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Abstract. The wave equation of electromagnetism, the Helmholtz equation, has

the same form as the Schrödinger equation, and so optical waves can be used to

study quantum mechanical problems. The electromagnetic wave solutions for non-

diffracting beams lead to the 2-dimensional Helmholtz equation. When expressed in

elliptical coordinates the solution of the angular part is the same as the Schrödinger

equation for the simple pendulum. The resulting optical eigenmodes, Mathieu

modes, have an optical Fourier transform with a spatial intensity distribution that

is proportional to the quantum mechanical probability for the pendulum. Comparison

of Fourier intensities of eigenmodes are in excellent agreement with calculated quantum

mechanical probabilities of pendulum stationary states. We further investigate wave-

packet superpositions of a few modes and show that they mimic the libration and the

nonlinear rotation of the classical pendulum, including revivals due to the quantized

nature of superpositions. The ability to “dial a wavefunction” with the optical modes

allows the exploration of important aspects of quantum wave-mechanics and the

pendulum that may not be possible with other physical systems.

Keywords: Pendulum beams, Mathieu beams, Non-diffracting beams, Quantum

pendulum.

1. Introduction

The physical world contains many systems that involve distinct phenomena and

parameter scales but which share the same mathematical description. In the case

of electromagnetic-wave propagation, the Helmholtz wave equation has similarities

with the Schrödinger equation. The former, derived from the general electromagnetic

wave equation after assuming that the solution has a harmonic dependence, yields a

differential equation that depends only on spatial coordinates, which has the same

form as the time-independent Schrödinger equation. This parallel between light and

a quantum physical system can be exploited for learning about the quantum system
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by analogy [1]. The particular system that we consider in this study is the simple

pendulum.

The quantum solution of the pendulum was first obtained by Condon in 1928 [2].

His treatment reduced the Schrd̈inger equation to the Mathieu equation [3]. Because of

the weakness of gravity relative to electric forces, microscopic pendula are not possible.

However, a number of systems show pendulum-like features, such as molecules in the

presence of static electric fields [4, 5]. The advent of modern techniques to manipulate

fields and materials has led to systems that have a potential with the same cosine

dependence as the unperturbed pendulum, such as atoms in the magneto-optical trap

[6], anharmonic oscillations in Bose-Einstein condensates [7], and the transmon oscillator

in the Josephson-junction superconducting qubit [8]. A periodically driven pendulum

or rotor has also been a model system for the study of quantum chaos [9, 10] with

laboratory recreations in the the motion of atoms in an optical lattice [11].

When the solution of the 3-d Helnholtz equation is decomposed into a function of

the transverse coordinates in conjunction with a longitudinal plane wave, the equation

reduces to the 2-d Helmholtz equation. The resulting beams are known as non-

diffracting, because over a spatial range they maintain shape and size. Bessel beams

were the first type of non-diffracting beams to be studied [12, 13], obtained when the

transverse mode is restricted to be angularly uniform. When the transverse component

is allowed to have 2-d symmetries, other non-diffracting beams are possible, such as

Mathieu beams (connected to the present work) [14, 15], parabolic beams [16, 17],

Airy beams [18, 19], and Pearcey beams [20]. All of these these beams have unique

propagation properties and contain optical singularities [21].

When the transverse coordinates are transformed into elliptical coordinates,

separation of variables leads to radial and angular Mathieu equations [14], with the

latter being identical to the quantum pendulum equation. More remarkable is that the

far-field pattern of the beam, or equivalently the optical Fourier transform of the mode,

performed by a lens, reduces to a ring (owing to the radial solutions expressed in terms

of Bessel functions) modulated by the absolute-value square of the angular solution.

This modulation has an exact correspondence to the quantum mechanical probability

for finding the pendulum as a function of the angular coordinate [22]. In this article we

investigate the modes that result from these solutions and compare the light patterns

to quantum probabilities. We explore stationary states, wavepacket superpositions and

other aspects of the quantum problem.

