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Abstract—Recent studies have suggested that the BitTorrent’s
rarest-first protocol, owing to its work-conserving nature, can
become unstable in the presence of non-persistent users. Conse-
quently, in any stable protocol, many peers are at some point
endogenously forced to hold off their file-download activity.
In this work, we propose a tunable piece-selection policy that
minimizes this (undesirable) requisite by combining the (work-
conserving) rarest-first protocol with only an appropriate share
of the (non-work conserving) mode-suppression protocol. We
refer to this policy as “Rarest-First with Probabilistic Mode-
Suppression” or simply RFwPMS.

We study RFwPMS under a stochastic model of the BitTorrent
network that is general enough to capture multiple swarms
of non-persistent users - each swarm having its own altruistic
preferences that may or may not overlap with those of other
swarms. Using a Lyapunov drift analysis, we show that RFwPMS
is provably stable for all kinds of inter-swarm behaviors, and that
the use of rarest-first instead of random-selection is indeed more
justified. Our numerical results suggest that RFwPMS is scalable
in the general multi-swarm setting and offers better performance
than the existing stabilizing schemes like mode-suppression.

Index Terms—P2P Sharing, Mode-Suppression, Rarest-First.

I. INTRODUCTION

Consider the task of distributing a large file to peers in a

peer-to-peer (P2P) network. The file is initially available with

a distinguished peer (usually termed as the seed) and each peer

can initiate a transfer connection with any other peer [1].

One effective method to perform the above task is to chop

the file into a large number of small and roughly equally-sized

pieces, and to allow peers to share the pieces with each other.

This strategy is the key idea behind the popular “BitTorrent

protocol” [2]. Chopping the file allows peers to distribute parts

of it before possessing it completely. Such an upload-while-

download scheme not only reduces the average file-download

time for the peers but also, more importantly, enables the

network to scale its throughput with the number of peers. As

a result, the BitTorrent protocol has gained a large popularity

over the years. Even today, despite the growth of streaming

services like Netflix and Youtube, BitTorrent sharing remains

a significant source of internet traffic [3]. In the research

literature also, the protocol has gained extensive interest. For
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and EARS 1516075 (N. Khan and V. Subramanian), and the Rackham
Predoctoral Fellowship from the University of Michigan (M. Moharrami).

instance, on the theoretical side, various mathematical models

have been studied [1, 4–14], each model providing a high-level

abstraction of the detailed workings of the actual protocol.

A common occurrence in BitTorrent-like networks is that

a peer usually spends relatively more time downloading the

last few pieces of the file. This phenomenon, known as the

delay-in-endgame-mode, is because the last few pieces are

often the rare ones in the network. Inspired by this, Hajek

and Zhu [5] studied a stochastic abstraction and showed that

an unstructured1 BitTorrent-like network that employs a work-

conserving2 piece-selection policy (e.g., random-novel (RN),

rarest-first (RF)) becomes unstable if the arrival rate of peers

exceeds the fixed seed’s upload rate and if each peer departs

immediately upon completing their own file-download. The

cause behind instability is a phenomenon called the missing

piece syndrome [5], wherein the network converges to, and

then cannot escape from, the one-club scenario, where a large

group of users who possess all but exactly one piece of the

file keeps growing.

A. Related Work

Zhu and Hajek [6], in a follow-up to [5], showed that if,

after completing their file-download, each peer remains in the

system long enough to upload one additional piece, then the

network is stable under any positive seed uploading capacity

and any peer arrival rate. This demands persistence of peers

which might not hold, especially with wireless users who are

sensitive to their energy and bandwidth usages.

Norros, Reittu and Eirola [1] proposed the Enforced Fried-

man algorithm in which a peer makes three contacts simulta-

neously (with replacement) and if there are ‘minority pieces’

(pieces possessed by exactly one of the three peers), then the

peer downloads one of them uniformly at random. The stability

was shown for a two-chunk set-up only. Oguz, Anantharam

and Norros [9] proved the stability of the Enforced Friedman

protocol for multi-chunk systems and also proposed a provably

stable improvement, the Common Chunk protocol.

