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We present a high-statistics lattice QCD determination of the valence parton distribution function (PDF)

of the pion, with a mass of 300 MeV, using two very fine lattice spacings of a ¼ 0.06 fm and 0.04 fm. We

reconstruct the x-dependent PDF, as well as infer the first few even moments of the PDF using leading-twist

1-loop perturbative matching framework. Our analyses use both RI-MOM and ratio-based schemes to

renormalize the equal-time bilocal quark-bilinear matrix elements of pions boosted up to 2.4 GeV

momenta. We use various model-independent and model-dependent analyses to infer the large-x behavior

of the valence PDF. We also present technical studies on lattice spacing and higher-twist corrections present

in the boosted pion matrix elements.
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I. INTRODUCTION

QCD factorization implies that the cross-sections of hard

inclusive hadronic processes can be written in terms of

convolution of partonic cross section and parton distribu-

tion functions (PDF) [1]. Field theoretically [1,2], the quark

PDF fðx; μÞ of a hadron H is defined in terms of quark

fields ψ as

fðx;μÞ ¼
Z

dν

2π
e−iνxMðν;μÞ; where ν¼ Pþz− and;

2PþMðPþz−;μÞ ¼ hHðPÞjψ̄ðz−ÞγþWþðz−;0Þψð0ÞjHðPÞi:
ð1Þ

The above definition involves quark and antiquark displaced

by z− along the light cone (and made gauge-invariant by the

Wilson-line Wþðz−; 0Þ ¼ P exp ði
R

z−

0 dz0−AþÞ that runs

along the light cone. The dimensionless light cone distance

ν is referred to as the Ioffe-time and the matrix element

Mðν; μÞ, renormalized in the MS scheme by convention,

is referred to as the Ioffe-time distribution (ITD). Not-

withstanding such a straight-forward definition of PDF,

the unequal Minkowski time separation in z− posed a

challenge to the Euclidean lattice computation until recently.

Previously, lattice computations have been able to access

the moments of PDFs using local twist-two hadron matrix

elements (cf. [3] for an early work). A recently proposed

method to obtain the x-dependent PDF is the quasi-PDF

(qPDF), which is defined from matrix elements of equal-

time bilocal quark bilinear operators and can be related to

the PDF for large hadron momenta [4]. This method was

then developed into LaMET which provides the frame-

work to calculate all parton physics [5]. Later, there was

suggestion to use the so-called pseudo-PDF approach [6,7],

which relates the same matrix elements to the light cone

correlations for PDFs at small distances. The hadron matrix

element that is central to both LaMET and the pseudo-PDF

approaches is

hE;Pzjψ̄ðzÞWzðz;0Þγtψð0ÞjE;Pzi≡2EðPzÞMðzPz;z
2;μRÞ:

ð2Þ

It is very similar to Eq. (1), except that quark and antiquark

are at equal-time and separated by spatial distance z
and evaluated in an on-shell hadron state at large spatial

momentum Pz. Such a matrix element can be easily

computed on the lattice [4,5]. In the literature, the matrix

element M is also referred to as the Ioffe-time pseudo
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distribution (pITD) [6], wherein by considering the argu-

ments of M as the Lorentz invariants p:z and z2, the
difference between ITD and pITD become a choice of the

4-vectors p and z. A similar idea was also considered in an

earlier work [8] related to distribution amplitudes. In the

literature, the Lorentz invariant p:z is sometimes termed as

the Ioffe time regardless of the frame used for the sake of

simplicity [9]. In this work, we will refer to this invariant

simply as zPz, thereby, bring attention to actual values of z
and Pz used to reach the value of the invariant. The bilocal

bilinear matrix element was also considered earlier in [10],

albeit in a different context of studying transverse momen-

tum distributions. As a crucial step in the UV regulated

field theory, the multiplicative renormalizability of the

bilocal operator was recently demonstrated to all orders

of perturbation theory [11–13]. The renormalized matrix

element (and its Fourier transforms with respect to z or zPz)

can be systematically related to the PDF within the per-

turbative twist-2 framework (i.e., large-momentum effec-

tive theory (LaMET) [5,14] or short distance factorization

(SDF) [6,7] depending on the limits being taken). The

matching factors from various intermediate renormalization

schemes for the equal-time bilocal bilinear matrix element

at some renormalization scale μR to the MS PDF at a

factorization scale μ are known to 1-loop accuracy [15–21],

and recently, papers related to 2-loop matching have

also appeared [22–24]. A related good lattice cross sec-

tions [25,26] approach has also been recently proposed

to calculate PDF on the lattice. In practice, the lattice

calculations and the perturbative factors are at fixed order,

the different methods may have different advantages and

drawbacks. The status of these calculations is summarized

in recent review papers [14,27–29]. We also note that other

methods to extract PDFs and their moments have also been

proposed [30,31].

In this paper, we study the valence pion PDF. The study

of pion PDF is interesting for several reasons, both

technical as well as with interesting physics issues. The

most interesting reason being that the pions are the pseudo-

Nambu-Goldstone bosons of QCD and it is important to

study its structure in order to understand the relation

between hadron mass and hadron structure. Closely related

to this, is the question of how fast the PDF vanishes as x
approaches 1. This issue of whether the vanishing behavior

is ð1 − xÞ2 or slower is being vigorously debated with

various nonperturbative approaches [32–39], now includ-

ing lattice QCD [40–42]. There have been LO and NLO

analyses of the experimental data [35,43–50], but the

results are less constrained than the nucleon PDF due to

availability of experimental data and therefore, the lattice

calculations can have large impact here. The other inter-

esting reasons for studying pion in particular are technical.

First, the smallness of the pion mass means that it is easier

to have highly boosted hadronic states required in the qPDF

approach. Second, the excited state contamination for pions

is less problematic due to larger gaps at typical momenta of

1–2 GeV. There has been lattice calculations of pion PDF

using the quasi/pseudo-PDF frameworks [42,51–53], and

also using the good lattice cross section approach [40,41].
In our previous work [42], we studied the valence pion

PDF in 2þ 1 flavor QCD using the mixed action with
lattice spacing a ¼ 0.06 fm and LaMET approach. In the

sea, we used highly improved staggered quark (HISQ)
action, while in the valence quark sector we used clover

improved action with hypercubic (HYP) smearing [42]. We
extend this study in three ways in this paper. First, we

perform calculations at another smaller lattice spacing,
namely a ¼ 0.04 fm. Second, we increase the statistics in

the a ¼ 0.06 fm ensemble by more than two-fold. Third,
we combine the analysis of the bilocal bilinear matrix

element renormalized in RI-MOM scheme [54] with the
ratio scheme (also referred to as reduced ITD [7]), and

also propose and use generalizations of the ratio scheme
with the promise of lesser higher-twist contamination. At a
practical level, it has been conventional in the lattice

calculation that used quasi-PDF formalism to use an inter-
mediate RI-MOM scheme, while those using pseudo-PDF

formalism to use an intermediate ratio scheme. We do not
make such distinctions, and simply refer to matrix elements

of operator in Eq. (2) that is made gauge-invariant with a
straight Wilson-line as bilocal bilinear matrix elements, or

simply as the matrix elements for the sake of brevity, in
various renormalization schemes; RI-MOMmatrix element

or ratio matrix element, for example. Also, in this work, we
simply label the methodology to be that of twist-2 pertur-

bative matching, so as to encompass LaMET and SDF
approaches. This is because in the absence of any actual

large momentum or short-distance limits being taken, the
combined analysis of a sample of data that spans a range

of distances and momenta in either real or Fourier space
are equivalent [18], up to choices of approaching the
inverse problem to relate the PDF to the matrix elements.

Therefore, the readers of this paper can approach the
contents presented in one way or another equivalently,

depending on their preference.

The plan of the paper is as follows. In Sec. II, we discuss

the details of the lattice ensembles, statistics and other

computational specifics. In Sec. III, we elaborately describe

the extraction of ground- and excited-states of pion from

the boosted two-point functions. In Sec. IV, we describe the

extraction of the boosted pion matrix element from three-

point function via excited-state extrapolations. In Sec. V,

we discuss the various renormalization schemes used.

Readers not interested in the details of the lattice calcu-

lation can skip Secs. II–V. In Sec. VI, we describe the

twist-2 perturbative matching formulation which forms the

basis of the results presented in the following sections.

We also present a study of higher-twist contamination in

this section. The Sec. VII contains the direct extraction of

the valence moments of pion from the Pzz and z2 depend-
ences of bilocal bilinear matrix element. In Sec. VIII, we
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reconstruct the x-dependent valence PDF at μ ¼ 3.2 GeV
based on fits to the pion matrix elements using phenom-
enology motivated ansatz for the PDFs. In Sec. IX, we
address the issue of large-x exponent of the valence pion
PDF based on model dependent fits as well as from a novel
model-independent method we introduce here. In Sec. X,
we speculate the continuum results based on our observa-
tion at two fine lattice spacings. The con-
clusion and comparisons with other analyses are given
in Sec. XI. More technical details are present in the
Appendices.

II. LATTICE SETUP

In this work, we use two different Lt × L3 lattice
gauge ensembles both of them with relatively small lattice
spacings—(1) ensemble with lattice spacing a ¼ 0.06 fm

with lattice extents 48 × 643, and (2) a finer ensemble with

a ¼ 0.04 fm with extent 64 × 643. These gauge ensembles
were generated by the HotQCD collaboration [55] using

2þ 1 flavor Highly Improved Staggered Quark (HISQ)
action [56] in the sea. In both these ensembles, the sea
quark mass was tuned such that the pion mass was

160 MeV. On these gauge field ensembles, we used
1-HYP tadpole improved Wilson-Clover valence quarks.
That is, we used the Wilson-Clover quark propagator in the

Wick contractions required in the computations of the
three-point and two-point functions, and the gauge links
that went into the construction of the propagator were

smoothened using 1 step of HYP smearing [57]. We set the

clover coefficient csw ¼ u
−3=4
0 , where u0 is the average

plaquette with 1-HYP smearing; we used csw ¼ 1.02868
and 1.0336 for a ¼ 0.06 fm and 0.04 fm respectively. We

tuned the Wilson-Clover quark mass mqa in both the

ensembles so that the valence pion mass, mπ , is 300 MeV.
Through an initial set of tuning runs we determined mqa ¼
−0.0388 for a ¼ 0.06 fm and mqa ¼ −0.033 for a ¼
0.04 fm lattices. For this pion mass, the values of mπLt

on the a ¼ 0.06 fm and 0.04 fm lattices are 5.85 and 3.89

respectively. Thus it would be more important to take care of
wrap around effects in the finer lattice and we do so in the
analysis.With theusage of 1-HYP smeared gauge links in the
Wilson-Clover operator, we did not find any exceptional

configurations at both the lattice spacings, as noted by
absence of any anomaly in the convergence of the Dirac
operator inversions. We used the a ¼ 0.06 fm ensemble in

our previous analysis of the valence PDF of pion [42]. With
this work, we have increased the statistics used in this
ensemble by more than two times.

The most basic element of this computation is the

Wilson-Dirac quark propagator inverted over boost

smeared sources and sinks [58] as we discuss more in

the next section on two-point functions. We used the

multigrid algorithm [59] for the Wilson-Dirac operator

inversions to get the quark propagators. These calculations

were performed on GPU using the QUDA suite [60–62].

We used boosted quark source [58] and sink with

Gaussian profile, as we discussed in detail in [42].

Instead of using the gauge-covariant Wuppertal smearing

[63] to implement the Gaussian profiled quark sources, we

gauge-fixed the configurations in the Coulomb gauge to

construct the sources as we found it to be computationally

less expensive. We fixed the radius of the Gaussian profile

on a ¼ 0.06 fm and a ¼ 0.04 fm ensembles to be 0.312 fm

and 0.208 fm respectively. We discussed the details of

tuning the Gaussian smearing parameters in the Appendix

of [42]. Using these quark propagators, we are able to

compute hadron two-point and three-point functions in

hadrons boosted to momentum Pz ¼ 2πnz=ðLaÞ.
We tabulate the details of the statistics used in the two

ensembles in Table I. We increased the statistics in two

ways (a) using statistically uncorrelated gauge field con-

figurations, which are labeled as #cfg in Table I, and (b) by

using All Mode Averaging (AMA) [64] on each gauge

configuration. In order to mitigate the reduction in the

signal-to-noise ratio in both the three-point and two-point

functions as one increases Pz ∝ nz, we used more gauge

field configurations for larger nz than at smaller ones. In

a ¼ 0.06 fm ensemble, we effectively increased the sta-

tistics 32 times by using 1 exact Dirac operator inversion

and 32 sloppy inversions in the AMA per configuration.

In the a ¼ 0.04 fm ensemble, we increased the number

of exact and sloppy solves for nz ¼ 2, 3 and more for

nz ¼ 4, 5. We used a stopping criterion of 10−10 and 10−4

for the exact and sloppy inversions respectively.

III. ANALYSIS OF EXCITED STATES IN THE

TWO-POINT FUNCTION OF BOOSTED PION

In this section, we discuss the computation of boosted

pion correlators and the extraction of the excited state

contributions. Using a smeared (s) pion source πsðP; tÞ

TABLE I. Details of the measurements on two lattice ensem-

bles used in this paper. For each ensemble, we have specified

the bare Wilson fermion quark mass mqa corresponding to a

300 MeV pion mass mπ , the temporal extent Lt of the lattice in

mπ units. We specify the number of gauge configurations used

(#cfgs) and the number of exact and sloppy inversions per

configurations (#ex,#sl) for different Wilson-line lengths z used

in three-point functions and the pionmomentumPz ¼ 2πnz=ðLaÞ.

ensemble

a; Lt × L3 mqa mπLt nz z range #cfgs (#ex,#sl)

a ¼ 0.06 fm, −0.0388 5.85 0,1 [0,15] 100 (1,32)

64 × 483 2,3,4,5 [0,8] 525 (1,32)

[9,15] 416 (1,32)

[16,24] 364 (1,32)

a ¼ 0.04 fm, −0.033 3.90 0,1 [0,32] 314 (3,96)

64 × 643 2,3 [0,32] 314 (4,128)

4,5 [0,32] 564 (4,128)

VALENCE PARTON DISTRIBUTION OF THE PION FROM … PHYS. REV. D 102, 094513 (2020)

094513-3



πsðP; tÞ ¼
X

x

d̄sðx; tÞγ5usðx; tÞe−iP:x; ð3Þ

for pion πþ that is moving with spatial momentum P ¼
ð0; 0; PzÞ along the z-direction, we computed the two-point

function of pions

Css0
2ptðts;PzÞ ¼ hπs0ðP; tsÞπ†sðP; 0Þi: ð4Þ

In this computation, we used momenta on a periodic lattice

Pz ¼
2πnz

La
; ð5Þ

for nz ¼ 0, 1, 2, 3, 4 and 5 at both lattice spacings. These

values of nz correspond to Pz up to 2.15 GeVand 2.42 GeV

on the a ¼ 0.06 fm and 0.04 fm lattices respectively. For

ease of reference, we have tabulated the physical values of

Pz for the two lattices in Table II. Such large momenta are

central to the applicability of the leading-twist perturbative

matching framework. It is important that we are able to

suppress the excited state contributions to the two-point

function within smaller source-sink separations ts to deal

with the signal-to-noise ratio at larger ts. This is the reason
for the smeared pion source and sink, πs, that are con-

structed out of smeared quark fields, us and ds. We

constructed two-kinds of two-point functions: smeared-

source (s ¼ S) point-sink (s0 ¼ P) correlators referred to as
SP, and smeared-source (s ¼ S) smeared-sink (s0 ¼ S)
correlators referred to as SS henceforth. For smeared

sources, we used boost smeared Gaussian profiled sources,

as is now standard in the lattice PDF computations. We

have tabulated the values of the tunable parameter ζ for the

boost smearing [58] at different Pz in Table II.

The two-point functions enter the PDF determination in

two ways; for determining the excited state spectrum of the

boosted pion on the two lattices, which in turn will enable

us to extract the boosted pion matrix elements. Below, we

will discuss the excited state analysis of the two-point

function. In our previous publication [42], we discussed

the extraction of the pion spectrum in detail for the

a ¼ 0.06 fm lattice. Since the only difference in this paper

is the increased statistics for this ensemble, we focus on the

pion spectrum in the finer a ¼ 0.04 fm lattice in this

section. In Fig. 1, we show the effective mass EeffðtsÞ of
pion at different Pz as a function of source-sink separation

ts for the SP (open symbols) and SS correlators (filled

symbols) respectively. For comparison, the values of EðPzÞ
for the ground state pion based on its dispersion relation are

shown by the horizontal lines. One can notice that the

signal-to-noise ratio gets poorer at shorter ts as Pz is

increased. Therefore, we are forced to work with ts=a ¼ 9,

12, 15 and 18 corresponding to physical distances of

0.36 fm to 0.72 fm for the case of three-point functions.

The largest operator insertion times τ, which we will

discuss in the next section, are ts=2. In this range of ts,
the effective mass is not plateaued and careful consider-

ation of excited states becomes important. Up to nz ¼ 3, it

is clear that the effective masses plateau at the dispersion

values for the pion. One can also note that SS correlator

approaches the plateau faster than SP as expected. The

difference between SS and SP correlators is due to the

differences in the amplitudes of the states in the two, and

wewill use this advantageously in the extraction of first and

second excited states of the pion.

In order to determine the energy levels E0; E1;…, we fit

the spectral decomposition of C2ptðtsÞ,

C2ptðtsÞ ¼
X

Nstate−1

n¼0

Anðe−Ents þ e−EnðaLt−tsÞÞ; ð6Þ

with Enþ1 > En. The above expression is truncated at Nstate

to both the SS and SP two-point function data over a range

of values of ts between ½tmin; aLt=2�. We performed this

TABLE II. Table of momenta Pz in GeV at the two lattice

spacings. The values of the ζ used in the boosted Gaussian

sources used for each Pz is also shown.

Pz (GeV)

nz a ¼ 0.06 fm a ¼ 0.04 fm ζ

0 0 0 0

1 0.43 0.48 0

2 0.86 0.97 1

3 1.29 1.45 2=3
4 1.72 1.93 3=4
5 2.15 2.42 3=5

FIG. 1. The effective mass Eeff is shown as a function of source-

sink separation ts for the a ¼ 0.04 fm lattice. The filled and open

symbols are obtained from SS and SP correlators respectively.
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fitting with one-state (Nstate ¼ 1), two-state (Nstate ¼ 2),

and three-state (Nstate ¼ 3) ansatz. As evident from the

behavior of effective mass in Fig. 1, in order for the 1-state

fits to work, we had to use tmin > 0.56 fm and the results

were consistent with the one from dispersion relation

E0ðPzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
π þ P2

z

p

with mπ ¼ 300 MeV. When we

performed an unconstrained 4-parameter 2-state fit to both

the SS and SP correlators, we found the approach to the

expected E0ðPzÞ to be at even shorter tmin ∼ 0.2 fm. Since

we were able to obtain the ground state energy E0ðPzÞ
reliably from one and two exponential fits to both the SS

and SP correlators and they agree with the expectation from

the dispersion relation well, we then fixed the value of E0 to

its dispersion value to perform a more stable two and three

exponential constrained fits with one less free parameter.

The results for the first excited state E1ðPzÞ using dif-

ferent tmin in such a constrained two-state fits for nz ¼ 3

and nz ¼ 4 are shown in the top and middle panels of

Fig. 2; the top panel is for SP and the middle one for SS.

One can notice that for tmin=a > 10, it is possible to reliably

estimate the first excited state in both SP and SS correlators,

and the two estimates are also consistent with each other

giving more confidence in the results. The horizontal lines

in the figures correspond to the expected result for

E1ðPzÞ based on a single particle type dispersion relation

E1ðPzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P2
z þ E2

1ðPz ¼ 0Þ
p

. As tmin is increased, the

fitted values of E1ðPzÞ are actually the dispersion values.