The article is organized as follows. In Sec. 2 we begin by presenting the theory in

two subsections: on the pendulum in Sec. 2.1, and on the quantum pendulum modes in

Sec. 2.2. It is followed by a description of the apparatus in Sec. 3. Our experimental

results are divided into stationary states, in Sec. 4.1, and wavepacket superpositions in

Sec 4.2. We give concluding remarks in Sec. 5.
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2. Theoretical Background

2.1. The Quantum Pendulum

The rigid pendulum of length l and mass m is shown in Fig. 1(a). The potential energy

Figure 1. (a) Schematic of the pendulum. (b) Energy level diagram for the case

q = 30, showing also the cosine-shaped potential barrier. The even(odd) levels are

denoted by solid(dashed) horizontal lines.

is given by:

V = mgl (1− cos θ) , (1)

with g being the acceleration of gravity. The complete classical solution of this problem

leads to interesting nonlinear dynamics [23]. The quantization of this problem leads to

the Mathieu equation [5]

d2ψ

dχ2
+ (a− 2q cos 2χ)ψ = 0, (2)

where a is the energy eigenvalue. The constant q = 2mgl/E0 is a dimensionless

parameter representing the scaled height of the potential energy barrier, with E0 =

h̄2/2ml2. If m were the mass of the electron and l the atomic radius, this scaling unit is

the familiar Bohr energy, E0 = 13.6 eV. An alternative quantum/classical explanation

for q is:
√
q is the ratio of l to the reduced de Broglie wavelength [24]. Thus, we should

understand that low values of q refer to situations where quantum mechanics is the

appropriate description, and when q → ∞ we reach the classical limit. The variable χ

relates to the pendulum angle by

θ = 2χ. (3)

The scaled energy is [5]:

ε =
a

4
+
q

2
(4)

The eigenvalues of Eq. 2 are divided into two groups corresponding to the cosine-like

and sine-like solutions, of respective even and odd symmetry. It is traditional to label
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the even and odd eigenvalues by an and bn, where n is the quantum number (n is a

positive even integer, with n = 0 allowed only for the even solution) [3].

Figure 1(b) shows the energy-level diagram for the particular value q = 30, which

adjusts well to our experimental conditions. We can relate the energy states to salient

elements of the classical system: turning-point angle θtp for energies below the barrier;

and above the barrier, the ratio of instantaneous angular frequencies when the pendulum

bob is at the top and bottom of the trajectory, ωtop/ωbot. Table 1 gives the values of

these quantities for the energy levels shown in Fig. 1(b).

The wavefunctions are given in terms of their parity, but are not expressed in a

closed form:

cen(χ; q) =
∞∑
k=0

Ak cos(kχ) n = 0, 2, 4, . . . (5)

sen(χ; q) =
∞∑
k=2

Bk sin(kχ) n = 2, 4, 6, . . . (6)

where k is an even integer. cen(χ; q) and sen(χ; q) are the cosine-elliptical and sine-

elliptical Mathieu functions, respectively; and Ak and Bk are coefficients that result

from the solution [25].

In Figs. 2(a), 2(e) and 2(i) we show the calculated quantum mechanical probability

of finding the pendulum at an angle θ in the interval [−π, π] for states with n = 4,

n = 6 and n = 10, respectively. They show salient aspects of the quantization of this

mechanical system. The first two states have even symmetry and energies below the

barrier, as listed in Table 1. The latter shows evidence of tunneling through the barrier

by the continuous non-zero probability in the classically forbidden regions, at angles

above the turning points. The state with n = 10 is above the barrier, corresponding to

a classical rotor that goes faster at the bottom than at the top, yet it has zero probability

of being in the inverted position (θ = −π, π) due to the odd symmetry of the quantum

wavefunction.

Table 1. Classical parameters of the pendulum with energies corresponding to low-

lying states of the quantum pendulum for q = 30. Values include states of even and

odd symmetry, except for the ground state, which only has even symmetry.

n ε/q θtp (deg) ωtop/ωbot

even(odd) even(odd) even(odd)

0 0.09 35

2 0.43(0.26) 82(62)

4 0.72(0.58) 116(99)

6 0.94(0.85) 152(135)

8 1.10(1.09) 0.31(0.29)

10 1.37(1.37) 0.52(0.52)

12 1.73(1.73) 0.65(0.65)
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Figure 2. Images corresponding stationary states with n = 4 (a-d), n = 6 (e-h)

and n = 10 (i-l) in the following categories: theoretical calculations of the pendulum

probability in (a), (e), (i); calculated optical modes in (b), (f), (j), measured modes in

(c), (g), (k); and measured Fourier transform patterns in (d), (h) and (l).