Bilgen and Wagner [10] proposed the Group-Suppression

Protocol in which peers who share the same piece profile are

1Each peer contacts an other peer uniformly at random.
2For a work-conserving piece-selection policy, a piece transfer always

happens if the uploading peer has a piece that the downloading peer needs.
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defined as a group and the group with the largest population is

defined as the largest club. Assuming that a peer in the largest

club uploads only to peers holding a greater number of pieces

than it does, stability was shown in the two-chunk case only.

More recently, Reddyvari, Parag and Shakkottai [11] pro-

posed the Mode-Suppression (MS) protocol. Here the transfer

of pieces in the mode (present with the most number of peers)

is prohibited, except when all pieces are in the mode, and a

random-novel piece not in the mode (if any) is sent. Noting

the explicit non-work-conserving nature of the protocol, devel-

oping a stable protocol with the smallest mean sojourn time3

is an interesting design question, which we seek to answer.

The literature has also considered bundling different swarms

together in the same network and then allowing content-

sharing across them. This was proposed by Zhou, Ioannidis

and Massoulié [7] with the claim that such “universal swarms”

can increase the stability region of a BitTorrent network.

Then Zhu, Ioannidis and Hegde [8] formally characterized

the stability region of such networks when a work-conserving

piece-selection policy is used. The stability region is indeed

larger than in the single-swarm setting, however, yet again,

it doesn’t hold for all arrival rates. Developing a stable and

efficient protocol for the multiple swarm (multi-swarm) setting

is another interesting design question which we seek to answer.

B. Contribution

We make the first effort to abridge the performance gaps of

the previous stable policies, and to respond to the findings and

recommendations of [15]. We do that by proposing a simple

and provably stable variant of the BitTorrent’s original rarest-

first protocol that includes only an appropriate amount of

(probabilistic) mode-suppression; we call this protocol Rarest-

First with Probabilistic Mode-Suppression (RFwPMS). To the

best of our knowledge, we are the first to propose a RF-based

piece-selection policy that is stable for all arrival rates. Then,

numerically we show that RFwPMS outperforms MS [11].

Compared with [7], we extend RFwPMS to a multi-swarm

model where peers arrive at any (positive) arrival rate and

their caches are empty upon arrival. With regard to inter-swarm

cooperation, we make the general assumption that each swarm

has its own altruistic preferences. Leveraging the intuition that

as long as each swarm is stable, the resulting network will be

stable, we carefully establish the stability of RFwPMS using a

more general version of the Lyapunov function from [11]. As

the single-swarm model is a special case of the multi-swarm

model, in the paper we only study the multi-swarm model.

The remainder of the paper is organized as follows. In

Section II, we introduce the multi-swarm model which is

built upon the model in [8]. Section III presents the main

stability theorem along with the preliminary steps needed for

the detailed proof in the appendix - Section VII. Section IV

discusses the working of RFwPMS as well as a few types

of inter-swarm behaviors that can be relevant in specific P2P

3The time a peer remains in the system collecting all the pieces of the file.

environments. Various numerical results on stability, scalabil-

ity and performance of RFwPMS are presented in Section V.

Finally, our concluding remarks are in Section VI.

II. SYSTEM MODEL

The model consists of a master-file which is divided into

at least two equally-sized pieces. Let F “ rKs4 denote the set

of all the pieces (K • 2). There is a distinguished peer, the

seed, which holds this master-file F and stays in the network

indefinitely. We define file-W as any non-empty subset of the

master-file, thus, W ‰ � and W Ñ F . The number of pieces

in file-W is denoted by KW , i.e., KW “ |W |. With this

definition of file, swarm-W is defined as the set of peers

who are primarily interested in downloading (pieces of) file-

W . We note that peers entering the network can be interested

in any file, i.e., the files need not be disjoint subsets of F .