We observed this behavior at different Pz as well. We will

address this more in the end of this section. Having

understood the actual spectral decomposition of the pion

correlator, it has been found to be better practically to use

the effective value of E1 and the corresponding amplitude

A1 in the range of τ ≈ ts=2 used in the two-state fits to three-
point function [65]. By doing this, we effectively take care

of excited states higher than E1 that could be present at

τ ≤ ts=2 in the two-state fits to the three-point function. We

follow this procedure here and take the value of E1 and A1

in the pseudoplateau region for E1 seen in middle panels of

Fig. 2 for tmin ∈ ½5a; 10a�.
We also performed constrained 3-state fits on the SS two-

point function. Besides fixing E0, we also imposed a prior

on E1 using its best estimate from the SP correlators with

the corresponding errors [66]. The results for E1 and E2

from this analysis are shown in the bottom panel of Fig. 2

for nz ¼ 3 and 4. As a consistency check, the 3-state prior

fit is able to reproduce the input prior for E1 starting from

tmin=a ¼ 2. It also results in an estimate for E2 which is

large and noisy, and it is likely that it is an effective third

state capturing several higher excited states. For our excited

state extrapolations, such an effective estimate is sufficient.

We repeated the above set of analysis for the a ¼ 0.06 fm

lattice and we were able to obtain the ground and first

excited state reliably.

FIG. 2. The dependence of the fitted values of energy levels on

the fit range ½tmin; 32a� is shown. The top-left and top-right panels
show this dependence for the first excited level E1 as obtained

from two-state fits to SP correlator at Pz ¼ 1.45 GeV and Pz ¼
1.94 GeV respectively. Similar results using SS correlator are

shown in the two middle panels. The results for E1 and E2

obtained using three-state fits to the SS correlator (with prior on

E0 and E1) are shown in the two bottom panels.

FIG. 3. The energy of the ground state (E0) and the first excited

state (E1) are shown as a function of Pz. The results from a ¼
0.04 fm are shown as filled symbols and those from a ¼ 0.06 fm

as the open symbols. The results shown in the plot for E0 were

obtained from an unconstrained two-state fit, while E1 were

obtained by fixing E0 to its dispersion values.
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In Fig. 3, we show the first two energy levels for both

a ¼ 0.04 fm and 0.06 fm lattices, as a function of Pz. It is

not very surprising that the ground state, which is the pion,

follows the particle dispersion well even up to Pz ¼
2.4 GeV on the fine lattices we use. But, it is remarkable

that the first excited state E1 also follows a single particle

dispersion relation. We noted this also in our discussion

of Fig. 2. To solidify the claim, we observed the same

behavior in both SS and SP channel. Also, the difference

between E1 on the two physical volumes 24.9 fm3 and

16.78 fm3 for the a ¼ 0.06 fm and a ¼ 0.04 fm lattices is

not seen. Thus, it is likely not a multiparticle state with a

gapped finite volume spectrum that mimics a single particle

state. In order to account for the 300 MeV pion mass, we

added 0.16 GeV to the PDG value [67] of the first pion

radial excitation, π1ð1300Þ to estimate a value of 1.46 GeV.

This value agrees well with our estimates of E1ðPz ¼ 0Þ at
both the lattice spacings. Therefore, we find it reasonable to

conclude that the ground state is the pion and the first

excited state is the radial excitation of pion, π1, with

E1ðPz ¼ 0Þ being identified with its mass.

IV. EXTRACTION OF BARE MATRIX ELEMENTS

FROM EXCITED STATE EXTRAPOLATIONS

The next ingredient in the extraction of the pion matrix

element is the three-point function

C3ptðz; τ; tsÞ ¼ hπSðP; tsÞOΓðz; τÞπ†SðP; 0Þi; ð7Þ

involving the insertions of smeared pion source π
†

SðP; 0Þ
and smeared sink πSðP; tsÞ separated by an Euclidean time

ts and projected to spatial momentum P ¼ ð0; 0; PzÞ. The
operator OΓðz; τÞ is the isospin-triplet operator that

involves a quark and antiquark that are spatially separated

by distance z

OΓðz; τÞ ¼
X

x

½ūðxþ LÞΓWzðxþ L; xÞuðxÞ

− d̄ðxþ LÞΓWzðxþ L; xÞdðxÞ�; ð8Þ

where x ¼ ðx; τÞ with τ being the time slice where the

operator is inserted, and the quark-antiquark being dis-

placed along the z-direction by L ¼ ð0; 0; 0; zÞ. The oper-

ator is made gauge-invariant through the presence of the

straight Wilson-line of length z, Wzðxþ L; xÞ, that con-
nects the lattice sites at xþ L to x. The Wilson-line is

constructed out of 1-level HYP smeared gauge links to get

better signal to noise ratio. The matrix Γ is either the Dirac

γ-matrix γz or γt for the unpolarized PDFs that we will

study in this paper. For the case of lattice Dirac operators

that break the chiral symmetry explicitly at finite lattice

spacings, it was shown perturbatively in that Oγz
mixes

with the scalar operator O1 due to renormalization [15,54].

Such mixing is absent in the case of Oγt
. In addition to this

mixing, we also found in our previous work [42] for the

case of pion that Oγz
is comparatively noisier compared to

Oγt
with same statistics, and also suffered from larger

excited state contamination. Another pertinent advantage of

Oγt
over Oγz

is the absence of additional higher-twist

effects proportional to separation vector zμ. Therefore, we

resort to only the usage of Γ ¼ γt in this paper. The pure

multiplicative renormalization of Oγt
also allows us to

explore the renormalization group invariant ratios in

addition to RI-MOM scheme as an advantage, and we

will explain this in detail in the next section. The above

u − d three-point function is purely real in the case of pion,

and the real part is symmetric about z ¼ 0. Therefore, we

symmetrized the data by averaging over �z. Further, the
matrix element depends only on the Lorentz invariant

ν ¼ Pzz. Therefore, one can average over the matrix

elements determined with �Pz; to reduce computational

cost, we only used positive Pz. In the plots that follow, we

will display the three-point function in the positive z
direction only. In addition, only the quark-line connected

piece contributes to the isotriplet three-point function. We

refer the reader to the Appendix of [42] for detailed proofs

of the above characteristics.

From the three-point function and the two-point func-

tion, the central quantity from which the bare matrix

element can be obtained from, is the ratio

Rðts; τ; z; PzÞ≡
C3ptðts; τ; z; PzÞ
C2ptðts;PzÞ

: ð9Þ

In order to take care of the wrap-around effect due to the

finite temporal lattice extent Lt, we replace C2ptðts;PzÞ
with C2ptðts;PzÞ − A0 exp ð−E0ðaLt − tsÞÞ where A0 and

E0 are the amplitude and energy of the ground state

obtained via fits to the two-point function in the last

section. This is especially important to take care of at

Pz ¼ 0 on our lattices. In the above equation, the variables

are ts and τ at fixed z and Pz, and hence we will keep z and
Pz implicit in the discussion of R below. Through the

spectral decomposition of R, it is easy to see that
1

Rðts;τÞ¼
P

N
n;n0 AnA

�
n0hEn;PjOγt

ðzÞjEn0 ;PÞie−ðEn0−EnÞτ−Ents

P

N
m jAmj2e−Emts

:

ð10Þ

with Enþ1 ≥ En, E0 ¼ Eπ and An ¼ hΩjπjπi. In the infinite
ts limit, Rðts; τ; z; PzÞ is equal to the bare matrix element

hBðz; PzÞ ¼ hπjOγt
ðzÞjπi. In practice, we obtain hBðz; PzÞ

by fitting the right-hand side of Eq. (10) to the ts and τ

dependence of the lattice data for the ratio R. The fit

parameters are the matrix elements hEn; PjOγt
ðzÞjEn0 ; PÞi.

1
Wrap-around effects in three-point function are ignored in the

expression. We discuss this in Appendix A.
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We take fixed values of En and An from our analysis of C2pt

that we discussed in the last section; namely, in two state

fits, values of E1, A1 were taken from the pseudoplateau

seen in Fig. 2 that covers the typical range of τ used here,

while in the three state fits, the values of E1, A1 were fixed

to the actual dispersion values of π1 and E2, A2 effectively

captured the tower of higher excited states. We truncated

the number of states N entering the fit ansatz in Eq. (10) at

N ¼ 2 and 3. To reduce the excited state contamination,

we excluded cases where operator insertion is too close to

either the source or sink by using only values of τ ∈ ½nska;
ts − nska�. We used nsk ¼ 1, 2 for N ¼ 3 and nsk ¼ 2, 3 for

N ¼ 2. We denote such N-state fits as FitðN; nskÞ.
In Figs. 4 and 5, we show some sample results of the

extrapolations using Fit(2,3) for the a ¼ 0.06 fm and a ¼
0.04 fm lattices respectively. Each panel in the plot has two

sub-panels. Let us first focus on the larger left subpanels

which show the dependence of Rðτ; tsÞ on τ − ts=2. The
lattice data for R are shown as the symbols with the colors

distinguishing the different ts. For the a ¼ 0.06 fm lattice,

we used ts=a ¼ 8, 10 and 12 (i.e., ts ¼ 0.48 fm, 0.6 fm and

0.72 fm) in the fits. Similarly, we used ts=a ¼ 9, 12, 15 and

18 for a ¼ 0.04 fm ensemble, which corresponds to similar

physical values of ts ¼ 0.36 fm, 0.48 fm, 0.6 fm and

0.72 fm respectively. Along with the data for Rðts; τÞ,
we have also shown the results from Fit(2,3) as the

similarly colored bands. The result for the matrix element

hB, i.e., ts → ∞ limit of the fit, is shown by the grey

horizontal band in the figures. The degree to which

extrapolation differs from the actual data in the range of

ts < 1 fm can be seen from the smaller right subpanels,

where we have shown the 1=ts dependence of the data

(points) as well as the fit (grey band) with τ ¼ ts=2, the
maximal distance of operator from source and sink. In

general, one can see that the extrapolations get steeper as

the value of z increases. However, given the small errors at

smaller z, the extrapolation again plays a significant role at

smaller z. From the agreement of the two-state fits with the

actual data, one can gain confidence in the extrapolations.

In addition to the N-state fits, which are sensitive to the

values of En, An, we also used the summation technique

[68] which does not require inputs of the spectral details of

the two-point function. For this, we use the standard

definition

FIG. 4. The source-sink ts and operator insertion τ dependence of the ratio Rðts; τ; z; PzÞ, at fixed z and Pz ¼ 2πnz=L are shown for

the lattice spacing a ¼ 0.06 fm. The top-rows are for nz ¼ 0, middles ones for nz ¼ 3 and bottom ones for nz ¼ 5. The left panels are for

z ¼ 0, middle panels for z ¼ 6a and right ones for z ¼ 12a respectively. Each plot has left and right sub-panels. In the left sub-panels,

the ts − τ=2 dependence is shown at ts ¼ 8a (red squares), 10a (green circles), and 12a (blue triangles). The corresponding colored

bands are the 1 − σ error bands from Fit(2,3) (see text). On the right subpanels, the extrapolation (grey band) to ts → ∞ is shown as a

function of a=ts at fixed τ ¼ ts=2.
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RsumðtsÞ ¼
X

ts−nska

τ¼nska

Rðts; τÞ: ð11Þ

For large ts, we would find a linear behavior in ts of Rsum as

RsumðtsÞ ¼ ðts − 2nskaÞhBðz; PzÞ þ B0 þOðe−ðE1−E0ÞtsÞ:
ð12Þ

We refer to this method where we ignore Oðe−ðE1−E0ÞtsÞ
corrections and fit only hBðz; PzÞ and B0 as SumðnskÞ.
Since our source-sink separations are less than 1 fm, we

also included the additional e−ðE1−E0Þts correction in the

fitting ansatz as

RsumðtsÞ ¼ ðts − 2nskaÞhBðz; PzÞ þ B0 þ B1e
−ðE1−E0Þts :

ð13Þ

We refer to this method as SumExpðnskÞ. In Fig. 6, we

show a sample result for the summation fits. In the left and

right panels of the figure correspond to a ¼ 0.04 fm

and 0.06 fm lattice ensembles. We have used momenta

Pz ¼ 2πnz=ðLaÞ with nz ¼ 2 in both the cases at an

intermediate separation z ¼ 0.72 fm in both ensembles.

The lattice data for Rsum are shown as the red circles. The

result from a linear fit to the data is shown as the red band.

The slope of the fit is the estimator of the matrix element

hB. One can see in both the cases that the straight line fit is

able to describe the data. However, one can certainly see

deviations from the straight line fit at ts ¼ 18a for the a ¼
0.04 fm case. For comparison, the expectation for RsumðtsÞ
from the 2-state fit described above is shown as the green

band. Here, the curve is able to describe the data at all ts
well and can be seen be seen to approach a straight line with

larger slope only for ts > 0.72 fm. In order to account for

these discrepancies, we also show the result from SumExp

as the blue dashed line. This result does deviate from the

simple Sum and agrees better with the expected result from

Fit. This shows that there are residual Oðe−ðE1−EπÞtsÞ
effects which cannot be ignored in the summation fits in the

ranges of ts we are working with. While we have picked an

example case where we observe this discrepancy to be

larger, similar discrepancy could be seen in other values of

Pz and z as well in the case of a ¼ 0.04 fm data. The Sum

data agreed better with expectation from SumExp and Fit

FIG. 5. The source-sink ts and operator insertion τ dependence of the ratio Rðts; τ; z; PzÞ, at fixed z and Pz ¼ 2πnz=L are shown for

the lattice spacing a ¼ 0.04 fm. The top-rows are for nz ¼ 0, middles ones for nz ¼ 3 and bottom ones for nz ¼ 5. The left panels are for

z ¼ 0, middle panels for z ¼ 9a and right ones for z ¼ 18a respectively. Each plot has left and right sub-panels. In the left sub-panels,

the ts − τ=2 dependence is shown at ts ¼ 9a (red squares), 12a (green circles), 15a (blue triangles) and 18a (pink inverted-triangles).

The corresponding colored bands are the 1 − σ error bands from Fit(2,3) (see text). On the right sub-panels, the extrapolation (grey band)

to ts → ∞ is shown as a function of a=ts at fixed τ ¼ ts=2.
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for the a ¼ 0.06 fm data. Therefore, we use the results

from Fit, and only use Sum and SumExp to serve as

cross-checks on the results.

As we demonstrated above, the ts → ∞ extrapolations

lead to values of hB which are not simply obtained from

plateau values of Rðts; τÞ even for the largest ts ¼ 0.72 fm

weuse. Therefore, away to reasonably justify the correctness

of our extrapolations is by adapting the multiple fitting

schemes, namely Fit, Sum and SumExp, and show con-

sistency among them. This is what we show in Figs. 7 and 8,

for the a ¼ 0.06 fm and 0.04 fm lattices respectively. The

different panels show the results for four different values of

Pz ¼ 2πnz=ðLaÞ. In the top part of the different panels, we

have shown the bare matrix element hBðz; PzÞ, obtained by

Fit(2,3) as the black open squares, as a function of the

length of Wilson-line z. Since we are working with isotriplet

matrix element for the pion, only the real part of hB is

nonzero. One should remember that the bare matrix element

at any finite lattice spacing has the Wilson-line self-energy

divergence, expð−cz=aÞ, which causes the rapid decay of

hBðz; PzÞ as a function of z in the figures. With the increased

statistics used in our computation, one can note that we are

able to obtain matrix elements with good signal to noise ratio

even up to momenta corresponding to nz ¼ 5 in both the

lattice spacings. Below the top part of each panel in Figs. 7

and 8, we show the deviations, ΔðzÞ, of different extrapo-
lation methods from values obtained with Fit(2,3) as a

function of z. That is,

ΔðzÞ≡ hBmethodðz; PzÞ − hB
Fitð2;3Þðz; PzÞ; ð14Þ

FIG. 6. An example for summation method, Sumðτ0Þ, that uses
only insertion points τ > τ0 ¼ 2a are shown as a function of ts=a
at fixed z and Pz. The left panel is at a ¼ 0.04 fm with z ¼ 16a
and nz ¼ 2. The right panel is at a ¼ 0.06 fm with z ¼ 12a and

nz ¼ 2. In each panel, the red circles are the lattice data. In

addition, there are three different curves—the red one is the straight

line summation fit to the data, the blue one is the corrected

summation fit SumExp that includes exp ½−ðE1 − E0Þts� correc-
tion, and the green one is the expected summation curve from the

two-state fit Fit(2,3).

FIG. 7. The bare matrix elements hBðz; PzÞ from excited state extrapolations are shown as a function of z=a for the a ¼ 0.06 fm

ensemble. The results from nz ¼ 0, 2, 4 and 5 are shown in the top-left, top-right, bottom-left, and bottom-right are shown. The top part

of each panel shows the z=a dependence using two-state extrapolation Fit(2,3) using ts=a ¼ 8, 10 and 12. The bottom part of each panel

shows the deviation, Δ, of the different extrapolation methods Fit(2,2), Fit(3,1), Sum(2), SumExp(3) from the method Fit(2,3). The

scatter of these differences from 0 (shown by dashed line) characterizes the robustness of the extrapolation.
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where hBmethod is the bare matrix element obtained using an

extrapolation technique method, which could be Fit(2,2),

Fit(3,2), Sum(2), or SumExp(2), in Figs. 7 and 8. If the

extrapolations are perfect, then we would find ΔðzÞ to be

consistent with zero at all z and Pz. For comparison, we also

show the statistical error in hB
Fitð2;3Þðz; PzÞ as the grey error

band along with the values of ΔðzÞ. For a ¼ 0.06 fm case

shown in Fig. 7, we find ΔðzÞ is consistent with zero within
error for largerPz while there is little tension at smallerPz in

the top two panels. The small but visible deviations of Fit

(3,2) is less than 2σ. The deviation of Sum(2) is compara-

tively larger, but when we supplement Sum(2) with the

exponential corrections, i.e., SumExp(2), the ΔðzÞ moves

toward zero and becomes consistent with zero. This again

points to the importance of excited state effects that cannot be

neglected in summation fits on our lattices. This effect is

more apparent in the case of a ¼ 0.04 fm lattice shown in

Fig. 8. Thuswe understand the deviation ofSum from the rest

as an excited state effect, and we find that the Fit(2,3), Fit

(2,2), Fit(3,2), and SumExp(2) are all consistent among

themselves. Thus,we are able to demonstrate thegoodness of

our extrapolations. Henceforth, we will use Fit(2,3) for

both a ¼ 0.04 fm and 0.06 fm ensembles in discussing our

further analysis.

A well-determined matrix element that can be used to

cross-check our results is the value of bare matrix element

at z ¼ 0, which in the continuum limit will be the total

isospin of pion, which is 1. At any finite a, the bare matrix

element suffers from Oðαsðμ ¼ a−1ÞÞ correction to 1,

which under finite renormalization will be canceled by

ZV . If the excited-state extrapolations were perfect and the

finite volume effects were negligible, the estimates of

hBðz ¼ 0; PzÞ cannot change with Pz up to possible finite

a corrections at non-zero Pz. In order to check for this, we

show the behavior of hBðz ¼ 0; PzÞ as a function of Pz in

Fig. 9. For a ¼ 0.06 fm lattice, the value of hBð0; 0Þ is

1.0404(4) and the values of hBð0; PzÞ get smaller than this

value gradually at larger Pz, albeit only by less than 2% by

Pz ¼ 2.15 GeV. This Pz dependence is likely to arise due

to increasing lattice spacing effect at higher momenta, and

empirically, it was possible to fit the Pz dependence to an

ansatz hBðz ¼ 0; PzÞ ¼ hBðz ¼ 0; Pz ¼ 0Þ þ bðPzaÞ2.
For a ¼ 0.04 fm lattice, the value of hBð0; 0Þ is 1.045(1)

which is higher than value of hBð0; 0Þ at a ¼ 0.06 fm.

