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Identifying gene expression 
patterns associated 
with drug‑specific survival in cancer 
patients
Bridget Neary1, Jie Zhou1 & Peng Qiu2*

The ability to predict the efficacy of cancer treatments is a longstanding goal of precision medicine 
that requires improved understanding of molecular interactions with drugs and the discovery of 
biomarkers of drug response. Identifying genes whose expression influences drug sensitivity can 
help address both of these needs, elucidating the molecular pathways involved in drug efficacy and 
providing potential ways to predict new patients’ response to available therapies. In this study, we 
integrated cancer type, drug treatment, and survival data with RNA-seq gene expression data from 
The Cancer Genome Atlas to identify genes and gene sets whose expression levels in patient tumor 
biopsies are associated with drug-specific patient survival using a log-rank test comparing survival 
of patients with low vs. high expression for each gene. This analysis was successful in identifying 
thousands of such gene–drug relationships across 20 drugs in 14 cancers, several of which have been 
previously implicated in the respective drug’s efficacy. We then clustered significant genes based 
on their expression patterns across patients and defined gene sets that are more robust predictors 
of patient outcome, many of which were significantly enriched for target genes of one or more 
transcription factors, indicating several upstream regulatory mechanisms that may be involved in 
drug efficacy. We identified a large number of genes and gene sets that were potentially useful as 
transcript-level biomarkers for predicting drug-specific patient survival outcome. Our gene sets were 
robust predictors of drug-specific survival and our results included both novel and previously reported 
findings, suggesting that the drug-specific survival marker genes reported herein warrant further 
investigation for insights into drug mechanisms and for validation as biomarkers to aid cancer therapy 
decisions.

Abbreviations
TCGA​	� The Cancer Genome Atlas
GSEA	� Gene set enrichment analysis
TF	� Transcription factor
FDR	� False discovery rate
GDC	� Genomic Data Commons

Cancer has been a major focus in precision medicine because it is a heterogeneous disease with significant vari-
ations in therapeutic responses. Improved understanding of a drug’s molecular mechanisms and the relationship 
between its efficacy and molecular variation among tumors will help inform doctors’ decisions about individual 
patient treatment options, which will improve both overall patient outcomes and patient quality of life by decreas-
ing the use of ineffective therapies. Thus, precision medicine aims to identify molecular markers in cancers to 
predict patients’ responses to different therapies and provide molecular insights into drug mechanisms.

Most research identifying molecular biomarkers of drug efficacy in cancer have been in the field of pharma-
cogenomics, which researches genome-level changes as potential biomarkers of drug response1. However, in vitro 
studies indicate that gene expression variation accounts for even more variability in drug sensitivity than genomic 
changes do and may offer better insight into clinical drug efficacy2; yet, there have been few systematic efforts to 
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identify gene expression patterns that influence tumors’ drug sensitivity. While some in vitro studies have sought 
to identify the relationship between gene expression and drug response by studying differential gene expression 
when cells are exposed to a drug or by linking cell line gene expression profiles and drug sensitivity3, most do not 
consider real patient outcomes. Previous studies incorporating gene expression and patient drug response were 
limited to specific cancers or drugs4, or focused exclusively on genes implicated in drug metabolism5.

The Cancer Genome Atlas (TCGA) is a large dataset with multiple types of molecular data from primary 
tumors before treatment from a range of cancers and corresponding clinical information, including drug expo-
sures and survival data. The RNA-seq dataset from TCGA is an excellent resource for predictive biomarker 
identification because pre-treatment gene expression provides a snapshot of a tumor’s transcriptional state at 
diagnosis, when decisions about treatment options are made. Previously, our group manually standardized drug 
exposure data to identify gene copy number variations related to survival in a drug-specific manner6,7. Analyzing 
the gene expression data in combination with these clinical data is a similarly powerful strategy for identification 
of biomarkers for drug-specific survival.