Besides their primary interest in file-W , swarm-W peers may

also have a secondary preference for some other pieces of the

master-file. Thus, the set of pieces that a swarm-W peer can

download during its stay in the network is given by FW where

W Ñ FW Ñ F . It is assumed that a swarm-W peer enters

the network according to a Poisson process of rate �W ° 0,

independent of other swarms. Let W denote the set of all

swarms that join the network and let λ “ p�W : W P Wq
denote the vector of arrival rates. We now list three important

assumptions of the model: a) Empty Cache Upon Arrival:

Each peer maintains a cache to store the pieces it downloads.

The cache is empty upon arrival and has a capacity of |FW |
pieces. The part of the cache that is devoted for the pieces

of secondary interest is called the excess-cache (where pieces

from the set FW zW are stored); b) Ally-Swarms: While peers

interested in the same file exchange pieces with each other,

they may or may not prefer to collaborate with peers who are

interested in other files. Thus, each swarm has an associated set

of ally-swarms. Formally, the ally-set of swarm-W , denoted

by WW , is a non-empty subset of W that consists of swarm-

W as well as any other swarms to which its peers can upload

pieces; and c) Non-persistent Peers: Once a peer finishes

downloading their file of (primary) interest, they leave the

network immediately.

A. State

Peers can be classified into types according to (a) the swarm

they belong to and (b) the set of pieces in their cache. Hence,

a peer in swarm W holding S Ñ FW is denoted to be of type

pW,Sq. We denote the number of pW,Sq-type peers at any

time t • 0 by x
pSq
W ptq P Z`

∆
“ t0, 1, . . . u. The state of the

network is then given by

xptq “ px
pSq
W ptq : W P W, S Ñ FW , and W zS ‰ Hq. (1)

Note that as a result of aforementioned assumptions, the cache-

profile S of a swarm-W peer always satisfies the conditions

S Ñ FW and W zS ‰ H. For the sake of brevity, from hereon,

4For m,n P Z “ t. . . ,´1, 0, 1, . . . u and m † n, we use the standard
notation rm,ns :“ tm ` 1, . . . , nu and rns for r0, ns.
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we will omit writing these two conditions. The population of

swarm-W , i.e., the number of swarm-W peers at time t • 0

is then given by

|xptq|W
∆
“

ÿ

S

x
pSq
W ptq. (2)

Similarly, the total number of peers at time t • 0 is given by

|xptq|
∆
“

ÿ

WPW

|xptq|W . (3)

From hereon, for brevity we will write xptq as x.

B. Peer-Contact and Piece-Selection Policies

1) Peer-Contact Policy: Consistent with the stochastic

models of [1, 4–11], we assume that the network employs

random peer-contacts. Each peer contacts some peer chosen

uniformly at random from all other peers (excluding the seed),

to upload (i.e. push) a piece to it; such contacts are called push-

contacts. We assume that the seed makes independent random

push-contacts according to a Poisson process of rate U ° 0

whereas each normal peer does this independently according

to a Poisson process of rate µ ° 0. Transfer of the piece is

assumed to occur instantaneously with the push-contact.

2) Piece-Selection Policy (RFwPMS): If at time t • 0,

a pV, T q-peer push-contacts a pW,Sq-peer, then the piece-

selection policy chooses the piece to upload from pTXFW qzS.

To describe RFwPMS, some definitions (a’la [11]) are needed.

Definition 1. The frequency of a piece i in swarm-W ’s

population is denoted by ⇡
piq
W pxq and is defined as follows:

⇡
piq
W pxq

∆
“

$

&

%

1

|x|W

∞
S:iPS

x
pSq
W ptq if |x|W ° 0,

0 if |x|W “ 0.

The maximum and minimum piece frequencies in swarm-W ’s

population are denoted by ⇡W pxq and ⇡W pxq respectively,

⇡W pxq
∆
“ max

iPW
⇡

piq
W pxq and ⇡W pxq

∆
“ min

iPW
⇡

piq
W pxq.

