induces a natural isomorphism

FC(a) ⊗ m ∼= a ⊗ m

where the left-hand side uses the C action on M, while the right- hand side is the given A action.
One checks that this induces an equivalence between the given A-module structure on M and
the one induced by seeing M as a mere category and turning it into an A-module using FC . "
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On dualizability of braided tensor categories

Remark 3.7. As the pictures make clear, in an (A–B)-central algebra it is most natural to think
of A and B as acting above and below C, so that one could alternatively write

(A
B

)
-central

algebra; however for simplicity we will stick to the more standard in-line notation.

3.4.1 Composition of 1-morphisms. By the preceding discussion, a 1-morphism in BrTens
from B to A is determined by an (A–B)-algebra C. Given braided tensor categories A1, A2,
and A3, an (A1–A2)-algebra C and an (A2–A3)-algebra D, their composition is identified as
a category with the balanced Deligne–Kelly tensor product C !A2 D. Let us now describe the
(A1–A3)-central tensor structure on the composition.

Recall that if C,D are tensor categories, then so is C ! D with multiplication given on pure
tensors by

(c1 ! d1) ⊗ (c2 ! d2) := (c1 ⊗ c2) ! (d1 ⊗ b2),

and extended uniquely by cocontinuity.

Definition-Proposition 3.8. Fix a braided tensor category A2 and central functors

FC : Abop
2 → C, FD : A2 → D.

The composition,
T̃ : C ! D ! C ! D −→ C ! D −→ C !A2 D,

of the multiplications on C and D with the canonical functor (where the A2-module structure
on C,D is induced by FC , FD) has a canonical balancing on the first and third tensor product.
The first one is an isomorphism, for ci ∈ C, di ∈ D, a ∈ A from

T̃ ((c1 ⊗ a) ! d1 ! c2 ! d2) = (c1 ⊗ a ⊗ c2) !A2 (d1 ⊗ d2)

to
T̃ (c1 ! (a ⊗ d1) ! c2 ! d2) = (c1 ⊗ c2) !A2 (a ⊗ d1 ⊗ d2)

given by composing the central structure on C applied on a ⊗ c2 with the balancing on !A2 , and
the second balancing is defined similarly. Therefore, T̃ factors through a functor

T : (C !A2 D) ! (C !A2 D) −→ C !A2 D

which induces a tensor structure on C !A2 D, such that the projection C ! D → C !A2 D is
monoidal.

Proof. This is proven [Gre10, Theorem 6.2] in the setting of finite categories, but the proof
extends to our setting as well. "

Definition-Proposition 3.9. With the same assumptions as in Definition-Proposition 3.8,
assume moreover that C (respectively, D) is equipped with a central functor F from A1 (respec-
tively, from Abop

3 ). Then C !A2 D is naturally an (A1–A3)-algebra, with central functors given
by the compositions

A1 → C → C ! D → C !A2 D

and
Abop

3 → D → C ! D → C !A2 D.
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Hence the composition of 1-morphisms C : A2 → A3 and D : A1 → A2 is given by C ◦D :=
C !A2 D, regarded as and (A3–A1)-central tensor category as above.

Remark 3.10. In the locally constant factorization algebra framework, the balanced tensor
product appearing in the composition of 2-morphisms is really a consequence of a geometric
pushforward operation, together with an excision result which computes this pushforward as a
balanced tensor product. This is outlined in Figure 3.

3.5 Centered bimodules as 2-morphisms
Again following [Hau17, JS17], given two A-algebras C and D, the 2-morphisms in BrTens are
identified with (C–D)-bimodules internal to the monoidal 2-category A -mod. In this section we
introduce the notion of a centered bimodule, which encapsulates the explicit list of functors,
natural isomorphisms, and coherence conditions, which define the 2-morphisms.

Definition 3.11. Given two A-central algebras C and D, with central functors (FC ,σC),
(FD,σD) respectively, an A-centered structure on a (C–D)-bimodule M is the data of
isomorphisms,

ηa,m : FC(a) ⊗ m ∼= m ⊗ FD(a),

natural in m ∈ M and a ∈ A and required to satisfy coherence conditions, expressed as the
commutativity of the following diagrams:

FC(a) ⊗ c ⊗ m c ⊗ m ⊗ FD(a)

c ⊗ FC(a) ⊗ m

ηa,c⊗m

σCa,c
ηa,m

(3.1)

m ⊗ d ⊗ FD(a) FC(a) ⊗ m ⊗ d

m ⊗ FD(a) ⊗ d

ηa,m⊗d

σDa,d
ηa,m

(3.2)

FC(a ⊗ b) ⊗ m m ⊗ FD(a ⊗ b)

FC(b) ⊗ m ⊗ FD(a)

ηa,b⊗m

ηa⊗b,m

η b,m⊗a
(3.3)

for a, b ∈ A, m ∈ M, c ∈ C and d ∈ D. Here, for the sake of clarity we have omitted the explicit
mention of the bimodule associator in all three diagrams.

Conventions. Given (A–B)-central algebras C and D and a (C–D)-bimodule M, we will abbreviate
the phrases ‘(A ! Bbop)-centered structure on M’ as ‘(A–B)-centered structure on M’ and ‘(A !
Bbop)-centered (C–D)-bimodule’ as ‘(A–B)-centered (C–D)-bimodule’.
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The following proposition identifies the notion of centered bimodule with the 2-morphisms
in BrTens.

Proposition 3.12. Let A,B be braided tensor categories, and let C,D be (A–B)-central tensor
categories. Then the following 2-categories are naturally equivalent:

• the 2-category of (A–B)-centered (C–D)-bimodules;
• the 2-category of (C–D)-bimodules internal to the monoidal 2-category of (A–B)-bimodules.

Proof. For simplicity we treat the case of a single braided tensor category A acting; the general
case simply replaces A by A ! Bbop throughout. We note that the first definition involves giving
an isomorphism η between two A actions on M – on the left through C and on the right through
D – while the second definition involves a third auxiliary action of A on M and isomorphisms
ψL and ψR, of the left action through C and the right action through D, respectively with the
auxiliary given A action.

Hence, starting from the second characterization, we simply compose the two isomorphisms,
and check that this gives a centered structure on the bimodule. In verifying axioms (3.1) and
(3.2), one uses that the A-bimodule structure on C and D invokes the central A-central structure
of each algebra. Meanwhile, axiom (3.3) follows from the balancing axioms on ψL and ψR.

On the other hand, starting from a centered bimodule, we can endow M with an A action
(a left A action through C, say), in such a way that ψL is trivial (which we may anyway assume
thanks to Lemma 3.6), and then use η to define ψR in the obvious way.

It is then a straightforward exercise to check that these two constructions define mutually
inverse functors. "

Example 3.13. Let C be an (A–B)-algebra. Then the (C–C)-bimodule C carries the structure of an
(A–B)-centered (C–C)-bimodule, induced by its central structure. This is the identity 2-morphism
of C in BrTens.