In this study, we perform drug-specific survival analyses to identify genes and gene sets whose pre-treatment 
expression levels are associated with therapeutic response. We grouped patients based on cancer type and drug 
exposure and identified genes where patients with high and low pre-treatment expression of that gene had 
significant survival differences after exposure to that drug. We then clustered these genes into sets based on 
frequency of co-expression among patients in that group. We identified thousands of gene–drug relationships, 
with which we subsequently queried PubMed to identify previous reports linking them. Here, we present the 
results of our analysis, which show promise as potential transcriptomic biomarkers with predictive value for 
therapeutic response.

Results
An integrative pipeline for drug‑specific survival analysis.  To identify drug-specific survival mark-
ers based on gene expression, we integrated drug treatment data, survival data, and RNA-seq gene expression 
data from TCGA. As part of preprocessing, the gene expression values were binarized based on a high/low 
threshold calculated separately for each of the 60,483 genes across expression values of all samples for which 
gene expression data were available. We stratified patients by cancer type and drug exposure: for every unique 
cancer–drug combination, we defined a patient group as all patients with that cancer treated with the given drug. 
For each group, we used a log-rank test to compare survival outcomes between patients with high vs. low pre-
treatment expression of each gene. In this way, we identified genes whose pre-treatment expression was associ-
ated with statistically significant survival differences for that cancer–drug patient group.

Next, for each cancer–drug patient group with at least ten significant genes identified, we used a gene clus-
tering algorithm to define sets of these genes that tended to be co-expressed among patients8. To test whether 
each gene set was predictive of drug-specific survival, we used a log-rank test to compare patients in the relevant 
group expressing a high number of the genes in that set to patients expressing few of the genes. We calculated 
the threshold number of genes required for the high expression group for each gene set using the percentage 
of expressed genes in the gene set across patients in that group using the same method used in the binarization 
step of preprocessing.

To compare our results with current knowledge about molecular interactions with various cancer therapies, 
we performed gene set enrichment analysis (GSEA) on each identified set of co-expressing genes to look for 
enrichment of transcription factor (TF) target genes in the set. We also ran a literature search on PubMed pro-
grammatically for each gene–drug combination associated with survival identified in the individual gene analysis 
as well as each drug–TF combination identified in the GSEA of our co-occurring gene sets.

This pipeline is summarized in Fig. 1. More details on the analysis can be found in the “Methods” section.

Individual gene expression predictive of drug‑specific survival.  TCGA has RNA-seq data for 3533 
patients with drug treatment records and survival data. This cohort included 32 cancer types and 284 unique 
drugs (after drug name standardization). The drug treatment records for these patients consisted of 8836 drug 
treatment entries, which each included patient information, drug name, time frame of the treatment, etc. After 
excluding cancer–drug patient groups with fewer than 20 patients, there were 99 groups ranging up to 469 
patients. The heat map in Fig. 2 shows the number of patients in each of the 99 cancer–drug groups.

For each cancer–drug patient group, we performed survival analysis on all genes with at least ten low expres-
sors and ten high expressors within the group. We determined significant differential survival using a log-rank 
test with a 10% false discovery rate (FDR) for the group. Out of 2.2 million cancer–drug–gene combinations 
tested, we identified 9216 where patients with that cancer who took that drug have significantly different survival 
rates when stratified by expression of that gene. These occurred across 46 cancer–drug groups, which included 
14 cancers and 20 drugs, and we identified 7832 unique genes that were significant in at least one cancer–drug 
patient group. There were 9212 unique gene–drug interactions identified, with four that were significant in more 
than one cancer. Table 1 highlights a selected subset of gene–drug interactions we identified, which included 
the gene–drug interaction that showed the largest difference in drug-specific survival for each of the cancers in 
our analysis.

Our analysis identified many cancer-specific gene–drug interactions, including previously characterized 
gene–drug interactions as well as ones that are novel and have never been reported in the literature. To gauge 
the extent of literature support for the identified gene–drug interactions, we queried PubMed for published 
papers mentioning the drug and gene for each of the 9212 significant gene–drug interactions identified. While 
most of these gene–drug queries returned no results, indicating that the identified gene–drug interactions have 
not been previously reported, 531 returned at least one result on PubMed and 158 had three or more papers 
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mentioning the gene and the drug. This strategy identified the gene–drug pairs that are likely to have literature 
support and helped us confirm multiple examples of our identified gene–drug relationships that have been 
previously described.