Importantly, both are computed over W instead of FW .

Definition 2. The total number of copies of the pieces of file-

W that are present with swarm-W peers is given by

PW pxq
∆
“

ÿ

iPW

⇡
piq
W pxq|x|W .

Definition 3. The mismatch in swarm-W at state x is defined

as p⇡W ´ ⇡W q|x|W .

Definition 4. The set of rare pieces in swarm-W ’s population,

denoted by RW pxq, is defined as follows:

RW pxq
∆
“

#

ti P W : ⇡
piq
W pxq † ⇡W pxqu if ⇡W ‰ ⇡W ,

W if ⇡W “ ⇡W .

Definition 5. The set of non-rare pieces in swarm-W is

denoted by RW pxq and is given by W zRW .

Definition 6. The set of extra pieces associated with swarm-

W is given by FW zW.

We now list the rules of RFwPMS for a possible piece

transfer from the pV, T q-peer to the pW,Sq-peer:

a) Ally Check: If swarm-W is not considered an ally by swarm-

V , i.e., if W R WV , then no piece is transferred to the pW,Sq-

peer. Otherwise, items (b), (c) and (d) are carried out in the

mentioned order.

b) Download of a Rare Piece: If pT X RW pxqq zS ‰ H, then

the pV, T q-peer uploads the rarest piece it can offer, i.e., a

piece chosen uniformly at random from the set

RpT,W,Sqpxq
∆
“ arg min

qPpTXRW pxqqzS
⇡

pqq
W pxq.

c) Download of a Non-rare Piece: If pT X RW pxqq zS “ H
and pT XW qzS ‰ H, then the pV, T q-peer chooses some non-

rare piece n P pT X W qzS uniformly at random, and decides

to upload it with success probability given by

⇣W pxq
∆
“ exp

ˆ

´
p⇡W ´ ⇡W q|x|W

�WKW

|x|↵W

˙

t�W °0u, (4)

where ↵W ° 0 and �W • 0 are constants. We refer to ⇣W pxq
as the non-rares’ sharing factor.

d) Download of an Extra Piece: If, from rules (b) and (c), no

piece of file-W could be uploaded to the pW,Sq-peer, then

the pV, T q-peer uploads an extra piece chosen uniformly at

random from the set pT X FW qzpS Y W q.

Note that when there is no rare piece at offer, a non-rare

piece n P pT X W qzS is transferred only probabilistically, so

RFwPMS is not a work-conserving scheme. In order to extend

our rules to the seed, we assume that the seed is a p:,Fq-

type peer where : takes the swarm identity of whichever peer

it push-contacts. Thus, the set of rare pieces when the seed

push-contacts a normal peer is given by

Rp:,W,Sqpxq “ arg min
qPRW pxqzS

⇡
pqq
W pxq.

C. Process Description

For the sake of notational simplicity, from hereon, we will

write fpxq as f when the dependence on state x is clear. At

any given current state x, the next state of the network depends

solely on x as the piece-selection policy solely depends on x.

Hence, the evolution of the network described by the process

txptq : t • 0u is a continuous-time, time-homogeneous and

irreducible (easily shown) Markov chain with state space,

S
∆
“ Z

∞
WPW

|tS:SÑFW and W zS‰Hu|

` . (5)