2.2. Pendulum Beams

Separation of variables of the 2-d Helmholtz equation in elliptic-radial (ξ) and elliptical-

angular (χ) coordinates leads to radial and angular Mathieu equations [14]. The n-th

order eigenmodes of even and odd parity are given respectively by

Ue(ξ, χ) = cen(χ; q)Jen(ξ; q) (7)

and

Uo(ξ, χ) = sen(χ; q)Jon(ξ; q), (8)

where Jen(ξ; q) and Jon(ξ; q) are the radial Mathieu functions of even and odd symmetry,

respectively [25]. Combination of the two parity solutions of the same order but 90

degrees out of phase gives rise to the helical Mathieu beams, which carry orbital angular

momentum and contain n optical vortices in a linear arrangement [26]. In Fig. 2 (b),

(f) and (j) we show theoretical modelings of the intensity patterns of the modes with

n = 4, 6, 10 discussed above for q = 30. Note that they have hyperbolic angular and

elliptical radial nodes. The number of angular nodes corresponds to n for even states

and to n+ 1 for the odd states.

Because the radial Mathieu functions can be expressed in terms of Bessel functions,

the optical Fourier transform gives

FT[Ue(ξ, χ; q)] = cen(θ/2; q)δ(k − kt) (9)

FT[Uo(ξ, χ; q)] = sen(θ/2; q)δ(k − kt), (10)
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where δ is the Dirac delta function. Notice that this is basically a ring at a radius

kt modulated by the angular solution. Thus the intensity pattern along the ring is

proportional to the quantum mechanical probability. Because of Eq. 3 the quantum

probability has a 1:2 mapping to the ring in the Fourier plane.

3. Apparatus

We generated pendulum beams using the optical arrangement shown schematically

in Fig. 3. The light from a helium-neon laser was expanded, spatially filtered and

collimated before being sent to an SLM (Hamamatsu model LCOS-X10468-07). We

encoded the SLM with a combination of phase and amplitude modulation, shown in the

insert of Fig. 3, so that the desired mode was generated in the first diffractive order.

Both the phase and amplitude modulations contained the Mathieu function information,

generated by numerical calculations using a Matlab computational toolbox [27]. A pair

of lenses re-imaged the beam using a 4-f configuration. In between, at the Fourier plane

of the SLM, an adjustable iris spatially filtered the desired mode, eliminating light from

undesired diffracted orders. Past the second lens the non-diffracting pendulum beam

was formed over a range of 50 cm. A beam splitter deflected part of the beam to a lens

for recording the image in the Fourier plane of the mode. Two digital cameras (Thorlabs

model DCC1545M) were used to record the mode and its Fourier transform.

Figure 3. Schematic of the apparatus. Optical components include laser, beam

expander (BE), lenses (L), apertures (A), a spatial light modulator (SLM) and cameras

(C). Insert shows an example of the programming of the SLM.
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4. Measurements

4.1. Stationary States

We prepared pendulum modes as described in the next section, and imaged the beam

modes and their optical Fourier transform. Images (c), (g) (k) in Fig. 2 show the

measured modes corresponding to the states n = 4, 6, 10, respectively. It can be seen

that they reproduce the expectations in panes (b), (f) and (j), respectively. In panes

(d), (h) and (l) we show the corresponding imaged Fourier transforms. The observed

pattern has a 2:1 correspondence with the actual probability due to Eq. 3. To verify this

we integrated the camera pixels along the ring as a function of angle, normalized them

and graphed them with the calculated quantum mechanical probability. A comparison

for the three cases of Fig. 2 is given in Fig. 4. To avoid confusion we show only the

comparison with the bottom half of the measured optical Fourier transform, given that

top and bottom halves contain the same information. The agreement between the data

and theory is remarkable, especially on the relative location of the minima and maxima

and the relative height of the maxima. The only adjustable parameter was the location

of θ = 0 between of the data and theory; a correction of about 1 degree due to a slight

angular misalignment between the encoding and decoding electronic imaging systems.

The only places where there is ambiguity is at θ = π, due to contamination of diffractive

orders produced by the mode encoding device (SLM). We have also added the calculated

classical probabilities (dashed lines), which for the oscillating states rise sharply at the

turning points.