Remark 3.14. The data of a centered bimodule can be understood in terms of locally constant
factorization algebras on the stratified space (R0 ⊂ R1 ⊂ R2). Note that the centered structure
η is very natural from this point of view. See Figure 4, and also [Sch14, Example 3.2.22]. Note
that from this point of view, although A and B are acting from above and below, C and D do
act on the left and right of M.

3.5.1 Vertical composition of 2-morphisms. By the preceding discussion, the (A–B)-centered
(C–D)-bimodules comprise the 2-morphisms in BrTens, between the parallel 1-morphisms C,D :
A → B. Let us now turn to an explicit description of their vertical composition as 2-morphisms.
Let A be a braided tensor category, let C,D, E be A-algebras, and let M,N be A-central (C–D)-
and (D–E)-bimodules. Recall that M !D N has a natural (C–E)-bimodule structure, where the
C action is induced by the composition

C ! M ! N act−−→ M ! N F−→ M !D N

with balanced structure induced by that on !D (and likewise for the E action).
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Definition-Proposition 3.15. Denote by FC , FD, FE the central structures on C,D, E . The
(C–E)-bimodule M !D N has a natural A-centered structure defined on pure tensors by

(FC(a) ⊗ m) !D n ∼= (m ⊗ FD(a)) !D n ∼= M !D (FD(a) ⊗ n) ∼= m !D (n ⊗ FE(a)),

for m ∈ M, n ∈ N , a ∈ A, and extended uniquely by bilinearity. Here the first map is the centered
structure on M, the second is the canonical balancing on !D and the third is the centered
structure on N .

Proof. Clear. "

3.5.2 Horizontal composition of 2-morphisms. Finally, we give an explicit description of the
horizontal composition of 2-morphisms. We start with the following proposition.

Proposition 3.16. Let A be a braided tensor category, let C, D be A- and Abop-algebras
respectively, and let M and N be left C- and D-modules respectively. Then the natural C ! D
action on M ! N descends to an action of C !A D, with its tensor structure coming from
Proposition 3.8, on M !A N .

Proof. The proof is the same as for Proposition 3.8: the composition,

C ! D ! M ! N → M ! N → M !A N ,

of the action with the canonical functors has a canonical A-balancing on the first and third tensor
product given by combining the central structure on C and D and the balancing on !A. "

Corollary 3.17. Let A1,A2,A3 be braided tensor categories, C1,D1 be (A1–A2)-algebras,
C2,D2 be (A2–A3)-algebras and M,N be centered (C1–D1)- and (C2–D2)-bimodules respectively.
Then the action induced from the previous proposition, together with the obvious centered
structure, turns M !A2 N into an (A1–A3)-centered (C1 !A2 C2–D1 !A2 D2)-bimodule.

3.6 Functors and natural transformations as 3- and 4-morphisms
Using the strong (rather than lax or oplax) version of the construction in [JS17], we have the
following definitions for the higher morphisms.

Definition 3.18. A morphism (M, ηM) → (N , ηN ) of A-centered (C–D)-bimodules is a functor

F : M −→ N

of (C–D)-bimodules, such that the following diagram commutes for a ∈ A, m ∈ M:

F (a ⊗ m) F (m ⊗ a)

a ⊗ F (m) F (m) ⊗ a

F (ηMa,m)

ηNa,F (m)
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On dualizability of braided tensor categories

where the vertical arrows are the C- and D-module functor structures on F respectively, and
where for the sake of clarity we have suppressed the central functors.

Definition 3.19. A natural transformation of two centered bimodule functors F, G is simply a
natural transformation of left and right module functors.

3.7 Symmetric monoidal structure
The 4-category BrTens has a natural symmetric monoidal structure inherited from that of Pr.
Let us recall here what it does on objects and morphisms in each degree.

• The monoidal product of two objects A,B is A ! B with its componentwise braided tensor
structure.

• Given two braided tensor categories A,B and given C and D an A-central and a B-central
tensor category, respectively, the tensor product of the central functors induces a braided
tensor functor

A ! B → Z(C) ! Z(D) . Z(C ! D)

which equips C ! D with the structure of an (A–B)-central tensor category. This computes
the monoidal product on the 1-morphisms.

• Given A-central tensor categories C1,D1, and B-central tensor categories C2,D2, an A-centered
(C1–D1)-bimodule M and a B-centered (C2–D2)-bimodule N , the Deligne–Kelly tensor prod-
uct M ! N becomes a (C1 ! C2–D1 ! D2)-bimodule, and the tensor product of the centered
structure of M and N induces a central structure on M ! N . This defines the monoidal
product on the 2-morphisms.

• The monoidal product of functors and natural transformation is the same as in Pr.

4. The rigid Morita theories

The purpose of this section is to introduce the subcategory RigidTens ⊂ Tens and the sub-
categories RigidBrTens,BrFus ⊂ BrTens, which will turn out to be 2-, 3-, and 4-dualizable
categories, respectively.

4.1 Characterizations of rigidity
In this section we establish some basic facts about rigidity in a tensor category, which we will
use to establish dualizability. First, we prove the equivalence between the different formulations
given in the introduction.

Definition-Proposition 4.1. Suppose that a tensor category C has enough compact projec-
tives. Then the following conditions on A are equivalent.

(i) All compact projective objects of C are left and right dualizable.
(ii) A generating collection of compact projective objects of C are left and right dualizable.
(iii) The multiplication functor, T : C ! C → C has a cocontinuous right adjoint TR, and the

canonical lax bimodule structure on TR is strong.

We will say that C is cp-rigid if it has enough compact projectives, and if any of the above
conditions is satisfied.

We start with the following lemma, adapted from [BN09, Lemma 3.5].
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Lemma 4.2. Suppose that M and N are C-module categories in Pr◦ for a tensor category C,
which is generated by its compact projective objects, all of which are dualizable, and suppose
that F : M → N is an C-module functor which maps compact projective objects to compact
projective objects, so that it admits a cocontinuous right adjoint FR. Then FR has the canonical
structure of a C-module functor.

Proof. Let c = colim ci be an object in C written as a colimit of dualizable objects, let m ∈ M, n ∈
N and write m = colimmi where the mi are compact projective. Since the Deligne–Kelly tensor
product distributes over colimits, and since the action functor C ! M → M is cocontinuous by
assumption, we have

(colim ci) ⊗ m ∼= colim(ci ⊗ m).

On the other hand, if ci is dualizable we have

HomM(m, ci ⊗ m′) ∼= HomM(c∗i ⊗ m, m′).

Together with the definition of an adjunction, the cocontinuity and C-linear structure of F and
the properties of Hom it follows that

HomM(m, FR(colim ci ⊗ n)) ∼= HomN (colimF (mi), colim cj ⊗ n)
∼= lim HomN (F (mi), colim cj ⊗ n)
∼= colim lim HomN (F (mi), cj ⊗ n)
∼= colim lim HomN (c∗j ⊗ F (mi), n)
∼= colim lim HomN (F (c∗j ⊗ mi), n)
∼= colim lim HomM(c∗j ⊗ mi, F

R(n))
∼= colim lim HomM(mi, ci ⊗ FR(n))
∼= HomM(m, colim ci ⊗ FR(n)). "

We record for later use the following corollary.