One example of a known gene–drug interaction that our analysis identified is between the gene XRCC2, a 
key player in the homologous recombination process, and temozolomide, a methylating agent. In our literature 
search, we found studies showing that lower XRCC2 in cancer cells increases temozolomide efficacy by inhibiting 
their ability to repair the DNA damage induced by temozolomide9,10. Our survival analysis showed that lower 
grade glioma patients with tumors expressing lower levels of XRCC2 prior to treatment have better outcomes on 
temozolomide (Fig. 3A), potentially because the function of XRCC2 counteracts the drug’s mechanism of action. 
We also identified a previously reported gene–drug relationship between fluorouracil and TWIST1. Studies 
have shown that silencing TWIST1 can increase certain cancer cells’ sensitivity to fluorouracil11,12, which agrees 
with our findings that, among patients taking fluorouracil for stomach adenocarcinoma, survival outcomes are 
better for patients with low expression levels of TWIST1 than for those with high TWIST1 expression (Fig. 3B).

We also found examples of genes that interact positively with drugs. For example, studies have shown that 
antiproliferative BTG1 acts synergistically with paclitaxel in certain cancer cell lines: cells with induced BTG1 
overexpression were more sensitive to paclitaxel and exhibited lower post-treatment expression of chemoresist-
ance genes than controls13,14. This aligns with our results, which show that head and neck cancer patients with 
higher levels of BTG1 had significantly better survival after taking paclitaxel (Fig. 3C). Additionally, we identified 
a previously reported relationship between SMAD4 and carboplatin. Mutations in the SMAD4 gene have been 
linked to resistance of platinum-based drugs like carboplatin15,16, and our data suggest that head and neck cancer 
patients on carboplatin stratified by pre-treatment SMAD4 expression have significantly differential survival 
between the strata (Fig. 3D).

We also identified four gene–drug interactions occurring in multiple cancer types. Figure 4 shows the 
Kaplan–Meyer survival curves comparing high and low expressors of these genes in two different cancer–drug 
patient groups. Three of the four interactions occurred in low-grade glioma and glioblastoma, while the fourth 
occurred between LPP and paclitaxel in breast invasive carcinoma and head and neck squamous cell carcinoma. 
A previous study in ovarian tumor-bearing mice linked LPP silencing with increased chemosensitivity and 
improved delivery of paclitaxel to tumor cells, which improved the effectiveness of the drug17. In contrast, our 
analysis found worse patient outcomes in patients with low LPP expression; nevertheless, it is encouraging that 
previous literature has implicated a connection between LPP and paclitaxel.

Table 2 summarizes the total numbers of individual genes identified per cancer–drug group and their lit-
erature search results. The full list of identified significant gene–drug interactions can be found in Additional 
file 1. Given the literature support found for many of the identified gene–drug interactions, the novel and highly 
significant interactions we identified, such as those highlighted in Table 1, are worth investigating for biological 
insights and validation as biomarkers of drug efficacy.

Figure 1.   Schematic of the data analysis pipeline used for this study. This figure outlines the major steps of the 
analysis pipeline.
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Gene clusters predictive of drug‑specific survival.  Clustering the significant genes from each cancer–
drug patient group identified 32 different sets of co-expressing genes in eight of the cancer–drug patient groups. 
For each gene set, we stratified the patients into high and low gene-set expressors based on the percentage of set 
genes they expressed, and then tested for differential survival between the strata. All identified gene sets showed 

Figure 2.   Heatmap of patient numbers by cancer and drug. This heatmap shows the number of patients in each 
cancer–drug patient group by cancer site and drugs taken. Cancers are listed by TCGA project identifiers, which 
are defined here: https​://gdc.cance​r.gov/resou​rces-tcga-users​/tcga-code-table​s/tcga-study​-abbre​viati​ons.

https://gdc.cancer.gov/resources-tcga-users/tcga-code-tables/tcga-study-abbreviations
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Table 1.   Top gene–drug interactions across cancers. This table shows the top gene–drug interactions in each 
of the 14 cancers in which significant gene–drug interactions were identified. For each cancer–gene–drug 
combination, the p-value from the log-rank test and the associated q-value (p-values adjusted within each 
cancer–drug patient group) are shown, along with the Kaplan–Meyer curve illustrating survival differences 
between patients expressing high levels of the listed gene (orange line) and patients with low expression (blue 
line).

