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Abstract—Recent studies have suggested that the BitTorrent’s
rarest-first protocol, owing to its work-conserving nature, can
become unstable in the presence of non-persistent users. Conse-
quently, in any stable protocol, many peers are at some point
endogenously forced to hold off their file-download activity.
In this work, we propose a tunable piece-selection policy that
minimizes this (undesirable) requisite by combining the (work-
conserving) rarest-first protocol with only an appropriate share
of the (non-work conserving) mode-suppression protocol. We
refer to this policy as “Rarest-First with Probabilistic Mode-
Suppression” or simply RFwPMS.

We study REFwPMS under a stochastic model of the BitTorrent
network that is general enough to capture multiple swarms
of non-persistent users - each swarm having its own altruistic
preferences that may or may not overlap with those of other
swarms. Using a Lyapunov drift analysis, we show that RFwPMS
is provably stable for all kinds of inter-swarm behaviors, and that
the use of rarest-first instead of random-selection is indeed more
justified. Our numerical results suggest that REWPMS is scalable
in the general multi-swarm setting and offers better performance
than the existing stabilizing schemes like mode-suppression.

Index Terms—P2P Sharing, Mode-Suppression, Rarest-First.

I. INTRODUCTION

Consider the task of distributing a large file to peers in a
peer-to-peer (P2P) network. The file is initially available with
a distinguished peer (usually termed as the seed) and each peer
can initiate a transfer connection with any other peer [1].

One effective method to perform the above task is to chop
the file into a large number of small and roughly equally-sized
pieces, and to allow peers to share the pieces with each other.
This strategy is the key idea behind the popular “BitTorrent
protocol” [2]. Chopping the file allows peers to distribute parts
of it before possessing it completely. Such an upload-while-
download scheme not only reduces the average file-download
time for the peers but also, more importantly, enables the
network to scale its throughput with the number of peers. As
a result, the BitTorrent protocol has gained a large popularity
over the years. Even today, despite the growth of streaming
services like Netflix and Youtube, BitTorrent sharing remains
a significant source of internet traffic [3]. In the research
literature also, the protocol has gained extensive interest. For
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instance, on the theoretical side, various mathematical models
have been studied [1, 4-14], each model providing a high-level
abstraction of the detailed workings of the actual protocol.

A common occurrence in BitTorrent-like networks is that
a peer usually spends relatively more time downloading the
last few pieces of the file. This phenomenon, known as the
delay-in-endgame-mode, is because the last few pieces are
often the rare ones in the network. Inspired by this, Hajek
and Zhu [5] studied a stochastic abstraction and showed that
an unstructured' BitTorrent-like network that employs a work-
conserving® piece-selection policy (e.g., random-novel (RN),
rarest-first (RF)) becomes unstable if the arrival rate of peers
exceeds the fixed seed’s upload rate and if each peer departs
immediately upon completing their own file-download. The
cause behind instability is a phenomenon called the missing
piece syndrome [5], wherein the network converges to, and
then cannot escape from, the one-club scenario, where a large
group of users who possess all but exactly one piece of the
file keeps growing.

A. Related Work

Zhu and Hajek [6], in a follow-up to [5], showed that if,
after completing their file-download, each peer remains in the
system long enough to upload one additional piece, then the
network is stable under any positive seed uploading capacity
and any peer arrival rate. This demands persistence of peers
which might not hold, especially with wireless users who are
sensitive to their energy and bandwidth usages.

Norros, Reittu and Eirola [1] proposed the Enforced Fried-
man algorithm in which a peer makes three contacts simulta-
neously (with replacement) and if there are ‘minority pieces’
(pieces possessed by exactly one of the three peers), then the
peer downloads one of them uniformly at random. The stability
was shown for a two-chunk set-up only. Oguz, Anantharam
and Norros [9] proved the stability of the Enforced Friedman
protocol for multi-chunk systems and also proposed a provably
stable improvement, the Common Chunk protocol.

Bilgen and Wagner [10] proposed the Group-Suppression
Protocol in which peers who share the same piece profile are

'Each peer contacts an other peer uniformly at random.
2For a work-conserving piece-selection policy, a piece transfer always
happens if the uploading peer has a piece that the downloading peer needs.
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defined as a group and the group with the largest population is
defined as the largest club. Assuming that a peer in the largest
club uploads only to peers holding a greater number of pieces
than it does, stability was shown in the two-chunk case only.
More recently, Reddyvari, Parag and Shakkottai [11] pro-
posed the Mode-Suppression (MS) protocol. Here the transfer
of pieces in the mode (present with the most number of peers)
is prohibited, except when all pieces are in the mode, and a
random-novel piece not in the mode (if any) is sent. Noting
the explicit non-work-conserving nature of the protocol, devel-
oping a stable protocol with the smallest mean sojourn time>
is an interesting design question, which we seek to answer.
The literature has also considered bundling different swarms
together in the same network and then allowing content-
sharing across them. This was proposed by Zhou, loannidis
and Massoulié [7] with the claim that such “universal swarms”
can increase the stability region of a BitTorrent network.
Then Zhu, Ioannidis and Hegde [8] formally characterized
the stability region of such networks when a work-conserving
piece-selection policy is used. The stability region is indeed
larger than in the single-swarm setting, however, yet again,
it doesn’t hold for all arrival rates. Developing a stable and
efficient protocol for the multiple swarm (multi-swarm) setting
is another interesting design question which we seek to answer.