However, one expects hBð0; 0Þ to decrease and approach 1

as a → 0 [69]. One observes a sharp decrease in the value

of matrix elements at nonzero Pz to values around 1.025

and changes little with Pz > 0. We were able to understand

this anomalous behavior at Pz ¼ 0 to arise from larger

periodicity effects (∼e−MπðLt−tsÞ) in the Pz ¼ 0 three-point

function for the finer a ¼ 0.04 fm lattice [which is in

addition to such wrap-around effects in two-point function

FIG. 8. The bare matrix elements hBðz; PzÞ from excited state extrapolations are shown as a function of z=a for the a ¼ 0.04 fm

ensemble. The results from nz ¼ 0, 2, 4 and 5 are shown in the top-left, top-right, bottom-left, and bottom-right are shown. The top part

of each panel shows the z=a dependence using two-state extrapolation Fit(2,3) using ts=a ¼ 9, 12, 15 and 18. The bottom part of each

panel shows the deviation, Δ, of the different extrapolation methods as explained in Fig. 7. Deviations of results from Sum(2) from 2-

and 3-state fit results are seen. But we find that corrected sum SumExp(2) is consistent with the fit results. This is a result of the

observation in Fig. 6.
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that we corrected for in Eq. (9)]. We discuss this further in

Appendix A, and we estimate the value of hBð0; 0Þ after

correcting for the wrap-around effect to be 1.024(1). For the

a ¼ 0.06 fm case, this effect is negligible. The (approxi-

mate) corrected estimate for hBð0; 0Þ is shown as the filled

blue square in Fig. 9, which shows surprisingly good

agreement with the estimates at other nonzero Pz. We used

the same fitted ðPzaÞ2 ansatz that we discussed above, with
only the value of a changed from 0.06 fm to 0.04 fm, and

the result is shown as the blue dashed curve in Fig. 9. This

nice agreement gives credence to our explanation of lattice

spacing effect being the cause of the mild Pz dependence in

a ¼ 0.06 fm hBð0; PzÞ estimates and the even milder Pz

dependence in a ¼ 0.04 fm estimates. We discuss the

estimation of ZV within the RI-MOM framework in

Appendix B which give results consistent with the values

from the bare pion matrix element in Fig. 9.

V. RENORMALIZATION

The bare matrix element hBðz; PzÞ obtained in the last

section needs nonperturbative renormalization in order

for it to have a well defined continuum limit. The non-

perturbative renormalization removes the UV self-energy

divergence of the Wilson-line which is inherently non-

perturbative and can only be captured by methods such as

the ab initio lattice QCD heavy-quark potential computa-

tions (cf. Ref [70] for the ensembles used here). With the

removal of this nonperturbative piece, one would expect the

remaining renormalized matrix element to be describable

within the perturbative large momentum effective theory

framework. Therefore, a judicious choice of the nonper-

turbative renormalization scheme for the bilocal quark

bilinear operator that is implementable on an Euclidean

lattice and at the same time reduces the higher-twist

corrections to the matrix element in any given small values

of z is important.

RI-MOM is one such renormalization scheme that uses

renormalization conditions at off-shell spacelike external

quark four-momentum PR. A more careful description of

the calculation of RI-MOM factor as applied to our work

can be found in [42]. The RI-MOM renormalized matrix

element is defined as

hR0 ðz; Pz; P
RÞ ¼ ZqZγtγt

ðz; PRÞhBðz; PzÞ; ð15Þ

where Zq is the quark wave function renormalization factor

(cf. Ref [71]) and Zγtγt
is the renormalization factor for

Oγt
ðzÞ defined via the condition imposed using the ampu-

tated matrix element evaluated with quark external states at

momentum p, ΛðpÞ, as

Zγtγt
ðz; PRÞTrð=pΛðpÞÞp¼PR ≡ 12PR

t e
iPR

z z: ð16Þ

The above condition is referred to as the p-projection
scheme within the RI-MOM scheme [17,54]. The operator

Oγt
does not mix with any other operator, unlike Oγz

[15,72]. We used the Landau gauge fixed configurations to

determine Zγtγt
ðzÞ nonperturbatively in both a ¼ 0.06 fm

and a ¼ 0.04 fm ensembles. We will refer to the compo-

nent of PR along the direction of Wilson-line as PR
z and the

norm of the component perpendicular to z-direction as PR
⊥
.

Since the value of hR0 ðz ¼ 0; Pz; P
RÞ ¼ 1 for the pion, we

impose this condition through a redefinition

hRðz; Pz; P
RÞ≡ hR0 ðz; Pz; P

RÞ
hR0 ð0; Pz; P

RÞ : ð17Þ

This implicitly takes care of the effect of Zq and at the same

time reduces the statistical errors in hR at the other nonzero

values of z through their correlation with hRðz ¼ 0Þ.
Instead of using quark external states, it is possible to

cancel the UV divergence in hBðz; PzÞ using the pion

matrix element at a different fixed reference momentum P0
z ,

that is, hBðz; P0
zÞ. Such a procedure to remove the UV

divergences via renormalization group invariant ratios is

referred to as the ratio scheme [14,18]. With this, we can

define a renormalized matrix element,

M0ðz; Pz; P
0
zÞ ¼

hBðz; PzÞ
hBðz; P0

zÞ
: ð18Þ

The choice P0
z ¼ 0 has been used in literature and the

resulting matrix element Mðz; Pz; 0Þ is also referred to as

the reduced ITD [7,18]. Nonzero P0
z was applied to proton

FIG. 9. The result for the local bare matrix element hBðz ¼
0; PzÞ is shown as a function of Pz. The red and blue open

symbols are the estimates of the bare matrix elements on

a ¼ 0.06 fm and a ¼ 0.04 fm lattices. The estimated value of

hBðz ¼ 0; Pz ¼ 0Þ for a ¼ 0.04 fm after correcting for wrap-

around effect (see text) is shown as the filled blue square. The red

and the blue dashed curves are the modeled lattice spacing effects

using an ansatz, hBðz ¼ 0; PzÞ ¼ hBðz ¼ 0; Pz ¼ 0Þ þ bðPzaÞ2
for a ¼ 0.06 fm and 0.04 fm respectively, with fixed b ¼
−0.0813 in both cases.

VALENCE PARTON DISTRIBUTION OF THE PION FROM … PHYS. REV. D 102, 094513 (2020)

094513-11



in [65]. Similar to the RI-MOM matrix element, we can

reduce the statistical errors by redefining the matrix

element as

M0ðz; Pz; P
0
zÞ → Mðz; Pz; P

0
zÞ ¼

M0ðz; Pz; P
0
zÞ

M0ð0; Pz; P
0
zÞ
; ð19Þ

so that the condition Mðz; Pz; P
0
zÞ ¼ 1 is automatically

fulfilled. We use values of Pz > P0
z in this work. The

preference for using Pz; P
0
z > ΛQCD will become clearer

with the discussion on perturbative matching in the next

section. In Fig. 10, we compare the result of Mðz; Pz; P
0
zÞ

for three different P0
z ¼ 2πn0z=ðLaÞ for n0z ¼ 0, 1 and 2 on

a ¼ 0.06 fm lattice. These values of n0z correspond to 0,

0.48 and 0.97 GeV respectively, and thus using even the

lowest n0z available makes sure P0
z > ΛQCD. The effect of

using P0
z as a new scale leads to significant changes to the

Pzz and z2 dependence, which will be taken care of the

corresponding twist-2 expressions. But one should note

that we do not significantly compromise on the quality of

signal by choosing nonzero values of P0
z < 1 GeV, and

hence, they are as good choices of the reference momentum

scale in the ratio scheme as P0
z ¼ 0 GeV.

Our choice of the normalization conditions in Eq. (17)

and Eq. (19) such that the value of pion matrix element at

z ¼ 0 is 1, assumes implicitly that our estimates of the

matrix elements at z ¼ 0 do not suffer from any systematic

corrections. In the discussion around Fig. 9, we found about

1% systematic errors at z ¼ 0 due to deviations of the

matrix element as a function of Pz. Below, we justify that

the imposition of the normalization conditions Eq. (17) and

Eq. (19) also reduces some of these systematic errors.

Instead of imposing the normalization multiplicatively as in

Eq. (19), an equally good choice is additively through

Maddðz; Pz; P
0
zÞ≡M0ðz; Pz; P

0
zÞ −M0ð0; Pz; P

0
zÞ þ 1:

ð20Þ

The multiplicative and additive normalization are equiv-

alent, only provided M0ð0; Pz; P
0
zÞ is itself exactly 1. In

Fig. 11, we compare the result of Maddðz; Pz; P
0
zÞ and

Mðz; Pz; P
0
zÞ at Pz ¼ 1.29 GeV on a ¼ 0.04 fm lattice.

The left and right panels are for P0
z ¼ 0 and 0.48 GeV

respectively. For comparison, we have also shown the

matrix element M0 before imposing the normalization.

First, one can note the error reduction due to the normali-

zation at smaller values of z. As we discussed in the last

section, the z ¼ 0 matrix element at Pz ¼ 0 for a ¼
0.04 fm suffers from larger systematic effects than the

rest. From the left panel which shows the result for P0
z ¼ 0,

we surprisingly find that the difference between Madd and

M is absent within the errors at all z. On the right panel,

which uses P0
z ¼ 0.48 GeV, the agreement is perfect

between all the estimates of M. Through this, we dem-

onstrated that the systematic effects in our matrix element

determination are further reduced due to the ratios using the

prior knowledge that the local matrix element at z ¼ 0 is 1

for pion.

Finally, we address the lattice corrections to the renor-

malized matrix elements. In Fig. 12, we have shown the

comparison of renormalized matrix elements at two lattice

spacings a ¼ 0.06 fm (red circles) and 0.04 fm (blue

squares) plotted as a function of ν ¼ zPz. The top and

bottom panels show the comparison using RI-MOM and

n0z ¼ 1 ratio scheme respectively. Due to lattice periodicity

FIG. 10. Comparison of renormalized matrix elements at

fixed Pz ¼ 1.45 GeV in the ratio scheme with generalized

nonzero values of the reference momentum P0
z . The different

colored symbols correspond to different P0
z ¼ 0, 0.48 and

0.97 GeV. The effect of changing P0
z is significant, but it

does not cause a big difference in signal-to-noise ratio at smaller

z that we are interested in. It is the expectation that matrix

elements with Pz; P
0
z > fΛQCD; mπg suffer from lesser higher-

twist contamination.

FIG. 11. Quantifying the residual systematic effects after

significant statistical error reduction by the process of normal-

izing z ¼ 0 matrix element to 1 [see Eq. (17) and Eq. (19)]. The

plot compares the different normalization types, M and Madd,

and the matrix element without any imposed normalization M0.

In the above plot, we show results for the a ¼ 0.04 fm ensemble.
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constraints, we could only choose pion momentum Pz that

are approximately the same at the two lattice spacings;

namely, Pz ¼ 1.29 GeV for a ¼ 0.06 fm and Pz ¼
1.45 GeV for a ¼ 0.04 lattices. By looking at the pion

matrix elements at the two lattice spacing as a function of

Pzz, such small mismatch between Pz should affect results

only logarithmically in this discussion. For the RI-MOM

scheme, we have chosen a comparable set of renormaliza-

tion momenta ðPR
z ; P

R
⊥
Þ ¼ ð1.93; 2.23Þ GeV for a ¼

0.06 fm lattice and (1.93,2.51) GeV for a ¼ 0.04 fm

lattice. In the bottom panel, we have used matrix element

in ratio scheme with n0z ¼ 1. We find only a little difference

between the matrix elements at the two fine lattice spacings.

To aid the eye, we have also shown bands that cover �2%

variation on the a ¼ 0.06 fm and a ¼ 0.04 fm data. Within

this band, the real parts of the data are consistent with

perhaps little more correction to the imaginary part of RI-

MOM at intermediate ν. Thus, we can bound the lattice

corrections in our data to be at the level of 1 to 2%. In the

RI-MOM data, perhaps there are residual lattice spacing

effects of about 1% at different z. Even though the this

lattice spacing effect is only about a percent, we will see

that a2P2
z corrections become important in the analysis at

smaller z due to their very small errors ensured by the

normalization process.

VI. PERTURBATIVE MATCHING FROM THE

RENORMALIZED BOOSTED HADRON MATRIX

ELEMENT TO MS PDF

A. Leading twist expressions to match equal time

hadron matrix elements to PDF

The computation of renormalized pion matrix element is

the final step as far as the nonperturbative lattice input is

concerned. The perturbative matching lets us make the

connection between the renormalized boosted hadronmatrix

element with the light-cone MS PDF, fðx; μÞ. Since the

renormalization factors for the RIMOM hRðz; Pz; P
RÞ and

the ratio Mðz; Pz; P
0
z ¼ 0Þ do not depend on the PDF of

the hadron itself, they lead to simpler factorized expressions

and hence let us consider them first. Using such expressions,

we will consider Mðz; Pz; P
0
zÞ for nonzero P0

z . Taking

Ji’s proposal [4,5] of quasi-PDF in the RI-MOM scheme,

q̃ðx; Pz; P
RÞ, which is the Fourier transform of the

z-dependent matrix element

q̃ðx; Pz; P
RÞ ¼

Z

∞

−∞

dz e−ixPzzhRðz; Pz; P
RÞ; ð21Þ

the perturbative matching is expressed as a convolution

q̃ðx; Pz; P
RÞ ¼

Z

∞

−∞

dy

jyjCRI

�

x

y
; yPz; μ; P

R

�

fðy; μÞ

þOðΛ2
QCD=ð1 − xÞx2P2

z ; m
2
π=P

2
zÞ: ð22Þ

The kernel of the convolutionCRIðx;…Þ is of the form (with

dependence other than x being implicit),

CRIðxÞ ¼ δðx − 1Þ þ ½Cð1Þ
RI ðxÞ�þ þOðα2sÞ; ð23Þ

where Cð1ÞðxÞ is the 1-loop contribution [15–18], and the

notation ½…�þ represents the standard plus-function.
2

Though we have used RI-MOM scheme in the above

equations, one can use the matrix element in ratio

scheme, Mðz; Pz; P
0
z ¼ 0Þ, as well with a corresponding

Cratioðx; Pz; μÞ.
An equivalent approach, that is suitable for our analysis

in the real space z, instead of performing a Fourier

transform in Eq. (21) to the conjugate x, is through the

formulation of operator product expansion of the renor-

malized boosted hadron matrix element [18] using only the

twist-2 operators. That is, for the case ofMðz; Pz; P
0
z ¼ 0Þ

computed at large Pz and with z in the perturbative regime,

its OPE that is dominated by twist-2 terms is

FIG. 12. Comparison of renormalized matrix elements at two

lattice spacings a ¼ 0.06 fm (red circles) and 0.04 fm (blue

squares) plotted as a function of ν ¼ zPz. The top panel uses RI-

MOM renormalization scheme. The real and imaginary parts of

the renormalized RI-MOM matrix element are shown as closed

and open symbols. The bottom panel uses ratio scheme with

n0z ¼ 1. The variation of data by �2% is shown as the red and

blue bands.

2
R

∞
−∞

½fðxÞ�þgðxÞdx≡
R

∞
−∞

fðxÞðgðxÞ − gð1ÞÞdx.
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Mðz; Pz; P
0
z ¼ 0Þ ¼

X

n

cnðz2μ2ÞhxniðμÞ
ð−iPzzÞn

n!
; ð24Þ

up to Oðz2Λ2
QCDÞ corrections. Here, hxniðμÞ are the nth

moments of the PDF
3
at a factorization scale μ,

hxniðμÞ ¼
Z

1

−1

xnfðx; μÞdx; with hx0i ¼ 1: ð25Þ

The coefficients cnðz2μ2Þ are the perturbatively computable

Wilson-coefficients defined as the ratio of MS Wilson-

coefficients, cnðz2μ2Þ ¼ cMS
n ðz2μ2Þ=cMS

0 ðz2μ2Þ. The 1-loop
expressions for cnðz2μ2Þ can be found in Refs. [18]. These

Wilson-coefficients are related to the matching kernel Cratio

through the relation [18],

X

n

cnðμ2z2Þ
ð−izPzÞn

n!
¼

Z

∞

−∞

dxCratioðxÞe−ixzPz : ð26Þ

The corrections denoted as Oðz2Λ2
QCDÞ arise from the

operators in the OPE that are of twist higher than two.

For the RI-MOM scheme, a similar OPE that is valid up

to Oðz2Λ2
QCDÞ corrections is

hRðz; Pz; P
RÞ ¼

X

n

cRIn ðz2; μ2; PRÞhxniðμÞ ð−iPzzÞn
n!

;

ð27Þ

where the RI-MOM Wilson-coefficients are cRIn . Using the

multiplicative renormalizability of the bilocal operator Oγt
,

we can deduce that

cRIn ðz2; μ2; PRÞ ¼ Zratio→RIðz; PR; μÞcnðz2μ2Þ; ð28Þ

where Zratio→RI is the perturbatively computable Pz-inde-

pendent conversion factor from RI-MOM to ratio scheme

[15,27]. By taking the ratio of Eq. (26) for the ratio scheme

and a corresponding similar expression for the RI-MOM

scheme involving cRIn and CRI, we can work out the

conversion factor Zratio→RI to be

Zratio→RIðz; PR; μÞ

¼ 1þ
Z

∞

−∞

dx½Cð1Þ
ratioðx; Pz; μÞ − C

ð1Þ
RI ðx; Pz; P

RÞ�

× ðe−iðx−1ÞzPz − 1Þ; ð29Þ

up to 1-loop order. Though there is an explicit Pz present in

the above expression, its dependence gets canceled in the

final expression, as expected.

We can now consider the ratio scheme for general

values of P0
z . Noting that Mðz; Pz; P

0
zÞ ¼ Mðz; Pz; 0Þ=

Mðz; P0
z ; 0Þ, we can write the twist-2 expression as

Mðz; Pz; P
0
zÞ ¼

P

ncnðz2μ2ÞhxniðμÞ ð−iPzzÞn
n!

P

ncnðz2μ2ÞhxniðμÞ ð−iP
0
zzÞn

n!

; ð30Þ

up toOðz2Λ2
QCDÞ corrections. Such an expression cannot be

written in a factorized form involving a convolution of a

perturbative kernel and PDF. As we noted in the beginning

of this section, we anticipated this since the “renormaliza-

tion factor” is ðMðz; P0
z ; 0ÞÞ−1 for the ratio scheme at

nonzero P0
z and hence by itself dependent on the hadron

PDF, unlike the RI-MOM or the P0
z ¼ 0 ratio schemes.

However, as far as the practical implementation of the

analysis is concerned, the nonfactorizability of Eq. (30) is

not a hindrance, and the analysis proceeds in exactly the

same way for all the schemes considered, i.e., by extracting

the moments hxni from the boosted hadron matrix elements

either in a model independent way or by modeling the

PDFs to phenomenology inspired ansatz. The reader can

refer to Ref [65] for this method implemented for the

nucleon.

Finally, the above discussion ignored any presence of

lattice spacing corrections present at smaller z at the order
of few lattice spacings that could spoil the applicability of

the twist-2 expression as it is. As discussed in Sec. IV, we

found indications of ðPzaÞ2 corrections to matrix element at

z ¼ 0. Such lattice corrections were removed at z ¼ 0 by

taking the ratio and making z ¼ 0 renormalized matrix

elements to be one by construction. However, such a

procedure will not ensure cancellation of ðPzaÞ2 correc-

tions at any nonzero z. We will take care of such correction

by including fit terms, ra2P2
z , by hand in the twist-2

expressions above, with r being an extra free parameter.

As a concrete example, we will modify Eq. (30) to

Mðz; Pz; P
0
zÞ ¼

P

ncnðz2μ2ÞhxniðμÞ ð−iPzzÞn
n!

þ rðaPzÞ2
P

ncnðz2μ2ÞhxniðμÞ ð−iP
0
zzÞn

n!
þ rðaP0

zÞ2
;

ð31Þ

to accommodate for any short-distance lattice artifacts. It is

easy to see that the effect of such a ðPzaÞ2 correction is to

shift the second moment in ðz=aÞ−2 manner,

hx2i → hx2i − 2r

c2ðμ2z2Þ
1

ðz=aÞ2 ; ð32Þ

in all the twist-2 expressions above. Indeed, we will present

evidence for the presence of such ðPzaÞ2 corrections, and

we defer that discussion to Sec. VII. One should note that

the above ansatz for correcting ðaPzÞ2 effects is strictly true
only for z > 0, since the ratio has to be exactly 1 at z ¼ 0.