Cancer Drug Gene symbol p-value q-value

BLCA Cisplatin RP11-131N11.4 2.28E−06 7.97E−02

 

LGG Temozolomide RANBP17 1.35E−29 5.29E−25

 

BRCA​ Doxorubicin RP11-84A19.4 1.28E−13 5.91E−09

 

CESC Cisplatin C19orf57 3.29E−08 1.23E−03

 

COAD Fluorouracil RP11-153F1.1 6.63E−08 2.33E−03

 

GBM Temozolomide SLC6A6 7.39E−08 2.21E−03

 

HNSC Paclitaxel ZBTB11 2.56E−08 5.57E−04

LUAD Pemetrexed MDH2 6.52E−09 1.91E−04

LUSC Carboplatin AC096921.2 1.97E−08 5.70E−04

 

MESO Cisplatin DLC1 1.05E−06 1.55E−02

 

OV Paclitaxel RP11-60A8.2 7.31E−08 3.38E−03

 

SARC​ Docetaxel CMAHP 1.99E−07 4.10E−03

 

STAD Cisplatin AC024704.2 1.37E−07 3.79E−03

 

UCEC Carboplatin DDX43P3 2.36E−08 6.15E−04
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statistically significant survival differences, and many were more significant than the majority (> 95%) of indi-
vidual genes in those gene sets. See Additional file 2 for the lists of genes in each gene set.

To elucidate the biological context and meaning of these co-expressing gene sets, we performed gene set 
enrichment analysis (GSEA) using MSigDB18. Of the 32 identified gene sets, 21 were significantly enriched for 
target genes of at least one transcription factor (TF). We then performed a literature search for each TF–drug 
combination identified in the GSEA. Table 3 summarizes the gene set analysis results.

Literature searches revealed that many of these TFs have been discussed in the context of the corresponding 
drug. For example, we identified a set of genes in head and neck cancer patients taking paclitaxel where patients 
with high set expression have better survival than low expressors. This gene set was significantly enriched for 
targets of NF-κB, which previous studies found to be related to paclitaxel efficacy19,20. Another gene set found 
in head and neck cancer patients taking carboplatin showing survival differences between high and low expres-
sors was enriched for target genes of NRF2, and activation of the NRF2 pathway has been linked to carboplatin 
resistance21,22. In addition, we identified a set of co-expressed genes enriched for SRY targets that exhibits dif-
ferential survival among low-grade glioma patients on temozolomide, and previous studies have shown a link 
between the SRY pathway and sensitivity to temozolomide23–25. This literature support lends credibility to our 
analysis strategy and findings and suggests that many other TFs identified in our analysis may also contribute 
to differences in patient response to specific drugs.

Figure 3.   Specific genes are associated with survival following treatment in individual cancer–drug patient 
groups. Kaplan–Meyer survival curves of patients with the indicated cancer and exposed to the indicated drug, 
grouped into either high (orange line) or low (blue line) pre-treatment expression levels of the indicated gene. 
Cancers are referred to their TCGA project identifiers (see Fig. 2). (A) Patients who received temozolomide 
for lower grade glioma, grouped by XRCC2 expression. (B) Stomach adenocarcinoma patients who took 
fluorouracil, grouped by TWIST1 expression. (C) Patients grouped by BTG1 expression who took paclitaxel for 
head and neck squamous cell carcinoma. (D) Patients who received carboplatin for head and neck squamous 
cell carcinoma, grouped by SMAD4 expression.
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Discussion
Our analysis identified many genes and gene sets whose expression is associated with survival times in various 
cancer–drug patient groups. With this analysis, we hoped to identify gene–drug interactions that may impact 

