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We determine the Δð1232Þ resonance parameters using lattice QCD and the Lüscher method. The

resonance occurs in elastic pion-nucleon scattering with JP ¼ 3=2þ in the isospin I ¼ 3=2, P-wave

channel. Our calculation is performed with Nf ¼ 2þ 1 flavors of clover fermions on a lattice with

L ≈ 2.8 fm. The pion and nucleon masses are mπ ¼ 255.4ð1.6Þ MeV and mN ¼ 1073ð5Þ MeV, respec-

tively, and the strong decay channelΔ → πN is found to be above the threshold. To thoroughly map out the

energy dependence of the nucleon-pion scattering amplitude, we compute the spectra in all relevant

irreducible representations of the lattice symmetry groups for total momenta up to P⃗ ¼ 2π
L
ð1; 1; 1Þ,

including irreps that mix S and P waves. We perform global fits of the amplitude parameters to up to 21

energy levels, using a Breit-Wigner model for the P-wave phase shift and the effective-range expansion for

the S-wave phase shift. From the location of the pole in the P-wave scattering amplitude, we obtain the

resonance mass mΔ ¼ 1378ð7Þð9Þ MeV and the coupling gΔ−πN ¼ 23.8ð2.7Þð0.9Þ.

DOI: 10.1103/PhysRevD.103.094508

I. INTRODUCTION

The Δð1232Þ (in the following denoted as Δ) is the

lowest-lying baryon resonance, typically produced when

energetic photons, neutrinos, or pions hit a nucleon [1].

While these three processes differ immensely, they have the

two-particle nucleon-pion scattering amplitude in common.

The scattering amplitude in which the Δ appears as an

enhancement in the P-wave with JP ¼ 3
2
þ and I ¼ 3

2
, often

also referred to as the P33 amplitude, where the notation

means l2I2J. For energies near the Δ mass, this amplitude is

nearly completely elastic [2,3].

Modern determinations of the Δ resonance parameters

are typically performed using data from experiments such

as CLAS12 at JLab and MAMI-A1 in Mainz. While the

results for the pole location differ slightly from the Breit-

Wigner parameters [4], the Δ is generally found to have a

mass of approximately 1230 MeV and a decay width of

approximately 100 MeV [5,6].
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Phenomenological studies of the Δ have been performed

using quark models, chiral perturbation theory, and related

effective field theories, and the S-matrix approach. From

the quark-model point of view, many baryons remain

elusive, but the Δ mass is reproduced quite well [7–9].

Chiral perturbation theory and related effective field

theories have shown great success in determining low-

energy scattering parameters and πN scattering amplitudes

[10–13]; an extensive review can be found in Ref. [14].

Analyses of the large experimental data sets using ampli-

tude models based on S-matrix principles were performed

in Refs. [15–17].

First-principles computations of Δ properties can be

done using lattice QCD. The Δ mass, assuming a stable Δ,

was studied in Refs. [18–23]. However, for quark masses

corresponding to pion masses below a certain value, the Δ

is an unstable hadron, and its mass and decay width must be

determined from the appropriate Nπ scattering amplitudes.

While the use of Euclidean time in lattice QCD prevents

direct computations of infinite-volume scattering ampli-

tudes [24], Lüscher showed how the finite-volume energy

spectrum of a two-body system interacting through an

elastic short-range interaction is related to the infinite-

volume scattering amplitudes [25–27]. The decades

following Lüscher’s seminal work witnessed further devel-

opment of the theoretical framework to moving frames

[28,29], unequal masses [30–32], and arbitrary spin [33].

These methods have been applied to many systems in the

meson sector and are reviewed in Ref. [34]. For the

nucleon-pion scattering only a handful of studies have

been done in the Nπ channel [35–43].

In the following, we report a new lattice-QCD study of

elastic Nπ scattering in the Δ resonance channel using the

Lüscher method. Our calculation is performed using Nf ¼
2þ 1 flavors of clover fermions at a pion mass of

mπ ¼ 255.4ð1.6Þ MeV, on a lattice with L ≈ 2.8 fm. We

obtain detailed results for the energy-dependence of the

scattering amplitude by analyzing multiple moving frames.

From the amplitude’s pole position, we determine the Δ

mass, decay width, and its coupling to the Nπ channel.

Preliminary results were previously shown in Ref. [44].

The computations presented here also constitute the

first step toward a future calculation of N → Nπ electro-

weak transition matrix elements using the formalism of

Refs. [45,46].

The paper is organized as follows: in Sec. II the details of

the lattice gauge-field ensemble are presented. Section III

describes the interpolating operators and the method used

to project to definite irreducible representations of the

lattice symmetry groups. The Wick contractions yielding

the two-point correlation functions for the Δ − Nπ system

are discussed in Sec. IV. In Sec. V, the results of the spectra

analysis are presented. The relevant finite-volume quanti-

zation conditions are discussed in Sec. VI. The K-matrix

parametrizations employed for the scattering amplitudes

and our results for the amplitude parameters are presented

in Sec. VII. We conclude in Sec. VIII.

II. GAUGE ENSEMBLE

We use a lattice gauge-field ensemble generated with the

setup of the Budapest-Marseille-Wuppertal collaboration

[47], with parameters given in Table I. The ensemble has

been used previously in Ref. [48]. The gluon action is the

tree-level improved Symanzik action [49], while the

fermion action is a tree-level clover-improved Wilson

action [50] with two levels of HEX smearing of the gauge

links [47]. We analyze 600 gauge configurations and

compute the correlation functions for 16 source positions

on each configuration, resulting in a total of 9600

measurements.

When considering the Nπ system in the rest frame only,

the spatial lattice size of L ≈ 2.8 fm (with periodic boun-

dary conditions) results in a rather sparse energy spectrum

across the elastic region. Between the Nπ and Nππ

thresholds there are few energy points available to constrain

the phase shift we aim to determine. A straightforward way

to gain additional points would be to add a spatially larger

ensemble, but this is computationally quite expensive.

A more efficient approach employed here is using also

moving frames [28,51,52] on the same ensemble, where

the Lorentz boost contracts the box, resulting in different

effective values of the spatial length along the boost

direction [32].

III. INTERPOLATING OPERATORS

We use local single-hadron and nonlocal multihadron

interpolating operators, both necessary for a complete

determination of the resonance properties [53]. For the

single-hadron Δ operators with I ¼ 3=2, I3 ¼ þ3=2 (cor-

responding to the Δ
þþ), we include two choices:

Δ
ð1Þ
αi ðp⃗Þ ¼

X

x⃗

ϵabcðuaðx⃗ÞÞαðuTbðx⃗ÞCγiucðx⃗ÞÞeip⃗·x⃗;

Δ
ð2Þ
αi ðp⃗Þ ¼

X

x⃗

ϵabcðuaðx⃗ÞÞαðuTbðx⃗ÞCγiγ0ucðx⃗ÞÞeip⃗·x⃗: ð1Þ

TABLE I. Parameters of the lattice gauge-field ensemble.