Corollary 4.3. Under the same assumptions as in the previous lemma, the right adjoint of a
compact-preserving bimodule functor (respectively, centered bimodule functor) has the canonical
structure of a bimodule functor (respectively, centered bimodule functor).

Proof of Definition-Proposition 4.1. 1 =⇒ 2 is clear. The proof of 2 =⇒ 1 is based on the
following lemma (which uses the characterization of compact projectives given in Remark 2.4).

Lemma 4.4. Suppose that P = colimPi is a small colimit of compact projective objects, and
that P is itself compact projective. Then P is in fact a finite direct sum of summands of the Pi.

Proof. First, we have an epimorphism
⊕

Pi → colim Pi = P , which follows from the universal
properties of each type of colimit. Then, because P is compact projective, we can split this to
obtain a map P →

⊕
i Pi, rendering P as a summand of

⊕
i Pi. Since each Pi is itself compact

projective, we can further split this summand as a sum of summands P ′
i of each Pi, to write P

as a sum of
⊕

i P ′
i . Finally, we can conclude that the list of non-zero P ′

i is finite, as otherwise P
would fail to be compact. "
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Remark 4.5. The above lemma is best understood as saying that, in the sense of [BCJ15], any
small colimit of 2-presentable objects (compact projectives) is a 2-small colimit (a direct sum-
mand of a finite direct sum) of 2-presentable objects (compact projectives). There are analogous
theorems about other regular cardinals. For example, for ℵ0, this says that any small colimit of
compact objects is a filtered colimit.

Thus, having assumed a compact projective P may be written as a small colimit of compact
projective and dualizable objects, then by the lemma, it is in fact a finite direct sum of summands
of dualizable objects. Dualizability is clearly closed under taking finite direct sums and taking
direct summands, hence P is dualizable.

We may now regard M = C ! Cmop and N = C as modules for the cp-rigid tensor category
Ce = C ! Cmop. Then T is a map of Ce-modules, which we claim preserves compact projective
objects. Indeed, if x, y ∈ C are compact projective, hence also dualizable by assumption, we have,
for c = colim ci ∈ C,

HomC(x ⊗ y, c) ∼= HomC(x, (colim ci) ⊗ y∗)
∼= HomC(x, colim(ci ⊗ y∗))
∼= colim HomC(x, ci ⊗ y∗)
∼= colim HomC(x ⊗ y, ci).

Therefore, by Lemma 4.2, its right adjoint TR has a canonical Ce-module structure.
Finally, for 3 =⇒ 1, we can simply define

X∗ = (idC ! Hom(X,−))(TR(1C)),
∗X = (Hom(X,−) ! id)(TR(1C)),

and check that they define duality functors. For instance, we have natural isomorphisms

Hom(1C , Y ⊗ X∗) ∼= Hom(1C ! X, (Y ! 1C) ⊗ TR(1C))
∼= Hom(1C ! X, TR(Y ))
∼= Hom(X, Y ),

from which we can extract the required evaluation and coevaluation data. "

4.2 The Morita theory RigidTens
This section is devoted to the proof of the following definition-proposition.

Definition-Proposition 4.6. There is a symmetric monoidal 3-category RigidTens ⊂ Tens
whose:

• objects are cp-rigid tensor categories;
• 1-morphisms are bimodule categories with enough compact projectives;
• 2-morphisms are bimodule functors;
• 3-morphisms are bimodule natural transformations.
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Proof. Since the inclusion to Tens is full in degrees 2 and 3, we need only show that the objects
and 1-morphisms are closed under the symmetric monoidal structure, and that the 1-morphisms
are closed under compositions.

4.2.1 Closure under monoidal structure. Given two cp-rigid tensor categories, C,D, their
tensor product C ! D is again a cp-rigid tensor category; it is generated under small colimits by
pure tensor products of dualizable, compact and projective objects, and these are trivially again
dualizable, compact and projective (see Corollary 2.9). That the monoidal product of bimodule
categories with enough projectives again has enough projectives follows from the general fact
that Pr◦ ⊂ Pr is a monoidal subcategory by Corollary 2.9.

4.2.2 Closure under composition of 1-morphisms. Suppose that C ∈ RigidTens, and that
M,N are right and left C-module categories, respectively, with enough compact projectives.
Then we need to show that M !C N has enough compact projectives.

For this, we recall that by construction M !C N is generated under colimits by the image
of M ! N through the canonical functor,

F : M ! N → M !C N .

Objects in the image of F are called ‘pure tensors’. We may rewrite this functor as

M ! N . (M ! N ) !Ce Ce id !m−−−−→ (M ! N ) !Ce C . M !C N .

By the assumption of cp-rigidity, m has a cocontinuous right adjoint mR, hence it preserves
compact projectives. Hence it follows that F preserves compact projectives as well. Combining
the two observations, the pure tensors give a collection of compact projective generators of the
balanced tensor product. "

4.3 The Morita theory RigidBrTens
This section is devoted to the proof of the following definition-proposition.

Definition-Proposition 4.7. There is a symmetric monoidal 4-subcategory RigidBrTens ⊂
BrTens whose:

• objects are cp-rigid braided tensor categories;
• 1-morphisms are cp-rigid central tensor categories;
• 2-morphisms are centered bimodules with enough compact projectives;
• 3- and 4-morphisms are as in BrTens.

Proof. As the inclusion RigidBrTens ⊂ BrTens is full in degree 3 and 4, we need only check
that objects, 1- and 2-morphisms are closed under the symmetric monoidal structure, and that
1- and 2-morphisms are closed under composition.

4.3.1 Closure under monoidal structure. Again, the tensor product of two cp-rigid tensor
categories is cp-rigid, which implies the closure under tensor product of objects and 1-morphisms.
Likewise, closure under the tensor product of two morphisms follows from the fact that Pr◦ is a
monoidal subcategory of Pr.
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On dualizability of braided tensor categories

4.3.2 Closure under composition of 1-morphisms. Let A1,A2,A3 be cp-rigid braided ten-
sor categories, and let C and D be cp-rigid (A1–A2)- and (A2–A3)-central tensor categories,
respectively. We need to show that C !A2 D lies in RigidTens.

Since A2 is cp-rigid, the arguments of the preceding section imply that C !A2 D has enough
compact projectives. The canonical functor,

F : C ! D → C !A2 D,

is a tensor functor, hence it maps dualizable objects to dualizable objects. In particular, pure
tensor products of dualizable, compact and projective objects will again be dualizable, compact
and projective, and will be generators for C !A2 D, as desired.