Figure 4.   Genes that are associated with drug-specific survival in multiple cancers. Kaplan–Meyer survival 
curves of patients taking the indicated drug, grouped into either high (orange line) or low (blue line) pre-
treatment expression levels of the indicated gene across two different cancers. These are the four gene–drug 
interactions identified in multiple cancers. (A) Survival of breast invasive carcinoma patients (left) and patients 
with head and neck squamous cell carcinoma (right) who took paclitaxel, grouped by expression of LPP. (B–D) 
Survival of low-grade glioma patients (left) and glioblastoma (right) patients taking temozolomide, grouped by 
pre-treatment expression of (B) QRSL1, (C) RP11-338C15.5, and (D) KRT17P7.
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Table 2.   Summary of survival analyses of individual genes for each group. This table shows the 46 cancer–
drug patient groups in which individual genes were identified as significant predictors of survival, along with 
the number of patients in the group, the number of genes with enough variance across patients in that group to 
test for differential survival, and the number of genes identified as significant. The last two columns show the 
number of the significant genes for which the PubMed search found at least three papers along with the total 
number of papers found supporting the significant genes in that group.

Cancer Drug Patients Genes tested Significant genes
Gene–drug combinations with ≥ 3 
papers Total gene–drug papers

Bladder urothelial carcinoma Cisplatin 77 34,921 1 0 0

Brain lower grade glioma

Bevacizumab 49 19,605 623 5 96

Irinotecan 21 2702 51 1 5

Lomustine 39 15,412 183 1 198

Temozolomide 250 39,137 5960 118 2999

Breast invasive carcinoma

Anastrozole 243 43,509 141 0 0

Cyclophosphamide 469 48,701 52 0 0

Docetaxel 183 42,009 30 1 8

Doxorubicin 329 46,315 102 1 4

Fluorouracil 98 36,614 12 0 0

Letrozole 72 31,858 16 0 0

Paclitaxel 227 43,696 184 3 334

Tamoxifen 246 43,758 43 0 2

Cervical squamous cell carcinoma and 
endocervical adenocarcinoma Cisplatin 116 37,450 15 0 3