N3
s × Nt 243 × 48

β 3.31

amu;d −0.09530

ams −0.040

a [fm] 0.1163(4)

L [fm] 2.791(9)

mπ [MeV] 255.4(1.6)

mπL 3.61(2)

Nconfig 600

Nmeas 9600
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The two-hadron interpolators with the same quantum

numbers are obtained from products of the form

N
ð1;2Þ
α ðp⃗1Þπðp⃗2Þ ð2Þ

as explained in more detail below. The pion interpolator

(I ¼ 1, I3 ¼ þ1) is given by

πþðp⃗Þ ¼
X

x

d̄ðx⃗Þγ5uðx⃗Þeip⃗·x⃗; ð3Þ

and for the nucleon (I ¼ 1=2, I3 ¼ þ1=2) we again include
two choices,

N
ð1Þ
α ðp⃗Þ ¼

X

x⃗

ϵabcðuaðx⃗ÞÞαðuTbðx⃗ÞCγ5dcðx⃗ÞÞeip⃗·x⃗;

N
ð2Þ
α ðp⃗Þ ¼

X

x⃗

ϵabcðuaðx⃗ÞÞαðuTbðx⃗ÞCγ0γ5dcðx⃗ÞÞeip⃗·x⃗: ð4Þ

To correctly identify the angular momentum in the

reduced symmetry of the cubic box, we project the

operators to the irreducible representations (irreps) that

belong to the symmetry groups of the finite volume. Instead

of the infinitely many possible irreducible representations

JP of the continuum, on the lattice, there are only a finite

number of possible irreps Λ. Thus each lattice irrep in

principle contains infinitely many values of the continuum

spin J. Each irrep belongs to a little group LGðP⃗Þ
describing the underlying symmetry of the finite spatial

volume contracted in the direction of the boost vector P⃗,
i.e., the total momentum of the Nπ system.

In the moving frames considered here, the symmetries

are reduced to the groups C4v, C2v, C3v (see Table II).

The degree of symmetry is mirrored by the group’s order

g
LGðP⃗Þ, which corresponds to the number of transformation

elements (rotations and inversions) belonging to the group.

In particular, half-integer spin is best described by the

double cover of symmetry groups (labeled D), which

introduce the 2π rotation as a new element of the group,

effectively doubling the elements of the original group [54].

Additionally, a clear parity identification is lost in the

moving frames, where the subduction mixes parities in the

same irrep [55]. The list of chosen total momenta, sym-

metry groups, and irreps for the hadrons used in this work

can be found in Table II.

To project the single-hadron operators to a definite irrep

Λ and row r, we make use of the formula [57–61]:

OΛ;r;iðP⃗Þ ¼ dΛ

g
LGðP⃗Þ

X

R∈LGðP⃗Þ
Γ
Λ
r;rðRÞWðRÞ−1OðP⃗Þ; ð5Þ

where dΛ is the dimension of the irrep Λ and Γ
Λ are the

representation matrices belonging to the irrep Λ. The

matrices WðRÞ−1 correspond to the matrices appearing

in the right-hand sides of Eqs. (B1), (B2), or (B4). Here we

denote the elements of the little group generically as R,
even though in the rest frame they include the inversion in

addition to the lattice rotations. The index i labels the

embedding into the irrep and replaces any free Dirac/

Lorentz indices appearing on the right-hand side of Eq. (5).

The analogous projection formula for the two-hadron

operators is

OΛ;r;i
Nπ ðP⃗Þ ¼ dΛ

g
LGðP⃗Þ

X

R∈LGðP⃗Þ

X

p⃗

Γ
Λ
r;rðRÞ

×W−1
N ðRÞNðRp⃗ÞWπðRÞ−1πðP⃗ − Rp⃗Þ: ð6Þ

Representation matrices for irreps in the rest frame are

found in [61,62] and for the moving frames are provided in

TABLE II. Choices of total momenta P⃗, along with the little groups LG, irreducible representations Λ of relevant hadrons and their

angular momentum content JP. The multihadron Nπ operators have the same irreps as the single-hadron Δ operators. From left to right

the subduction of irreps in moving frames. The label “(2)” for irrep G in group CD
2v indicates the double occurrence of the irrep from the

subduction; to differentiate this irrep from the homonymous of group CD
3v we keep the additional label “(2)” throughout the paper.

Images credit [56].

L
2π
P⃗ (0,0,0) (0,0,1) (0,1,1) (1,1,1)

Group LG O
ðDÞ
h C

ðDÞ
4v C

ðDÞ
2v C

ðDÞ
3v

Axis and planes

of symmetry

gLG 96 16 8 12

ΛðJPÞ∶πð0−Þ A1uð0−; 4−;…Þ A2ð0; 1; ...Þ A2ð0; 1; ...Þ A2ð0; 1; ...Þ
ΛðJPÞ∶Nð1

2
þÞ G1gð12þ; 72þ;…Þ G1ð12 ; 32 ;…Þ Gð1

2
; 3
2
;…Þ Gð1

2
; 3
2
;…Þ

ΛðJPÞ∶Δð3
2
þÞ Hgð32þ; 52þ;…Þ G1ð12 ; 32 ;…Þ ⊕ G2ð32 ; 52 ;…Þ ð2ÞGð1

2
; 3
2
;…Þ Gð1

2
; 3
2
;…Þ ⊕ F1ð32 ; 52 ;…Þ ⊕ F2ð32 ; 52 ;…Þ
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[60]. In Eq. (6), given a total momentum P⃗, the sum over

internal momenta is constrained by the magnitudes jp⃗1j ¼
jRp⃗j ¼ jp⃗j and jp⃗2j ¼ jP⃗ − Rp⃗j. The structure of the

projected operators Δ and Nπ for all irreps is listed in

Table III.

In general, both Eqs. (5) and (6) produce for each row r
of irrep Λ multiple operator embeddings (identified by the

label i) that are not guaranteed to be independent. We

therefore perform the following three steps to arrive at our

final set of operators [59]:

(i) Construct all possible operators using Eqs. (5) and

(6) for r ¼ 1 only.

(ii) Reduce the sets of operators obtained in this way to

linearly independent sets.

(iii) Construct the other rows r for these linearly inde-

pendent sets of operators.

The operators obtained in step (i) have the generic form

OΛ;1;iðP⃗Þ ¼
X

j

cΛ;1ij OjðP⃗Þ: ð7Þ

Using Gaussian elimination we obtain a smaller matrix cΛ;1nj

such that the linearly independent operators constructed in

step (ii) have the form

OΛ;1;nðP⃗Þ ¼
X

j

cΛ;1nj O
jðP⃗Þ: ð8Þ

The number of independent operators (corresponding to the

range of the index n) is equal to [62,63]

TABLE III. List of projected single-hadron (Δ) and multihadron (N π) operators for all irreps. In the construction of the multihadron

operators, we use optimized nucleon operators N that are linear combinations of Nð1Þ and Nð2Þ, as defined in Eq. (16).