4.2. Wavepacket Superpositions

Another interesting case that can be investigated is the inverted pendulum, which has

been subject of previous discussions [24]. In principle, if the bob gets an initial energy

exactly equal to the barrier height, the pendulum will slow down as it goes up, taking

an infinite amount of time to reach the top at which point it will remain at rest. Of

course, such a situation is not physically realizable because it would require us to know

the position and momentum of the bob with absolute precision, violating the Heisenberg

uncertainty principle. Yet, it can be used to study how close to physically realizable

situations one can get using wavepacket superpositions.

Since we can program any mode that we desire, we can also program superpositions

of modes. Ideally, a Gaussian superposition would mimic the classical pendulum. In

practical terms, there is an upper-limit for q in our experiments because the spacing

between the zeros along the radial-elliptic coordinate decreases as q increases. This

collides with the resolution of our SLM. Thus, for our current experimental values,

q = 30− 80 is a reasonable range for high-resolution studies.

To create a wavepacket that mimics the classical pendulum system we create a

superpoposition of states (modes) with relative phases that mimic the quantum time

evolution for the time-independent Hamiltonian. Thus, we programmed the phase
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Figure 4. Plot of the normalized light intensity measured at the optical Fourier

transform plane (symbols), the calculated quantum mechanical probability (solid line),

and classical probabilities (dashed lines); for the 3 states of Fig. 2 with n = 4, 6, 10.

associated to each state (mode) to be proportional to the energy of the state. We

have investigated a number of cases in this situation.

Consider the superposition of 4 states for the case where the scaled barrier height

is q = 30:

U(t) = aun,ee
−iεn,eτ +bun,oe

−iεn,oτ +cun−2,ee
−iεn−2,eτ +dun−2,oe

−iεn−2,oτ ,(11)

where a, b, c, d are constants, n stands for a quantum number denoting the state, e and

o denoting the parity of the state (even or odd, respectively), εi = Ei/E0 representing

the scaled energy of state i, and τ = t/(h̄/E0) scaled time with h̄ being the reduced

Planck constant. We created two types of superpositions expressed by Eq. 11: for states

below the barrier, with n = 6, and for states above the barrier with n = 10. The energy

level diagram of these two sets of states is shown in Fig. 1(b).

With only 4 states we get modes that already mimic the classical pendulum to

a large degree. Figure 5 shows a sequence of modes created with the superposition of

Eq. 11 with n = 6 and a = c = 1/2 and b = d = +i/2. At τ = 0.5 we get a snake-looking

mode corresponding to the quantum state of the superposition at the left turning point,

as shown in Fig. 5(a). We note that the non-diffracting character of the beam was quite

evident in the laboratory, as the shape and size of the mode remained unchanged by

about 50 cm.

In Fig. 5(b) we show the measured intensity of the corresponding optical Fourier
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transform, extracted similarly to the data of Fig. 4. It is shown in a polar-type plot,

graphed as a function of the real angle of the pendulum, similar to the theoretical

modelings of stationary states in Figs. 2(a,e,i). The measured intensity shows that the

quantum probability is concentrated at an angle of about 123± 35◦ (centroid with half-

width at half maximum), which is consistent with the classical turning points of the

n = 4 and n = 6 states shown in Table 1. We have also done separate modelings of this

situation, which agree with the measurements.

Figure 5. Measurements of a 4-state superposition given by Eq. 11, for n = 6 and

q = 30. Panes (a-d) show the pendulum mode at different scaled times τ . Below the

mode images we show the corresponding probability extracted from the images in the

Fourier plane and plotted as a function of the pendulum angle θ in polar form.

As time evolves, the mode transforms. This evolution is better understood by

observing the measured probability, where it is seen to spread to different angles,

showing nodes and antinodes, but with a centroid that seems to mimic the “swinging”

of the pendulum to reach the other turning point at τ = 1.3, shown in Figs. 5(d,h).

Subsequently at τ = 2.1 the original mode of Figs. 5(a,e) is “almost” recreated. This

constitutes a revival with the shortest period. Figures 5(b,f) and (c,g) show examples

at intermediate times. The revivals shown in this example evoke other parallels in

atomic physics in the revival of atomic Rydberg wavepackets, where the excitation of a

superposition of Rydberg states gives rise to an oscillation in the probability mimicking

the classic electronic motion along elliptical orbits around the nucleus [28, 29].