B. Contribution

We make the first effort to abridge the performance gaps of
the previous stable policies, and to respond to the findings and
recommendations of [15]. We do that by proposing a simple
and provably stable variant of the BitTorrent’s original rarest-
first protocol that includes only an appropriate amount of
(probabilistic) mode-suppression; we call this protocol Rarest-
First with Probabilistic Mode-Suppression (RFwPMS). To the
best of our knowledge, we are the first to propose a RF-based
piece-selection policy that is stable for all arrival rates. Then,
numerically we show that RFwPMS outperforms MS [11].

Compared with [7], we extend RFwWPMS to a multi-swarm
model where peers arrive at any (positive) arrival rate and
their caches are empty upon arrival. With regard to inter-swarm
cooperation, we make the general assumption that each swarm
has its own altruistic preferences. Leveraging the intuition that
as long as each swarm is stable, the resulting network will be
stable, we carefully establish the stability of RFwWPMS using a
more general version of the Lyapunov function from [11]. As
the single-swarm model is a special case of the multi-swarm
model, in the paper we only study the multi-swarm model.

The remainder of the paper is organized as follows. In
Section II, we introduce the multi-swarm model which is
built upon the model in [8]. Section III presents the main
stability theorem along with the preliminary steps needed for
the detailed proof in the appendix - Section VII. Section IV
discusses the working of RFwPMS as well as a few types
of inter-swarm behaviors that can be relevant in specific P2P

3The time a peer remains in the system collecting all the pieces of the file.

environments. Various numerical results on stability, scalabil-
ity and performance of RFwPMS are presented in Section V.
Finally, our concluding remarks are in Section VI.

II. SYSTEM MODEL

The model consists of a master-file which is divided into
at least two equally-sized pieces. Let F = [K]* denote the set
of all the pieces (K > 2). There is a distinguished peer, the
seed, which holds this master-file F and stays in the network
indefinitely. We define file-WW as any non-empty subset of the
master-file, thus, W # ¢ and W < F. The number of pieces
in file-W is denoted by Ky, ie., Ky = |W/|. With this
definition of file, swarm-W is defined as the set of peers
who are primarily interested in downloading (pieces of) file-
W. We note that peers entering the network can be interested
in any file, i.e., the files need not be disjoint subsets of F.
Besides their primary interest in file-WW, swarm-W peers may
also have a secondary preference for some other pieces of the
master-file. Thus, the set of pieces that a swarm-W peer can
download during its stay in the network is given by Fyr where
W < Fw < F. It is assumed that a swarm-W peer enters
the network according to a Poisson process of rate Ay > 0,
independent of other swarms. Let VW denote the set of all
swarms that join the network and let A = (A : W € W)
denote the vector of arrival rates. We now list three important
assumptions of the model: a) Empty Cache Upon Arrival:
Each peer maintains a cache to store the pieces it downloads.
The cache is empty upon arrival and has a capacity of |Fyy |
pieces. The part of the cache that is devoted for the pieces
of secondary interest is called the excess-cache (where pieces
from the set Fy \W are stored); b) Ally-Swarms: While peers
interested in the same file exchange pieces with each other,
they may or may not prefer to collaborate with peers who are
interested in other files. Thus, each swarm has an associated set
of ally-swarms. Formally, the ally-set of swarm-W, denoted
by Ww, is a non-empty subset of W that consists of swarm-
W as well as any other swarms to which its peers can upload
pieces; and c¢) Non-persistent Peers: Once a peer finishes
downloading their file of (primary) interest, they leave the
network immediately.

A. State

Peers can be classified into types according to (a) the swarm
they belong to and (b) the set of pieces in their cache. Hence,
a peer in swarm W holding S € Fyy is denoted to be of type
(W, S). We denote the number of (W, S)-type peers at any
time ¢t > 0 by x%,}i)(t) € Zy = {0,1,...}. The state of the
network is then given by

x(t) = (25 (t) : W e W, S € Fy, and W\S # &). (1)

Note that as a result of aforementioned assumptions, the cache-
profile S of a swarm-W peer always satisfies the conditions
S € Fw and W\S # (. For the sake of brevity, from hereon,

*For myn € Z = {...,—1,0,1,...} and m < n, we use the standard
notation [m,n] := {m +1,...,n} and [n] for [0, n].
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we will omit writing these two conditions. The population of
swarm-W, i.e., the number of swarm-W peers at time ¢ > 0

is then given by

Similarly, the total number of peers at time ¢ >

x®]2 Y x(t)w. 3)

Wew

0 is given by

From hereon, for brevity we will write x(t) as x.

B. Peer-Contact and Piece-Selection Policies

1) Peer-Contact Policy: Consistent with the stochastic
models of [1, 4-11], we assume that the network employs
random peer-contacts. Each peer contacts some peer chosen
uniformly at random from all other peers (excluding the seed),
to upload (i.e. push) a piece to it; such contacts are called push-
contacts. We assume that the seed makes independent random
push-contacts according to a Poisson process of rate U > 0
whereas each normal peer does this independently according
to a Poisson process of rate p > 0. Transfer of the piece is
assumed to occur instantaneously with the push-contact.

2) Piece-Selection Policy (RFwPMS): If at time t > 0,
a (V,T)-peer push-contacts a (W, S)-peer, then the piece-
selection policy chooses the piece to upload from (T'nFy )\S.
To describe REFEWPMS, some definitions (a’la [11]) are needed.

Definition 1. The frequency of a piece i in swarm-W's
population is denoted by 771(;,) (x) and is defined as follows:

_1 x(S) t
0 if [xlw = 0.

. lf ‘X|W > Oa
T (x) 2

The maximum and minimum piece frequencies in swarm-W's
population are denoted by Ty (x) and my, (x) respectively,

Tw (x )AIH%(W‘(,V)( x) and mwy(x) = m1n7r‘(/v)( ).

Importantly, both are computed over W instead of Fyy.