4.3.3 Closure under vertical composition of 2-morphisms. Let A1,A2 be cp-rigid braided
tensor categories, let C,D, E be cp-rigid (A2–A1)-central tensor categories, and let M,N
be (A1–A2)-centered (C–D)- and (D–E)-bimodules, respectively. Then we need to show that
M !D N has enough compact projectives. This follows as in the case of the 1-morphisms in
RigidTens.

4.3.4 Closure under horizontal composition of 2-morphisms. The argument is the same as in
the previous paragraph: it boils down to showing that the balanced tensor product M !A N of
two Pr◦-categories over a cp-rigid braided tensor category is again in Pr◦, which again follows
as in the case of the 1-morphisms in RigidTens. "

4.4 The Morita theory BrFus
Definition-Proposition 4.8. Over a field of characteristic zero, there is a well-defined
symmetric monoidal 4-subcategory BrFus ⊂ BrTens whose:

• objects are braided multi-fusion categories;
• 1-morphisms are central multi-fusion categories;
• 2-morphisms are centered bimodules which are the ind-completion of finite and semisimple

categories;
• 3-morphisms are compact-preserving functors of such;
• 4-morphisms are natural transformations of such.

Proof. Closure for 3- and 4-morphisms is clear, so we need only check that objects, 1- and 2-
morphisms are closed under the symmetric monoidal structure, and that 1- and 2- morphisms are
closed under composition. Each such claim is proved in [DSS19, ENO10] in the setting of finite
abelian categories. Since the Deligne–Kelly tensor product coincides with the Deligne tensor
product of finite abelian categories, and commutes with taking ind-completions, those results
apply in our setting. "

Remark 4.9. In characteristic p one needs to replace multi-fusion with the stronger notation of
‘separable’ used in [DSS19] which we briefly recall. An algebra object A in a tensor category is
called separable if A ⊗ A → A has a splitting as an (A–A)-bimodule, and a tensor category C is
called separable if the canonical algebra in C ! Cmop corresponding to the module category C is
a separable algebra. For fusion categories, separability is equivalent to the global dimension of
C being non-zero and so is automatic in characteristic zero. See [DSS19] for more details.
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5. Dualizability in Tens and BrTens

In this section we prove Theorems 1.8–1.10.
We first recall what it means for an E1-algebra in S to be dualizable as a module over its

enveloping algebra, and show that over such algebras, a bimodule is left and right dualizable as
soon as it is dualizable as an object of S. This step works for any S, and specializing to Pr it
says that if C is dualizable as a module over C ! Cmop, then any bimodule category between such
tensor categories with enough projectives is dualizable.

We then prove a variant of the Eilenberg–Watts theorem, which in particular establishes
that module categories of the form A -modC , for some algebra A ∈ C, are dualizable, with dual
C mod-A. (In [DSS19] this is all one needs because all module categories are of this form in
the finite setting, by a theorem of Ostrik [EO04, Ost03].) Finally, we show that cp-rigidity of a
tensor category implies that it is dualizable over its enveloping algebra, by expressing the regular
bimodule in this case in terms of an algebra object (the ‘coend’, a well-known construction).

Altogether, this shows that bimodules with enough compact projectives between cp-rigid
tensor categories are dualizable. This argument is a mix of techniques from [DSS19, BN09,
Gai15]. We expect that a more direct construction of the dual could be given by a single ‘enriched
coend’ as in Remark 5.14, but we found the resulting category-theoretic questions intimidating
and so give a more algebraic proof.

We then consider the E2 setting and check that the above construction also proves dual-
izability for bimodules in that setting. We conclude the section by considering dualizability of
bimodule functors in the braided fusion setting.

5.1 Dualizability over the enveloping algebra
Definition 5.1. If M is a left C-module in S, we say that M is dualizable as a C-module if it
is left dualizable as a (C–1)-bimodule. Dualizability of a right module is defined similarly.

Definition 5.2. If C is an E1-algebra in S, then Ce = C ! Cmop, and C is a left (respectively,
right) module over Ce where the C factor acts by left multiplication and Cmop factor acts by right
multiplication.

Proposition 5.3. Suppose that C ∈ Pr is dualizable over Ce, and that M is a left or right
C-module, which is dualizable as an object of Pr. Then we have a canonical equivalence,

HomC(M, C) !C N . HomC(M,N ).

Proof. We treat the case that M is a left module, as the other case is similar. First, we require
the following lemma.

Lemma 5.4. We have an equivalence of categories,

HomCe(C, Hom(M,N )) . HomC(M,N ), (5.1)

given by F &→ F (1C), where Hom(M,N ) – that is, Homs in Pr – is viewed as a C-bimodule by
pre- and postcomposition, and the Ce-module structure on the left-hand side uniquely determines
the C-balancing on the right-hand side.

Proof. Recall that for any (C–C)-bimodule X , we have a canonical identification of HomCe(C,X )
with the bimodule center of X (i.e. pairs of an object of X ) and a natural isomorphism between
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the left and right actions of C making the obvious diagram commute. Applying this in the case
that X = Hom(M,N ), the latter data is equivalent to a C-linear structure on a functor, which is
precisely what comprises the right-hand side. We leave the rest of the details to the reader. "

The result then follows from a sequence of equivalences:

HomC(M, C) !C N . HomCe(C, Hom(M, C)) !C N

. HomCe(C, Ce) !Ce Hom(M, C) !C N

. HomCe(C, Ce) !Ce Hom(M,1Pr) ! C !C N

. HomCe(C, Ce) !Ce Hom(M,1Pr) ! N

. HomCe(C, Ce) !Ce Hom(M,N )

. HomCe(C, Hom(M,N ))

. HomC(M,N ).

The first and last equivalences are (5.1), the second follows by the assumption that C is dualizable
as a Ce-module, the third applies the dualizability of M in Pr, the fourth uses that C is the unit
for !C , the fifth is again the dualizability of M in Pr, and the sixth is again dualizability of C
as a Ce-module. "

Corollary 5.5. Suppose that algebras C,D in Pr are dualizable over their enveloping algebras,
and that M is a (C–D)-bimodule, which is dualizable as an object of Pr. Then M is left and
right dualizable, with

∨M := HomC(M, C), M∨ := HomD(M,D),

where the D action on ∨M is by precomposition with the right action on M, and the C action
is by postcomposition with multiplication in C (and similarly for M∨ and D).

Proof. The argument follows the structure of [DSS19, § 3.2.1]. First, the canonical functor,

M ! HomC(M, C) → C,

given by evaluating the second factor on the first, has a tautological D balanced structure, hence
induces a functor

M !D HomC(M, C) → C

which is clearly a map of (C–C)-bimodules. This defines the evaluation pairing between M and
∨M.

According to Proposition 5.3, the canonical functor

HomC(M, C) !C M → HomC(M,M)

induced by
F ! m → F (−) ⊗ m

is an equivalence. Hence we may define the coevaluation map as the composition

D → HomC(M,M) . HomC(M, C) !C M
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where the first map is D 5 d &→ − ⊗ d with C-linear structure given by the (C–D)-bimodule
associativity constraint, which is tautologically a map of (D–D)-bimodules.