We now describe the generator matrix Q of the process

txptq : t • 0u by listing its positive entries. Given a state

x, the different kinds of transitions possible are:

a) Arrival of an Empty-peer: Recall that a swarm-W peer with

an empty cache enters the network according to a Poisson

process of rate �W . This results in a unit increase in the

number of swarm-W peers with no pieces, i.e., the new state

is x`epW,Hq (ep¨,¨q is the unit vector in the direction of p¨, ¨q-

axis) and the corresponding transition rate is given by

qpx,x ` epW,Hqq “ �W . (6)
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b) Download of a Rare piece: Let r P RW denote some rare

piece in swarm-W . The second type of transition is when

a pW,Sq-peer missing piece r, downloads it. The necessary

condition for this is that the pW,Sq-peer gets push-contacted

by a peer holding piece r, which includes the seed and all

pV, T q-peers such that W P WV and r P T . By the properties

of Poisson processes, the rate at which the seed push-contacts

a pW,Sq-peer is U ˆx
pSq
W {|x|, and the rate at which a pV, T q-

peer push-contacts a pW,Sq-peer is µx
pT q
V ˆ x

pSq
W {p|x| ´ 1q.

Let ⇠pxq “ p|x| ´ 1q{|x| and define

Γ
prq
W

∆
“ U ` µ

ÿ

pV,T q:WPWV ,rPT

x
pT q
V

⇠
.

Then, the aggregate rate at which a possible source of piece

r, push-contacts the pW,Sq-peer is given by x
pSq
W {|x| ˆ Γ

prq
W .

After the pW,Sq-peer has downloaded piece r, depending on

S, it will either remain in the network or leave it immediately.

Therefore, we have two cases:

i) if W zS â tru, the peer stays in the system; the resulting

state is x ´ epW,Sq ` epW,SYtruq. For brevity, let us introduce

the notation qpx,x ´ epW,Sq ` epW,SYtiuqq “ q
pi`q
pW,Sq for any

S that satisfies W zS â tiu. Then, q
pr`q
pW,Sq is given by

x
pSq
W

|x|

¨

˚

˝

U trPRp:,W,Squpxq

|Rp:,W,Sq|
` µ

ÿ

V :WPWV ,
T :rPT

x
pT q
V trPRpT,W,Squpxq

⇠|RpT,W,Sq|

˛

‹

‚
,

(7)

where the two indicator terms ensure that piece r is transferred

only if it is the rarest of all the available rare pieces.

When the piece distribution in swarm-W is uniform i.e.,

⇡W “ ⇡W , by definition, RW “ W and the above transition

rate takes a more tractable form. Therefore, for each swarm-

W , we partition the state space into two regions, namely S1

W

and S2

W , where S1

W “ tx : RW pxq à W u, and S2

W “ tx :

RW pxq “ W u. In the case when x P S2

W , both the indicator

terms evaluate to 1. Thus, for a state x P S2

W , if we upper

bound |Rp:,W,Sq| and |RpT,W,Sq| by KW , then the transition

rate q
pr`q
pW,Sq is lower bounded by

x
pSq
W

|x|

Γ
prq
W

KW

“
|x|W
|x|

x
pSq
W

|x|W

Γ
prq
W

KW

. (8)

ii) If W zS “ tru, the only piece of file-W that is missing with

the pW,Sq-peer is piece r. Consequently, for both x P S1

W and

x P S2

W , piece r is the rarest piece transferable to the pW,Sq-

peer, which leaves the network immediately upon downloading

it. The resulting state is x´epW,Sq. For brevity, let us introduce

the notation qpx,x´epW,Sqq “ q
pi´q
pW,Sq for any S that satisfies

W zS “ tiu. Then q
pr´q
pW,Sq is given by

x
pSq
W

|x|
Γ

prq
W “

|x|W
|x|

x
pSq
W

|x|W
Γ

prq
W . (9)

c) Download of a Non-rare Piece: The third type of transition

is when a pW,Sq-peer missing piece n P RW , downloads it.

We can upper bound both q
pn`q
pW,Sq and q

pn´q
pW,Sq by

x
pSq
W

|x|

ˆ

U ` µ
|x|

⇠

˙

⇣W pxq. (10)

Note that a non-rare piece is downloaded only when x P S1

W .

d) Download of an Extra Piece: Recall that extra pieces are

preferred only when no pieces from the file of interest are

transferable. We shall soon see that the stability of RFwPMS

does not depend on the download of extra pieces. Conse-

quently, we skip listing the associated rates.