Definition 2. The total number of copies of the pieces of file-
W that are present with swarm-W peers is given by

A i
Pw(x) 2 Y my) (x)|xfw
iew

Definition 3. The mismatch in swarm-W at state X is defined
as (Tw — my )[x|w.
Definition 4. The set of rare pieces in swarm-W ’s population,
denoted by Ry (x), is defined as follows:

A J{ieW: FI(/:'/)(X) <7TwX)} fTw # W,

Rw(x) = e
w if Tw = Ty

Definition S. The set of non-rare pieces in swarm-W is
denoted by Ry (x) and is given by W\Ryy.

Definition 6. The set of extra pieces associated with swarm-
W is given by Fy \W.

We now list the rules of RFwWPMS for a possible piece
transfer from the (V,T')-peer to the (W, S)-peer:
a) Ally Check: If swarm-W is not considered an ally by swarm-
V,ie., if W ¢ Wy, then no piece is transferred to the (W, S)-
peer. Otherwise, items (b), (c) and (d) are carried out in the
mentioned order.
b) Download of a Rare Piece: If (T n Ry (x))\S # &, then
the (V,T)-peer uploads the rarest piece it can offer, i.e., a
piece chosen uniformly at random from the set

A ; (9)
R X) = ar min Ty (X).
—(T,W,S)( ) ng(TmRW(x))\S W( )
¢) Download of a Non-rare Piece: If (T n Ry (x))\S = &
and (TnW)\S # &, then the (V, T)-peer chooses some non-
rare piece n € (T'n W)\S uniformly at random, and decides

to upload it with success probability given by

A (Tw
Cw(x) = exp ( oKy

where ay > 0 and Sy > 0 are constants. We refer to (yy (x)
as the non-rares’ sharing factor.

d) Download of an Extra Piece: If, from rules (b) and (c), no
piece of file-W could be uploaded to the (W, S)-peer, then
the (V,T)-peer uploads an extra piece chosen uniformly at
random from the set (7" n Fy)\(S u W).

Note that when there is no rare piece at offer, a non-rare
piece n € (T~ W)\S is transferred only probabilistically, so
RFwPMS is not a work-conserving scheme. In order to extend
our rules to the seed, we assume that the seed is a (f,F)-
type peer where T takes the swarm identity of whichever peer
it push-contacts. Thus, the set of rare pieces when the seed
push-contacts a normal peer is given by

— T X
,W)‘ |Wx|aw> ]l{ﬁw>0}v (4)

(q)

min 7y (%).

Bgws)(x) =arg _min

C. Process Description

For the sake of notational simplicity, from hereon, we will
write f(x) as f when the dependence on state x is clear. At
any given current state x, the next state of the network depends
solely on x as the piece-selection policy solely depends on x.
Hence, the evolution of the network described by the process
{x(t) : t = 0} is a continuous-time, time-homogeneous and
irreducible (easily shown) Markov chain with state space,

> |{S:SSFw and W\S#J}|
CEY Ay . (5)

We now describe the generator matrix () of the process
{x(t) : t = 0} by listing its positive entries. Given a state
x, the different kinds of transitions possible are:

a) Arrival of an Empty-peer: Recall that a swarm-W peer with
an empty cache enters the network according to a Poisson
process of rate Ayy. This results in a unit increase in the
number of swarm-W peers with no pieces, i.e., the new state
is X +e(w,z) (e(...) is the unit vector in the direction of (-, -)-
axis) and the correspondlng transition rate is given by

(X, x+emw,g) = Aw. (6)
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b) Download of a Rare piece: Let r € Ry, denote some rare
piece in swarm-W. The second type of transition is when
a (W, S)-peer missing piece r, downloads it. The necessary
condition for this is that the (W, S)-peer gets push-contacted
by a peer holding piece r, which includes the seed and all
(V, T)-peers such that W € Wy, and r € T'. By the properties
of Poisson processes, the rate at which the seed push-contacts

a (W, S)-peer is U x xW /|x| and the rate at which a (V, T')-

peer push-contacts a (W, .S)-peer is um§/) X x%ﬁ (Ix| = 1).

Let £(x) = (|x|] — 1)/|x| and define
(r) & g/T)
Iy =U+p Z ¢

(V,T):WeWy ,reT

Then, the aggregate rate at which a possible source of plece
r, push-contacts the (W, S)-peer is given by xw)/|x\ X I‘
After the (W, .S)-peer has downloaded piece r, dependmg on
S, it will either remain in the network or leave it immediately.
Therefore, we have two cases:

i) if W\S 2 {r}, the peer stays in the system; the resulting
state is X — e(yy,s) + €(w,su{r})- For brevity, let us introduce
;X — e(w,s) T ew.su{i})) = QE;Z)S) for any
S that satisfies W\S 2 {i}. Then, qg;’;) is given by

the notation ¢(x

x(vg) U]l{TeR(’rws)} xV IL{TER(TWS)}( )

x| |E T,W,S’)

i), :
V:WeWy,
T:reT

EIR w9l
@)

where the two indicator terms ensure that piece r is transferred
only if it is the rarest of all the available rare pieces.