This evaluation and co-evaluation are easily shown to satisfy the zigzag relation, therefore
exhibiting HomC(M, C) is a left dual for M. The proof for the right dual is similar. "

Remark 5.6. For simplicity, we have stated and proved Proposition 5.3 and Corollary 5.5 in the
case S = Pr. However, it is clear how to adapt each statement more generally to any S: one no
longer has unit objects but rather unit morphisms, and the notion of balanced tensor functor
should be replaced by a morphism from the bar complex.

5.2 Relative Eilenberg–Watts
Let R and S be rings. The Eilenberg–Watts theorem gives an equivalence between the cate-
gory of cocontinuous functors from R -mod to S -mod, and the category of (S–R)-bimodules. An
easy consequence is that the category R -mod is dualizable, with dual mod-R. In this section, we
establish the analogous statements for categories of cocontinuous C-module functors between cat-
egories A -mod and B -mod, where A and B are algebras in an arbitrary tensor category C, which
we do not assume to be symmetric, or even braided. We remind the reader that HomC(M,N )
always denotes cocontinuous C-module functors.

Lemma 5.7. Let B be an algebra in C, let M = modC-B be the left C-module category of right
B-modules in C, and let N be any left C-module category. Then we have an equivalence of
categories,

IN : B -modN
∼−→ HomC(M,N ),

which maps X ∈ B -modN to the functor (−⊗B X) : M → N , equipped with the C-module
structure J induced by the associator

Jc : c ⊗ (−⊗B X)
∼=−→ (c ⊗−) ⊗B X, for c ∈ C,

and maps a morphism f : X → Y in B -modN to the C-natural transformation

id⊗Bf : −⊗B X → −⊗B Y.

Proof. We show that IN as defined above is fully faithful and essentially surjective.
For essential surjectivity, we note M is generated under colimits by free modules of the form

X ⊗ B, ranging over X ∈ C. Since F is cocontinuous, it is determined by the image of the free
modules; since F is C-linear it is actually determined by the image of B. But we have F (B) ∼=
B ⊗B F (B) where F (B) is seen as a left B-module via B ⊗ F (B) ∼= F (B ⊗ B) → F (B), where
the first isomorphism is the C-module structure on F . Therefore, IN is essentially surjective.

For faithfulness, given f : X → Y a morphism in B -modN , we note that

IN (f)(B) = (X
∼=−→ B ⊗B X

idB ⊗Bf−−−−−→ B ⊗B Y
∼=−→ Y ) = f.

Hence, we can uniquely recover f from its associated natural transformation IN (f).
For fullness, given a natural transformation η : IN (X) → IN (Y ), evaluation of η on B gives

a morphism fη : X → Y , as in the proof of faithfulness; the same computation implies that
IN (fη)B = ηB. Because B is a C-module generator, any natural transformation between cocon-
tinuous C-module functors is determined uniquely by its value on B ∈ M. Hence we can indeed
conclude IN (fη) = η, and hence that IN is essentially surjective. "
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Proposition 5.8. The category M = modC -B is dualizable as a C-module category, with dual
M∨ canonically identified with the category B -modC .

Proof. Setting N = C in the previous lemma gives an equivalence between the C-dual M∨ :=
HomC(M, C) and the category of left B-modules in C. Setting N = M gives an equivalence
between EndC(M) and the category of B-bimodules in C. Under those equivalences, the canonical
functor,

M∨ !C M → EndC(M),

coincides with the map induced by

X !C Y &→ X ⊗ Y.

Since the category of B-bimodules is generated by objects of this form, this map is an equivalence.
"

Remark 5.9. It may be possible to adapt this argument to directly prove dualizability of all
module categories over cp-rigid tensor categories, by replacing algebras with appropriate monads.
We will not pursue this approach here.

5.3 Cp-rigid implies dualizable over Ce

One of the main consequences of cp-rigidity is the following proposition.

Proposition 5.10. Any C ∈ RigidTens is dualizable over its enveloping algebra.

Proof. This is an application of the Barr–Beck monadicity theorem. We first need to show that
the multiplication functor

T : C ! C −→ C

has a right adjoint TR which is cocontinuous, Ce-linear and conservative. The fact that TR

is cocontinuous and Ce-linear directly follows from the third characterization of cp-rigidity in
Proposition 4.1.

Recall that a functor F is conservative if it reflects isomorphisms, meaning that if F (f) is
an isomorphism then f is. To see that TR is conservative, we note that T is clearly essentially
surjective, hence TR is faithful. Faithful functors reflect epimorphisms and monomorphisms in
the above sense, but not necessarily isomorphisms. In order to prove FR is conservative, it
therefore suffices to show the following lemma.

Lemma 5.11. In a category C with enough compact projectives, every epic monomorphism is
an isomorphism.11

Proof. Let Γ ⊂ C denote the full subcategory of compact projective objects. Then C is natu-
rally identified with the category of linear presheaves Lin(Γop, Vect). Since Vect is complete
and cocomplete, a natural transformation between presheaves is epic or monic if and only if it
is so pointwise. Therefore, since in Vect a morphism is epic and monic if and only if it is an
isomorphism, the same holds in C. "

11 In the category theory literature such a category is called ‘balanced’; we will avoid using this term, as it clashes
with the notion of balancing of a braided monoidal category.

473

#JJ*I
��000 ��D:+A�"  )+"��)+ �J +DI �#JJ*I
���)A )+"��� �����4����	��8�����
��
�)0(C)�� ��!+)D�#JJ*I
��000 ��D:+A�"  )+"��)+  �.1�.�1���1.6 �0�7�.1�.�1�320.4��)(����/.(�������J���
��
�	��I.:% �J�J)�J# �,�D:+A�" �,)+ �J +DI�)!�.I ���L�AC�:C ��J

https://www.cambridge.org/core/terms
https://doi.org/10.1112/S0010437X20007630
https://www.cambridge.org/core


A. Brochier, D. Jordan and N. Snyder

It then follows from the Barr–Beck theorem that C is identified with the category of modules
in Ce for the monad TRT . Following the techniques as in [BBJ18a, Theorem 4.6], since TRT is
Ce-linear we have

TRT (x) ∼= (x ! 1C) ⊗ TRT (1Ce).

The monad structure then turns TRT (1Ce) = TR(1C) into an algebra in Ce and we have an
equivalence of Ce-modules

C . TR(1C) -modCe .

Hence C is dualizable as a Ce-module by Proposition 5.8. "

5.4 Cp-rigid tensor categories are 2-dualizable
Let us now apply the preceding discussion to establish the 2-dualizability of RigidTens.

Definition 5.12. We let h2(B RigidTens) denote the homotopy 2-category of B RigidTens,
that is, the 2-category whose:

• objects consist of a single object ∗;
• 1-morphisms are cp-rigid tensor categories;
• 2-morphisms are equivalence classes of bimodule categories with enough compact projectives.