In the preceding paragraph we mentioned that at τ = 2.1 the probability after a

pendulum “period” is not fully reproduced. This is because it is part of a longer time

evolution. A long-term pattern of this case is shown in Fig. 6(a), where the measured

probability plotted in “quantum carpet” form [30, 31]. That is, plotting the intensity

of the Fourier data, as a function of the pendulum angle along the horizontal scale,

displayed parametrically with time along the vertical scale. Each horizontal line of

pixels corresponds to a specific time, with each figure containing a compilation of about

800 images taken at different times. Thus, viewed from top to bottom we see the

time evolution of the probability for the given superposition. We can first see that at
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Figure 6. Time evolution of the measured probability of the superposition of 4 states

as a function of the pendulum angle θ, plotted parametrically in “carpet” form, where

each pixel row corresponds to a distinct time. Case (a) corresponds to n = 6 and

a = c = 1/2 and b = d = +i/2 in Eq. 11 for q = 30, a librating mode of the pendulum.

Cases (b) and (c) correspond to n = 10 and a = c = 1/2, but with b = d = +i/2 for

(b) and b = d = −i/2 for (c), which are the clockwise and counter-clockwise rotation

modes of the pendulum, respectively.

τ = 0.5 the pendulum is at the turning point, as shown above. We can see the one

full swing mentioned earlier that ends at τ = 2.1 but a larger revival after a second

swing at τ = 3.5. After that we see another single revival at τ = 5.2 followed by not

well defined oscillations. The periodicities in the probabilities depend on the range of

energy-level separations spanning from 0.09 to 0.36 scaled energy units. These translate

in periodicities spanning 2.8 to 11 in scaled time units.

Figure 6(b) shows the measured probability for the case where n = 10 also with

a = c = 1/2 and b = d = +i/2 for q = 30. This superposition consists of the 4 lowest

states above the potential energy barrier. This wavepacket clearly shows the intensity

(or equivalently, the probability) moving toward lower values of θ as time increases. This

corresponds to a clockwise moving rotor. If we instead specify b = d = −i/2 with all

else remaining equal, we get the counter-clockwise moving rotor, as shown in Fig. 6(c).

This change in handedness of the rotor makes sense because it involves a change of π in

the relative phase between the odd and even constituent modes (states).

We have investigated other combinations, such as superpositions of 6 and 8 states,

for q = 50 and q = 70, respectively, and the results are very similar, although the



Pendulum Beams: Optical Modes that Simulate the Quantum Pendulum 11

parameter space increases significantly with the possible values of relative amplitude

and phase of the initial states. Conversely, one could turn the argument around and

engineer superpositions that give rise to specific non-diffractive modal patterns.

5. Discussion and Conclusions

In this article we present the use of modal superpositions of non-diffracting optical

beams to analyze a model quantum mechanical system. Current technologies enable us

to manipulate the amplitude and phase of the light into specific wave solutions. Nature,

acting as an analog computer, does the rest by propagating the light waves. In the

particular case of the quantum pendulum we are able to observe stationary states and

wavepackets, obtaining a direct display of the predictions of quantum mechanics. The

agreement between calculations and measurements is excellent.

An interesting possibility that we are currently investigating involves creating (2+1)

dimensional modes by converting the coordinate along the propagation direction (z)

proportional to the time evolution of the problem. This can be done by creating

superpositions with distinct transverse/longitudinal wave-vectors, which impart a modal

relative phase that changes as a function of z [32, 33, 34]. The present study also leads

into other new directions. One is the behavior of modes in the high-q limit, which

for low-lying states approximate those of the harmonic-oscillator, and to optical modes

mimicking optical Gaussian beams, dubbed Gaussian-beam beams [22]. For low q values

(e.g., q = 5), this system can be used to model the electronic wavefunctions of the

transmon system, which consists of 3 unequally spaced states in bound to a harmonic

potential [8].

Beyond the intrinsic interest in analyzing quantum systems with light, this system

can also be used in a new way in applications such as imaging and particle manipulation

[35]. This problem could also be used for educational purposes, because it leads to a

textbook-type analysis of a basic quantum mechanical problem, illustrating the interplay

between the classical and quantal counterparts.
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