The actual form of lattice correction would automatically

3
Our notation is trivially different from a convention of naming

hxn−1i as nth moments.
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ensure this, but we found this simpler form to be practically

enough to describe the z > 0 data, starting from z ¼ a.
Before ending this subsection, we should remark that the

LaMET approach tries to suppress the higher-twist by

taking the Pz → ∞ limit, whereas the short-distance

factorization approach aims to remove the higher-twist

effects by taking z2 → 0 limit. However, in a practical

implementation where one analyses the data at set of finite

momenta and finite z2 as presented in this paper, one can

think of the analyses being presented in either way, simply

related by Eq. (26). For example, without loss of generality,

one can think of the analysis to be presented in the next part

of the paper in the following way—one starts from a model

PDF ansatz, to which one applies the LaMET kernel in

Eq. (23) to obtain a model quasi-PDF, which is Fourier

transformed to real space to be fitted to the real-space

matrix element determined on the lattice. Keeping this in

mind, we will simply use the OPE expressions, such as

Eq. (30) for our twist-2 perturbative matching analysis.

B. Numerical investigation of higher-twist effect in pion

matrix element at low momenta

In the remaining part of this section on perturbative

matching, we discuss a way to use the hadron matrix

elements at smaller momenta to understand the importance

of higher twist effects at intermediate values of z ∼ 0.3 fm

to 1 fm, and thereby, understand the rationale for the ratio

scheme which hitherto had been discussed using a con-

jectured separation of higher twist effects and leading-twist

terms into two separate factors [7]. The Eq. (24), Eq. (27)

and Eq. (30) are valid only up to Oðz2Λ2
QCDÞ higher twist

effects. At any large value of Pz, the twist-2 terms become

larger compared to the Oðz2Λ2
QCDÞ higher twist terms. This

is the basis of the large momentum effective theory. As a

corollary, the matrix element where the higher twist

effects show up significantly is the Pz ¼ 0 matrix element.

This is not a useful observation when applied to the ratio

Mðz; Pz; P
0
z ¼ 0Þ, for which c0 has the value 1 at all z

when Pz ¼ 0. This agrees with the twist-2 expectation by

construction, but the corrections could show up at other

nonzero Pz. Therefore, we use h
Rðz; Pz ¼ 0; PRÞ in the RI-

MOM scheme for this study where we compare the lattice

result with the nontrivial z dependence from twist-2 term.

Also, since the wrap-around effects in Pz ¼ 0 matrix

elements are negligible only for the a ¼ 0.06 fm lattice,

we use this case for this study.

For Pz ¼ 0, the only nonzero twist-2 contribution is from

the local current operator because all other terms have

explicit factors of Pz and they become zero. Its z depend-

ence comes from the Wilson-coefficient cRI0 ðzÞ, which is

the conversion factor Zratio→RIðz; PR; μÞ. We use 1-loop

expressions to calculate Zratio→RI. We vary the scale

of αSðμÞ that enters Zratio→RI from μ=2 to 2μ with

μ ¼ 3.2 GeV, and gives an estimate of the expected

error on perturbative result. It is convenient to separate

Zratio→RI and the lattice result hRðz; Pz ¼ 0; PRÞ into their

magnitudes and phases. The phase Arg½hRðz; Pz ¼ 0; PRÞ�
is the same as Arg½Zγtγt

ðz; PRÞ�, which is a property of the

RI-MOM scheme itself. On the other hand, the magnitude

jhRj depends on the pion matrix element.

In the top panel of Fig. 13, we compare the z2 depen-

dence of the phase Arg½hRðz; Pz ¼ 0; PRÞ� with the per-

turbative twist-2 phase Arg½Zratio→RIðz; PRÞ�. We have

chosen a renormalization scale ðPR
z ;P

R
⊥
Þ¼ð1.29;2.98ÞGeV

on the a ¼ 0.06 fm ensemble as a sample case, but the

observations hold for other cases as well. We find a good

agreement within the perturbative uncertainties up to 0.7 fm,

and the lattice data slightly overshoots the 1-loop result for

larger z. Nevertheless, the overall qualitative agreement

validates the 1-loop perturbation theory as applied to

quark external states used in RI-MOM Z-factor. This should
serve as a companion observation to the studies on RI-MOM

Z-factor presented in our previous work [42].

FIG. 13. The phase (top) and the magnitude (bottom) of the

Pz ¼ 0 matrix element in RI-MOM scheme with ðPR
z ; P

R
⊥
Þ ¼

ð1.29; 2.98Þ GeV are shown. The expectations from the 1-loop

leading twist results are shown as the red bands. In the bottom

panel, the actual lattice data is shown using filled black circles.

The absolute part clearly suffers from a leading z2 correction

shown as the blue straight line. The twist-2 target mass correction

is shown as the green curve for comparison. The lattice data after

subtracting the z2 correction term is shown using open circles.
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In the bottom panel of Fig. 13, we compare the z2

dependence of the magnitude jhRðz; Pz ¼ 0; PRÞj with

jZratio→RIðz; PRÞj. The actual lattice data is shown as the

filled circles. It is clear that the nonperturbative result

disagrees with the near constant behavior of the twist-2

term at larger z, and that this disagreement comes from a

striking z2 dependence at larger z. The coefficient, k, of the

z2 dependence is −ð63 MeVÞ2 (with little variations around
this value with PR), and thus it is reasonable to identify

such a term to arise from a higher twist operator or an

effective contribution of a number of higher twist operators.

There could also be corrections to the leading twist result

coming from the twist-2 target mass correction (TMC)

[73,74] (and discussed in Appendix C). The 1-loop

result with TMC is shown as the green dashed line in

the bottom panel of Fig. 13, which is visibly small

compared to the observed discrepancy. Numerically, the

coefficient of z2 from twist-2 target mass correction term is

−m2
πhx2iv=8 ¼ −ð35.2 MeVÞ2, which about one-third of

the observed value (assuming hx2iv ≈ 0.11 as we will see

later). In addition, when we correct for the z2 effect by

subtracting it from the lattice data, shown by the open black

circles in the figure, we find a nice agreement with the

1-loop, twist-2 expectation. It is quite remarkable that such

a simple OðΛ2
QCDz

2Þ effect is enough to describe the

nonperturbative data even up to 1 fm.

Now, we take the hypothesis that the observed z2 effect

in hRðz; Pz ¼ 0; PRÞ is the dominant higher twist effect,

and try to understand its effect on the matrix element in the

ratio scheme. Perturbatively, the ratio scheme is defined via

the subtraction of the UV divergence by a division with

n ¼ 0 MS Wilson coefficient, cMS
0 . On the lattice, we

identify this procedure as the division by Pz ¼ 0 matrix

element, and hence the equality in Eq. (24). The underlying

assumption is that the higher twist effect in Pz ¼ 0 matrix

element is negligible or somehow cancels with the higher

twist effect present also in the nonzero Pz matrix elements.

In order to understand this, we can redefine the ratio

scheme that better agrees with the assumptions that go into

twist-2 matching framework; namely form the ratio after

subtracting off the higher-twist effects

M0ðz; Pz; P
0
z ¼ 0Þ≡ jhRðz; Pz; P

RÞj − kz2

jhRðz; Pz ¼ 0; PRÞj − kz2
; ð33Þ

where k is the coefficient we determined using the analysis

of hRðz; Pz ¼ 0; PRÞ and assume the same kz2 correction is
present at nonzero Pz as well. For k ¼ 0, M0 ¼ M. The

result of this improved ratio M0ðz; Pz; 0Þ is compared with

the usual ratio Mðz; Pz; 0Þ in the left panel of Fig. 14 for

the first nonzero momentum Pz ¼ 0.43 GeV on a ¼
0.06 fm lattice. The difference between the two ways of

defining the ratio are consistent within errors, with perhaps

very little difference at larger z. This provides a better

understanding of how the OðΛ2
QCDz

2Þ corrections in the

numerator and denominator of Eq. (33) almost cancel each

other without resorting to any factorwise separation of

higher-twist corrections, and instead, results simply from

the smallness of k. Having demonstrated the inconsequen-

tial role of higher twist effects in M for z < 1 fm given

the errors in the data, we now look closely at the

RI-MOM hRðz; Pz; P
RÞ at the same small momentum

Pz ¼ 0.43 GeV. Within the twist-2 framework, we can

obtain hR from M via

hR
0ðz; Pz; P

RÞ≡ Zratio→RIðz; PRÞMðz; Pz; 0Þ: ð34Þ

In the right panel of Fig. 14, we compare hR
0
, shown as

the red band, with hR which are the black filled symbols.

We find a deviation from the twist-2 expectation hR
0
for

z > 0.3 fm. When we correct for the z2 effect using

jhRðz; Pz; P
RÞj − kz2, shown as the open symbols, we find

a very good agreement with hR
0
. Putting together the above

results, we self-consistently justified that the observed kz2

effect in Pz ¼ 0.43 GeV is almost the same as in Pz ¼ 0

as we assumed, and that M is least affected by such

corrections. At higher momenta Pz, such higher-twist effect

will play even lesser role for z < 1 fm.

VII. A MODEL-INDEPENDENT COMPUTATION

OF THE EVEN MOMENTS OF

VALENCE PION PDF

In this section, we apply the twist-2 perturbative match-

ing formalism, that we discussed in Sec. VI, to our lattice

data for the isovector u − d PDF of pion. For this, we will

use the boosted pion matrix element in the ratio scheme

with nonzero reference momentum P0
z ¼ 2πn0z=ðLaÞ with

FIG. 14. The effect of higher-twist term kz2 on the pion matrix

element at fixed small Pz ¼ 0.43 GeV is discussed. The left

panel compares the usual ratio, Mðz; Pz; P
0
z ¼ 0Þ, and the ratio

M0 derived from RI-MOM matrix element after the subtraction

of kz2 [see Eq. (33)]. The right panel compares the actual RI-

MOM matrix element and the RI-MOM matrix element with kz2

subtraction with the result expected by applying the conversion

factor Zratio→RI to the ratio M [see Eq. (34)].
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n0z ¼ 1 and 2. This way, we expect to suffer from smaller

nonperturbative corrections and also avoid the larger

periodicity effect in zero momentum matrix elements

(we also discuss results using n0z ¼ 0 for a ¼ 0.06 fm

lattice, where wrap-around effect was small, in

Appendix H). Through Eq. (30), we can find the values

of the moments hxni by fitting them as free parameters such

as to best describe the zPz and z2 dependence of the

Mðz; Pz; P
0
zÞ data. Such a method, usually referred to as

OPE without OPE [75], has been previously applied to the

case of reduced ITD (n0z ¼ 0) for pion [52] and nucleon

[76–78].

A. Connection between isovector PDF

and valence PDF of pion

First, it is important to recall as to how the u − d
isovector pion matrix element that we compute on the

lattice relates to the valence PDF of pion. Let fuðxÞ and

fdðxÞ are the u and d quark PDF with support in x ∈ ½−1; 1�
and a convention that includes the quark distribution for

x > 0 and antiquark distribution for x < 0 via the relation

fuð−xÞ ¼ −fūðxÞ and fdð−xÞ ¼ −fd̄ðxÞ. The u − d iso-

vector matrix element relates to the fu−dðxÞ,

fu−dðxÞ ¼ fuðxÞ − fdðxÞ; x ∈ ½−1; 1�: ð35Þ

Due to isospin symmetry in πþ, fu−dðxÞ ¼ fu−dð−xÞ. The
moments that occur in the OPE expressions Eq. (24),

Eq. (27) and Eq. (30) when applied to the isovector matrix

element are the u − d PDF moments, hxni ¼ hxniu−d. Due
to the symmetry of fu−dðxÞ about x ¼ 0, only the moments

hxniu−d for even n are nonvanishing for pion. For the pion

πþ with the valence structure ud̄, the valence PDF is

fπvðxÞ≡ fuðxÞ − fūðxÞ; x ∈ ½0; 1�: ð36Þ

This could be understood from the fact that ū parton

could only be produced radiatively in πþ, and hence fū
only has a sea quark distribution, which thereby cancels the

sea quark distribution of fu in the above definition. Due to

the isospin symmetry present in our QCD computation that

does not include QED corrections, fūðxÞ ¼ fdðxÞ. Thus,
fπvðxÞ ¼ fuðxÞ − fdðxÞ; x ∈ ½0; 1�. Unlike the u − d PDF of

pion, both even and odd valence moments hxniv of the pion
are nonvanishing. By comparing the above equivalent

definition of the valence PDF in terms of u and d quark

PDFs in pion with the u − d PDF in Eq. (35), one can

deduce that

fu−dðxÞ ¼
�

fvðxÞ; x ∈ ½0; 1�
fvðjxjÞ; x ∈ ½−1; 0�;

ð37Þ

and that for the moments

hxniu−d ¼
� hxniv; n is even;

0; n is odd:
ð38Þ

Thus, the OPE expression in Eq. (30) for u − d pion matrix

element has only even powers n, from which we could

obtain the values of hxniu−d for even values of n, which as

we discussed is the valence moment hxniv. Unfortunately,
the u − d matrix element does not directly let us access the

odd valence moments, but we will later try to determine

them based on models of valence PDF fπv itself.

B. Method for model independent fits

We performed model independent determinations of

hxniv by fitting the rational functional form in Eq. (30),

which we denote as MOPEðz; Pz; P
0
zÞ here, with the even

moments hxniv as the fit parameters, over a range of z1 ≤

z ≤ z2 and P
0
z ≤ Pz ≤ Pmax

z . The possibility of larger lattice

corrections at very short separation, z1, has to be accounted

for. Therefore, we tried fits including or excluding ðPzaÞ2
correction term inMOPEðz; Pz; P

0
zÞ as discussed in Sec. VI.

For a larger range ½z1; z2�, there is a larger curvature in the

data for M, which makes the fits sensitive to the higher

order terms of ν in Eq. (30). On the other hand, by using

a larger z2, there is the undesired possibility of working

in a nonperturbative regime of QCD. We strike a balance

between the two by choosing the maximum, z2, over range
of values from 0.36 fm to 0.72 fm. We choose the

factorization scale μ to be 3.2 GeV in the following

determinations. Since the Wilson coefficients cn are known
only to 1-loop order, the scale of strong coupling constant

αs is still unspecified. We take care of this perturbative

uncertainty by using the variation in Eq. (30) when the

scale of αs is changed from μ=2 to 2μ as part of error, where
μ is the factorization scale at which hxniv are determined.

Concretely, we minimize the following χ2 to determine the

moments:

χ2 ≡
X

z2

z¼z1

X

Pmax
z

Pz¼P0
z

ðMðz; Pz; P
0
zÞ −MOPEðz; Pz; P

0
zÞÞ2

σ2statðz; Pz; P
0
zÞ þ σ2sysðz; Pz; P

0
zÞ

;

σsysðz; Pz; P
0
zÞ ¼

1

2
ðMOPE

αsðμ=2Þ −MOPEjαsð2μÞÞðz; Pz; P
0
zÞ:

ð39Þ

While the above expression is a convenient way to include

the perturbative error in the analysis, it comes at the cost of

missing the covariance matrix. We take care of it by using

the same set of bootstrap samples for all z and Pz. We use

the factorization scale μ ¼ 3.2 GeV to determine αs used

in the twist-2 expressions; for this, we used the values

αs ¼ 0.33, 0.24 and 0.19 at scales μ=2; μ and 2μ respec-

tively, by interpolating the running coupling data compiled

by the PDG [67]. Since we take the variation of αs with

scale into account in the error budget of our analysis,
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a precise input of αs is not necessary. We can also improve

the estimate of higher moments by imposing priors on

Nprior lower moments by using

χ2 ¼ χ2 þ
X

Nprior

i¼1

ðhxiiv − hxiipriorÞ2

ðσpriori Þ2
; ð40Þ

where hxiiprior and σ
prior
i are the prior on ith moment and

error on the prior respectively. We used this method only to

determine hx6iv with prior imposed on only hx2i, or both
hx2i and hx4iv. For the prior, we used the result of fits with

z2 ¼ 0.5 fm and the error on that estimate as σprior. In the

future, it would be interesting to use estimates of lower

moments from the other twist-2 local-operator techniques on

the same gauge ensemble as priors in the twist-2 matching

methodologies in order to determine higher moments.

We point out an improved way to implement the fit for

valence pion PDF. Naively, one might expect that including

more terms in Eq. (30) will lead to unstable results and

larger errors due to the increase in the number of fit

parameters, hxniv. For the case of valence PDF pion, we

can use an additional fact to constrain the moments—that

of the positivity of fπvðxÞ, and hence of fu−dðxÞ for all

x ∈ ½−1; 1�. The positivity of fπvðxÞ is usually implicit in

simple ansatz such as fπvðxÞ ∼ xαð1 − xÞβ. This stems from

the fact that the u-quark is present at the orderOðα0sÞ due to
its valence nature while the d-quark is only in the sea and

hence its distribution can start only at OðαsÞ. Thus, it is a
well justified expectation that fuðxÞ > fdðxÞ. The positiv-
ity of fπvðxÞ leads to the conditions that the even derivatives
of hxniv with respect to n are positive (i.e.,

dmhxtiv
dtm

jt¼n ¼
hxn logmðxÞiv > 0 for even m) and that the odd derivatives

(i.e., m is odd) are negative. The interesting consequences

are the inequalities

hxnþ2iu−d < hxniu−d and;

hxnþ2iu−d þ hxn−2iu−d − 2hxniu−d > 0: ð41Þ

These inequalities lead to strong constraints on the fitted

moments and lead to the stabilization of the estimates (and

their errors) of the lower moments as one increases the num-

ber of terms in Eq. (30) to larger values, thereby eliminating

the order of Eq. (30) as a tunable parameter and prevents

over-fitting the data. The two inequalities in Eq. (41) can be

easily implemented through a change of variables

hxniv ≡
X

N

i¼n

X

N

j¼i

e−λj ; ð42Þ

where the sum runs over even i and j for the pion. The

parameters λj > 0, and N being the largest even moment

used in the fit. In the discussions below, we used even

moments up to hx8iv in the fits over multiple z. In cases

where certain higher moments were irrelevant to the fits, they

promptly converged to values very close to zero without

affecting the relevant smaller moments. In this way, we do

not have to choose the order of the polynomial to be used in

the fits.

C. Determining an estimate, its statistical

and systematic error

Since the various estimates in this section and the rest

depend on the range ½z1; z2� and the value of n0z used, we

define the central estimate of a quantity A and its systematic

error as MeanðAÞ and SDðAÞ respectively; here, MeanðAÞ
is the mean over different estimates (variations in fit range

etc.,) in a given bootstrap sample, and SDðAÞ is the

standard deviation of various estimates of A within the

same bootstrap sample. The notation MeanðAÞ and SDðAÞ
stand for average of those mean and standard deviation over

the bootstrap sample. In this way, we obtain the statistical

error on MeanðAÞ also in the standard bootstrap procedure.
We will use this procedure in the later sections too, and the

extra dependences on model ansatz, and renormalization

schemes (ratio, RI-MOM scheme and their various scales)

will also enter in evaluating the systematic error.