We also let h2(RigidTens) denote the homotopy 2-category of RigidTens, that is, the
2-category whose:

• objects are cp-rigid tensor categories;
• 1-morphisms are bimodule categories with enough compact projectives;
• 2-morphisms are isomorphism classes of bimodule functors.

Theorem 5.13. We have the following statements.

(i) In h2(B RigidTens), every 1-morphism (i.e. every cp-rigid tensor category) has a left and
right adjoint.

(ii) In h2(RigidTens), every 1-morphism (i.e. every bimodule category over cp-rigid categories)
has a left and a right adjoint.

Hence, the 3-category RigidTens is 2-dualizable.

Proof. Item (i) is well known and applies even in Tens (and indeed any S). Every object
C ∈ Tens has a (left and right) dual given by Cmop. Note that the left and right duals are
identified canonically because Tens is symmetric monoidal. See [DSS19, § 3.1] for details for
tensor categories, and [GS18] for the general case.

For item (ii), let M be a 1-morphism in RigidTens, that is, a (C–B)-bimodule category M
with enough projectives. By Proposition 5.10, since C and B are cp-rigid, they are dualizable
over their enveloping algebras. Then, by Corollary 5.5, the (C–B)-bimodule M has both a left
and a right adjoint, as required. "

Remark 5.14. There should be a more direct category-theoretic proof of dualizability for bimod-
ules over cp-rigid tensor categories, which can be summarized in one sentence: it is the C-compact
projective C-enriched co-Yoneda lemma.
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In a little more detail, we want to show that the left adjoint of CMD is given by
D Hom(M, C)C . The evaluation map is obvious and so the only issue is to write down the coeval-
uation. The coevaluation is given by the following C-enriched coend taken over the subcategory
of C-compact projectives:

∫ p∈C−c.p.

Hom(p, m)p.

Here Hom(p, m) is the internal Hom which lands in C and Hom(p, m)p denotes the module action.
That this coend indeed gives a coevaluation then follows from the enriched co-Yoneda lemma
corresponding to the enriched analogue of the compact projective Yoneda lemma of [BCJ15],

F(m) =
∫ p∈C−c.p.

Hom(p, m)F(p),

applied to the identity functor. In order for this argument to work there need to be enough
C-compact projectives, but in the cp-rigid setting any compact projective is C-compact projective.

The enriched co-Yoneda lemma where the enriching category is symmetric monoidal is well
known [Kel82]. It should be possible to modify this when the enriching category is merely
monoidal, if care is taken about the difference between left-enriched and right-enriched. The
enriched Yoneda lemma in this setting appears in [Hin16] and there is a general recipe for deriv-
ing the co-Yoneda lemma from the Yoneda lemma in any pro-arrow equipment [Shu13, Example
8.4]. However, to our knowledge a non-symmetric enriched co-Yoneda lemma has not appeared as
such in the literature. Nonetheless, there are some papers that study even more general setups. In
[Str83] the authors study enriched categories over a 2-category, which could then be specialized
to the case of 2-categories with only one object, while in [GS16, Example 10.2] they consider
2-categories enriched over a non-symmetric monoidal category, which can be specialized to the
case where the 2-category has only identity 2-morphisms. The enriched co-Yoneda lemma would
then need to be modified to the C-compact projective setting following [BCJ15]. We found this
task too daunting and so give an algebraic proof that requires less heavy categorical thinking,
but have included this remark because readers more adept in category theory may find the
co-Yoneda construction of adjoints more natural.

5.5 Cp-rigid braided tensor categories are 3-dualizable
A variation on the previous section allows us to establish the 3-dualizability of RigidBrTens.

Definition 5.15. We let h2(B RigidBrTens) denote the 2-category whose:

• objects consist of the single object ∗;
• 1-morphisms are cp-rigid braided of tensor categories;
• 2-morphisms are equivalence classes of central cp-rigid tensor categories.

We let h2(RigidBrTens) denote the 2-category whose:

• objects are cp-rigid braided tensor categories in Pr◦;
• 1-morphisms are central tensor categories in Pr◦;
• 2-morphisms are equivalences classes of centered bimodule categories.

Given cp-rigid braided tensor categories A and B, we let h2(Hom(A,B)) denote the 2-category
whose:
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• objects are (A–B)-central tensor categories in Pr◦;
• 1-morphisms are (A–B)-centered bimodule categories in Pr◦;
• 2-morphisms are isomorphism classes of centered bimodule functors.

Theorem 5.16. We have the following statements.

(i) In h2(B RigidBrTens), every 1-morphism (i.e. every braided tensor category) has a left
and right adjoint.

(ii) In h2(RigidBrTens), every 1-morphism (i.e. every central tensor category) has a left and
a right adjoint.

(iii) In h2(Hom(A,B)), every 1-morphism (i.e. every centered bimodule category) has a left and
a right adjoint.

Hence, the 4-category RigidBrTens is 3-dualizable.

Proof. Items (i) and (ii) are general statements about E2-algebras [Lur, Sch14, GS18], and hold
for all of BrTens.

For (i), the left and right dual to every A ∈ BrTens is Abop. To construct the evaluation
and coevaluation maps, we observe that the identity of A, that is, A itself with its canonical
(A–A)-central structure given by the functor A ! Abop → Z(A) of Example 3.5, can be regarded
in a tautological way as a (A ! Abop)-Vect-and as a Vect-(Abop ! A)-central algebra using the
same functor.12 Since the underlying tensor category Abop is the same as that of A, this adjoint
is again cp-rigid.

For (ii), the left and right adjoint to any (A–B)-central algebra C is Cmop as a tensor category,
but the (B–A)-central structures are different. We have a functor A ! Bbop → Z(C), which by
taking bop gives a functor B ! Abop →→ Z(C)bop. By Proposition 2.34, to give a (B–A)-central
structure on Cmop we need a functor (A ! B)bop = B ! Abop → Z(Cmop) = Z(C)mop. In other
words, to give a (B–A)-central structure on Cmop it is enough to choose an equivalence between
Z(C)bop and Z(C)mop. By Remark 2.31 there are two such choices: one given by clockwise rotation
and one by counterclockwise rotation. For the right adjoint (i.e. where Cmop is written below C)
we use clockwise rotation, while for the left adjoint (i.e. where Cmop is written above C) we use
counterclockwise rotation. See [GS18, Example 4.8, Proposition 4.14] for more details.13 Note
that Cmop is again cp-rigid, since its compact projectives are the same as in C and since the left
dual in C is a right dual in Cmop and vice versa.