III. STABILITY ANALYSIS

In this section, we present the main result on the stability of

RFwPMS. The proof is established using the Foster-Lyapunov

theorem [16, 17] which is restated below.

Proposition 1. Let txptq : t • 0u be a continuous-time, time-

homogeneous and irreducible Markov chain with state space S

and generator matrix Q. If there exist a non-negative function

V : S Ñ R`, an ✏1
° 0, a finite set A and a finite constant

B such that tx : V pxq § Cu is finite for all C P R`, and the

expected unit-transition drift QV pxq is upper bounded as

QV pxq § ´✏1
txPAupxq ` B txPAupxq,

then the process txptq : t • 0u is positive recurrent; the

expected unit-transition drift QV pxq is given by

QV pxq
∆
“

ÿ

yPS,y‰x

qpx,yq pV pyq ´ V pxqq . (11)

Our main stability result is the following theorem.

Theorem 1. For the multi-swarm model with non-persistent

peers in section II, RFwPMS is stable over the parameter

region µ ° 0, U ° 0, λ ° 0, and KW • 2 for all W P W .

Sketch of the proof. Our proof uses a more general version of

the Lyapunov function used in [11]. The key ideas are

(i) show that the Lyapunov drift obtained from downloading

rare pieces using rarest-first is upper bounded by the Lyapunov

drift obtained from downloading rare pieces using random-

selection (this is proved in Lemma 3 in Section VII); and

(ii) allow the (probabilistic) download of non-rare pieces only

over a finite and bounded but sufficiently large population of

the network (this holds by our choice of ⇣W pxq).

Note that mode-suppression is covered as we allow �W “ 0.

The Lyapunov function we use is given by

V pxq “
ÿ

WPW

VW pxq, (12)

where VW pxq
∆
“

ÿ

iPW

´

p⇡W ´ ⇡
piq
W q|x|W

¯2

`

C
p1q
W p1 ´ ⇡W q |x|W ` C

p2q
W pMW ´ PW q`

, (13)

with suitably large constants C
p1q
W , C

p2q
W P R` and MW P Z`.

Note that |x| Ñ 8 only if |x|W Ñ 8 for some W P W .
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Then from Lemma 2, it follows that V pxq Ñ 8 as |x| Ñ 8.

Consequently, the set tx : V pxq § Cu is finite for all C P R`.

To evaluate the expected unit-transition drift for any state

x, we first evaluate the potential change for each possible

transition. Note that, with our choice of V , any transition that

occurs in swarm-W will only affect the term VW . We have:

a) Arrival of an Empty-peer: The arrival of a pW,Hq-peer

results in a unit increase in |x|W but does not affect the number

of copies of each piece i P W . Therefore,

V px ` epW,Hqq ´ V pxq “ C
p1q
W . (14)

b) Download of a Rare piece: Let r P RW denote some rare

piece. The potential change associated with the download of

piece r is similar to that in [11], and depends on whether

the current piece distribution is uniform or non-uniform.

Therefore, we have two cases:

Case 1 - x P S1

W : Suppose piece r P RW is downloaded by

a pW,Sq-peer. i) if W zS â tru, the peer stays in the network

upon downloading r. In this case, the associated potential

change V px ´ epW,Sq ` epW,SYtruqq ´ V pxq is given by

Ψ
prq
W pxq “ 1 ´ 2

´

⇡W ´ ⇡
prq
W

¯

|x|W
loooooooooooooomoooooooooooooon

∆
“ 

prq
W

pxq

´C
p2q
W tMW °PW upxq

loooooooooomoooooooooon

∆
“I

p1q
W

pxq•0

.