L
2π
P⃗ref ½Ndir� Group LG Irrep Λ Rows Ang. mom. content Operator structure

Number of

operators

(0,0,0) ½1� OD
h

G1u 2 J ¼ 1=2; 7=2;… N π with jp⃗1j ¼ jp⃗2j ¼ 0 1

N π with jp⃗1j ¼ jp⃗2j ¼ 2π
L

2

Hg 4 J ¼ 3=2; 5=2;… Δ
ð1;2ÞðP⃗Þ 2

N π with jp⃗1j ¼ jp⃗2j ¼ 2π
L

2

(0,0,1) ½3� CD
4v

G1 2 J ¼ 1=2; 3=2;… Δ
ð1;2ÞðP⃗Þ 8

N π with jp⃗1j ¼ 0 and jp⃗2j ¼ 2π
L

2

N π with jp⃗1j ¼ 2π
L
and jp⃗2j ¼ 0 2

N π with jp⃗1j ¼ 2π
L
and jp⃗2j ¼

ffiffiffi

2
p

2π
L

4

N π with jp⃗1j ¼
ffiffiffi

2
p

2π
L
and jp⃗2j ¼ 2π

L
4

G2 2 J ¼ 3=2; 5=2;… Δ
ð1;2ÞðP⃗Þ 4

N π with jp⃗1j ¼
ffiffiffi

2
p

2π
L
and jp⃗2j ¼ 2π

L
4

N π with jp⃗1j ¼ 2π
L
and jp⃗2j ¼

ffiffiffi

2
p

2π
L

4

(0,1,1) ½6� CD
2v

ð2ÞG 2 J ¼ 1=2; 3=2;… Δ
ð1;2ÞðP⃗Þ 12

N π with jp⃗1j ¼ 0 and jp⃗2j ¼
ffiffiffi

2
p

2π
L

2

N π with jp⃗1j ¼
ffiffiffi

2
p

2π
L
and jp⃗2j ¼ 0 2

N π with jp⃗1j ¼ jp⃗2j ¼ 2π
L

4

(1,1,1) ½4� CD
3v

G 2 J ¼ 1=2; 3=2;… Δ
ð1;2ÞðP⃗Þ 8

N π with jp⃗1j ¼ 0 and jp⃗2j ¼
ffiffiffi

3
p

2π
L

2

N π with jp⃗1j ¼
ffiffiffi

3
p

2π
L
and jp⃗2j ¼ 0 2

N π with jp⃗1j ¼ 2π
L
and jp⃗2j ¼

ffiffiffi

2
p

2π
L

4

N π with jp⃗1j ¼
ffiffiffi

2
p

2π
L
and jp⃗2j ¼ 2π

L
4

F1 1 J ¼ 3=2; 5=2.:: Δ
ð1;2ÞðP⃗Þ 4

N π with jp⃗1j ¼ 2π
L
and jp⃗2j ¼

ffiffiffi

2
p

2π
L

2

N π with jp⃗1j ¼
ffiffiffi

2
p

2π
L
and jp⃗2j ¼ 2π

L
2

F2 1 J ¼ 3=2; 5=2;… Δ
ð1;2ÞðP⃗Þ 4

N π with jp⃗1j ¼ 2π
L
and jp⃗2j ¼

ffiffiffi

2
p

2π
L

2

N π with jp⃗1j ¼
ffiffiffi

2
p

2π
L
and jp⃗2j ¼ 2π

L
2
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1

g
LGðP⃗Þ

X

R∈LGðP⃗Þ
χΓ

ΛðRÞχWðRÞ; ð9Þ

where the characters χΓ
ΛðRÞ and χWðRÞ are equal to the

traces of the representation matrices Γ
Λ and the trans-

formation matrices WðRÞ.
In step (iii), to construct the other rows r > 1 we use

OΛ;r;nðP⃗Þ ¼
X

j

cΛ;1nj

dΛ

g
LGðP⃗Þ

×
X

R∈LGðP⃗Þ
Γ
Λ

r;1ðRÞROjðP⃗ÞR−1; ð10Þ

where the rotations/inversions ROjðP⃗ÞR−1 are performed

as in Eqs. (5) and (6), depending on the structure of OjðP⃗Þ.
Also, to increase statistics, multiple directions of P⃗ at

fixed jP⃗j are used (see Table III). For every moving frame,

we first perform the irrep projections for a reference

momentum P⃗ref and then rotate the projected operators

to the new momentum direction. Generating operators

initially from a reference momentum and r ¼ 1 only

facilitates the identification of equivalent operators embed-

dings that can later be averaged over different rows of the

same irrep Λ (which is possible due to the great orthogon-

ality theorem [63]) and momentum direction of equal jP⃗j.
In the following, the label r for the row will be dropped.

IV. WICK CONTRACTIONS

From the Δ=Nπ interpolators discussed above, we build

two-point correlation matrices for each total momentum P⃗
and irrep Λ,

CΛ;P⃗
ij ¼ hOΛ;P⃗

i ðtsnkÞŌΛ;P⃗
j ðtsrcÞi; ð11Þ

where the indices i, j now label all the different operators in

the same irrep that can vary in internal momentum content,

embedding from the multiplicity, or gamma matrices used

in the diquarks of Eqs. (4) or (1). The Wick contractions are

computed following the scheme outlined in Refs. [64,65].

The correlators with single-hadron interpolators at source

and sink are constructed from point-to-all propagators,

while the correlators with a single-hadron interpolator at

the sink and a two-hadron Nπ interpolator at the source use

in addition a sequential propagator, with sequential inver-

sion through the pion vertex at source time. The topologies

of these diagrams are shown in the top panel of Fig. 1. The

bottom panel of Fig. 1 shows the topologies for the

correlators with Nπ operators at both source and sink.

The diagrams are split into two factors, separated at the

source point and by using a stochastic source—propagator

pair. For the latter we use stochastic timeslice sources in the

upper two diagrams. In the lower diagrams we employ spin

dilution and the one end trick in addition to time dilution.

The quark propagators of all types are Wuppertal

smeared [66] at source and sink with smearing parameters

αWup ¼ 3.0 and NWup ¼ 45; these parameters were origi-

nally optimized for the nucleon two-point functions in

Ref. [48]. The gauge field deployed in the smearing kernel

is again 2-level HEX smeared [67,68].