When the piece distribution in swarm-W is uniform i.e.,
Tw = Ty, by definition, Ry = W and the above transition
rate takes a more tractable form. Therefore, for each swarm-
W, we partition the state space into two regions, namely S}y,
and SZ,, where Sfy, = {x : Rw(x) & W}, and S, = {x :
Ry (x) = W}. In the case when x € S2,, both the indicator
terms evaluate to 1. Thus, for a state x € S3,, if we upper
bound |R; 5| and |Rr w )| by Ky, then the transition

rate q&%) is lower bounded by

O TY e 2 )

x| Kw  [x| xlw Kw'

®)

ii) If W\S = {r}, the only piece of file-W that is missing with
the (W, S)-peer is piece r. Consequently, for both x € Sf;, and
x € 8%, piece r is the rarest piece transferable to the (W, S)-
peer, which leaves the network immediately upon downloading
it. The resulting state is X —e(yy, s). For brevity, let us introduce
the notation ¢(x, X —e(w,s)) = q&z)s) for any S that satisfies

W\S = {i}. Then qu{Q is given by

() (8)
Ty ) _ 1Xw T o) 9
x| x| xw Y

¢) Download of a Non-rare Piece: The third type of transition
is when a (W, S)-peer missing piece n € Ry, downloads it.

We can upper bound both qEW S)) and qEW ;) by
7y x|
L ) (w (). (10)
T ( g )t

Note that a non-rare piece is downloaded only when x € S},
d) Download of an Extra Piece: Recall that extra pieces are
preferred only when no pieces from the file of interest are
transferable. We shall soon see that the stability of RFwPMS
does not depend on the download of extra pieces. Conse-
quently, we skip listing the associated rates.

III. STABILITY ANALYSIS

In this section, we present the main result on the stability of
RFwPMS. The proof is established using the Foster-Lyapunov
theorem [16, 17] which is restated below.

Proposition 1. Ler {x(t) : t = 0} be a continuous-time, time-
homogeneous and irreducible Markov chain with state space S
and generator matrix Q. If there exist a non-negative function
V:8 >Ry, an € > 0, a finite set A and a finite constant
B such that {x : V(x) < C} is finite for all C € R, and the
expected unit-transition drift QV (x) is upper bounded as

QV( ) —€ ]l{xe_A}( ) + B]I{XE.A}(X)7

then the process {x(t) : t > 0} is positive recurrent; the
expected unit-transition drift QV(x) is given by

D axy) (V(y) = V().

YES y#x

A

QV(x) = (11)

Our main stability result is the following theorem.

Theorem 1. For the multi-swarm model with non-persistent
peers in section II, RFwWPMS is stable over the parameter
region >0, U >0, A>0, and Ky = 2 for all W e W.

Sketch of the proof. Our proof uses a more general version of
the Lyapunov function used in [11]. The key ideas are
(i) show that the Lyapunov drift obtained from downloading
rare pieces using rarest-first is upper bounded by the Lyapunov
drift obtained from downloading rare pieces using random-
selection (this is proved in Lemma 3 in Section VII); and
(i1) allow the (probabilistic) download of non-rare pieces only
over a finite and bounded but sufficiently large population of
the network (this holds by our choice of (w (x)).
Note that mode-suppression is covered as we allow Sy = 0.
The Lyapunov function we use is given by

> Vw(x) (12)
Wew
A _ ) 2
where Vw(X) = Z ((’NW - WW)‘X|W) +
ieW
c (1 —7w) |xlw + C (My — Pw)™, (13)

with suitably large constants CI(,‘I,), C( ) e R, and My € Z.
Note that |x| — oo only if |x|y — oo for some W € W.
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Then from Lemma 2, it follows that V' (x) — o as |x| — o0.
Consequently, the set {x : V(x) < C} is finite for all C € R,..

To evaluate the expected unit-transition drift for any state
x, we first evaluate the potential change for each possible
transition. Note that, with our choice of V, any transition that
occurs in swarm-W will only affect the term Vy. We have:
a) Arrival of an Empty-peer: The arrival of a (W, ¢J)-peer
results in a unit increase in |x |y but does not affect the number
of copies of each piece ¢ € W. Therefore,

Vix+ewg)) —V(x) = C‘(,[l,). (14)

b) Download of a Rare piece: Let r € Ry, denote some rare
piece. The potential change associated with the download of
piece r is similar to that in [11], and depends on whether
the current piece distribution is uniform or non-uniform.
Therefore, we have two cases:

Case 1 - x € S} Suppose piece r € Ry is downloaded by
a (W, S)-peer. i) if W\S 2 {r}, the peer stays in the network
upon downloading r. In this case, the associated potential
change V' (x — e(w,s) + ew,sur})) — V(%) is given by

W) = 1=2 (7w = 7)) ) xlw = CF Lagy = puy ().

A
240 (x) 21{)(x)=0

15)

Since x € Sy, we have (Tw — 77%,(,))|X\W > 1. Hence,
wg,) (x) < —1 and the overall potential change \I'g,) (x) is
negative. ii) If W\S = {r}, then the peer departs the network
upon downloading r. In this case, the associated potential
change V(x — e(w,5)) — V/(x) can be upper bounded by

1/)1(/17;) (x) + 01(42/) (Kw — 1) Lary + K —1>Py 3 (%), (16)

21 (x)=0

Case 2 - x € S3,: When x € SZ,, the download of piece
r € Ry disturbs the uniform distribution with r attaining
the highest frequency. i) If piece r is downloaded without an
accompanying peer departure, the associated potential change

V(x—ew,s) +emw,sugry) — VI(x) is given by

Ky —1-cf) -1 (x), (17)

which is made negative by choosing Céll,) > Kw — 1. 1) If
the download of piece r is accompanied with the departure of
the downloading peer, the associated potential change V' (x —
ew,s)) — V(x) can be upper bounded by

Ky —1-C3) + 1P (x). (18)

¢) Download of a Non-Rare Piece: As stated earlier, the
download of a non-rare piece can occur only if x € Sy .
The potential changes V' (x — e(w,s) + emw,sun})) — V(%)
and V(x — eq,s)) — V(x) associated with the download of
a non-rare piece n € Ry can be upper bounded by

Ky (1+ 2w +CF) . (19)

d) Download of an Extra Piece: It can be observed that for any
swarm-W, no potential change is induced by the download of
its extra pieces.