Hence, all that remains is to prove item (iii). So let A and B be cp-rigid braided tensor
categories, let C,D be two cp-rigid (A–B)-central algebras with central functors FC and FD and
let M be a centered (C–D)-bimodule with enough projectives. By Theorem 5.13, M, as a mere
bimodule, has a left dual, ∨M = HomC(M, C). We need to equip ∨M and its evaluation and
coevaluation with the structure of a centered (D–C)-bimodule and of maps of those, respectively.
It suffices (by replacing A by A ! Brev in all arguments) to consider the case of a single braided
tensor category A.

12 For evaluation we have moved the A action from above into a Abop action from below, while for coevaluation we
have moved the A action from below into a Abop action from above. For this reason [GS18] uses slightly different
notation for these two constructions.
13 Since their conventions for x- and y-axes are the reverse of ours, we need to rotate their images 90 degrees
clockwise to translate them into our conventions.
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Proposition 5.17. The (D–C)-bimodule ∨M = HomC(M, C) has a canonical A-centered struc-
ture given for F ∈ ∨M by

a ⊗ F (−) := F (−⊗ FD(a)) ∼−→ F (FC(a) ⊗−) ∼−→ FC(a) ⊗ F (−) ∼−→ F (−) ⊗ FC(a) =: F (−) ⊗ a,

where the first map is the centered structure on M, the second is the C-module structure on F
and the third is the central structure on FC .

Proof. This is a direct computation. "

We will also need the following proposition.

Proposition 5.18. The D-bimodule HomC(M,M) has a canonical A-centered structure given
by

a ⊗ F := F (−⊗ FD(a)) ∼−→ F (FC(a) ⊗−) ∼−→ FC(a) ⊗ F (−) ∼−→ F (−) ⊗ FD(a) =: F ⊗ a

such that the map
∨M !C M → HomC(M,M)

given by ϕ! m &→ ϕ(−) ⊗ m is a morphism of centered bimodule.

Proof. This is a direct computation. "

Now the identity 2-morphism of C is C itself as a C-bimodule, with centered structure given
by its central structure, and likewise for D. Hence, we need to show the following lemma.

Lemma 5.19. The evaluation and coevaluation maps

M !D
∨M −→ C, D −→ ∨M !C M

are morphisms of centered bimodules.

Proof. The A-centered structure on the C-bimodule of the evaluation map is given by combining
Proposition 5.17 with Corollary 3.17. Applying the evaluation map, everything cancels except
the last isomorphism of the previous proposition, that is, the A-central structure on C. Recall
that the coevaluation map is given by

D −→ HomC(M,M) . ∨M !C M.

The second map is an equivalence of centered bimodule by Proposition 5.18, so it remains to
check that the first one, given by d &→ − ⊗ d, is a morphism of centered bimodule as well. This
also follows in a straightforward way from the same proposition, by setting F = −⊗ d. "

Hence part (ii) of Theorem 5.16 is proved. "

5.6 Braided multi-fusion categories are 4-dualizable
Under further finiteness assumptions, we can enhance the results of the preceding section to
establish 4-dualizability in of all of BrFus over a field of characteristic zero. The characteristic-
zero assumption here is needed for BrFus to even be a symmetric monoidal 4-category (in
particular, to be closed under Deligne–Kelly tensor product and under composition of bimodules),
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and is not only needed for dualizability. The results in this section apply, however, to separable
braided tensor categories in characteristic p with minor modifications.

Definition 5.20. Given A,B braided multi-fusion categories, and a pair C,D of (A–B)-centered
multi-fusion categories, we let Hom(C,D) denote the 2-category whose:

• objects are semisimple (A–B)-centered (C–D)-bimodules;
• 1-morphisms are centered bimodule compact-preserving functors;
• 2-morphisms are bimodule natural transformations.

In addition to Theorem 5.16, we have the following result.

Theorem 5.21. Every 1-morphism in Hom(C,D) (i.e. every compact-preserving centered
bimodule functor F ) has a left and a right adjoint. Hence, the 4-category BrFus is fully
dualizable.

Proof. We follow the proof of [DSS19, Proposition 3.4.1] adapted to the presentable setting.
Let F : M → N be a compact-preserving centered (C–D)-bimodule functor. By definition M
and N are ind-completions of their subcategories M′ and N ′ of compact objects. Since N ′

is semisimple, every compact object in N is in fact compact projective, therefore F preserves
compact projective objects, which implies that it arises as the ind-extension of a right exact
functor

F ′ : M′ −→ N ′.

Since M′ and N ′ are finite and semisimple, F ′ has right exact left and right adjoints, which by
passing to ind-completion provides compact-preserving cocontinuous left and right adjoints to
F . It then follows from Corollary 4.3 that those are centered bimodules functors. "
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MA, 2007), 111–195.

Dim13 T. Dimofte, Quantum Riemann surfaces in Chern-Simons theory, Adv. Theor. Math. Phys.
17 (2013), 479–599.

DSS C. L. Douglas, C. Schommer-Pries and N. Snyder, Dualizable tensor categories II: Homotopy
SO(3)-actions, in preparation.

DSS19 C. L. Douglas, C. Schommer-Pries and N. Snyder, The balanced tensor product of module
categories, Kyoto J. Math. 59 (2019), 167–179; MR 3934626.

Dri89 V. G. Drinfeld, Almost cocommutative Hopf algebras, Algebra i Analiz 1 (1989), 30–46;
MR1025154 (91b:16046).

DGNO10 V. Drinfeld, S. Gelaki, D. Nikshych and V. Ostrik, On braided fusion categories I, Selecta
Math. (N.S.) 16 (2010), 1–119.

EGNO15 P. Etingof, S. Gelaki, D. Nikshych and V. Ostrik, Tensor categories, Mathematical Surveys
and Monographs, vol. 205 (American Mathematical Society, Providence, RI, 2015), http://
www-math.mit.edu/etingof/egnobookfinal.pdf; MR 3242743.

ENO04 P. Etingof, D. Nikshych and V. Ostrik, An analogue of Radford’s S4 formula for finite tensor
categories, Int. Math. Res. Not. IMRN 2004 (2004), 2915–2933; MR 2097289 (2005m:18007).

ENO10 P. Etingof, D. Nikshych and V. Ostrik, Fusion categories and homotopy theory, Quantum
Topol. 1 (2010), 209–273, with an appendix by E. Meir; MR 2677836 (2011h:18007).

EO04 P. Etingof and V. Ostrik, Finite tensor categories, Mosc. Math. J. 4 (2004), 627–654.
Fie92 Z. Fiedorowicz, The symmetric bar construction, Preprint (1992), available for download at

https://people.math.osu.edu/fiedorowicz.1/.
FV15 D. Fiorenza and A. Valentino, Boundary conditions for topological quantum field theories,

anomalies and projective modular functors, Comm. Math. Phys. 338 (2015), 1043–1074.
Fra13 I. L. Franco, Tensor products of finitely cocomplete and abelian categories, J. Algebra 396

(2013), 207–219.
Fre12a D. Freed, 3-dimensional TQFTs through the lens of the cobordism hypothesis, slides available

at https://www.ma.utexas.edu/users/dafr/StanfordLecture.pdf (2012).
Fre12b D. S. Freed, 4-3-2-8-7-6, Aspects of Topology Conference talk slides (2012), slides available

at https://www.ma.utexas.edu/users/dafr/Aspects.pdf.