Colon adenocarcinoma

Fluorouracil 116 35,153 31 0 0

Leucovorin 105 34,126 22 0 0

Oxaliplatin 102 33,982 49 1 9

Glioblastoma multiforme
Bevacizumab 29 10,704 1 0 0

Temozolomide 92 29,925 7 0 0

Head and neck squamous cell carci-
noma

Carboplatin 54 27,280 616 12 183

Cetuximab 29 13,686 451 1 13

Cisplatin 92 35,953 1 0 0

Paclitaxel 41 21,738 254 10 107

Lung adenocarcinoma

Carboplatin 76 33,630 12 0 0

Cisplatin 84 34,231 1 0 0

Docetaxel 23 7164 2 0 0

Paclitaxel 44 25,559 6 0 0

Pemetrexed 59 29,321 191 2 38

Lung squamous cell carcinoma

Carboplatin 56 28,999 7 0 0

Cisplatin 70 32,214 2 0 0

Vinorelbine 43 23,941 2 0 0

Mesothelioma
Cisplatin 31 14,732 2 0 1

Pemetrexed 34 17,203 47 0 1

Ovarian serous cystadenocarcinoma

Carboplatin 297 46,264 4 0 0

Cisplatin 104 36,549 4 0 0

Docetaxel 73 32,219 4 0 0

Doxorubicin 100 36,368 4 0 1

Gemcitabine 92 35,460 2 0 0

Paclitaxel 296 46,236 6 0 0

Sarcoma

Docetaxel 37 20,580 3 0 0

Doxorubicin 40 23,638 2 0 0

Gemcitabine 42 23,694 17 0 0

Stomach adenocarcinoma
Cisplatin 44 27,671 3 0 0

Fluorouracil 109 42,242 25 2 30

Uterine corpus endometrial carcinoma
Carboplatin 160 44,684 14 0 0

Paclitaxel 155 44,321 11 0 0
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drug efficacy. We found four gene–drug combinations that had a significant association with survival in more 
than one cancer type. Of these four, three are significant only in closely related cancers: low-grade glioma is a 
grade II glioma, and glioblastoma multiforme is a grade IV glioma that can arise from a low-grade glioma or 
develop de novo26,27. The low number of gene–drug combinations related to survival that transcended cancer 
type is likely due to the fact that only a small number of drugs are used in multiple cancers, as illustrated in Fig. 2. 
In addition, given that most of the gene–drug combinations that are significant in multiple cancers occur in the 
same tissue, it is possible that many of the identified effects are tissue-specific.

The identified sets of co-expressing genes have several advantages over individual genes as predictors of 
patient response to therapy. As noted earlier, many of these gene sets stratified the patients into groups with 
larger survival differences than any of the individual genes in those gene sets. This indicates that, compared to 
individual genes alone, these gene sets can more accurately separate patients into responders and non-responders. 
In addition, the gene sets exhibiting the strongest associations with survival contain genes that are part of a simi-
lar transcriptome profile and stratify the patients similarly. This means that these gene sets could make better 
biomarkers than individual genes because they are less vulnerable to measurement errors, minor differences in 
threshold calculations, or patient-to-patient variability in expression of one or a small number of genes.

Table 3.   Summary of gene set analysis. This table shows the 32 gene sets identified in this analysis, ordered by 
significance within each group. Columns show the number of genes in the set, the raw (unadjusted) p-values 
for the log-rank test for that set and for its most significant individual gene, the percent of genes in the set 
with stronger association with survival than the set (in bold are < 5%, indicating the most useful gene sets), 
the number of TFs whose target genes were enriched in that gene set, the number of these TFs with at least 3 
hits in the PubMed search described, and the total papers found. Letters identifying gene sets (3rd column) 
represent the order in which the sets were identified during the clustering for that group and match the gene 
set identification in Additional file 2.

Cancer Drug Gene set Genes in set Log-rank p-value
Most significant 
gene p-value