Having listed all the potential changes, we can now proceed
to evaluate the expected unit-transition drift QV (x). Note that
for any state x, we can write

Qv = > QU x) + QUi (x) + QU (x), (20)
WwWew

where QV‘,(V+)(X), QVV(VR) (x) and QVV(VR) (x) are contributions
to the unit-transition drift from arrival of swarm-W peer,
download of a rare piece in swarm-W and download of a
non-rare piece in swarm-W, respectively. Next we evaluate
each of these three terms below:

Arrival of an Empty-peer: Using (6) and (14), we have

QVV(V+)(X) = )\WC%). We then upper bound ) QVV(;—)(X)
Wew
by

IA|CW), Q1)

where |A| £ S wew Aw and C“Lé Swew ci.
The terms QVV(VR) (x) and QVV(VR) (x) depend on whether x
is in SI%V or S%V. Therefore, we have two cases.

Case 1 - x € S};,: We first start with QVV(VE) (x). Letw >0
be any real positive number, then by Lemma 4 in Section VII,

we can upper bound QVV(VR) (x) by

Mo ().

. (23)
]
To compute QVV(VR) (x), we can write
Qi () = QU0 + QYT (), @)

where QVV(VRJ“)(X) and QVV(VR_)(X) are contributions to the
unit-transition drift from download of a rare piece without
peer departure and with peer departure, respectively. The
transitions that correspond to QVV(VRH(X) include each piece
r € Ry being downloaded by a (W,S)-peer such that
WAS 2 {r}. Using (7), (15) and Lemma 3, we can upper
bound QV;\™ (x) by

(r)

x|w Ly " Y g

x| ; K (1_”W _WV) Y (25)
TELLw

where 'y‘(;,) 2 2.8 W\S={r} x%,g)/|x|w is the fraction of swarm-

W peers who have all the pieces of file-W except r. The
transitions that correspond to QVV(VRf)(x) include each piece
r € Ry being downloaded by a (W, S)-peer such that W\ S =
{r}. Using (9) and (16), we can upper bound QVV(VR_)(X) by

> TR (v 0 + 19 (0)

’I‘ERW

Ix|w

(26)
|

Combining (25) and (26), we upper bound QV;\™ (x) by

(r)
x|w Dy (o) (r)
5, (109 ()
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—(1=m) =) 1)+ Kw I (x)>. @7)

Case 2 - x € S§,: If x € S/, then Ry = W and there are
no non-rare pieces to download. Therefore,

Qv (x) = 0. (28)

For QVV(VR) (x), we can use similar techniques as in Case 1
and show that it is upper bounded by

()
P 3 25 (=1t =m0 -

reW

(1=7w =) 160 + 4 K 12 <x>). (29)
Finally, using (21), (27), (23), (29), (28) and @T/W(x) from
(29), we can upper bound the unit-transition drift QV (x) by

The rest of the proof is in the appendix, i.e., Section VII. [J

IV. DISCUSSION
A. Sharing vs Suppression Trade-off for Non-Rare Pieces

As indicated earlier in Section I, the mode-suppression
protocol [11] strictly forbids the download of non-rare pieces.
While this maintains a uniform piece distribution, there is an
accompanying undesirable effect: no piece is transferred in all
those contacts in which only the non-rare pieces are offered
to the contacted peer. As shown in Section V, this incurs
a high penalty on file-delivery time during a flash-crowd>.
Besides flash-crowds, under normal operating conditions also,
completely suppressing transfers of non-rare pieces is unnec-
essary and, as indicated in [11], a trade-off exists between
their suppression and sharing. RFwPMS allows for tuning
this trade-off via By . Note that by choosing ayy sufficiently
small, Cy (x) effectively becomes a function of the ratio of
the mismatch to the number of pieces of file-W. The higher
this ratio, the lesser the likelihood that the non-rare piece gets
replicated; the choice of the ratio instead of just the mismatch
matches the intuition that a file with large number of pieces
should allow more sharing of non-rare pieces as opposed to a
file with smaller number of pieces.

Taking By — o0, RFWPMS converges to rarest-first which
is unstable, whereas taking Sy — 0, RFWPMS converges
to mode-suppression [11]. Thus, by choosing ay sufficiently

3 A situation in which the network suddenly encounters a very large number
of empty peers; this is commonly seen with torrents of popular files.

small, and By appropriately, we expect to find the right trade-
off between sharing and suppression of the non-rare pieces.
Via numerical simulations, we find that choosing Gy close to
1.5 appears to minimize the expected sojourn time.

By Lemma 4, RFwPMS is stable for any non-rares’ sharing
factor that is O(|x|~27%) for some w > 0. However, the
specific choice of {y (x) in (4) is presented as it allows the
transfer of non-rare pieces even for large network population
(by choosing oy > 0 to be small enough). We also remark
that RFWPMS like mode-suppression is a centralized scheme
as it requires the knowledge of piece distribution in the
network; we assume that in practice, peers can keep such
estimates either via gossiping or via a centralized tracker.

B. Rarest-First vs Random-Selection for Rare Pieces

Another notable observation about MS [11] is that it per-
forms random-selection on the set of available rare pieces.
We assert that knowing the distribution should allow for
more advantage than just random-selection, and that a load-
balancing scheme like rarest-first will reduce the duration of
the transient phase. While this is intuitively clear, we provide
theoretical proof for this in Lemma 3.