V. SPECTRA RESULTS

The masses of the pion and nucleon are used as input

parameters in the Lüscher method. We extract them from

FIG. 1. Upper panel: two-point function contractions involving

the Δ interpolator. A gray filling of a circle represents the Δ

interpolator, a green filling represents the π interpolator, and a

blue filling represents the N interpolator. A solid black outline

indicates a point source, while a dotted outline represents a

sequential source. The black arrow lines represent point-to-all

propagators, and the red arrow lines represent sequential propa-

gators. The contractions with the πN operator at the sink and the

Δ operator at the source are not computed directly but are

obtained from the contraction with the Δ operator at the sink and

the πN operator at the source through conjugation. Lower panel:

two-point function contractions for πN − πN. The blue arrow

lines represent stochastic propagators, while the other elements

are analogous to the upper panel.
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fits of their dispersion relations, shown in Figs. 2 and 3,

giving

amπ ¼ 0.15052ð78Þ; ð12Þ

amN ¼ 0.6326ð20Þ: ð13Þ

The energies are obtained from single-state fits of the two-

point functions projected to different momenta (using a

cosh for the pion and a single exponential for the nucleon).

For the Δ − Nπ system, to extract the energy levels EΛ;P⃗
n

(where n now counts the finite-volume energy levels for a

given Λ; P⃗) from the correlation matrices CΛ;P⃗
ij we use the

generalized eigenvalue problem (GEVP) [26,69–71]

CΛ;P⃗
ij ðtÞunj ðtÞ ¼ λnðt; t0ÞCΛ;P⃗

ij unj ðtÞ; ð14Þ

where unj are the right generalized eigenvectors. In the

plateau regions the energies are obtained from fits to the

principal correlators λnðt; t0Þ with single exponentials as

λnðt; t0Þ ∼ e−E
Λ;P⃗
n ðt−t0Þ: ð15Þ

Here, t0 is a reference timeslice that does not strongly affect

the large-t behavior; we set t0=a ¼ 2.

Additionally, for the projected multihadron operators

ðNπÞΛ;rðP⃗Þ we implement an optimized interpolator of the

nucleon [72]

N ðp⃗1Þ ¼
X

i

u1ðNÞiðtÞNiðp⃗1Þ; ð16Þ

where i labels the two types of nucleon operators in Eq. (4)
and uðNÞi are the generalized eigenvectors (for t=a ¼ 4)

from a single-nucleon GEVP analysis. The optimized

nucleon interpolator has improved overlap with the single-

nucleon ground state with momentum p⃗1 [73].

For the coupledΔ − Nπ system we build for each irrepΛ

a correlation matrix CΛ;P⃗
ij from the projected Δ and

optimized N π operators in Table III. The multiplicities

of operators give rise to a fairly large basis for each

correlation matrix (the dimensions for the full bases

correspond to the sums of numbers of operators for each

irrep listed in Table III). Through singular value decom-

position of CC† or C†C we can infer which operators

contribute to the largest singular values, allowing us to

explore subbases of the full list of operators that can lead to

reduced noise of the principal correlators while maintaining

the complete spectra.

Baryons are known to have a narrow plateau region (the

“golden window” [74]) where the higher states contribution

get small enough to enable a single exponential fit to

describe maximally a single level before the rapid decay of

signal-to-noise ratio at larger t [75,76]. In the left subplot

for each irrep in Figs. 4 and 5, we show the effective masses

of the principal correlators,

aEn
effðtÞ ¼ ln

λnðt; t0Þ
λnðtþ a; t0Þ

; ð17Þ

converted to the center-of-mass frame using

ffiffiffiffiffi

sn
p

Λ;P⃗ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðEΛ;P⃗
n Þ2 − ðP⃗Þ2

q

: ð18Þ

The center-of-mass energies are also related to the scatter-

ing momenta through

ffiffiffiffiffi

sn
p

Λ;P⃗ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðkΛ;P⃗n Þ2 þm2
π

q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðkΛ;P⃗n Þ2 þm2
N

q

: ð19Þ

Our main results are obtained from single-exponential fits

to the principal correlators and are listed in Table IV. The fit

ranges are chosen after a stability analysis. The upper limit

of the fit range, once chosen large enough, is found to have

a small impact on the fit itself; thus, we fix it to tmax=a ¼ 15

for all levels. On the other hand, the lower limit is varied

within a reasonable range until a plateau region is iden-

tified. This is illustrated in the right subplot for each irrep in

FIG. 2. Pion dispersion relation.

FIG. 3. Nucleon dispersion relation from the GEVP analysis.
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Figs. 4 and 5. In addition, we estimate a systematic

uncertainty for each energy level as the shift in the fitted

energy when increasing tmin=a by þ1. These uncertainties

have been added in quadrature in the lighter-shaded outer

bands shown in Figs. 4 and 5, and will also be propagated

to the scattering amplitudes in Sec. VII.

To further test the stability, we also attempted two-

exponential fits using the form

λnðt; t0Þ ∼ ð1 − BÞe−EΛ;P⃗
n ðt−t0Þ þ Be−E

0Λ;P⃗
n ðt−t0Þ; ð20Þ

where E0Λ;P⃗
n would be a high-lying energy level not covered

by the GEVP analysis. These fits give consistent results for

EΛ;P⃗
n , but the results for the parameters B and E0Λ;P⃗

n are

rather unstable under variations of tmin at our level of

correlator precision.

It can be seen in the plots that energy levels that overlap

strongly with the Nπ states shift away from the resonance

region, as expected. For the irrep ð2ÞG in jP⃗j2 ¼ ð2π=LÞ22,
the situation is more complicated and a higher number of

energy states appear in the region of interest. This situation

originates from having only a single irrep for the little

group CD
2v, resulting in a maximal mixing of angular

momenta.

A summary of all extracted energy levels is shown

in Fig. 6.

FIG. 4. For each irrep, we show the effective energies of the principal correlators as a function of t=a (left), and the energies obtained

from single-exponential fits to these correlators as a function of tmin=a (right). The outer, lighter-shaded bands include an estimate of the

systematic uncertainty associated with the choice of fit range, calculated from the change in the fitted energy when increasing tmin=a by

þ1. All energies shown here are converted to the center-of-mass frame. Black dashed lines represent the Nπ and Nππ thresholds.

Noninteracting Nπ energy levels are shown as green lines.
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VI. LÜSCHER QUANTIZATION CONDITIONS

The Lüscher quantization condition connects the finite-

volume energy spectra affected by the interactions and the

infinite-volume scattering amplitudes; resonances corre-

spond to poles in the infinite-volume scattering amplitudes

at complex
ffiffiffi

s
p

and in principle affect the entire spectrum.