480

#JJ*I
��000 ��D:+A�"  )+"��)+ �J +DI �#JJ*I
���)A )+"��� �����4����	��8�����
��
�)0(C)�� ��!+)D�#JJ*I
��000 ��D:+A�"  )+"��)+  �.1�.�1���1.6 �0�7�.1�.�1�320.4��)(����/.(�������J���
��
�	��I.:% �J�J)�J# �,�D:+A�" �,)+ �J +DI�)!�.I ���L�AC�:C ��J

https://arxiv.org/abs/1910.02630
https://mathscinet.ams.org/mathscinet-getitem?mr=1452438
https://mathscinet.ams.org/mathscinet-getitem?mr=3934626
https://mathscinet.ams.org/mathscinet-getitem?mr=1025154
http://www-math.mit.edu/%20etingof/egnobookfinal.pdf
http://www-math.mit.edu/%20etingof/egnobookfinal.pdf
https://mathscinet.ams.org/mathscinet-getitem?mr=3242743
https://mathscinet.ams.org/mathscinet-getitem?mr=2097289
https://mathscinet.ams.org/mathscinet-getitem?mr=2677836
https://people.math.osu.edu/fiedorowicz.1/
https://www.ma.utexas.edu/users/dafr/StanfordLecture.pdf
https:%20//www.ma.utexas.edu/users/dafr/Aspects.pdf
https://www.cambridge.org/core/terms
https://doi.org/10.1112/S0010437X20007630
https://www.cambridge.org/core


On dualizability of braided tensor categories

FT14 D. S. Freed and C. Teleman, Relative quantum field theory, Comm. Math. Phys. 326 (2014),
459–476; MR 3165462.

Fre17 B. Fresse, Homotopy of operads and Grothendieck-Teichmüller groups. Part 1: The alge-
braic theory and its topological background, Mathematical Surveys and Monographs, vol. 217
(American Mathematical Society, Providence, RI, 2017); MR 3643404.

FG00 C. Frohman and R. Gelca, Skein modules and the noncommutative torus, Trans. Amer. Math.
Soc. 352 (2000), 4877–4888.

FSV13 J. Fuchs, C. Schweigert and A. Valentino, Bicategories for boundary conditions and for
surface defects in 3-d TFT, Comm. Math. Phys. 321 (2013), 543–575.

Gai15 D. Gaitsgory, Sheaves of categories and the notion of 1-affineness, in Stacks and cate-
gories in geometry, topology, and algebra, Contemporary Mathematics, vol. 643 (American
Mathematical Society, Providence, RI, 2015), 127–225; MR 3381473.

GS16 R. Garner and M. Shulman, Enriched categories as a free cocompletion, Adv. Math. 289
(2016), 1–94.

Gar04 S. Garoufalidis, On the characteristic and deformation varieties of a knot, Geom. Topol.
Monogr. 7 (2004), 291–309.

Gin15 G. Ginot, Notes on factorization algebras, factorization homology and applications, in
Mathematical aspects of quantum field theories (Springer, Cham, 2015), 429–552.

Gol84 W. Goldman, The symplectic nature of fundamental groups of surfaces, Adv. Math. 54
(1984), 200–225.

Gre10 J. Greenough, Monoidal 2-structure of bimodule categories, J. Algebra 324 (2010),
1818–1859.

Guk05 S. Gukov, Three-dimensional quantum gravity, Chern-Simons theory, and the A-polynomial,
Comm. Math. Phys. 255 (2005), 577–627.

GS12 S. Gukov and P. Sulkowski, A-polynomial, B-model, and quantization, J. High Energy Phys.
2012 (2012), 70.

GS18 O. Gwilliam and C. Scheimbauer, Duals and adjoints in the factorization higher Morita
category, Preprint (2018), arXiv:1804.10924.

Hau17 R. Haugseng, The higher Morita category of En–algebras, Geom. Topol. 21 (2017),
1631–1730.

Hin16 V. Hinich, Enriched Yoneda lemma, Theory Appl. Categ. 31 (2016), 833–838; MR 3551499.
Idr17 N. Idrissi, Swiss-Cheese operad and Drinfeld center, Israel J. Math. 221 (2017), 941–972.
Joh15 T. Johnson-Freyd, Heisenberg-picture quantum field theory, Preprint (2015), arXiv:1508.05908.
JS17 T. Johnson-Freyd and C. Scheimbauer, (Op) lax natural transformations, twisted quantum

field theories, and ‘even higher’ Morita categories, Adv. Math. 307 (2017), 147–223.
Kas95 C. Kassel, Quantum groups, Graduate Texts in Mathematics, vol. 155 (Springer, New York,

1995); MR1321145 (96e:17041).
Kau01 L. H. Kauffman, Knots and physics, vol. 1 (World Scientific, Singapore, 2001).
Kel82 M. Kelly, Basic concepts of enriched category theory, vol. 64 (Cambridge University Press,

Cambridge, 1982).
Lic09 W. B. R. Lickorish, What is . . . a skein module?, Notices Amer. Math. Soc. 56 (2009),

240–242. Available at https://www.ams.org/notices/200902/rtx090200240p.pdf.
Lur J. Lurie, Higher algebra, Preprint, available at https://www.math.ias.edu/lurie/papers/HA.

pdf.
Lur09 J. Lurie, On the classification of topological field theories, Curr. Dev. Math. 2008 (2009),

129–280.

481

#JJ*I
��000 ��D:+A�"  )+"��)+ �J +DI �#JJ*I
���)A )+"��� �����4����	��8�����
��
�)0(C)�� ��!+)D�#JJ*I
��000 ��D:+A�"  )+"��)+  �.1�.�1���1.6 �0�7�.1�.�1�320.4��)(����/.(�������J���
��
�	��I.:% �J�J)�J# �,�D:+A�" �,)+ �J +DI�)!�.I ���L�AC�:C ��J

https://mathscinet.ams.org/mathscinet-getitem?mr=3165462
https://mathscinet.ams.org/mathscinet-getitem?mr=3643404
https://mathscinet.ams.org/mathscinet-getitem?mr=3381473
https://arxiv.org/abs/1804.10924
https://mathscinet.ams.org/mathscinet-getitem?mr=3551499
https://arxiv.org/abs/1508.05908
https://mathscinet.ams.org/mathscinet-getitem?mr=1321145
https://www.ams.org/notices/200902/rtx090200240p.pdf
https://www.math.ias.edu/%20lurie/papers/HA.pdf
https://www.math.ias.edu/%20lurie/papers/HA.pdf
https://www.cambridge.org/core/terms
https://doi.org/10.1112/S0010437X20007630
https://www.cambridge.org/core


A. Brochier, D. Jordan and N. Snyder
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