D. Model independent analysis of moments at fixed z2

The ν ¼ zPz dependence can come from either the z
variation at fixed Pz or from Pz variation at fixed z. We first

look at the latter case. In Fig. 15, we show the result of

fitting the rational polynomial in ν given by Eq. (30) to the

FIG. 15. Plot of the ratio,Mðz; Pz; P
0
zÞ, shown as a function of

zPz using a ¼ 0.06 fm data with P0
z ¼ 0.43 GeV. The points of

same colored symbols have the same value of z, and hence the

zPz dependence comes from the variation in Pz. The correspond-

ing colored bands are the fits of Eq. (30) to data at each fixed z.
Inset: The data points are at fixed z ¼ a. The blue curve is the

expectation for the zPz dependence at z ¼ a based on the

moments obtained at z ¼ 5a without correcting for ðPzaÞ2 lattice
terms. The red curve is obtained after accounting for such lattice

corrections.
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a ¼ 0.06 fm data at different fixed z. For the case shown,

P0
z ¼ 0.43 GeV. In this analysis at fixed z, we did not take

any ðPzaÞ2 correction into account. The results of the fits at
various fixed z are shown as the bands having the same

color as the corresponding data points. Since we only have

five different values of Pz, the smaller z data cover shorter
ranges in ν compared to the larger fixed z data. It is clear

from the data that in order to be sensitive to deviations from

simple ν2 term, we need to resort to data at larger z >
8a ¼ 0.48 fm as well. We repeated this analysis with

n0z ¼ 2 also. In Fig. 16, we show the value of hx2iv that

is extracted from the fits as a function of the fixed values of

z used in the fits. The results as obtained from both n0z ¼ 1

and 2 are shown in the left and right panels. In order to look

for lattice spacing effects, we have shown results from the

two lattice spacings (but keeping in mind that the two n0z at

two lattice spacings lead to slightly different P0
z in physical

units). The inferred moments are more precise for n0z ¼ 1

than for n0z ¼ 2, as one would expect from deteriorating

signal as momentum is increased. One can see a plateau in

hx2iv starting from 3a even up to z ¼ 0.7 fm. This shows

that the z2 dependence in the pion matrix element is

canceled to a good accuracy by the perturbative Wilson

coefficients cnðμ2z2Þ.
There is a clear tendency for the fitted hx2iv to increase at

very short lattice distance z=a ∼ 1 which is most likely a

result of increased lattice corrections at smaller z. One can
see this by comparing the results from the two lattice

spacings and noting that at fixed short physical distance z,
there is tendency for the a ¼ 0.04 fm data to lie closer to

the plateau than the a ¼ 0.06 fm data. If the lattice spacing

effect is coming from ðPzaÞ2 corrections, then we should

find the ðz=aÞ−2 behavior of hx2i as we outlined in Sec. VI

(where we ignore the logarithmic dependence in z present
in c2 for this first analysis in this subsection.) The fits to

such hx2i þ 2rðz=aÞ−2 are shown as the corresponding

colored curves in Fig. 16. Indeed, we find a very nice

description of the observed data, thereby, show the impor-

tance of ðPzaÞ2 corrections at first few lattice separations

z=a. Also, as a consistency check, the values of r from the

fits on the two lattice spacings were about the same,

namely, 0.021 and 0.022 on the 0.04 fm and 0.06 fm

lattice spacings respectively. It could be counterintuitive to

find a rather large lattice spacing effect affecting the

moments when we do not find anything unusual about

the small z=a in Fig. 15, or in Fig. 12 where we compared

the data at two different lattice spacings. In order to

understand this, we take the values of moments as obtained

from z ¼ 5a (which lies in the plateau of hx2iv) and

reconstruct the expected ν dependence at fixed z ¼ a using

Eq. (30), without including any ðPzaÞ2 corrections in the

expression. In the inset of Fig. 15, we compare this

expected curve (blue) with the actual z ¼ a data points.

The clear disagreement between the two is the cause of the

anomalously large hx2iv ≈ 0.15 at z ¼ a in Fig. 16. One

should note the rather enlarged scale on the y-axis of the
inset, and the disagreement is actually sub-percent. But, the

data at small z=a is so precise that such small lattice spacing

effects show rather clearly in the extracted moments. This is

the crux of the problem. After accounting for the ra2P2
z

correction, the expected curve is shown in red, which

agrees perfectly with the data and gives hx2iv that is

consistent with the one extracted from larger z=a. In the

analyses henceforth, we will use the correction term

rðPzaÞ2 term in the fits as outlined in Sec. VI with r
being an extra fit parameter, and this way, we were able to

use z1 ¼ a; 2a; 3a in the fits and obtain no contradictory

strongly z1-dependent results.

E. Model independent combined analysis of moments

In order to estimate hxniv, it is better to fit both zPz and

z2 dependence using all the data within z ∈ ½z1; z2� and
Pz > P0

z . In Fig. 17, we show the best fit values of hx2iv as
a function of the maximum of the range of z, i.e., z2. The
left and the right panels are for the a ¼ 0.06 fm and a ¼
0.04 fm data. Along with z2 dependence, we have also

shown hx2iv from the three different values of z-range
minimum, z1 ¼ 1a; 2a and 3a (as we noted, we include a

rðPzaÞ2 term in the fits in order to be able to use z1 ¼ a and

2a). The two different colored symbols differentiate the

reference momenta n0z ¼ 1 and 2. These combined fits with

moments being the fit parameters lead to typical χ2=dof ≈
0.7 in all the cases. For both the lattice spacings, we find

the various estimates to be consistent with each other.

The scatter of values at a ¼ 0.04 fm seems to be centered

around a slightly lower value than at a ¼ 0.06 fm, pointing

FIG. 16. The z dependence of hx2i obtained by fitting rational

polynomial functions in zPz to matrix elements Mðz; Pz; P
0
zÞ at

different fixed values of z, with P0
z ¼ 2πn0z=L. The left panel

shows results as obtained with n0z ¼ 1 and the right panel for

n0z ¼ 2. In each case, the red and blue points correspond to a ¼
0.06 fm and 0.04 fm lattice spacings. The curves are fits to a

functional form hx2i þ 2rðz=aÞ−2 to capture possible ðaPzÞ2
corrections (refer text).
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to a small lattice spacing dependence. Using the convention

for summarizing the various estimates, we find

hx2iv ¼

8

<

:

0.1088
þð48Þð58Þ
−ð48Þð58Þ ; a ¼ 0.06 fm

0.1050
þð43Þð39Þ
−ð43Þð39Þ ; a ¼ 0.04 fm;

ð43Þ

at μ ¼ 3.2 GeV, with the first error being statistical and the

second one being systematic. We input the fit results from

z1 ¼ 1a; 2a; 3a, z2 ∈ ½0.24; 0.6� fm, and n0z ¼ 1, 2 to

obtain the above single estimate. These estimates with

statistical error band, and with both statistical and system-

atic error band are shown in Fig. 17. For comparison, the

estimate of hx2iv from JAM collaboration [79] at μ ¼
3.2 GeV is at a slightly lower value, 0.095. The soft-gluon

resummed Aicher-Shafer-Vogelsang result (ASV) [35] is

even lower at about 0.086 at the same scale μ.

In Fig. 18, we show a similar plot for hx4iv at

μ ¼ 3.2 GeV. At each z2, we show determinations with

z1 ¼ 1a; 2a and 3a. We find consistent determinations

with various fit ranges and renormalization procedures. We

estimate

hx4iv ¼

8

<

:

0.0346
þð50Þð73Þ
−ð57Þð73Þ ; a ¼ 0.06 fm

0.0382
þð43Þð54Þ
−ð44Þð54Þ ; a ¼ 0.04 fm;

ð44Þ

These estimates are the bands in Fig. 18. The JAM estimate,

hx4iv ¼ 0.032, is slightly lower than for the 300 MeV pion

studied here [79]. Whereas the ASV result for the fourth

moment can be inferred to be about 0.023. For both hx2iv
and hx4iv, we did not use priors. On the other hand, it was

not possible to obtain a good estimate of hx6iv without

inputting the knowledge of the lower moments using the

procedure we outlined previously. We obtained results for

hx6iv at the two lattice spacings by inputting prior for only

hx2iv, and by using priors for both hx2iv and hx4iv. We

display the results for the latter case in Fig. 19. In addition,

we have to use z2 > 0.5 fm in order for hx6iv to be a

relevant parameter in the fit. As we noted in the previous

section, the Λ
2
QCDz

2 corrections seem to be canceled

effectively even in the ratio scheme with P0
z ¼ 0, and

the error we commit by using values of z2 up to 1 fm might

not be large and also further reduced by nonzero P0
z we use

in the modified ratio scheme. Perhaps this is the reason, we

find the estimates to be independent of z2 and P
0
z to a good

degree. We estimate

hx6iv ¼

8

<

:

0.0117
þð26Þð33Þ
−ð26Þð33Þ ; a ¼ 0.06 fm

0.0126
þð20Þð41Þ
−ð15Þð41Þ ; a ¼ 0.04 fm:

ð45Þ

FIG. 17. hx2i from combined fits of the rational polynomial

function in zPz toMðz; zPz; P
0
zÞ for the data z ∈ ½zmin; zmax�. The

dependence of hx2i on zmax is shown. For each zmax, values from

three different zmin are shown. The results for a ¼ 0.06 fm and

0.04 fm are shown in the left and right panels. The grey bands are

the estimates—the inner band includes only statistical error, and

outer one includes both statistical and systematic error (see text).

FIG. 18. hx4i from combined fits of the rational polynomial

function in zPz toMðz; zPz; P
0
zÞ for the data z ∈ ½zmin; zmax�. The

description of the points are the same in Fig. 17.

FIG. 19. hx6i from combined fits of the rational polynomial

function in zPz to Mðz; zPz; P
0
zÞ for the data z ∈ ½zmin; zmax�

using priors hx2iv and hx4iv. The dependence of hx6i on zmax is

shown. At each zmax, values from zmin ¼ a; 2a and 3a are shown.
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To compare, the JAM and ASV estimates as inferred from

their fits are 0.015 and 0.009 respectively. In the above fits,

we obtained the coefficient r of the ðPzaÞ2 correction to be

−0.026ð7Þð10Þ and −0.018ð8Þð8Þ for 0.06 fm and 0.04 fm

lattice spacings, which are quite consistent with each other

as expected, and with our rough estimate in the last

subsection. We should also point out that in the above

discussion, we did not include any target mass correction

(trace) terms in the OPE used in fits since we did not find

any significant change by including such additional terms

due to the smallness of pion mass.

VIII. VALENCE PDF OF PION BY FITS TO

BOOSTED PION MATRIX ELEMENTS

IN REAL SPACE

In the last section, we estimated the even moments

directly from the equal-time boosted pion matrix elements.

However, it is not possible to reconstruct an x-dependent
PDF using only the knowledge of the first few even

moments. One way of PDF reconstruction from the

boosted pion matrix element is through data interpolation

over the range of z where lattice data is available and then

extrapolate it to zero smoothly at larger z [19,80]. Instead,
as in our previous work, we adopt the method of using

phenomenology motivated ansatz for fπvðxÞ and fit the

ansatz to our lattice matrix element over ranges of z smaller

than 1 fm. In this way, we avoid the usage of data with

z ⪆ 1 fm which could be deep in the nonperturbative

regime, and might not be consistent with the perturbative

framework that we rely on. There are also other methods of

PDF reconstruction that have been investigated in the

literature [81,82].

A. PDF ansatz and analysis method

As is typical in the global analysis of valence PDFs, we

use two different valence pion PDF ansatz

fπvðx; α; βÞ ¼ N xαð1 − xÞβ;
fπvðx; α; β; s; tÞ ¼ N 0xαð1 − xÞβð1þ s

ffiffiffi

x
p

þ txÞ; ð46Þ

with the first one being a special case of the second and

hence more restrictive. The normalization factors N ;N 0

are chosen such that
R

1
0
fπvðxÞdx ¼ 1. The parameters α, β,

s, t are the tunable fit parameters. These model PDFs

enter the analysis via their corresponding moments, for

example hxniðα; βÞ ¼
R

1
0
xnfπvðx;α; βÞdx, which appear in

the OPE expressions; Eq. (30) for the ratio scheme and

Eq. (27) for RI-MOM scheme. In both the schemes, we

corrected for ðPzaÞ2 lattice artifacts that affect smaller z by

using a term rðPzaÞ2 in the OPE expressions with r being a
fit parameter, as we did in our model independent fits.

Through this, we can construct the model matrix elements

Mmodelðz; Pz; P
0
z ; α; β;…Þ and hRmodelðz; Pz; P

R;α; β;…Þ.

Let us first consider the ratio scheme. In addition to the

statistical error σstatðz; Pz; P
0
zÞ for the lattice data point

Mðz; Pz; P
0
zÞ, there is also the perturbative uncertainty

resulting from the 1-loop truncation of the twist-2 Wilson

coefficients. We quantify this error through the arbitrary

nature of the scale μ of the strong coupling αsðμÞ, as we did
in Sec. VII. We use μ in the αs to be the same as the

factorization scale of the PDF, and quantify the error we

commit through the systematic error σsysðz; Pz; P
0
zÞ which

we define as the change inMmodelðz; Pz; P
0
z ; α; β;…Þwhen

αs is changed from αsðμ=2Þ to αsð2μÞ. That is,

σsysðz;…Þ ¼ 1

2
ðMmodelðz;…Þjαsðμ=2Þ

−Mmodelðz;…Þjαsð2μÞÞ: ð47Þ

Let us take the JAM data and the ASV analysis data at

μ ¼ 3.2 GeV as a specific case. The JAM data can be

described to a very good accuracy by the form Eq. (46)

with α ¼ −0.37 and β ¼ 1.20. In Fig. 20, we show the

result for Mmodelðz; Pz; P
0
zÞ at Pz ¼ 1.29 GeV, P0

z ¼
0.43 GeV using the JAM valence PDF [79] with solid

curves, and using ASV result [35] using dashed curves.

For each case, we plot three different curves for Mmodel

as obtained using αsðμ=2Þ, αsðμÞ and αsð2μÞ. For

comparison, the actual lattice data and the error for

Mmodelðz; Pz; P
0
zÞ is also shown. We can see that the

spread in Mmodel for both JAM and ASV get especially

important for z > 0.4 fm, and become comparable to

the statistical error in the data. Therefore, given the

FIG. 20. The plot shows the model boosted pion matrix element

Mðz; Pz; P
0
zÞ at Pz ¼ 1.29 GeV, P0

z ¼ 0.43 GeV as a function of

z, constructed based on the JAM valence PDF [79] (solid curves)

and ASV result [35] (dashed curves) at μ ¼ 3.2 GeV. The red,

green and blue curves are the matrix elements constructed using

Eq. (30) using values of αsðμÞ, αsð2μÞ and αsðμ=2Þ respectively.
The lattice data for Mðz; Pz; P

0
zÞ from a ¼ 0.06 fm lattice are

also shown.
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significant perturbative uncertainty that is unavoidable at

present, it would be misleading to favor or rule out

models of PDF (such as JAM and ASV results in the

example here) simply based on the statistical precision of

the lattice data. Therefore, we select the model PDFs that

best describes the shape of the lattice matrix element that

takes σsys into account, by minimizing,

χ2 ≡
X

Pmax
z

Pz>P
0
z

X

z2

z¼z1

ðMðz; Pz; P
0
zÞ −Mmodelðz; Pz; P

0
z ; α;…ÞÞ2

σ2statðz; Pz; P
0
zÞ þ σ2sysðz; Pz; P

0
zÞ

:

ð48Þ

The correlations between the lattice data at different z and

Pz are partly taken into account by picking Mðz; Pz; P
0
zÞ

from the same bootstrap samples. Similarly, in the case of

RI-MOM matrix element, we fit only the real part,

Re½hRðz; Pz; P
RÞ�, and the imaginary part is obtained as

an outcome. In the case of RI-MOM matrix element, we

found taking care of σsys to be even more important as the

αs dependence starts from cRI0 , unlike in the ratio scheme.

B. Results for f πv ðxÞ
In Fig. 21, we show the resulting best fit model matrix

elements along with the actual lattice data. We have used

the 4-parameter ansatz fπvðx; α; β; s; tÞ for the fits shown.

For the fits, we used μ ¼ 3.2 GeV in the perturbative

Wilson coefficients, and hence the model PDF corresponds

to this factorization scale. In the results shown in Fig. 21,

we used only the boosted matrix elements with the quark-

antiquark separations z ∈ ½2a; 0.5 fm�, but we performed

the analysis also with z1¼a;2a;3a and z2∈ ½0.36;0.72� fm.

The matrix elements at different fixed Pz are differentiated

(by their color and symbols). In the top and bottom panels

we have shown the results for a ¼ 0.06 and 0.04 fm

respectively. We have shown the results for the ratio scheme

with P0
z ¼ 2πn0z=ðLaÞ for n0z ¼ 1 and 2 in the left and

middle panels of Fig. 21. For n0z ¼ 1 ratio scheme, we used

the momenta with nz ¼ 2, 3, 4, 5, and for n0z ¼ 2, we used

nz ¼ 3, 4, 5. For the RI-MOM scheme, we used only the

larger set of momenta corresponding nz ¼ 3, 4, 5. This is to

avoid the larger OðΛ2
QCDz

2Þ corrections in the RI-MOM

scheme observed in Sec. V. The results of the fit to the

RI-MOM matrix elements at renormalization scales

FIG. 21. Renormalized pion matrix elements in various schemes are shown as a function of zPz along with the best fits using PDFs

fπvðxÞ of the form xαð1 − xÞβð1þ s
ffiffiffi

x
p þ txÞ. The top and bottom rows show the results for a ¼ 0.06 fm and a ¼ 0.04 fm respectively.

The leftmost panels are using the ratio renormalization scheme with the reference momentum P0
z ¼ 2π=ðLaÞ, which is P0

z ¼ 0.43 GeV

for a ¼ 0.06 fm and P0
z ¼ 0.48 GeV for a ¼ 0.04 fm. The middle panels use P0

z ¼ 4π=ðLaÞ, which is P0
z ¼ 0.86 GeV for a ¼ 0.06 fm

and P0
z ¼ 0.97 GeV for a ¼ 0.04 fm. The rightmost panels are in the RI-MOM scheme with the renormalization momentum

ðPR
z ; P

R
⊥
Þ ¼ ð1.29; 2.98Þ GeV for a ¼ 0.06 fm case and (1.93,3.34) GeV for a ¼ 0.04 fm case. Here, the real and imaginary parts are

shown. In each panel, the different colored symbols are the actual lattice data at different pion momentum Pz. The corresponding

similarly colored bands are the results of the combined fit over the fixed range z ∈ ½2a; 0.5� fm from different Pz > P0
z in the ratio

scheme, and nz ¼ 3, 4, 5 in the case of RI-MOM scheme.
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ðPR
z ; P

R
⊥
Þ ¼ ð1.29; 2.98Þ GeV and (1.93,3.34) GeV for the

a ¼ 0.06 fm and a ¼ 0.04 fm lattices respectively are
shown in the rightmost panels. The fit is performed only

on the real part of hR. But, the nonzero imaginary part of hR

also compares well with the resultant imaginary part of the

fit. The fits in all the cases gave good χ2=dof between 0.5
and 1, and we discuss this in Appendix D. We refer the
reader to Appendix H for a similar discussion on fits to

P0
z ¼ 0 ratio matrix elements (i.e., reduced ITD).

Each of the best fit model matrix elements in

Fig. 21 correspond to valence PDFs, fπvðx; α; β; s; tÞ at

μ ¼ 3.2 GeV. In Fig. 22, we have shown the results of the

valence PDFs, fπvðx; α; β; s; tÞ, that are reconstructed from

Mðz; Pz; P
0
zÞ. The left and the right panels of Fig. 22

show fπvðxÞ and xfπvðxÞ as functions of x. The red and blue

bands are for the two values of n0z ¼ 1, 2 respectively.