For elastic 2-body scattering of nonzero-spin particles, the

quantization condition can be written as [51]

detðMP⃗
Jlμ;J0l0μ0 − δJJ0δll0δμμ0 cot δJlÞ ¼ 0; ð21Þ

where δJl is the infinite-volume scattering phase shift for

total angular momentum J and orbital angular momentum

l, and μ; μ0 ¼ −J;…; J. Both the scattering phase shift and

the matrix MP⃗
Jlμ;J0l0μ0 are functions of the scattering

momentum, and the solutions of the quantization condition

for the scattering momentum give the finite-volume energy

levels through Eq. (19). The matrix MP⃗
Jlμ;J0l0μ0 encodes the

geometry of the finite box and is a generalization for

particles with spins σ, σ0 of the spinless counterpart via

MP⃗
Jlμ;
J0 l0μ0

¼
X

m;σ;
m0 ;σ0

�

lm;
1

2
σjJμ

��

l0m0;
1

2
σ0jJ0μ0

�

MP⃗
lm;
l0m0
; ð22Þ

where MP⃗
lm;l0m0 (for a cubix box with periodic boundary

conditions) is given by [51]

MP⃗
lm;l0m0ðq2Þ ¼

ð−1Þlγ−1
π3=2

X

lþl0

j¼jl−l0j

X

j

s¼−j

ij

qjþ1

× ZP⃗
jsð1; q2Þ�Clm;js;l0m0 ; ð23Þ

where q ¼ kL
2π

with k the scattering momentum and L the

side length of the box. Here ZP⃗
jsð1; q2Þ is the generalized

FIG. 5. Like Fig. 4, but with irreps ð2ÞG;G; F1; F2.
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zeta function, γ ¼ EP⃗=
ffiffiffi

s
p

is the Lorentz boost factor

and the coefficient Clm;js;l0m0 expressed in terms of Wigner

3j-symbols read

Clm;js;l0m0 ¼ ð−1Þm0
il−j−l

0 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2lþ 1Þð2jþ 1Þð2l0 þ 1Þ
p

×

�

l j l0

m s −m0

��

l j l0

0 0 0

�

: ð24Þ

To simplify notation it is common practice to define the

functions

wlm ¼ wP⃗
lmðq; LÞ≡

ZP⃗
lmð1; q2Þ

γπ3=2
ffiffiffiffiffiffiffiffiffiffiffiffiffi

2lþ 1
p

qlþ1
: ð25Þ

The elements of the matricesMP⃗
Jlμ;J0l0μ0 for all choices of P⃗

considered in this work are listed in Appendix C.

Furthermore, it is possible to extract quantization con-

ditions for each irrep Λ via a change of basis of Eq. (21).

The basis vector of the irrep Λ can be written as [51,77]

jΛrJlni ¼
X

μ

cΛrnJlμ jJlμi; ð26Þ

where the coefficients cΛrnJlμ for l ≤ 2 can be found in

Refs. [51,61], and the parity eigenstate vectors jJlμi are

given by

jJlμi ¼
X

m;σ

�

�

�

�

lm;
1

2
σ

��

lm;
1

2
σjJμ

�

: ð27Þ

One can then make a change of basis for which the matrix

elements of M are given by

hΛrJlnjMjΛ0r0J0l0n0i ¼
X

μμ0
cΛrnJlμ c

Λ
0r0n0

J0l0μ0 MJln;J0l0n0 ;

¼ δΛΛ0δrr0MJln;J0l0n0 ; ð28Þ

TABLE IV. Center-of-mass energies in the Δ − Nπ sector from

single-exponential fits to the principal correlators, for the differ-

ent total momenta P⃗ and irreps Λ. The first uncertainty is

statistical and the second uncertainty is systematic, given by

the shift in the fitted energy when increasing tmin by one unit.

ð L
2π
Þ2jP⃗j2 Λ n Fit Range χ2

dof
a

ffiffiffiffiffiffiffiffi

sΛ;P⃗n

q

0 G1u 1 4–15 1.90 0.782(4)(3)

0 G1u 2 4–15 0.80 0.978(12)(1)

0 Hg 1 5–15 1.79 0.829(4)(2)

0 Hg 2 4–15 0.43 1.028(6)(4)

1 G1 1 4–15 1.97 0.790(5)(4)

1 G1 2 5–15 1.14 0.829(5)(8)

1 G1 3 5–15 0.72 0.914(8)(9)

1 G2 1 5–15 0.48 0.827(5)(5)

1 G2 2 4–15 0.89 1.020(7)(18)

2 ð2ÞG 1 4–15 1.73 0.795(5)(17)

2 ð2ÞG 2 4–15 1.72 0.826(5)(8)

2 ð2ÞG 3 4–15 1.60 0.839(5)(14)

2 ð2ÞG 4 3–15 1.87 0.917(4)(12)

2 ð2ÞG 5 3–15 0.71 0.939(4)(3)

3 G 1 3–15 1.32 0.791(5)(2)

3 G 2 3–15 0.68 0.843(7)(7)

3 G 3 3–15 2.01 0.940(7)(15)

3 F1 1 4–15 1.46 0.831(7)(29)

3 F1 2 4–15 0.27 0.960(11)(3)

3 F2 1 4–15 0.45 0.839(7)(6)

3 F2 2 4–15 0.56 0.962(6)(7)

FIG. 6. Energy levels extracted in each irrep, with J ≤ 3=2 content listed. The inner bands indicate the statistical and scale-setting

uncertainties. The outer, lighter-shaded bands include an estimate of the systematic uncertainty associated with the choice of fit range,

calculated from the change in the fitted energy when increasing tmin=a by þ1.
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where it is found, from Schur’s lemma, that the matrixM is

partially diagonalized in irrep Λ and row r. However, the
matrix is not diagonal in n, which labels the multiple

embeddings of the irreps. In our case only the irrep ð2ÞG of

the group CD
2v has multiple embeddings with multiplicity

mG ¼ 2 (see Table II).

In principle, there are infinitely many values of total

angular momentum J and therefore also infinitely many

partial waves l in each irrep, but, as the higher waves have

an increasingly smaller contribution, we consider only the

dominant partial waves. In particular, we assume the

contributions from partial waves in J > 3=2 to be negli-

gible and exclude them from the analysis. For the N − π

system, J ¼ 3=2 includes both the P wave (l ¼ 1) and the

D wave (l ¼ 2), with the former being the dominant

contribution. Several irreps mix J ¼ 3=2 with J ¼ 1=2,
and the latter includes l ¼ 0, 1.

Among the partial wave amplitudes with J ¼ 1=2, the P
wave (l ¼ 1) is expected to be suppressed relative to the S
wave (l ¼ 0). At our level of precision, we find the latter,

i.e., S31, already to be consistent with zero. Given the

additional suppression of P31 relative to S31, we decided to

not include P31 in our present analysis, and this is left for

future work.