C. Inter-Swarm Collaboration

Our model in section II is general in terms of inter-swarm

behavior of peers and their secondary download preferences.
Here, we discuss three different behaviors that are covered:
a) Altruistic Swarms: In most wired P2P environments (e.g.,
the Internet), peers are generally insensitive to the consump-
tion of their download and upload bandwidths, and they may
download extra pieces in order to help other swarms. Such
behavior can be captured in our model by setting Wy = W
and Fyr = F for every W e W. From [8], a network in which
all swarms are altruistic is called a universal swarm network.
b) Opportunistic Swarms: A different type of altruism is when
peers do not download any extra pieces but share their pieces
with those of other swarms who need them. We obtain this by
setting Wy = W and Fyr = W for every W e W.
c) Selfish Swarms: In wireless P2P networks, peers are gener-
ally sensitive to the consumption of their download and upload
bandwidths. This holds by setting Wy, = {W} and Fyy = W.
Thus, the peers do not download any extra pieces nor do they
upload any piece to other swarms.

D. Piece-Selection Policies for Excess-Cache

In our original version of RFwWPMS, random-selection was
assumed for the download of extra pieces, but the stability
result in Theorem 1 extends to any piece-selection policy one

—~

QVy(x) =

rr) - - , »
\MC“%+g%i%((KW-ay—cgﬁ(1—WW)—<1—WWF—7@Qngxy+%;KwJ$KxD,

(r)
ACO+0 (k) + 2 R (0 (1-75)) = (1= 7l = 47) 10 00 + 217 KwIP (), if x € Sy
TrERwy

if x € 3,

(29)
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may use for the excess-cache because the Lyapunov function
given by (12) and (13) is not affected by a piece download
from the set of extra pieces. This is stated below.

Proposition 2. For the multi-swarm model with non-persistent
peers in section I, RFwPMS with any piece-selection policy
for the excess-cache, is stable over the parameter region | >
0, U>0 A>0, and Ky = 2 for all W € W.

E. Autonomous Swarms

One more case to consider is when all the swarms in the
network operate in isolation from each other. Specifically, a
peer belonging to swarm-W contacts and exchanges pieces
with peers in the same swarm. The fixed seed, on the other
hand, divides its uploading capacity across swarms, providing
a static non-zero fraction of its total capacity to each swarm;
optimal partition of the seed capacity is for future work. Such
swarms are called autonomous swarms in [8]. The stability of
RFwPMS holds for such swarms as well.

Corollary 1.1. Consider a multi-swarm network where each
swarm W € W behaves autonomously and the seed has
allocated a static non-zero fraction of its total capacity for
each swarm-W (say Uy > 0). Then, the network is stable.

Proof. Each swarm-W can be considered as an isolated single-
swarm network with fixed seed of capacity Uy, > 0. Stability
then follows by applying Theorem 1 to each swarm. O

V. SIMULATIONS

Next, we investigate the stability, scalability and sojourn
time performance of RFwPMS via numerical simulations. In
all cases, we set the seed contact rate U to 1, peer contact rate
wto 1, ayy to 10712 and By to 1.5.

A. Stability Check

We start by illustrating the stability of RFwPMS. Let us
consider a two-swarm network consisting of a master-file F
of 9 pieces, i.e., F = [9]. The two swarms entering the
network are denoted by W; and W, each having a peer-
arrival rate of 20. Peers from swarm-W; wish to download
file W1 = [6] whereas those from swarm-W5 are interested
in file Wy = [3,9]. We initiate the system in a state where
both swarms are in the one-club scenario: both have 500 peers
with all in swarm-W; missing piece 1 and all in swarm-
W, missing piece 4. For the autonomous case, the seed’s
upload capacity is divided evenly among the two swarms,
ie., (Uw,,Uw,) = (0.5,0.5). Fig. 1 shows the evolution
of the number of peers in the network for different swarm
behaviors. Note that each swarm is able to escape the one-club
in finite time, after which a stable regime persists with minimal
fluctuations. An interesting observation is the sudden drop in
the population of swarm-W5 in altruistic and opportunistic
swarms. This is because piece 4 (missing in swarm-Ws), is
widely available in swarm-Wj. Thus, due to altruism on the
part of swarm-W7; peers, the one-club peers in swarm-Ws
quickly grab piece 4 and leave the network.

B. Scalability Check

Scalability is also necessary for a P2P network, i.e., its
system-wide throughput should scale with the number of peers.
For our multi-swarm model, this means that the expected
sojourn time of peers should not increase by scaling up
the arrival rate vector A. To check this we consider a two-
swarm network in which the master-file comprises 14 pieces
(F = [14]) and the two swarms entering the network are
interested in files W7 = [8] and W> = [6,14]. For the
autonomous case, the seed’s upload capacity is again split
equally. Table I lists the (steady-state) expected sojourn times
for the arrival rate vectors A = (8,4) and 16. It can be seen
that the expected sojourn time practically stays constant in
all the four swarm behaviors. Based on this and many other
similar empirical checks, we believe that RFwWPMS is scalable;
however, we leave the proof of this as a conjecture.

The expected sojourn time indeed improves when swarms
are more altruistic. Another observation is that the expected
sojourn time for autonomous swarms is lesser than that for al-
truistic swarms. This is not unexpected though; in autonomous
swarms, every peer makes contacts within their own swarm,
thus the likelihood that the next contact is useless is lower.

C. Sojourn Time Performance in Multiple Swarms

In Table II we compare the expected sojourn times of RFw-
PMS for two different files under different swarm behaviors.
The values tabulated were computed on a two-swarm network
in which the arrival rate vector was fixed at A = (4,1). Again
the seed’s upload capacity is split evenly in the autonomous
case. Note that altruistic and autonomous cases are Pareto
better than opportunistic and selfish cases.