For comparison, the JAM valence PDF [79] at the same μ is

shown as the black band. At a qualitative level, it is

reassuring that the PDFs we determined compares well

with the phenomenological result. At both lattice spacings,

the results from different P0
z differ only by a little, and such

variations belong in the systematic error budget. However,

when we look closely, one can find that the best fit PDFs

always have a tendency to be above the JAM result for

x > 0.6. This ties back to the PDF moment determination in

the last section where we found hx2iv and other higher

moments also to be consistently higher than the phenom-

enological result. In Fig. 23, we show similar results for PDF

as obtained using the RI-MOM hR. The results using two

different renormalization scales PR are consistent with each

other as one would expect. One can also note that the RI-

MOM results also agree overall with the one from ratio

FIG. 22. The valence PDF of pion fπvðxÞ at μ ¼ 3.2 GeV. The top and bottom panels are for a ¼ 0.06 fm and a ¼ 0.04 fm

respectively. The left panels show fπvðxÞ and the right panel re-plot the same data as xfπvðxÞ. The ansatz fπvðxÞ ¼ N xαð1 − xÞβð1þ
s

ffiffiffi

x
p þ txÞ was used for this reconstruction of valence PDF via their ability to describe pion matrix elements in real space in different

ratio schemes involving ranges of quark-antiquark separation z ∈ ½2a; 0.5� fm. In each panel, such results for fπvðxÞ based on ratio

schemes with reference momenta P0
z ¼ 2πn0z=L with n0z ¼ 1, 2 are shown as different colored bands. For comparison, the JAM result at

the same μ is shown as the black band.
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scheme. When we focus on specific details of the PDF, as we

would do next, the difference across renormalization

schemes and renormalization scales will become easier to

notice.

For the results we discussed above, we limited ourselves

to a specific fit range in z from 2a up to 0.5 fm using an

ansatz fπvðx; α; βÞ. The obvious addendum to this discus-

sion is to also specify what happens when we change the

various choices we used in the fits. First, we check that

the constructed PDF is not sensitive to the PDF ansatz.

We used both the ansatz in Eq. (46) in our analysis, and in

fact, the simpler ansatz fπvðx; α; βÞ by itself is sufficient to

describe our pion matrix elements in real space; in all the

cases χ2=dof varied between 0.5 to 0.9. The ansatz

fπvðx; α; β; s; tÞ includes terms that affect only the small-x
behavior and therefore more flexible. In Fig. 24, we

compare the best fit PDFs using the two ansatz for a

sample case that used ratio scheme with n0z ¼ 1. It is clear

that the ansatz dependence is very little, and the effect of

including more free parameters in fπvðx; α; β; s; tÞ is to

increase the uncertainties in the fitted PDFs without

changing the overall shape.

It would be cumbersome to describe one dependence

after another in terms of the resulting PDFs. Therefore,

we summarize the results of fitted PDFs using various

choices for z-range ½z1; z2� and the renormalization

schemes via their first four moments hxiv, hx2iv, hx3iv
and hx4iv in Fig. 25. It is noteworthy that even though

we cannot access the odd moments directly, we can

obtain them indirectly from model PDFs. Let us focus on

one of the panels in Fig. 25 to unpack the details. Each

point is an estimate of the moment labeled in the x-axis
of the panel. The red and blue points result from using

fπvðx; α; βÞ and fπvðx; α; β; s; tÞ respectively, and demon-

strates the variation due to fitted ansatz. For each of the

ansatz (i.e., red or blue), the variation due to the range

of z used, ½z1; z2�, is shown as one moves up along the

y-axis. The results with the same ½z1; z2� are enclosed

within the dashed lines. For each ½z1; z2�, the variation

coming from the renormalization scheme used for the

equal time matrix elements is shown. We have shown

four such renormalized results with each set of ½z1; z2�—
ratio scheme with n0z ¼ 1, 2 (denoted as ratio-1 and ratio-

2 in the figure), and RI-MOM scheme at two different

ðPR
z ; P

R
⊥
Þ (denoted as RI-1 and RI-2). For a ¼ 0.06 fm,

FIG. 23. Valence PDF of pion at μ ¼ 3.2 GeV extracted from RI-MOM renormalized matrix elements. The left and the right panels

show data for a ¼ 0.06 fm and a ¼ 0.04 fm. The red and blue bands are the PDFs that best describes the RI-MOM data at two different

RI-MOM scales ðPR
z ; P

R
⊥
Þ. For comparison, the PDF as extracted using ratio scheme with P0

z ¼ 2πn0z=ðLaÞ with n0z ¼ 1 is shown as the

green band. The JAM estimate [79] of fπvðxÞ is shown as the black band.

FIG. 24. Comparison of PDF as extracted using a simple two-

parameter xαð1 − xÞβ ansatz and from a four-parameter xαð1 −
xÞβð1þ s

ffiffiffi

x
p þ txÞ ansatz.
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the two RI-MOM scales are (1.29,2.98) GeV and

(1.93,2.98) GeV, and for a ¼ 0.04 fm, the two scales

are (1.93,3.34) GeV and (2.9,3.34) GeV. It is satisfactory

that the results for hx2iv and hx4iv obtained here

indirectly agrees well with the direct determination in

the last section, and serves as a cross-check. One sees

comparatively larger renormalization dependence in the

more stringent two-parameter ansatz, but it seems to be

reduced and accounted for by using a more flexible four-

parameter ansatz. As we change z2 from 0.42 fm to

0.72 fm, the results remain almost intact. From these fits,

we estimate the moments and their statistical and sys-

tematic errors (coming from ½z1; z2�, RI-MOM and ratio

renormalization schemes, and the two PDF ansatz) as

hxiv ¼
(

0.2491
þð77Þð61Þ
−ð81Þð61Þ ; a ¼ 0.06 fm

0.2296
þð79Þð57Þ
−ð87Þð57Þ ; a ¼ 0.04 fm:

hx2iv ¼
(

0.1174
þð50Þð71Þ
−ð44Þð71Þ ; a ¼ 0.06 fm

0.1122
þð45Þð57Þ
−ð52Þð57Þ ; a ¼ 0.04 fm:

hx3iv ¼
(

0.0698
þð52Þð80Þ
−ð48Þð80Þ ; a ¼ 0.06 fm

0.0690
þð52Þð60Þ
−ð52Þð60Þ ; a ¼ 0.04 fm:

hx4iv ¼
(

0.0470
þð52Þð76Þ
−ð47Þð76Þ ; a ¼ 0.06 fm

0.0478
þð44Þð58Þ
−ð51Þð58Þ ; a ¼ 0.04 fm:

ð49Þ

FIG. 25. The first four valence PDF moments hxni as inferred from the best estimates of PDFs fπvðxÞ that best describes the equal-time

pion matrix elements in ratio and RI-MOM renormalization schemes. The top panels are for a ¼ 0.06 fm and bottom ones for

a ¼ 0.04 fm. The dependence of hxni on all the variables in the lattice analysis is summarized in the above plot. The foremost variable is

the range of quark-antiquark separations used in the fits z ∈ ½z1; z2�. Such variations are bunched together as blocks separated by the

dashed lines along the y-axis. The second variable factor is the renormalization scheme of the matrix elements: it could be RI-MOM

scheme or ratio scheme at reference scale P0
z . At fixed z ∈ ½z1; z2�, four different renormalization points are shown: ratio scheme at

n0z ¼ 1 (ratio-1), n0z ¼ 2 (ratio-2), RI-MOM scheme at two different scales PR, denoted as RI-1 and RI-2. This scheme and scale

variations are bunched together within the dotted lines. The tertiary variable is the fit ansatz: the results obtained using the ansatz

fπvðxÞ ¼ N xαð1 − xÞβ are shown in red and those using fπvðxÞ ¼ N xαð1 − xÞβð1þ s
ffiffiffi

x
p þ txÞ are shown in blue.
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The indirect determination of the first moment hxiv shows

that each of the two valence quarks carry about a quarter of

the pion energy as has been seen before. Especially here,

one certainly sees a lattice spacing effect that tends to make

hxiv closer to the JAM value of 0.223 at μ ¼ 3.2 GeV.

Such a lattice spacing effect is seen to a lesser extent in

hx2iv, and difficult to see in the higher moments.

IX. DISCUSSION ON LARGE-x BEHAVIOR

The large-x behavior of PDFs are of the form

fðxÞ ∼ ð1 − xÞβ; ð50Þ

characterizing how fðxÞ vanishes in the x → 1 limit. The

exponent β is hadron dependent, and one uses the Brodsky-

Farrar quark counting rule [83] to find the typical value of β

for a hadron; β ¼ 2 for the pion and 3 for the unpolarized

nucleon valence PDFs respectively from this counting rule.

In fact, for the proton, one does find the value of β to be

close to 3 for the u-quark valence PDF, and motivates the

usage of quark counting rule to predict the value of β for

other hadrons. But, the value of β from the analysis [45] of

E-0615 Fermilab data was found to be about 1 as a

contradiction to the quark counting rule. The importance

of soft gluon resummation in the analysis of DIS data close

to x → 1 limit was pointed in [35], and consequent

reanalysis of Fermilab result suggested a value of β ≈ 2.

The recent global Monte Carlo analysis of experimental

data from JAM collaboration [79] suggests β ¼ 1.2, and

concurred by another analysis using xFitter [84].

Nevertheless, quark counting rules are not direct predic-

tions of nonperturbative QCD and there have been lot of

recent works on computing β for the pion that relies on

alternative nonperturbative arguments, such as Dyson-

Schwinger equation, Bethe-Salpeter equation and light-

front quantization methods; many such recent attempts

[32,33] suggest a value β ≈ 2, but some [36–38,

85] of them suggest values close to 1, or a cross-over

from β ¼ 1 to 2 behavior very close to x ¼ 1 [34]. Thus,

the issue of the value of β for fπv is still not settled and the

lattice computations, as the present one, can play an

important role.

A. Model dependent estimate of β

The recent lattice computations [40–42] of pion PDF,

including our previous work, have attempted to address the

issue of β based on the assumption of ansatz of the type in

Eq. (46) for fπvðxÞ. In a similar way, we summarize our

results on the large-x exponent β and the small-x exponent

α in Fig. 26 based on the model dependent analysis that we

presented in the last section. The notation and the arrange-

ment of data points in Fig. 26 is the same as outlined in

Fig. 25 for the moments. From the plots for β in both the

lattice spacings, we find that the fits prefer a value of

around 1, and sometimes even smaller than 1. As suggested

in [41], the usage of the 4-parameter ansatz does lead to

somewhat larger values of β than obtained using the 2-

parameter ansatz, but these values are still closer to 1. Even

though the moments that correspond to these fits showed

little renormalization scheme dependence, the exponents

themselves show a larger sensitivity to the lattice renorm-

alization scheme used, with a tendency for the RI-MOM

scheme to consistently give lesser values of β compared to

those from ratio schemes. One can also notice a somewhat

increasing tendency of β when larger fit range ½z1; z2� is
used. It is possible that the favored value of β could be

slightly larger than our estimates if we were to include data

at larger values of zPz, but we have restricted z2 to be less

than 0.72 fm to remain close to the perturbative regime.

A naive argument would suggest the LaMET formalism

FIG. 26. The exponents α and β inferred from the estimates of PDFs fπvðxÞ ¼ xαð1 − xÞβð1þ…Þ that best describes the ratio and RI-
MOM real space data. The first two panels are for a ¼ 0.06 fm and last two for a ¼ 0.04 fm. The dependence of the exponents on all the

variables in the lattice analysis is summarized in the above plot. The notation is similar to Fig. 25.
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does not permit one to access smaller values of

x < ΛQCD=Pz, we find that the model dependent analysis

clearly gives robust values of α ∼ −0.5. This is because the

pion matrix elements constrain the few low moments,

which in turn are functions of both α and β due to the

model used. To summarize, the overall shape of the PDF

and its first few moments are well determined by the usage

of phenomenology motivated ansatz, but the exponents α

and β themselves show sensitivity to the renormalization

schemes as well as the range of z used. Nevertheless, the

estimates of large-x exponents from this analysis have a

tendency to lie closer to 1 rather than 2. Quantitatively, we

estimate

α ¼

8

<

:

−0.43
þð12Þð13Þ
−ð10Þð13Þ ; a ¼ 0.06 fm

−0.58
þð08Þð08Þ
−ð08Þð08Þ ; a ¼ 0.04 fm ðall schemesÞ

β ¼

8

<

:

0.82
þð30Þð38Þ
−ð24Þð38Þ ; a ¼ 0.06 fm

0.58
þð18Þð27Þ
−ð15Þð27Þ ; a ¼ 0.04 fm ðall schemesÞ

ð51Þ

taking into account the different fit ranges and ansatz

dependences in the ratio schemes as well as RI-MOM

scheme. These are the bands shown in Fig. 26. Since RI-

MOM scheme has a tendency to obtain smaller β system-

atically, and since we found the ratio scheme performs

better at suppressing the higher-twist effects, we also give

the estimates below using only the n0z ¼ 1 and n0z ¼ 2 ratio

schemes

α ¼

8

<

:

−0.37
þð16Þð13Þ
−ð11Þð13Þ ; a ¼ 0.06 fm

−0.55
þð11Þð09Þ
−ð08Þð09Þ ; a ¼ 0.04 fm ðonly ratioÞ

β ¼

8

<

:

1.05
þð42Þð30Þ
−ð42Þð33Þ ; a ¼ 0.06 fm

0.76
þð22Þð24Þ
−ð20Þð24Þ ; a ¼ 0.04 fm ðonly ratioÞ:

ð52Þ

Indeed, leaving out RI-MOM scheme results leads to

slightly larger β, but still around 1. For comparison, the

JAM global fits at the same μ give α ¼ −0.37 and β ¼ 1.20.

The downside of the above model dependent analysis is

the question of whether by using a sufficiently general

functional form fπvðxÞ, it is possible to find β ≈ 2. For

example, if we performed the analysis with β ¼ 2 fixed, the

χ2=dof was between 1.5 and 2 as opposed to the global

minimum between 0.5 and 1 when β was allowed as a free

parameter. We discuss such an analysis at fixed β ¼ 2 in

Appendix I. A recent lattice study [41] using the good

lattice cross-section approach found β ¼ 2 is not ruled

out when an ansatz, which we refer to as the 4-parameter

ansatz here, is used while β ≈ 1 was preferred when the

2-parameter ansatz was used. Another recent study [86]

found that with the limited sensitivity of the lattice

calculations to higher moments, it is difficult to make

definite conclusions about the large-x behavior. Therefore,

we discuss a novel model independent way to find β.

B. Model independent estimate of β

We note that the higher moments get more contribution

from larger x, and hence, are more sensitive to the exponent

β. Consequently, one finds that the moments hxni approach
zero in the large-n limit in a manner dependent only on β as

hxni ∝ n−β−1ð1þOð1=nÞÞ: ð53Þ

The exponent is universal, and independent of the small-x
(i.e., xα) or intermediate-x (i.e., GðxÞ) behaviors, but the
constant of proportionality in Eq. (53) does depend on the

details of the PDF. We outline a proof of this behavior in

Appendix F. The asymptotic behavior of large-n moments

was also considered in the context of evolution of β with

scale in Refs. [87,88]. Thus, one can determine β in a model

independent way by taking the log-derivative of the above

behavior,

β þ 1 ¼ −
d log ðhxniÞ
d logðnÞ þOð1=nÞ: ð54Þ

A discretized form of the above expression that is suitable

for a practical implementation is by defining an effective

value of β at finite n as

βeffðnÞ≡ −1þ hxn−2i − hxnþ2i
hxni

n

4
: ð55Þ

As one uses moments at larger values of n in the above

equation, one will find βeffðnÞ to plateau at the value of

large-x exponent β. While this method is straightforward,

it also points to the challenge of addressing the large-x
exponent—one needs to compute larger moments for a

reliable estimate, and puts a limit on what lattice studies can

actually address about β without a modeling bias.

In Sec. VII, we determined the first few even moments in

a model independent manner. We used these estimates of

hx2iv; hx4iv; hx6iv and hx8iv from the model independent

analysis using Eq. (55). Since, the larger moments are

required we used the values from the fits where prior was

imposed on hx2iv. Even though the larger moments are

relatively noisier, the ratios of moments that enter Eq. (55)

are better determined owing to their correlations. We

estimated the central values of βeff and its statistical and

systematic error by the outlined procedure to take care of

the variations in ½z1; z2� and P0
z . We show the result of

βeffðnÞ as a function of n in Fig. 27 from the two lattice

spacings (red and blue data points). We notice that it is

possible at the most to use data up to βeffðn ¼ 6Þ. As one
would expect, the higher order 1=n corrections to the n−β−1

behavior to be the largest for n ¼ 2, and hence, we find
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βeffðn ¼ 2Þ to have larger value around 3.5. For n ¼ 4 and

n ¼ 6, the value of βeff decreases and stays around 1.5; the

errors are large enough to see any n dependence beyond

n ¼ 2. Thus taking the well determined estimate at n ¼ 4

as a proxy for the β, we find

βeffðn ¼ 4Þ ¼

8

<

:

1.73
þð39Þð37Þ
−ð35Þð37Þ ; a ¼ 0.06 fm

1.53
þð21Þð25Þ
−ð21Þð25Þ ; a ¼ 0.04 fm:

ð56Þ

Thus, we find some evidence for β to be between 1 and 2,

consistent with both our model dependent findings of β ≈ 1

and with quark-counting rule expectation of 2. Thus, we are

unable to rule out β ¼ 1 or 2 simply from this model

independent analysis. Also, a priori, it is not clear what

large-n means; whether one will observe an approximate

plateau for βeffðnÞ at n ∼Oð1Þ orOð100Þ. Using our model

dependent fits as well as JAM result, we will show some

evidence below that the plateau is likely to develop for

n ∼Oð1Þ for pion.
In order to see the expected behavior of βeff for n > 6, we

simply use hxniðα; β; s; tÞ from our PDF fits in the last

section to compute the corresponding βeffðnÞ. In this case,

we know that βeffðα; β; s; tÞ → β in the large-n limit, and

we already found such model dependent analysis predict

β ≈ 1. We show this resulting βeffðn; α; β; s; tÞ as the red

and blue bands in Fig. 27. We used the parameters as

obtained from combined fits toMðz; Pz; n
0
z ¼ 1Þ using a fit

range ½z1; z2� ¼ ½a; 0.72 fm� for the case shown. We also

show the expected result for βeff using the JAM result as the

green curve. The important observation here is that the

models of the type in Eq. (46) predict that βeffðnÞ is almost

plateaued by n ¼ 4, and makes βeffðn ≥ 4Þ to be mean-

ingful estimators of β. To contrast with the JAM expect-

ation for βeff, we also plot βeff as expected using ASV soft-

gluon resummed analysis as the purple dashed curve (in

order to infer the higher moments for the ASV result, we

interpolated their result evolved to μ ¼ 3.2 GeV with

fðxÞ ¼ 1.091x−0.443ð1 − xÞ2.484ð1 − 1.842
ffiffiffi

x
p þ 4.959xÞ.)

The βeff for ASV never goes below 2, and approaches its

plateau value at 2.48 from below.