In addition to the resonant phase shift P33 ðJ¼3=2;l¼1Þ
for isospin I ¼ 3=2 we then have only the S31
ðJ ¼ 1=2; l ¼ 0Þ, for which the closest resonance would

be the distant Δð1620Þ. In order to better constrain the S31
ðJ ¼ 1=2; l ¼ 0Þ contribution, we also include the irrep

G1u, which is the only irrep we can access that contains

only spin J ¼ 1=2 and l ¼ 0 (up to contributions from

l ≥ 2), ensured by the negative parity (ungerade). As can

be seen in Table III, the interpolating operators in the G1u

irrep are exclusively N − π two-hadron operators, consis-

tent with the expectation that the S31 phase shift is

nonresonant at low energy. The quantization conditions

for all irreps, expressed in terms of the two phase shifts

δ3=2;1, δ1=2;0 and the functions wlm, are listed in Table V.

VII. RESULTS FOR THE SCATTERING
AMPLITUDES

A. Parametrizations used

We use the K-matrix parametrization rescaled with the

two-body phase space ρ as

K ¼ ρ1=2K̂ρ1=2; ð29Þ

where

ρ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�

1 −

�

mπ þmN
ffiffiffi

s
p

�

2
��

1 −

�

mπ −mN
ffiffiffi

s
p

�

2
�

s

: ð30Þ

The K-matrix relates to the phase shifts as

KðJlÞ ¼ tanðδJlÞ: ð31Þ

As discussed in Sec. VI, our analysis includes the phase

shift δ3=2;1, where we expect the Δ resonance that will be

quite narrow for our quark masses, and the phase shift

δ1=2;0, which is expected to be nonresonant in the energy

region considered. We therefore use a Breit-Wigner para-

metrization for the former,

K̂ð3=2;1Þ ¼
ffiffiffi

s
p

ΓðsÞ
ðm2

BW − sÞρ ; ð32Þ

where mBW denotes the resonance mass and the decay

width ΓðsÞ is given by

ΓðsÞ ¼ g2BW
6π

k3

s
ð33Þ

with the coupling gBW, scattering momentum k, and center-

of-mass energy squared s. For the nonresonant K̂ð1=2;0Þ we
use the effective-range expansion (ERE) [78]. We find that

working to 0th order is sufficient at the level of precision

we have, such that

K̂ð1=2;0Þ ¼ k

ρ
a0; ð34Þ

with the S-wave scattering length a0.

B. Fit procedure and results

Following Ref. [79] and as in our previous work [65], we

perform a global fit of the model parametersmBW, gBW, and

a0 to all energy levels in all irreps by minimizing the χ2

function

χ2 ¼
X

P⃗;Λ;n

X

P⃗0;Λ0;n0

½C−1�
P⃗;Λ;n;P⃗0;Λ0;n0

×

� ffiffiffiffiffiffiffiffi

sΛ;P⃗n

q ½data�
−

ffiffiffiffiffiffiffiffi

sΛ;P⃗n

q ½model��

×

�
ffiffiffiffiffiffiffiffiffiffi

sΛ
0;P⃗0

n0

q ½data�
−

ffiffiffiffiffiffiffiffiffiffi

sΛ
0;P⃗0

n0

q ½model��

: ð35Þ

Here, C is the covariance matrix of the energy levels
ffiffiffiffiffiffiffiffi

sΛ;P⃗n

q ½data�
measured on the lattice. The model energies

ffiffiffiffiffiffiffiffi

sΛ;P⃗n

q ½model�
are obtained for each parameter guess by

finding the roots of the Lüscher quantization conditions

(see Table V). There are 21 energy levels from eight irreps

available for the global fit, as shown in Fig. 6.

The results for both the global fits and for fits to subsets

of energy levels are listed in Table VI. Before performing

the global fit to all energy levels, we separately considered

the irreps that include either only J ¼ 1=2 or only J ¼ 3=2
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(ignoring J > 3=2). The irrep G1u is the only one that

contains exclusively J ¼ 1=2, while there are multiple

irreducible representations with exclusively J ¼ 3=2: Hg,

G2, F1, and F2. These initial two fits enable us to obtain a

good initial guess for the parameters of the final global fits

and assess the stability of the fit over the choice of irreps

included. The fit for the S wave (labeled S) via irrep G1u is

done to only two energy levels, resulting in a low χ2=dof.
The other partial fit over irreps containing P wave only (P)

includes 8 energy levels and gives a higher χ2=dof.
For the global fits (G), we implement five different

combinations of levels included and choices of tmin=a to

test the stability of the results and quantify the systematic

uncertainty associated with the fits. The fit to the nominal

results for the energy levels from Table IV is labeled as

GðaÞ, while the fit labeled Gðaþ 1Þ was done to the

energy levels with tmin=a increased by one unit throughout.

More focused choices among the noisiest levels are made in

the fit GðbÞ, where we vary tmin=a in selected levels based

on the results of the stability analysis shown in Figs. 4

and 5. Specifically, this case uses aþ1 shift on tmin=a on all

levels of irreps G2 ð2ÞG, F1, F2, the ground state of G1, the

first excited of G, and þ2 on the first excited of G.

Additionally, we perform the global fit GðcÞ removing

potentially problematic levels from the list in Table IV: the

highest level of irrep G and all levels in irrep ð2ÞG.
Furthermore, the global fit labeled GðdÞ differs from

GðaÞ only by excluding irrep G1u. Overall, we find that

the fits provide compatible results and are very stable across

several choices.

TABLE V. Finite-volume quantization conditions for all irreps in terms of phase shifts δJ;l and functions wlm.

L
2π
P⃗ Group LG Irrep Λ Quantization condition

(0,0,0) OD
h

G1u −w00 þ cot δ1
2
;0 ¼ 0

Hg −w00 þ cot δ3
2
;1 ¼ 0

(0,0,1) CD
4v

G1 −2w2
10 þ ðw00 − cot δ1

2
;0Þðw00 þ w20 − cot δ3

2
;1Þ ¼ 0

G2 −w00 þ w20 þ cot δ3
2
;1 ¼ 0

(1,1,0) CD
2v

ð2ÞG −ðw00−cotδ1
2
;0Þð−w2

20þ2w2
22þðw00−cotδ3

2
;1Þ2Þ−4Reðw11Þ2ð2w00þw20−i

ffiffiffi

6
p

w22−2cotδ3
2
;1Þ¼0

(1,1,1) CD
3v

G −6w2
10 þ ðw00 − cot δ1

2
;0Þðw00 − i

ffiffiffi

6
p

w22 − cot δ3
2
;1Þ ¼ 0

F1, F2 −w00 − i
ffiffiffi

6
p

w22 þ cot δ3
2
;1 ¼ 0

TABLE VI. Fit results for the scattering parameters, using different combinations of energy levels as explained in the main text.