D. RFwPMS vs. Mode-Suppression

Via simulations MS [11] has been shown to outperform
other previously proposed piece-selection policies. Here, we
compare the performance of RFWPMS and MS in a single-
swarm network. Table III compares the expected sojourn times
of RFwPMS and MS for different values of file pieces K with
the arrival rate fixed at A = 4. It can be seen that using
RFwWPMS (with By = 1.5), the expected sojourn time is
indeed reduced. This reduction is not expected to be significant
when K is large (roughly 100 or more) as the increased chunk
diversity in steady-state reduces the number of contacts in
which only the non-rare pieces are offered.

Fig. 2 compares the flash-crowd response of MS, RFwPMS
and RNwPMS (swapping out RF for RN in our policy, see
Lemma 3) for K = 100 (“large”) and an initial population of
500 empty peers; RFWPMS empties the system in about half
the time as MS whereas RNwPMS takes the most amount of
time. The explanation behind this is indicated in second part
of Fig. 2: MS [11] works towards minimizing the mismatch at
all times and wastes many contacts; RNwPMS transfers many
pieces that are not the rarest and gets stuck in a one-club like
scenario that uses just the seed for uploads; and RFwPMS
minimizes the mismatch rapidly after it has built up while
waiting for the K*" piece to be shared by the seed.
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Fig. 1. Number of peers in the network for different swarm behaviours when Wy

TABLE I
EXPECTED SOJOURN TIMES FOR
DIFFERENT ARRIVAL RATE VECTORS

300 0

EXPECTED SOJOURN TIMES FOR
DIFFERENT FILES

100 200 300 0 200 300

Time 100 Time

[6], Wa = [3,9] and A = (20, 20).

TABLE III
EXPECTED SOJOURN TIMES FOR
RFWPMS AND MS

TABLE 1T

Swarms’ | Arrival E[Sojourn Time| Swarms’ Files E[Sojourn Time| K E[Sojourn Time]| |Percent.
Behavior | Rates® | W, = [8]] Wa = [6, 14] Behavior |[W; | W, [Swarm Wi |[Swarm W MS RFwPMS | Improv.
Altruistic A 11.2 14.9 Altruistic 2] 1 11,3] 5.5 51 2 6.2 5.2 16.1
16X | 115 14.9 [20][10,30]]  23.6 345 10| 183 123 | 32.6
Onportunistic | 5.1 20.9 onvortanistic L2 [L3] 6.9 112 20| 324 | 228 | 297
PPOTUIISHC 76X 154 21.9 PPOTUTISHC To0T1T10, 30] | 23.9 70.0 40| 55.4 137 | 211
A 18.2 26.5 2 1,3 7.8 16.5 80 101.6 85.9 15.5
Selfish 531155 6.1 Selfish [[23] [1[0, 32)] 35.9 2.8 100] 1194 | 1055 | 11.6
Autonomous |2\ 10.3 10.9 Autonomous 1211 11,3] 0.6 6.9 200] 226.1 206.8 8.6
16X 10.9 10.8 [20]]T10, 30] 23.5 21.2 500| 536.5 503.1 6.2

aX\ = (8,4). Simulation End-time: 1000 units
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—— MS - (1) [x(1)]|
MS - m(t)[x(t)|
== §== RNwPMS -
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=== REWPMS -
= et REWPMS -

Fig. 2. Flash-crowd Response, 500 empty peers, K = 100 and A = 0.
VI. CONCLUSION

In this work, we proposed and studied a piece-selection
policy, RFwPMS, for a BitTorrent-like P2P network with
multiple swarms. RFwWPMS combines rarest-first (for rare
pieces) with an adjustable sharing versus suppression choice
for non-rare pieces. As a result, RFWPMS reduces the expected
sojourn time of a peer and the file-delivery time during a
flash-crowd. Using a Lyapunov drift analysis, we proved the
stability of RFwPMS in a general multi-swarm setting and
demonstrated a policy whose stability region is not affected by
bundling swarms. Lastly, since RFWPMS uses rarest-first with
a minor modification (use of the non-rares’ sharing factor), it
is amenable to be incorporated into the BitTorrent protocol.

Our work also opens several avenues for future work. One
is on formally investigating the scalability of RFwPMS, and
another is on designing excess-cache update policies that
can further reduce the sojourn time in multi-swarms. An
investigation of the performance of RFwPMS in real torrent
deployments is also an interesting direction.

VII. APPENDIX

Lemma 2. For any W e W, Viy(x) — o0 as |[x|w — .

Simulation End-time: 1000 units

Simulation End-time: 5000 units

Proof. From Lemma 2 in [11], it follows that for any state x,
mw < (Kw —1)/Kw. We have two cases. Case | - x € Sjy/:
Let pyy € (0,1) be a constant such that py — (Kw —
1)/(Kw) = v > 0 and define Ry = {x:7Tw(x) = pw}.
For all x € 8}, n Rw, Viy is lower bounded by (vw | x|w)?
which goes to infinity as x|y — oo. For all x € Sfi, N R,
Vv (x) is lower bounded by 01(41/) (1—pw)|x|w which goes to
infinity as |x|w — o0. Case 2 - x € S3,: Let x € S&,. Then
using the fact that Ty = my;,, we can lower bound Viy (x) by
C‘(,Il,)|x\W/KW which goes to infinity as |x|w — o0. O

Lemma 3. For any x € Sy, QVV(VR+)(X) is upper bounded

by
s T)
2 W \Res T €T RS
S:WA\S2{r} T:reT

which can be further upper bounded by

1'\(7")
2,

x|w W
reRw

x| (1 - 7TI(/IC) - ’YI(/IC)> \Ilg/)'

Kyw

Note that the first upper bound is the exact Lyapunov drift
obtained when peers use random-selection on the available
rare pieces (the RNwPMS policy).