C. A semi-model-independent analysis of pion

matrix element and exponent β

Based on the asymptotic behavior of large-n moments,

we propose a new way to fit the moments to zPz and z2

dependence of pion matrix elements and, at the same time,

obtain the value of β in a manner that is not dependent on

PDF ansatz. We fit low moments up to an orderNasym in the

usual manner and use the asymptotic expression for the

moments beyond the order Nasym using Eq. (53) with some

1=n corrections, as

hxniv ≡

8

<

:

an; n < Nasym

n−β
�

A0

n
þ A1

n2
þ A2

n3

�

; n ≥ Nasym;
ð57Þ

The fit parameters are the lower moments a2; a4;…;
aNasym−2

, and the parameters β; A0; A1; A2 that model the

large-n moments. We input the constraint that a2 > a4 >

… > aNasym−2
> hxNasymiðβ; A0; A1; A2Þ. Using this model

for the moments in Eq. (30), we fit the parameters to best

describe Mðz; Pz; P
0
zÞ in the same way as we described in

Sec. VII, but we use z up to 0.72 fm in this analysis. Some

analysis bias comes from the choices of Nasym and the order

of 1=n corrections to use. We used Nasym ¼ 2, 4, and 6 in

our fits, and any usage of more than A2 in the fits made

the fits unstable and did not converge properly (it is an

asymptotic series after all). It was quite surprising that we

were able to even use Nasym ¼ 2 in the analysis to get good

fits, i.e., using the hypothesis that moments starting from

hx2iv can be described by the asymptotic expression in

Eq. (57). The resulting values of hxniv using this method

compares well within errors with the moments obtained in

Sec. VII and Sec. VIII. For example, using the ratio scheme

with n0z ¼ 1 in the a ¼ 0.06 fm lattice and with Nasym ¼ 4,

we get hx2iv¼0.110ð3Þ, hx4iv¼0.038ð5Þ, hx6iv¼0.016ð4Þ
which compares well with the other determinations

(and for this case, the other parameters were β¼
1.20ð21Þ;A0 ¼ 0.87ð21Þ;A1 ¼ −0.51ð47Þ;A2 ¼ −0.28ð28Þ
and χ2=dof ¼ 46.5=48). The novel outcome of this analysis

is the estimate of β in addition to moments, and for the

FIG. 27. The plot shows the effective large-x exponent βeffðnÞ
as a function of n. The data points are obtained by using values of
moments hxniv obtained from the model independent combined

fits. The smaller error bar is only the statistical error and larger

error bar is statistical plus systematic error. The red and blue

points are the results using our a ¼ 0.06 fm and 0.04 fm

respectively. The red and blue bands are the expectation for

the behavior of βeffðnÞ as obtained from the model-dependent fits

to the pion matrix elements. The green curve is the expectation

using the JAM data [79] and the purple dashed curve is obtained

using the ASV analysis [35].
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n0z ¼ 1 ratiomatrix element using fits from z ¼ a to 0.72 fm,

we get

β ¼

8

>

>

<

>

>

:

0.93þ11
−10 ; Nasym ¼ 2

1.20þ20
−26 ; Nasym ¼ 4; for a ¼ 0.06 fm;

1.79þ59
−36 ; Nasym ¼ 6

β ¼

8

>

>

<

>

>

:

0.85þ11
−15

; Nasym ¼ 2

1.02þ16
−12 ; Nasym ¼ 4; for a ¼ 0.04 fm:

1.82þ51
−40 ; Nasym ¼ 6

ð58Þ

As one relaxes the order Nasym where large-n asymptotic

behavior sets in from Nasym ¼ 4 to 6, the best fit values of β

changes from a smaller value≈1.0ð2Þ to≈1.8ð5Þ. Thus, this
analysis suggests that the values of β around 1 seem

preferred when one is aggressive on the order Nasym, but

β is consistent within 1 − σ error (albeit a noisier estimate) if

one uses conservatively largerNasym ≥ 6.We reach the same

conclusion again; in order to obtain a conclusive result on β,

we need even more precise data at larger Pzz to be sensitive
to higher moments.

X. CONTINUUM ESTIMATES

In the last part of the paper, we discuss the continuum

estimates of the PDF and its moments. The estimates are

speculative because we only have two lattice spacings,

nevertheless both very fine. We should note that we already

demonstrated the presence of lattice spacing effects of the

type ðPzaÞ2 at distances of the order of few lattice spacings

and took care of them in our analysis. Once the ðPzaÞ2
artifacts were removed, it was possible to describe the

boosted pion matrix elements at any finite lattice spacing

using the twist-2 OPE expressions. Therefore, we assume

that any additional lattice spacing effects will simply affect

the values of the extracted moments themselves. That is, we

model the moments hxniðaÞ at any fixed lattice spacing a to

behave as

hxnivðaÞ ¼ hxniv þ dna
2; ð59Þ

where hxniv is the continuum value and dn are numerical

coefficients that can be fit to the data. One should note that

there could be residual OðαsaÞ corrections as well, which
we are implicitly assuming to be small compared to tree-

level Oða2Þ artifacts in the fine lattices we are using. Such

dependences on fit forms need to checked in a precise

analysis of continuum extrapolations that can be performed

with data from multiple lattice spacings, but the extrapo-

lations presented here are meant to be only rough estimates.

We repeated all the analysis (model-independent estimates

of even moments, fits to model PDFs, the semi-model

dependent analyses) presented in the previous sections

using combined fits to both a ¼ 0.06 fm and 0.04 fm data

(for fixed physical values of z2, and keeping n0z to be the

same between the two lattice spacings) using the above

ansatz for hxnivðaÞ in the twist-2 OPE expressions;

concretely, we used fits of the type

Mðz; Pz; P
0
z ; aÞ

¼
P

ncnðz2μ2Þðhxni þ a2dnÞ ð−iPzzÞn
n!

þ rðaPzÞ2
P

ncnðz2μ2Þðhxni þ a2dnÞ ð−iP
0
zzÞn

n!
þ rðaP0

zÞ2

�

; ð60Þ

for the ratio schemes with P0
z ≠ 0 for this analysis. We

found using d2 and d4 as additional fit parameters was

sufficient to describe the data at both the lattice spacings

with χ2=dof between 0.5 and 1 depending on the range of

fits and analysis type. Since we found that the ratio scheme

succeeded in reducing higher-twist effect well, we focus on

this scheme in order to discuss our best estimates and their

continuum estimates. As a sample result from this analysis,

in Fig. 28, we show the a2 extrapolation of hx2iv and hx4iv
as obtained from the above analysis at fixed z2 ¼ 0.5 fm

and z1 ¼ a using n0z ¼ 1 for both lattice spacings. For the

case shown, we used the 4-parameter PDF ansatz for the

combined fit. The two data points in the plot are the values

for the same case at fixed a ¼ 0.04 fm and 0.06 fm. We

remind the reader that this is not a straight-line fit to the

two data point, but rather an outcome of the combined

analysis as described above (with d2 ¼ 3.1ð1.8Þ fm−2,

d4 ¼ 0.79ð62Þ fm−2, and χ2=dof ¼ 60.5=92.)
In Table III, we tabulate all our estimates from different

kinds of analysis from the previous sections using only

the ratio schemes with n0z ¼ 1, 2, where we expect the

higher-twist corrections to be even milder. Along with the

estimates at two fixed a, we also tabulate our continuum

estimates based on the above analysis for each quantity.

FIG. 28. Estimate of continuum extrapolation of hx2iv and

hx4iv from combined fits to a ¼ 0.04 fm and a ¼ 0.06 fm

data using the ansatz in Eq. (60). For the case shown, n0z ¼ 1,

½z1; z2� ¼ ½a; 0.5 fm�, and analyzed using 4-parameter PDF

ansatz. The black circles are the data from the analysis at the

two fixed a. The bands are the a2 extrapolations using the

combined fits.

VALENCE PARTON DISTRIBUTION OF THE PION FROM … PHYS. REV. D 102, 094513 (2020)

094513-29



TABLE III. Summary of results from analyses presented this paper at μ ¼ 3.2 GeV. Each row is a type of analysis, namely—(a) the model-independent estimates of the moments

(b,c) fits to 2- and 4-parameter PDF ansatz, (d) a semimodel independent analysis based on modeling hxniv by the asymptotic formula for n ≥ 4, and (e) the estimate of exponent β

from βeffðn ¼ 4Þ. The columns are the outcomes; namely, the value of the first four valence moments hxniv, the parameters α, β, s, t in the PDF ansatz

fπvðxÞ ∼ xαð1 − xÞβð1þ s
ffiffiffi

x
p þ txÞ. For each analysis, values from two different lattice spacings a are given, and also our continuum expectations, denoted by a → 0, based

on a2 extrapolation are also given. For these estimates, we used the ratio scheme with n0z ¼ 1, 2.

Method a (fm) hxiv hx2iv hx3iv hx4iv α β s t

(a) Model independent analysis 0.06 0.1088(48)(58) 0.0346(57)(73)

0.04 0.1050(43)(39) 0.0382(44)(54)

a → 0 0.0993(71)(54) 0.0356(39)(60)

(b) 2-parameter 0.06 0.2470(92)(52) 0.1122(54)(51) 0.0649(53)(62) 0.0423(52)(60) −0.33ð15Þð11Þ 1.02(37)(32)

0.04 0.2289(96)(44) 0.1083(47)(34) 0.0652(49)(36) 0.0444(48)(34) −0.51ð10Þð05Þ 0.66(24)(20)

a → 0 0.216(19)(08) 0.1008(69)(43) 0.0604(39)(46) 0.0408(37)(44) −0.55ð15Þð08Þ 0.66(34)(22)

(c) 4-parameter 0.06 0.2457(92)(61) 0.1121(54)(50) 0.0649(53)(62) 0.0420(51)(59) −0.40ð16Þð14Þ 1.11(41)(34) −0.14ð16Þð20Þ 1.0(1.0)(1.2)

0.04 0.2253(98)(45) 0.1080(46)(34) 0.0647(47)(38) 0.0436(43)(38) −0.61ð13Þð06Þ 0.86(22)(25) −0.20ð24Þð19Þ 2.5(1.9)(2.5)

a → 0 0.213(19)(08) 0.1009(68)(42) 0.0607(40)(47) 0.0410(40)(47) −0.61ð16Þð08Þ 0.77(26)(30) −0.19ð27Þð17Þ 1.5(2.0)(1.7)

(d) large-n asymptotics 0.06 0.1093(48)(53) 0.0365(44)(58) 1.40(25)(30)

0.04 0.1050(49)(37) 0.0392(38)(43) 1.12(24)(20)

a → 0 0.0996(71)(61) 0.0386(56)(58) 1.15(23)(22)

(e) Effective β 0.06 1.73(39)(37)

0.04 1.53(21)(25)

a → 0 1.55(34)(27)
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There is only little effect from including a2 corrections. We

find that removing the lattice spacing effect have a slight

tendency to bring the moments closer to the JAM values of

0.223, 0.095, 0.052, 0.032 for the first four moments. The

best fit values of the large-x exponent β from the fits,

however, continue to remain closer to 1, and thus, the lattice

spacing effects might not be an issue in our results.

As a check, we also used an ansatz similar to Eq. (59)

to include only OðaÞ correction (that could result from

operators being used) to moments instead of Oða2Þ cor-

rection as done above. Such results were consistent with

the Oða2Þ results presented above, albeit with larger error

bars. For example, for the case of 4-parameter PDF fit,

we obtained ðα; β; s; tÞ ¼ ½−0.70ð17Þð09Þ; 0.65ð30Þð32Þ;
−0.20ð20Þð14Þ; 0.9ð1.4Þð1.3Þ� which corresponds to first

four moments being 0.194(31)(15), 0.093(11)(07), 0.057

(5)(6),0.039(3)(5) respectively. A careful study using both

OðaÞ andOða2Þ terms in the extrapolation can be made in a

future study with more that two lattice spacings.

XI. CONCLUSIONS

In this paper, we presented a lattice computation of

the MS isovector u − d parton distribution function of

300 MeV pion and its moments using the recently pro-

posed twist-2 perturbative matching framework (large

momentum effective theory (LaMET) framework / short-

distance factorization framework). Using isospin sym-

metry, we related the properties of isovector pion PDF

to the valence u − ū PDF of pion, πþ.
In order to access the short distance physics required for

the perturbative twist-2 framework, we used two lattices
ensembles with very fine lattice spacings of a ¼ 0.06 fm
and 0.04 fm for the first time in such pion PDF compu-
tations. Using high statistics, we were able to compute the
required equal-time bilocal quark bilinear matrix elements
evaluated with pions boosted up to 2.42 GeV. Thus, a major
advancement resulting from this work is the demonstration
that current lattice calculations can satisfy both the theo-
retical requirement of sub-Fermi separations (in order to
be consistent with the OPE-based framework reliant on
naive power counting for operator hierarchy), and the
requirement of large hadron momentum (in order for a
controlled truncation of the OPE at leading-twist). As a
handle on quantifying perturbative uncertainties and other
higher-twist systematics, we used multiple renormalization
schemes for the equal-time matrix element, namely RI-
MOM, ratio scheme and new variants thereof with the
advantage of reducing higher-twist effects. As a technical
elaboration, we proposed and used the pion matrix element
at zero pion momentum as a suitable quantity to study
higher-twist effects and demonstrated practically as to why
the ratio renormalization scheme effectively eliminates
higher-twist effects to a good accuracy (with respect to
typical errors in lattice data at larger z) even up to 1 fm
distances.

From the renormalized boosted pion matrix elements,

we performed two kinds of analysis. In the first kind, we

obtained the first few even valence moments hxniv by

fitting both z2 and Pzz dependence of the matrix elements

making use of perturbative matching coefficients at 1-loop

order. Though the twist-2 perturbative matching method-

ologies help us access higher moments without the problem

of mixing, especially with the usage of priors on lower

moments, it comes at a cost of introducing dependencies on

the range of z and Pzz used in the fits, and we discussed

them in this work. Folding in such dependencies in the

systematic error, we estimated the MS moments hx2iv;
hx4iv and hx6iv at μ ¼ 3.2 GeV. In the second kind of

analysis, we reconstructed the x-dependent valence pion

PDF by modeling the PDF via xαð1 − xÞβGðxÞ type ansatz,
and fitting the parameters of the model so as to best des-

cribe both z and zPz dependence of pion matrix elements in

various renormalization schemes with z restricted to sub-

Fermi values. We summarize our reconstructed valence

PDFs at μ ¼ 3.2 GeV from the two lattice spacing in the

top panel of Fig. 29—the estimate using only statistical

error is shown as darker band, and statistical and systematic

error (coming from fit ranges, renormalization scheme

used, and the PDF ansatz used) is shown as the lighter

band. This model dependent method lets us access the odd

moments of valence PDF as well. We also provided

estimates of the values of moments as well as the PDF

in the continuum limit based on the results at the two lattice

spacings; the numerical results from various analysis

approaches are summarized in Table III. In the bottom

panel of Fig. 29, we have shown our estimate for the PDF in

the continuum limit for the 300 MeV pion.

We discussed the large-x behavior using our model-

dependent PDF that we reconstructed from fits. We found

that even though the overall x dependence of the recon-

structed PDFs remained the same with variations coming

from the fit range, renormalization scheme and PDF model

used, the specific details such as the value of the large-x
exponent β showed a larger dependence on such analysis

choices, but largely showed a tendency to be close to 1. To

avoid such issues, we proposed a new model independent

observable, constructed out of moments, that converges to

the large-x exponent β as one uses larger moments. At

present, our computed matrix elements are sensitive only to

moments up to order 4 or 6, and given this limitation, we

find the effective value of the exponent to be between 1 and

2, but ruling out neither. However, it is at present hard to

conclude if such an estimate would remain unchanged as

one includes larger moments, which would be possible with

increased statistics in the future. But, with this work, the

computation that one should perform to reach a model

independent robust conclusion about β is clear.

Finally, we compare our PDF determinations with other

global fit analysis in the summary plot in Fig. 29. Along

with our determinations of valence PDFs at the two lattice
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spacing (top panel) and our estimate of valence PDF in the

continuum limit (bottom panel), we have also shown the

Fermilab E-0615 estimate [45] (green symbols), the ASV

reanalysis of the Fermilab result after taking soft-gluon

resummation into account [35] (dashed green line), the

recent JAM Monte-Carlo global analysis [79] (black band)

and the result from analysis using xFitter [84] (purple line),

all evolved to the same scale μ ¼ 3.2 GeV. One can find

an overall agreement of our determinations with the

phenomenological results; with better agreement with

JAM, xFitter and the initial E-0615 estimates, than with

the ASV result. Some caveats are clear—first, our compu-

tation is for 300 MeV pion, and hence a future computation

with physical pion mass is crucial. Second, we used 1-loop

matching coefficients to match the lattice results to MS

PDF, and it is at present unclear what the effect of adding

higher-loop perturbative terms in the matching kernel (and

also ASV-type resummation of soft-gluon contribution in

the matching kernel, if at all possible) on the extracted

PDFs and moments will be (very recently, works [22–24]

related to 2-loop matching appeared as the present manu-

script was being completed). We leave these questions for

the future.
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APPENDIX A: EFFECT OF LATTICE

PERIODICITY ON Pz = 0 THREE-POINT

FUNCTION

The value of mπLt measures quantitatively the magni-

tude of wrap-around effects due to lattice periodicity in the

temporal direction. Its value on the 483 × 64 lattice is 5.85

and on 644 lattice is 3.9. Thus, we expect the wrap-around

effect in correlation functions to be more in our finer lattice

FIG. 29. Our determinations of valence PDF of pion, fπvðx; μÞ,
at factorization scale μ ¼ 3.2 GeV. Top panel: the PDF deter-

mination from a ¼ 0.04 fm data (red) and a ¼ 0.04 fm data

(blue). Bottom panel: our estimate of PDF in the continuum limit

(blue). In both top and bottom panels, the darker inner band

includes only the statistical error. The lighter outer band includes

both statistical error as well as the systematic errors. Our

estimates are compared with the FNAL E-0615 estimate [45]

(green symbols), ASV estimate [35] (green dashed line), JAM

estimate [79] (black band) and xFitter analysis [84] (purple line).

Insets: the same data are replotted as the traditional xfπvðxÞ
versus x.
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than in the coarser lattice. We take care of this wrap-around

effect in two-point function by replacing A0 exp ð−mπtÞ
with A0½expð−mπtÞ þ expð−mπðLt − tÞÞ�. But there are

additional effects in the three-point function itself. To

quantify the effects of finite Lt on the three point function

we recall that finite Lt can be interpreted as inverse

temperature, and therefore, we can write

C3ptðts; τÞ ¼ Trðe−ðLt−tsÞHπe−ðts−τÞHOγt
e−τHπ†Þ; ðA1Þ

withH being the QCD Hamiltonian. Inserting the complete

set of energy eigenstates we can also write the above

expression as

C3ptðts; τÞ ¼
X

m;n;k

hmjπjnihnjOγt
jkihkjπ†jmie−τEn

× e−ðts−τÞEke−ðLt−tsÞEm : ðA2Þ

We can split the above sum into two parts; namely, a part

without any wrap-around effect in which the state jmi is the
vacuum j0i, and the states jni and jki run over excited

states with quantum number of pion. The second part

captures the wrap-around effect, and in which case, the

state jmi is the pion state, while the states jni and jki run
over states with vacuum quantum numbers. In the dis-

cussion below, we restrict these states to include j0i and the
first lightest isosinglet, G-parity positive state, jSi, with
energy ES. That is, we write the spectral decomposition of

the three-point function as

C3ptðts; τÞ ¼
�

X

n;k∈isotriplet

h0jπjnihnjOγt
jkihkjπ†j0i

× e−τEne−ðts−τÞEk

�

þ hπjπj0ih0jOγt
jSihSjπ†jπie−ðts−τÞESe−ðLt−tsÞEπ

þ hπjπjSihSjOγt
jSihSjπ†jπie−tsESe−ðLt−tsÞEπ :

ðA3Þ

The terms in the sum within the brackets is the part without

wrap-around effect, and we used this part in the main text to

extract the matrix element. The two terms below that are

due to finite Lt.

We focus on Oγt
ðz ¼ 0Þ now, where we can make well-

motivated estimates of the wrap-around effect. In this case,

the term in the second line in Eq. (A3) involving the

vacuum vanishes. Further, we make the following assump-

tions in order to estimate the wrap-around effect:

(1) The state jSi is a two-pion state jπ; πi with both the

pions with zero relative momentum, and projected to

be isosinglet, G-parity positive.

(2) The energy of the state Eπ;π ≈ 2Eπ .

(3) The amplitude hπjπjπ; πi ≈ h0jπjπi.
(4) The matrix element hπ; πjOγt

ðz ¼ 0Þjπ; πi≈
2hπjOðz ¼ 0Þjπi.

With these assumptions and using Eq. (A3), the ratio R ¼
C3pt=C2pt becomes

Rðz ¼ 0; ts; τÞ ≈ hπjOγt
ðz ¼ 0Þjπi

�

1þ 2e−EπLt

1þ e−EπLt

�

þ ðts; τÞ dependent excited state terms:

ðA4Þ

Thus, we have to correct our estimated value for hπjOγt
ðz ¼

0Þjπi from excited state fits by the factor above. For

nonzero Pz, the values of Eπ are large and the correction

factor is almost 1. For zero Pz, this wrap around effect is the

highest. For a ¼ 0.06 fm lattice, this factor is 1.0028,

which almost unity. However, for the finer a ¼ 0.04 fm

lattice, the correction factor at zero Pz is 1.020, which is

comparable to the estimated value of matrix element at

z ¼ 0 itself, and hence, it cannot be neglected. In Sec. IV,

we estimated hπjOγt
ðz ¼ 0Þjπi ¼ 1.045ð1Þ without taking

wrap-around effect in the three-point function into account.