Percent of genes 
more significant 
(%) TFs enriched

TF-drug 
combinations 
with 3 + papers

Total TF-drug 
papers

Brain lower grade 
glioma

Bevacizumab
A 128 1.94E−09 5.72E−10 0.8 0 0 0

B 175 3.10E−09 1.14E−09 1.1 8 0 0

Temozolomide

M 1619 4.23E−26 1.35E−29 0.2 8 1 38

R 72 5.10E−14 4.62E−14 1.4 1 0 1

S 29 1.00E−13 1.74E−12 0.0 0 0 0

K 49 3.82E−13 1.88E−13 2.0 3 0 1

L 30 1.20E−10 5.48E−15 6.7 9 0 0

J 106 1.07E−09 3.49E−21 34.0 10 5 24

N 20 5.50E−08 1.55E−05 0.0 0 0 0

P 56 6.18E−08 3.93E−11 10.7 9 4 90

F 214 4.43E−07 3.83E−18 17.8 9 0 3

G 745 6.71E−07 1.43E−13 6.7 8 0 1

I 11 6.75E−07 2.24E−07 18.2 0 0 0

Q 89 7.80E−07 1.44E−13 9.0 9 5 59

D 14 1.10E−06 8.10E−07 7.1 0 0 0

E 222 5.88E−06 1.63E−09 5.9 7 3 16

B 171 5.88E−06 1.16E−11 6.4 3 2 7

A 72 6.91E−06 1.06E−09 2.8 8 4 21

O 44 2.31E−05 1.71E−08 20.5 0 0 0

H 119 1.54E−04 1.13E−07 15.1 4 0 3

C 53 3.36E−04 1.82E−09 24.5 0 0 0

Breast invasive 
carcinoma

Docetaxel A 14 3.00E−19 1.13E−07 0.0 0 0 0

Tamoxifen A 19 1.76E−24 1.20E−07 0.0 0 0 0

Head and neck 
squamous cell 
carcinoma

Carboplatin
B 190 2.52E−06 2.94E−07 2.6 8 1 12

A 136 1.21E−05 1.14E−07 11.0 10 4 22

Cetuximab

B 84 8.44E−06 1.74E−06 4.8 1 1 38

A 146 7.65E−05 5.08E−07 13.0 10 6 201

C 71 7.65E−05 9.74E−06 2.8 4 2 118

Paclitaxel

A 16 2.24E−09 2.26E−05 0.0 0 0 0

C 111 3.24E−08 2.56E−08 0.9 10 4 46

B 95 8.37E−07 8.52E−08 3.2 7 4 50

Mesothelioma Pemetrexed A 14 2.15E−04 2.49E−05 78.6 0 0 0
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While TCGA is a rich resource for genomic and integrative analyses, it is not without its limitations. Drill-
ing down to such fine granularity as cancer- and drug-specific patient groups means that several of the groups 
contain very few patients. It is likely that we may miss relevant genes due to lower statistical power in smaller 
cancer–drug patient groups. We mitigated this to the extent possible by excluding small cancer–drug patient 
groups from our analysis, analyzing only the genes with at least ten low expressors and ten high expressors in a 
given group, and using a generous FDR to define significance; however, our results would benefit from validation 
with larger datasets for each cancer–drug patient group. Another limitation is that most of the drug exposure data 
do not include records of the treatment response, which is why our analysis uses patient survival outcome as an 
indirect measure of drug efficacy. Since treatment schedules for a given drug can vary between patients and some 
patients received multiple drugs, patient survival outcome is an imperfect surrogate to measure drug efficacy.

We performed literature searches on PubMed to identify previous reports of the gene–drug and TF–drug 
relationships identified in our analysis. The results of the PubMed search were reported in Tables 2 and 3. Our 
PubMed search strategy was rudimentary, and it was not feasible to manually confirm a link between the corre-
sponding gene and drug in the large number of papers from the search. Without a manual review of the papers, 
the quantity of PubMed search results may not directly represent the amount of literature supporting a particular 
gene–drug pair. This is especially true when the gene name overlaps with English words, author names, or com-
mon abbreviations. However, despite these limitations, our success in manually confirming literature support for 
multiple examples of gene–drug interactions suggests a high likelihood that literature support exists for many 
of the gene–drug pairs whose corresponding papers we did not review. Additionally, because it is unlikely that 
a PubMed query would return no results for a gene–drug pair with a previously reported interaction, we can 
reasonably conclude that a large majority of our identified gene–drug interactions with no PubMed results are 
novel and have not been previously reported.

Many of the gene–drug interactions we identified were novel and did not have literature support, and many 
of our gene sets had no obvious unifying biological interpretation. While many of our identified gene–drug 
interactions are sufficiently promising to warrant further investigation into the biological mechanisms, these 
findings could be useful as biomarkers even before the underlying biological mechanism is fully understood. 
The most significant gene–drug interactions, such as the examples shown in Table 1, have high predictive value, 
and could serve as biomarkers for drug efficacy.

Conclusion
In this analysis, we identified many genes that are associated with drug-specific survival outcomes in various 
cancers. In addition, we were able to identify sets of co-expressed genes that were, in many cases, more strongly 
associated with patient survival than any of the individual genes in those gene sets, and therefore had higher 
potential predictive value.

This analysis successfully identified putative biomarkers for drug response in a range of cancers based on 
gene expression. Therefore, a future research direction is to replicate this analysis in other omics data types avail-
able in TCGA, such as DNA methylation, miRNA expression and protein expression, for further insights into 
variation in drug response among patients. This analysis can then be extended to integrate multiple omics data 
types for a multi-omics understanding of the molecular variations predictive of drug-specific survival outcomes.

The interactions we identified in our analysis are promising and warrant further investigation, which could 
yield valuable biological insights into drug mechanisms and variations in drug response. In addition, many of 
our findings show promise as potential biomarkers of drug response that could be used clinically to predict 
whether a patient will do well on a drug. Validating these as biomarkers would help doctors in formulating 
treatment strategies with the highest chances of success for each patient and would be a measurable step toward 
improving precision medicine.