Proof. Using (7) and (15), QVV(VRJF)(X) is given by

> oy u

Tw
reRw S:W\S2{r}

B
LD IEDY

V-WeWw T:reT
Let us define

UlfreR, w.s)} (x) (")
IRt w,9)] W

T
2 N pen g 01 (%)

(r)
Yy ). (30)
SR w,s)l )

(S A o @
my (%) S min my

and

(x)
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\11%57” é 1-2 (WW - W%’T)) |X‘W - II(/Ii) (X)
Then we can upper bound the first term in (30) as follows.

(S) UH{TEE(T,W,S)}(X>

T
First Term = W \IJ(T)
TE;W, X[ B ws)l v

S:WA\S2{r}

S
_ wy U g (S

w
S:|SAW|<Kw—1, |X‘ |E(T7W’S)|
T:TEE(T’WYS)

(AL)

) |RW\S|U\II(S,T)

w
S:|SAW|<Kw—1 |X| |RW\S|

< ™ vy (A
S:SmW%KW_L |X‘ |RW\S| w
rireRw\S
(S)
-y fw v r) A3
reRw, ‘X| ‘RW\S|
S\ 2{r)

For steps (Al) and (A3) we change the order of summation
and inequality (A2) follows using \IJE/g’T) < \Ilg}) for every

r € Ry \S. Now let us define

(S,T),.\ A .
(%) = min

(q)
4e(TARw)\S mw (%)

and

\Ilg/i’T) (x) 219 (ﬁw — w‘(,‘;’T)) |x|lw — II(;) (x).

Then, using the same technique as in steps (A1) and (A3), and
noting that \IIE;;’T) < \I/(V{,) for every r € (T'n Ry )\S, we can
upper bound the second term in (30) by

Z 90%5) Z xg) (r)

—u P
reRw, x| ViWeWy, (T n Rw)\S
S:WA\S2{r} T:reT

Combining the two results, we get the first desired upper
bound. The second upper bound follows by noting that \IJ(V:,) <
0 and upper bounding | Ry \S| and | (T nRw )\S| by Kw. O

Lemma 4. For any w > 0, QVV(VE) (x) is upper bounded
by |x|w /x| x O (|x|;4#) over the region S},. Consequently,
for any € > 0, there exists N* = N*(e) € Ry such that

QVV(VR) (x) < €/2 for all |x|w = N*.
Proof. Fix w > 0. With aw > 0, (w(x) € O(|x|727%). From
(10) and (19), we can upper bound QVV(VR)(X) by

(S)
Z Tw K& (U + uﬂ (1 + 2|x|w + C‘(,[Z,)) Cw(x)
x| 3
nENW, N
S:W\S2{n} o)
Since (y (x) € O(|x]|~27%), the Lemma follows. O

Lemma 5. For any € > 0 and any W € W, there exists a
countable set Ay, and a finite constant By, > 0 such that

@T/W(x) < —e]l{xezw}(x) + Bw Lixe a3 (X), and

Ny = max |x|w < .
x€Aw

Proof. The Lemma can be proved by using a similar approach
as in the stability proof of [11]. The Big-O term present in
QVyy (x) (when x € S};) is upper bounded by ¢/2 for all
|x|w = N*. The proof is omitted for brevity. O

Lemma 6. For any € > 0, there exists a finite set A and a
finite constant B = 0 such that

QV(x) < —€'L 7y (%) + Blxeay(x).
Proof. Fix ¢ > 0. For any ¢ > 0 and any swarm W € W,
it follows from Lemma 5 that QV (x) < —e¢, except
possibly over Ay where its population and corresponding
term QVyy,(x) are bounded from above by Ny and By = 0

respectively. We can write the state-space as S = | J Sy,
HHSW
where

Sy 2 {|x|lw < NwVW e H, |x|y > NyVU € W\H} .

Case 1 - H = ¢J: Consider a state x € Sg. Since |x|w >
N\VL’ for all W e W, from Lemma 5, it follows that
QVy(x) < —e for all W e W. This gives QV (x) < —e.
Choosing € > ¢ ensures QV (x) < —¢'.

Case 2 - H = )V: The set Syy is finite. Thus, for any state

x € Sy, we can write QV (x) < By = max V()" <
xeSyy

0.

Case 3 - J # H < W: Consider a state x € S. We can
upper bound QV (x) as follows.
%|u 5%

X —~
QV(x) = Z |>|<T/QVW(X) + Z ﬁQVU(X)
WeH UeW\H
< ZWGH Nw Bw ZUEW\’H |X|U B
Sveww Xlv Dwen Nw + Zpewn Xlu

Note that 3 4 [X[u — o0 over the set Sy, which implies

€).

ZWewl Nw Bw Zerg x|

" —0and —1.
2uew, Xlu 2wews Nw + 2pew, [Xlu

Thus, for any ¢ > 0, there exists Ny = Ny(¢) € Ry

such that QV (x) < ¢ + (1 — ¢)(—e¢) for any x € Sy with

2 vew, Xl = Ny. Choosing € = 2¢/ and 0 < ¢ < f/fe
ensures QV (x) < —¢'.
For all H such that ¢ # H < W, let us define
A £ Sy { N xl < NH} (finite),
UeH
and then A 2 ( AH> U Sy (finite),
PEFHSW
A +
B = max (QV (x))" < 0.
xeA
Then, for any state x, we can write
QV (%) < —€'L 7y (%) + Blixea (%),
establishing the result. [

Combining Lemma 6 and Proposition 1, Theorem 1 holds.
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