We estimate the corrected value to be

hπðPz ¼ 0ÞjOγt
ðz ¼ 0ÞjπðPz ¼ 0Þi ¼ 1.024ð1Þ; ðA5Þ

for a ¼ 0.04 fm lattice. This is comparable to other values

of z ¼ 0 bare matrix elements at nonzero Pz for a ¼
0.04 fm lattice (refer Fig. 9). Thus, we understand quanti-

tatively the underlying issue in Pz ¼ 0 matrix element for

the finer lattice, and hence we avoided the usage of it in the

analyses discussed in the main text.

APPENDIX B: DISCUSSION ON ZV

In the main text, we normalized the z ¼ 0 renormalized

pion matrix elements to 1, thereby avoiding the issue of

vector current renormalization factor. Here, we provide

details of the renormalization constant ZV of the vector

current Oμ ¼ ψ̄γμψ in the RI-MOM scheme for our two

lattices. We can write ZV ¼ Zγtγt
Zq, where Zγtγt

is the

renormalization of the vertex function for γμ ¼ γt and Zq

is the renormalization of the quark field. We use the

same notation as in Ref. [42], where the details of RI-

MOM renormalization can be found. In Fig. 30, we show

ZV for the two lattice spacings used in our study, a ¼
0.04 fm and a ¼ 0.06 fm as function of the renormaliza-

tion point pR. To minimize the discretization effects, the

lattice momenta
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apμ ¼
2π

Lμ

�

nμ þ
1

2
δμ;0

�

ðB1Þ

are substituted by p0
μ ¼ sinðapμÞ, so p2

R ¼ P

μ¼1;4ðp0
μÞ2.

The vector current renormalization constant should not

depend on pR, because in the a → 0 limit the local current

is conserved. Nevertheless, we see a significant dependence

on pR. This dependence can be caused by lattice artifacts as

well as by nonperturbative effects that for large values of

pR can be parametrized by local condensates. As we use

off-shell quark states in Landau gauge in the RI-MOM

renormalization procedure the lowest dimension local

condensate is the dimension two gluon condensate hA2i
[89,90]. Lattice artifacts show up as breaking of the

rotational symmetry on the lattice. We see from Fig. 30

the fish-bone structure in the lattice data at the level much

larger than the statistical errors on ZV . All these effects need

to be taken into account if one wants to extract ZV . These

effects are easier to understand by analyzing Zq and Zγtγt
,

separately as discussed below.

In Fig. 31 and 32, we show the numerical results Zq and

Zγtγt
as function of pR. The numerical results on Zq have

much smaller statistical errors compared to Zγtγt
. The

relative statistical errors on Zq are always smaller than

4.5 × 10−4 and for large pR are smaller than 5 × 10−5. We

parametrize the pR dependence of Zq and Zγtγt
by the

following form

Zi ¼ Z0
i þ B=ðapRÞ2 þ C · ðapRÞkð1þ C4Δ

ð4Þ þ C6Δ
ð6ÞÞ;

i ¼ q; γt; ðB2Þ

where

Δ
ð4Þ ¼

P

μðp0
μÞ4

p4
R

; Δ
ð6Þ ¼

P

μðp0
μÞ6

p6
R

: ðB3Þ

This form is motivated by the 1-loop lattice perturbation

theory [91,92] and the perturbative analysis with dimension

two gluon condensate [93]. For the nonperturbative clover

action k ¼ 2, while for Wilson action k ¼ 1. For HISQ

smeared clover action with tapdole improved value of

csw we expect OðaÞ discretization errors to be proportional

to α2s with a very small coefficient, so it is reasonable

to assume that the dominant cutoff effects scale like a2.
Nevertheless, we also perform fits using k ¼ 1. In Ref. [92]

the condensate contribution was ignored but it was

included in the analysis of PNDME collaboration [69]

when fitting the pR dependence of the renormalization

constant. For Zγtγt
and a ¼ 0.06 fm the fits with k ¼ 1 and

k ¼ 2 work well, while for a ¼ 0.04 fm the fits with k ¼ 2

work better. Fits of Zγtγt
with k ¼ 1 give χ2=df that is

around 2 for a ¼ 0.04 fm. It is obvious from Figs. 31 and

32 that the condensate contribution to Zγtγt
is quite small,

while it is large for Zq.

The fits of Zq have very large χ2=dof, most likely

because of the very small statistical errors. The value of

the condensate obtained from the fit is compatible with the

value g2hA2i ∼ 4 GeV2 found in Ref. [90] for a ¼ 0.06 fm.

For the smaller lattice spacing it is, however, is twice larger,

which could be due to instabilities in the fits. Therefore we

fix the condensate to the above value in order to stabilize

the fits. From the fits, we obtain the values of Z0
i which can
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serve as estimates for Zq and Zγtγt
for the two lattice

spacings. Multiplying these two renormalization constants

we obtain ZV . The results of our analysis are summarized

in Table IV. The large uncertainties in Zq come from the

differences in the fits with the condensate contribution

being fixed and treated as the fit parameter. We can

compare our result for ZV at a ¼ 0.06 fm with the value

ZV ¼ 0.945ð15Þ from the PNDME collaboration. Our

result is slightly larger.

APPENDIX C: LEADING TWIST TARGET

MASS CORRECTION

Unlike the light-cone ITD, the terms in the twist-2 OPE

of the equal-time bilocal bilinear have trace terms, which

are proportional to powers of hadron mass. At the level of

twist-2 trace terms, such target mass effects have been

calculated explicitly [73,74]. For the case of pion matrix

element, such target mass corrected expressions are

obtained from Eq. (24), Eq. (27), and Eq. (30) given by

the replacement

ðPzzÞn → ðPzzÞn
X

n=2

k¼0

ðn − kÞ!
k!ðn − 2kÞ!

�

m2
π

4P2
z

�

k

; ðC1Þ

where n are even integer valued for the u − d pion PDF

case. Including such correction terms in our analysis did

not change the results (i.e., effectively the inferred values of

valence pion moments from twist-2 OPE) well within their

errors. However, there could be unaccounted target mass

effects that originate from higher-twist terms and it is an

expectation that their coefficients are Oð1Þ or smaller, and

hence suppressed as simple powers of m2
π=P

2
z . We ignore

any such effect in this computation.

APPENDIX D: GOODNESS OF FITS

In Fig. 33, we plot the χ2=dof for our fits to the

2-parameter and 4-parameter PDF ansatz, Eq. (46) in the

main text. The description of the plot is similar to Fig. 25.

For each case (½z1; z2�, renormalization scheme and ansatz),

the χ2=dof as sampled during the bootstrap is shown. The

definition of χ2 includes both statistical error as well as

perturbative uncertainties via Eq. (48).

APPENDIX E: DEPENDENCE OF LARGE-x

EXPONENT ON FACTORIZATION SCALE

The parameters used in 2- and 4-parameter PDF ansatz

are dependent on the factorization scale μ used in the

Wilson coefficients cnðμ2z2Þ that enter the twist-2 OPE. In

Fig. 34, we address the dependence of the large-x exponent

βðμ2Þ on the factorization scale μ (cf. [94] for a similar

analysis on phenomenological PDFs). We repeated the

analysis of matrix elements in ratio scheme with n0z ¼ 1 at

fixed ½z1; z2� ¼ ½a; 0.5 fm� using different values of μ,

varying by few factors around the typical momentum

scales of ∼3 GeV as set by the momenta Pz we used,

and the lattice spacing used. This is so as to keep logarithms

of μ=Pz and μz small, and be consistent with the fixed order

calculation. From each such μ, we obtained the best fit

values of βðμ2Þ. In Fig. 34, we show βðμ2Þ as a function of

μ2 from the two lattice spacings. In the main text, we

presented results at μ2 ¼ 10.2 GeV2. The variation with μ

is mild, perhaps logarithmic in the range of μ used. Thus,

we do not expect the results to change drastically due to the

choice of μ used.

FIG. 33. χ2=dof for the 2-parameter (red) and 4-parameter

(blue) fits is shown from various fit ranges and renormalization

schemes. This plot accompanies Fig. 25 and Fig. 26. The

description of the plot is similar to Fig. 25. The left panel is

for a ¼ 0.06 fm and the right one for a ¼ 0.04 fm.

TABLE IV. The values of the renormalization constants ob-

tained from the different fits.

k ¼ 2 k ¼ 1

a [fm] Zq Zγtγt
ZV Zq Zγtγt

ZV

0.06 1.02(2) 0.944(1) 0.963(20) 1.04(1) 0.930(1) 0.967(10)

0.04 1.03(3) 0.950(3) 0.980(30) 1.05(3) 0.920(3) 0.966(30)

FIG. 34. The value of large-x exponent, βðμ2Þ, for the valence
PDF at the MS scale μ2.
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APPENDIX F: ASYMPTOTIC EXPANSION

OF hxni AT LARGE-n

We consider PDFs of the form,

fðxÞ ¼ N xαð1 − xÞβGðxÞ; ðF1Þ

with GðxÞ being a smooth well-behaved function that does

not vanish between 0 and 1. Then, the nth moment is

hxni ¼ N

Z

1

0

xαþnð1 − xÞβGðxÞdx≡N

Z

1

0

eFðxÞdx;

ðF2Þ

for FðxÞ ¼ ðnþ αÞ logðxÞ þ β logð1 − xÞ þ logGðxÞ.
Now, we proceed toward doing a saddle point approxi-

mation in order to evaluate the leading term in the above

integral in the limit of infinite n. The maximum of FðxÞ
occurs at x ¼ x0 ¼ 1 − β=nþOð1=n2Þ, which is less

than 1 and hence within the domain of integration,

and on the real axis. Thus, FðxÞ in the proximity of

x ¼ x0 is

FðxÞ≈ log

�

ββ

nβ

�

þn log

�

1−
β

n

�

þ logGð1Þ− n2

2β
ðx− x0Þ2:

ðF3Þ

Thus, the saddle point approximation gives the asymp-

totic dependence on n,

hxni ∝ 1

nβþ1
; ðF4Þ

from the first term in Eq. (F3) and an extra n from the

change of variables in the last term of Eq. (F3) to

perform the remaining Gaussian integral. The asymptotic

series for hxni in the limit of large-n is given by the

standard multiplication correction factor which is a series

in 1=n.

APPENDIX G: ATTRACTOR AT x= x�ðβÞ FOR

FAMILY OF PDFS AT FIXED hxi
In this Appendix, we explore a curious feature of the

extracted PDFs in Fig. 22, Fig. 23, Fig. 24, and Fig. 29; in

all these figures, one can observe that the error bands for the

best fit PDFs pinch at around x ≈ 0.6. We understand this to

arise due to a weak attractor in x − fðxÞ plane, once we

specify a value of the first moment hxi and the value of β. In
Fig. 35, we plot PDFs of the form fðx; α; βÞ ¼ N xαð1 −
xÞβ that have fixed hxi ¼ 0.23 (the typical value for pion)

and with β around 1. It is interesting to observe that all

these PDFs have a tendency to converge around x ¼ 0.6 as

in our PDFs in the main text. Thus, the pinch observed

around x ¼ 0.6 is actually a robust feature arising of hxi ≈
0.23 and β ≈ 1 in our calculations.

One way to understand this behavior is the following.

Once we specify hxi ¼ a0, for some a0, then it induces a

relation α ¼ αðβ; a0Þ; for the 2-parameter ansatz, it is

αðβ; a0Þ ¼ ð1 − 2a0 − a0βÞ=ða0 − 1Þ. Therefore, the PDF

is also of the form fðx; αða0; βÞ; βÞ. For there to be a basin

of attraction at x ¼ x�, it satisfies ∂fðx;αða0;βÞ;βÞ
∂β

jx¼x� ¼ 0.

One can demonstrate numerically that there exists such a

solution at x ¼ x� ≈ 0.57 when β ¼ 1 and hxi ¼ 0.23.

Therefore, this feature of PDF ties directly to our various

estimates, and forms yet another consistency check of our

observations. However, it is not clear if such an effect

would also persist when deviation from 2-parameter PDF

ansatz is significant. It is worth pointing out that there could

be other robust features of valence PDF, for example, a

study [95] found a near constant relationship of peak

position and height on the factorization scale μ. It would

be interesting to make use of such features in the future

analysis.

APPENDIX H: RESULTS USING THE PION

MATRIX ELEMENT IN RATIO SCHEME

WITH P0
z = 0 (REDUCED ITD)

FOR a = 0.06 FM LATTICE

In the main text, we utilized ratio scheme with nonzero

reference scale P0
z . We had two reasons to do this; first, by

using all the momenta Pz as well as the reference P
0
z greater

than the ΛQCD scale, we adhered to the twist-2 perturbative

matching framework closely. This is to be contrasted with

the usage of P0
z ¼ 0 in the ratio scheme (reduced ITD)

which relies on the cancellation of higher twist effects,

which our data also supports, but nevertheless lacks a firm

theoretical basis. Second, we observed a large lattice

periodicity effect in the Pz ¼ 0 three-point function in

the fine lattice (see Appendix A). Therefore, we avoided the

traditional P0
z ¼ 0 reference scale. In this Appendix, for

completeness sake, we present results including the P0
z ¼ 0

ratio for the a ¼ 0.06 fm lattice, where at least there is no

FIG. 35. The plot shows different set of 2-parameter PDFs,

fðx; α; βÞ, that have fixed hxi ¼ 0.23. The different colored

curves correspond to different values of β centered around

β ¼ 1. The dashed line is the value x� ¼ 0.57 which is the fixed

point for the PDFs.
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issue with the lattice wrap-around effect. In addition, in

Sec. VI, we provided empirical evidence and rationale

behind the validity of using P0
z ¼ 0 in defining renormal-

ized ratios that is consistent with twist-2 matching frame-

work, given the statistical errors in the data. Therefore, we

include the results from P0
z ¼ 0 ratio with the other two

nonzero P0
z presented in the main text.

In Fig. 36, we include P0
z ¼ 0 ratio results (black

symbols) for lowest three even moments along with other

two nonzero P0
z results that we presented in Sec. VII. We

refer the reader to Sec. VII and the captions of the figures

therein for detailed explanations. There is a slight tendency

for the extracted moments using P0
z ¼ 0 to be smaller than

at higher nonzero P0
z . If we include the P

0
z ¼ 0 results along

with the other results, we estimate the moments in a model-

independent way as hx2iv ¼ 0.1071
þð33Þð54Þ
−ð37Þð54Þ , hx4iv ¼

0.0317
þð50Þð75Þ
−ð50Þð75Þ and hx6iv ¼ 0.0102

þð23Þð39Þ
−ð20Þð39Þ with the same

methodology as in Sec. VII.

In Fig. 37, we present results using fits to PDF ansatz.

We refer the reader to Sec. VIII for explanations and

methodology. In the top panel, the ratio matrix element

with P0
z ¼ 0 is shown along with the bands resulting

from fits to the 4-parameter ansatz. In the bottom panel,

the best fit PDF using 4-parameter ansatz is shown

(green) and compared to results using other nonzero P0
z .

The PDFs using different P0
z remain more or less the

same. The values of the exponent including results

from P0
z are α ¼ −0.40

þð14Þð17Þ
−ð14Þð17Þ and β ¼ 1.30

þð35Þð46Þ
ð35Þð46Þ .

These results are to be compared with the entries in

Table III. There is a tendency for P0
z ¼ 0 to pull the

result for β higher; an opposite behavior wherein β

increased when P0
z is increased would have been more

desirable. The inferred moments from model-dependent

ansatz including P0
z ¼ 0 ratio with other ratio schemes

give hxiv¼0.2470
þð93Þð66Þ
−ð94Þð66Þ , hx2iv¼0.1100

þð38Þð57Þ
−ð36Þð57Þ , hx3iv ¼

0.0617
þð44Þð70Þ
−ð42Þð70Þ , and hx4iv ¼ 0.0393

þð44Þð67Þ
−ð43Þð67Þ . Using the

analysis using asymptotic expansion for moments with

Nasym ¼ 4 as presented in Sec. IX, we get β ¼ 1.47
þð27Þð30Þ
−ð23Þð30Þ .

The analysis of effective β that we discussed in Sec. IX

FIG. 36. Plot shows the first three even moments obtained on

a ¼ 0.06 fm lattice in a model independent manner as described

in Sec. VII. The description of the three plots is similar to that in

Fig. 17, Fig. 18, and Fig. 19. In addition to the two values of

P0
z ≠ 0, this plot includes P0

z ¼ 0 reference scale for the ratio.

FIG. 37. The plot is on the 4-parameter PDF ansatz fits to the

P0
z ¼ 0 ratio data on a ¼ 0.06 fm lattice. The top panel shows the

ratio data a function of Pzz along with the fits. The bottom panel

shows the PDF extracted from P0
z ¼ 0 ratio with other ratio data

at nonzero P0
z discussed in the main text. The description of the

plots are similar to the ones in Fig. 21 and Fig. 22.
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gives βeffðn ¼ 4Þ ¼ 2.04
þð33Þð50Þ
ð35Þð50Þ that is again consistent

with both β ¼ 1 and β ¼ 2.

APPENDIX I: ANALYSIS IMPOSING β = 2

IN PDF ANSATZ

In Sec. VIII, we used 2- and 4-parameter PDF ansatz in

Eq. (46) to reconstruct the PDF that best describes the real-

space lattice data. In that analysis, we kept β as a free

parameter. Through that analysis, we found PDFs with

β ≈ 1 or less to best describe the data. Here, we do the

following; we take β ¼ 2 as if it is a well-established fact,

and impose the constraint β ¼ 2 in the 4-parameter ansatz

and fit only α, s, and t to minimize χ2. That is, even though

there is a set of PDF that better describe the lattice data in

the space of ðα; β; s; tÞ, we restrict now to a subspace

ðα; β ¼ 2; s; tÞ and ask what PDFs within this subspace best
describes the data.

Let us take a specific case of P0
z ¼ 0.43 GeV ratio matrix

element on a ¼ 0.06 fm lattice. We fit the lattice data

in the range z ∈ ½a; 0.5 fm�. The resultant χ2=dof for this
3-parameter ansatz was of course larger compared to the

4-parameter ansatz, but not very large either; for the

4-parameter ansatz for the same case, χ2=dof ≈ 25=36
while it was 56=37 for the 3-parameter one tried here.

The resulting PDF is shown as the blue band in Fig. 38. For

comparison, the unconstrained 4-parameter PDF result is

also shown. The β ¼ 2 result closely hugs the best-fit result

and tries to lie within the 1-σ vicinity of it. The error bar on

the constrained PDF is small because there only exists a

small set of PDF with β ¼ 2 that have a decent χ2. One

might wonder if imposing β ¼ 2 took our result closer to

the ASV result [35]. For this, the ASV result is shown as

the green dashed line Fig. 38. The β ¼ 2 result actually

misses the ASV result badly at intermediate x at the

expense of agreeing well very close to x ¼ 1. It is

fascinating that this is actually due to robust tendency of

the PDFs to pass through an approximate fixed-point at

x ¼ x� (≈0.6 specific to our data) that we discussed in

Appendix G and determined by the first moment. Not

surprisingly, the β ¼ 2 fits resulted in values of first four

moments as 0.254(5),0.108(3),0.057(2), and 0.034(2) for

the case discussed, which compares well with the first four

moments for the same case obtained using a full 4-

parameter fit; namely, 0.245(8),0.111(3),0.064(4) and

0.040(5). This analysis for fixed β ¼ 2 assumes a very

specific functional form for GðxÞ ¼ 1þ s
ffiffiffi

x
p þ tx. Thus, it

is very much a possibility that by choosing some other

flexible functional form for GðxÞ, one might still be able to

get β ≈ 2 and get better χ2. We do not explore this any

further in this paper since effective β analysis addresses this

in a better manner.
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