Materials and methods
Data acquisition.  We acquired TCGA gene expression data and drug treatment data from the Genomic 
Data Commons (GDC) database using the GDC Data Transfer Tool. We obtained the file manifest for data files 
via the GDC API and used the GDC Data Transfer Tool to download files. The parameters used when creating 
the manifest were “return_type: manifest” along with the filters “files.data_type: Gene Expression Quantifica-
tion” and “analysis.workflow_type: HTSeq—FPKM-UQ” for RNA-seq data and “files.data_type: Clinical Sup-
plement” and “files.data_format: BCR Biotab” for clinical data.

Patient survival and other clinical data were queried through the GDC API for the most current information.

Data preprocessing.  Drug names from TCGA were standardized based on a manually curated list cre-
ated by our group previously7. The RNA-seq dataset was obtained as FPKM-UQ values and log-transformed for 
better distribution. We then calculated a binarization threshold to delineate high vs. low expression values for 
each gene by adapting the StepMiner method described previously28. Briefly, gene expression values are ordered 
from lowest to highest and then fitted with a step function that minimizes the mean square error within the two 
groups. We tested 400 thresholds for each gene, 200 between evenly distributed bins of samples and 200 evenly 
distributed through the range of the expression values.

Survival analysis.  All patients with a given cancer and exposed to a given drug were split into high and low 
expression groups for each gene, and survival was compared between these two groups using a log-rank test. All 
cancer–drug–gene combinations were analyzed that had a minimum of ten patients in the low and high expres-
sion groups. Log-rank calculations and Kaplan–Meyer curves were generated using the lifelines Python package. 
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Q-values were calculated using the Benjamini–Hochberg procedure to control for multiple hypothesis testing 
with 10% FDR (performed using the fdrcorrection function in the statsmodels Python package).

Co‑occurrence clustering.  We adapted a clustering method developed for the analysis of single cell RNA-
seq data called co-occurrence clustering to identify sets of co-expressed genes8. Briefly, this algorithm constructs 
a gene–gene graph based on a chi-square pairwise association measure and uses the Louvain algorithm for 
community detection to identify gene clusters from the graph, then clusters patients similarly based on their 
expression levels of each gene cluster. This process then iterates for each patient cluster identified. We used this 
algorithm to identify co-occurring gene sets among the individual genes with significantly differential survival 
in each cancer–drug patient group. For each gene set identified, we used the percentages of the member genes 
that were highly expressed for each patient to calculate a binarization threshold to stratify patients into high and 
low gene-set expression groups and tested for differential survival.

Literature search.  Literature searches were conducted using a Python script with the Bio.Entrez package 
from Biopython. Queries were formulated as the drug name and the gene or TF name separated by “AND” and 
relevant PMIDs were retrieved using efetch.

TF target gene enrichment analysis.  To examine whether the gene sets we identified through co-occur-
rence clustering of drug-specific survival marker genes were significantly enriched for TF targets, we performed 
gene set enrichment analysis (GSEA) using the Molecular Signatures Database 7.0 (MSigDB). Specifically, we 
used the GSEA tool (version 4.0.0) to compute overlaps between the gene sets we identified and the sub-collec-
tion of MSigDB gene sets that were known or predicted targets of various transcription factors. In MSigDB, the 
target gene set of a transcription factor is defined as either genes whose predicted binding site for the given TF 
is within − 1000 to + 500 bp of the transcription start site or genes with upstream cis-regulatory motifs in the 
promoter region. A detailed explanation can be found at https​://www.gsea-msigd​b.org/gsea/msigd​b/colle​ction​
_detai​ls.jsp#GTRD. We then identified the TFs whose target genes were significantly enriched in each gene set 
using a 5% FDR to determine significance.

Data availability
The TCGA dataset analyzed in this study is available in the GDC repository, https​://porta​l.gdc.cance​r.gov/repos​
itory​. The MSigDB gene sets are available at https​://www.gsea-msigd​b.org.
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