Label Fit to (J, l) Irreps Λ
ffiffiffi

s
p

points Breit-Wigner parameters ERE parameters χ2=dof

S ð1=2; 0Þ G1u 2 � � � a0=a ¼ 0.51� 0.96 0.16

P ð3=2; 1Þ Hg, G2, F1, F2 8 gBW ¼ 13.36� 0.80

amBW ¼ 0.8158� 0.0031

corrðamBW; gBWÞ ¼ −0.279

� � � 1.35

GðaÞ ð1=2; 0Þ; ð3=2; 1Þ G1u, Hg, G1, G2,

ð2ÞG, G, F1, F2

21 gBW ¼ 13.62� 0.50

amBW ¼ 0.8136� 0.0029

corrðamBW; gBWÞ ¼ −0.375

a0=a ¼ 0.38� 0.44 0.85

Gðaþ 1Þ ð1=2; 0Þ; ð3=2; 1Þ G1u, Hg, G1, G2,

ð2ÞG, G, F1, F2

21 gBW ¼ 14.05� 0.83

amBW ¼ 0.8088� 0.0043

corrðamBW; gBWÞ ¼ −0.442

a0=a ¼ 0.46� 0.80 0.99

GðbÞ ð1=2; 0Þ; ð3=2; 1Þ G1u, Hg, G1, G2,

ð2ÞG, G, F1, F2

21 gBW ¼ 13.54� 0.59

amBW ¼ 0.8161� 0.0030

corrðamBW; gBWÞ ¼ −0.324

a0=a ¼ 0.34� 0.57 1.56

GðcÞ ð1=2; 0Þ; ð3=2; 1Þ G1u, Hg, G1, G2,

G, F1, F2

15 gBW ¼ 13.67� 0.57

amBW ¼ 0.8146� 0.0030

corrðamBW; gBWÞ ¼ −0.372

a0=a ¼ 0.68� 0.49 0.99

GðdÞ ð1=2; 0Þ; ð3=2; 1Þ Hg, G1, G2,

ð2ÞG, G, F1, F2

19 gBW ¼ 13.65� 0.52

amBW ¼ 0.8137� 0.0029

corrðamBW; gBWÞ ¼ −0.360

a0=a ¼ 0.52� 0.85 0.93
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We select fit GðaÞ to report the central values

and statistical uncertainties of the fit parameters and

derived quantities, but then we estimate a systematic

uncertainty from the maximum variation in the central

value between GðaÞ and the other four global fits G listed

in Table VI. That is, for a parameter or derived quantity y,
we calculate the systematic uncertainty associated with the

fit choices as

σ
sys
y ¼max

i
ðjyGðiÞ − yGðaÞjÞ; i ∈ faþ 1;b;c;dg: ð36Þ

Our final results for the Breit-Wigner parameters and

scattering length in lattice units are then

amBW ¼ 0.8136� 0.0029� 0.0048;

gBW ¼ 13.62� 0.50� 0.43;

a0=a ¼ 0.38� 0.44� 0.30: ð37Þ

The phase shifts δ3=2;1ðP33Þ and δ1=2;0ðS31Þ from the global

fit are plotted as functions of the center-of-mass energy in

Fig. 7. (Recall that a one-to-one mapping of energy levels

to scattering phase shifts is not possible in many of the

irreps due to the mixing between J ¼ 1=2 and J ¼ 3=2. For
the irreps without this mixing, we list the results of the

direct mapping in Appendix A.) Because the P-wave phase
shift rises rapidly in the region of the resonance, we

evaluated separate upper and lower systematic uncertainties

that are included in the outer band in Fig. 7, using the

asymmetric generalization of Eq. (36) corresponding to the

largest shift in each direction.

From the results of the global fit, we also determine the

position of the closest T-matrix pole in the complex
ffiffiffi

s
p

plane, associated with theΔ resonance. Expressing the pole

location as mΔ − iΓ=2, we obtain

amΔ ¼ 0.8124� 0.0027� 0.0045;

aΓ=2 ¼ 0.00484� 0.00061� 0.00084;

mΔ ¼ ð1378.3� 6.6� 9.0Þ MeV;

Γ=2 ¼ ð8.2� 1.0� 1.4Þ MeV; ð38Þ

where the second uncertainty given is the fitting systematic

uncertainty estimated using Eq. (36). Using our result for Γ,

we then additionally determine the coupling gΔ−πN from

the equation for the decay width in leading-order chiral

effective theory [80–82],

Γ
LO
EFT ¼ g2

Δ−πN

48π

EN þmN

EN þ Eπ

k3

m2
N

; ð39Þ

which gives

gΔ−πN ¼ 23.8� 2.7� 0.9: ð40Þ

The extracted values for the resonance mass mΔ and

coupling gΔ−πN are listed with recent results from the

literature in Table VII.

Our results for the scattering length a0 are generally

consistent with zero within the uncertainties. For the

comparison with the literature, we consider the combina-

tion a0m
þ
π . Our result from global fit GðaÞ is

a0mπ ¼ 0.057� 0.067� 0.045; ð41Þ

while the values extracted from experimental data are

−0.0785� 0.0032 from Ref. [85], −0.0894� 0.0017 from

Ref. [86] and −0.101� 0.004 from Ref. [87].

FIG. 7. Energy dependence of the P33 (upper) and S31 (lower)
phase shifts from the global fit GðaÞ. The inner bands show the

statistical uncertainty. The outer bands include our estimate of the

systematic uncertainty associated with the choice of fit ranges for

the two point functions and the selection of energy levels included

in the global fit. The center panel shows, with the same axis range,

the values of
ffiffiffi

s
p

for all 21 energy levels included in fitGðaÞ. The
symbols indicate the irreducible representations of these energy

levels; the dark error bars show the statisticalþ scale-setting

uncertainties, while the lighter outer error bars also include the

estimated systematic uncertainties associated with the fit ranges.
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VIII. CONCLUSIONS

We have presented a determination of elastic nucleon-

pion scattering amplitudes for isospin I ¼ 3=2 using a

lattice QCD calculation on a single gauge-field ensemble

with pion mass mπ ≈ 255 MeV. The baryon Δð1232Þ
emerges as the dominant resonance in the P-wave with

JP ¼ 3=2þ and is the focus of this work. The infinite-

volume scattering amplitudes are obtained using the

Lüscher method from the finite-volume energy spectra

extracted from correlation matrices built of Δ and Nπ

operators, projected to definite irreducible representations

of the lattice symmetry groups. In order to thoroughly

map out the energy dependence using just a single volume,

it is essential to consider moving frames, where the

symmetries are reduced. Many irreps included mix J ¼
3=2 and J ¼ 1=2, and we therefore also extracted the

scattering phase shift for the latter. Each J receives

contributions from two values of orbital angular momen-

tum l, but at the present level of precision, we can access

only a single dominant value of l for each: l ¼ 1 for J ¼ 3
2

and l ¼ 0 for J ¼ 1
2
. In addition, we neglect mixing

with J > 3=2.
We performed global fits to the spectra using a Breit-

Wigner parametrization for the P33 phase shift at energies

below the inelastic threshold Nππ, and using the leading-

order effective-range expansion for the S31 phase shift. We

also extracted the pole position mΔ − iΓ=2 associated with

the Δ resonance, and the coupling gΔ−πN that determines

the decay width Γ at leading order in chiral effective theory.

These parameters are listed with other determinations in

Table VII. For our pion mass (and at nonzero lattice

spacing),mΔ is found to be approximately 170 MeV higher

than in nature, while the coupling gΔ−πN agrees with

extractions from experiment at the 2σ level, given our

uncertainties. Our result for the coupling also agrees with

previous lattice determinations within the uncertainties. In

the S wave, our result for the scattering length is consistent

with zero and is also consistent with phenomenological

determinations.

Future work will include computations on additional

lattice gauge-field ensembles with different spatial volume,

which will provide more data points to better constrain

the phase shifts extracted and, at the same time, expand

on the partial-wave contributions included in the analysis

and provide information on remaining finite-volume

systematic errors. Using additional ensembles will also

enable us to investigate the dependence on the pion

mass and on the lattice spacing. Furthermore, we plan

to use the results for the energy levels and scattering

amplitudes as inputs to a computation of N → Nπ electro-

weak transition matrix elements using formalism of

Refs. [45,46], similarly to what has been done for πγ� →
ππ [73,88].
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TABLE VII. Compilation of results for mΔ and gΔ−πN . The uncertainties given for the lattice results are statistical/fitting only.

Collaboration mπ [MeV] Methodology mΔ [MeV] gΔ−πN

Verduci 2014 [38] 266(3) Distillation, Lüscher 1396ð19ÞBW 19.90(83)

Alexandrou et al. 2013 [37] 360 Michael, McNeile 1535(25) 27.0(0.6)(1.5)

Alexandrou et al. 2016 [39] 180 Michael, McNeile 1350(50) 23.7(0.7)(1.1)

Andersen et al. 2018 [41] 280 Stoch. distillation, Lüscher 1344ð20ÞBW 37.1(9.2)

Our result 255.4(1.6) Smeared sources, Lüscher 1380ð7Þð9ÞBW, 1378ð7Þð9Þpole 23.8(2.7)(0.9)

Physical value [5] 139.5704(2) phenomenology, K matrix 1232ð1ÞBW, 1210ð1Þpole 29.4(3) [83],

28.6(3) [84]
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APPENDIX A: ONE-TO-ONE MAPPING
OF ENERGY LEVELS TO PHASE SHIFTS
IN IRREPS WITHOUT MIXING BETWEEN

J = 1=2 AND J = 3=2

For the irreps that do not mix J ¼ 1=2 and J ¼ 3=2, it is
possible to directly map individual energy levels to scatter-

ing phase shifts using the Lüscher quantization conditions

in Table V (as before, we neglect partial waves higher than

S and P, respectively). The results of this mapping are

shown in Table VIII. For the G1u irrep, the lowest energy

level lies just below the Nπ threshold, and we therefore

choose to list ak cot δ1=2;0 (where k is the scattering

momentum and a is the lattice spacing) instead of δ1=2;0,

as this combination remains real-valued below threshold.

For comparison, we also show the phase shifts obtained

from the global K-matrix fit to all energy levels using the

parametrizations (32) and (34). The statistical uncertainties

of the energies are propagated to the derived quantities and

the systematic uncertainties are computed with Eq. (36).

For the one-to-one case, the systematic uncertainties are

computed as the difference in the values obtained from the

fits with tmin and tmin þ a.

APPENDIX B: TRANSFORMATION
PROPERTIES OF OPERATORS

In this Appendix we list the transformation properties

of the momentum-projected field operators under inver-

sions I and spatial rotations R. The pseudoscalar pion

transforms as

Rπðp⃗ÞR−1 ¼ πðRp⃗Þ;
Iπðp⃗ÞI−1 ¼ −πð−p⃗Þ; ðB1Þ

while the nucleon transforms as

RNαðp⃗ÞR−1 ¼ SðRÞ−1αβNβðRp⃗Þ;
INαðp⃗ÞI−1 ¼ ðγtÞαβNβð−p⃗Þ; ðB2Þ

where SðRÞ is the bispinor representation of SUð2Þ. For a
rotation of angle 2π=n around the axis j, this is given by

SðRÞαβ ¼ exp

�

1

8
ωμν½γμ; γν�

�

αβ

ðB3Þ

with the antisymmetric tensor ωkl ¼ −2πϵjkl=n and ω4k ¼
ωk4 ¼ 0 [60].

The vector-spinor Delta operator transforms as

RΔαkðp⃗ÞR−1 ¼ AðRÞ−1
kk0SðRÞ−1αβΔβk0ðRp⃗Þ

IΔαkðp⃗ÞI−1 ¼ ðγtÞαβΔβkðp⃗Þ ðB4Þ

where AðRÞ denotes the three-dimensional J ¼ 1 irrep of

SUð2Þ, and SðRÞ is given in Eq. (B3).

APPENDIX C: MATRICES MP⃗
Jlμ;J0l0μ0

Below we provide the matrices MP⃗
Jlμ;J0l0μ0 introduced in

Eq. (22), computed for each total momentum P⃗ including

partial wave contributions in ðJ ¼ 3=2; l ¼ 1Þ and

ðJ ¼ 1=2; l ¼ 0Þ. The momentum labels are given in units

of 2π=L.

TABLE VIII. Phase shifts obtained using one-to-one mapping

of energy levels in irreps that do not mix J ¼ 1=2 and J ¼ 3=2,
compared to the phase shifts obtained from the global fit at the

same center-of-mass energies. For theG1u irrep, where the lowest

energy level is found just below the Nπ threshold, we list

ak cot δ1=2;0 instead of δ1=2;0 (where k is the scattering momentum

and a is the lattice spacing), because this combination remains

real valued below the threshold.

Irrep Λ n
ffiffiffi

s
p

[MeV]

One to one:

δ3=2;1 ½∘�
Global:

δ3=2;1 ½∘�
Hg 1 1407(8)(6) 148(3)(2) 148(6)(5)

Hg 2 1745(12)(9) 147(4)(2) 148(2)(1)

G2 1 1403(10)(10) 150(4)(3) 146(8)(6)

G2 2 1731(13)(30) 155(11)(23) 149(2)(1)

F1 1 1410(13)(50) 131(7)(29) 149(7)(4)

F1 2 1629(20)(7) 142(21)(5) 151(2)(1)

F2 1 1424(12)(11) 123(6)(5) 153(3)(2)

F2 2 1633(12)(13) 137(15)(12) 151(2)(1)

Irrep Λ n
ffiffiffi

s
p

[MeV] one to one:

ak cot δ1=2;0

global:

ak cot δ1=2;0

G1u 1 1327(8)(7) 4(15)(3) 2.6(3.0)(1.2)

G1u 2 1660(21)(6) 1.4(2.2)(0.1) 2.6(3.0)(1.2)
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