(15)

Since x P S1

W , we have p⇡W ´ ⇡
prq
W q|x|W • 1. Hence,

 
prq
W pxq § ´1 and the overall potential change Ψ

prq
W pxq is

negative. ii) If W zS “ tru, then the peer departs the network

upon downloading r. In this case, the associated potential

change V px ´ epW,Sqq ´ V pxq can be upper bounded by

 
prq
W pxq ` C

p2q
W pKW ´ 1q tMW `KW ´1°PW upxq

looooooooooooooooooooooomooooooooooooooooooooooon

∆
“I

p2q
W

pxq•0

, (16)

Case 2 - x P S2

W : When x P S2

W , the download of piece

r P RW disturbs the uniform distribution with r attaining

the highest frequency. i) If piece r is downloaded without an

accompanying peer departure, the associated potential change

V px ´ epW,Sq ` epW,SYtruqq ´ V pxq is given by

KW ´ 1 ´ C
p1q
W ´ I

p1q
W pxq, (17)

which is made negative by choosing C
p1q
W ° KW ´ 1. ii) If

the download of piece r is accompanied with the departure of

the downloading peer, the associated potential change V px ´
epW,Sqq ´ V pxq can be upper bounded by

KW ´ 1 ´ C
p1q
W ` I

p2q
W pxq. (18)

c) Download of a Non-Rare Piece: As stated earlier, the

download of a non-rare piece can occur only if x P S1

W .

The potential changes V px ´ epW,Sq ` epW,SYtnuqq ´ V pxq
and V px ´ epW,Sqq ´ V pxq associated with the download of

a non-rare piece n P RW can be upper bounded by

K2

W

´

1 ` 2|x|W ` C
p2q
W

¯

. (19)

d) Download of an Extra Piece: It can be observed that for any

swarm-W , no potential change is induced by the download of

its extra pieces.

Having listed all the potential changes, we can now proceed

to evaluate the expected unit-transition drift QV pxq. Note that

for any state x, we can write

QV pxq “
ÿ

WPW

QV
p`q
W pxq ` QV

pRq
W pxq ` QV

pRq
W pxq, (20)

where QV
p`q
W pxq, QV

pRq
W pxq and QV

pRq
W pxq are contributions

to the unit-transition drift from arrival of swarm-W peer,

download of a rare piece in swarm-W and download of a

non-rare piece in swarm-W , respectively. Next we evaluate

each of these three terms below:

Arrival of an Empty-peer: Using (6) and (14), we have

QV
p`q
W pxq “ �WC

p1q
W . We then upper bound

∞
WPW

QV
p`q
W pxq

by

|λ|Cp1q, (21)

where |λ|
∆
“

∞
WPW �W and Cp1q ∆

“
∞

WPW C
p1q
W .

The terms QV
pRq
W pxq and QV

pRq
W pxq depend on whether x

is in S1

W or S2

W . Therefore, we have two cases.

Case 1 - x P S1

W : We first start with QV
pRq
W pxq. Let ! ° 0

be any real positive number, then by Lemma 4 in Section VII,

we can upper bound QV
pRq
W pxq by

|x|W
|x|

O
`

|x|´!W

˘

. (23)

To compute QV
pRq
W pxq, we can write

QV
pRq
W pxq “ QV

pR`q
W pxq ` QV

pR´q
W pxq, (24)

where QV
pR`q
W pxq and QV

pR´q
W pxq are contributions to the

unit-transition drift from download of a rare piece without

peer departure and with peer departure, respectively. The

transitions that correspond to QV
pR`q
W pxq include each piece

r P RW being downloaded by a pW,Sq-peer such that

W zS â tru. Using (7), (15) and Lemma 3, we can upper

bound QV
pR`q
W pxq by

|x|W
|x|

ÿ

rPRW

Γ
prq
W

KW

´

1 ´ ⇡
prq
W ´ �

prq
W

¯

Ψ
prq
W , (25)

where �
prq
W

∆
“

∞
S:W zS“tru x

pSq
W {|x|W is the fraction of swarm-

W peers who have all the pieces of file-W except r. The

transitions that correspond to QV
pR´q
W pxq include each piece

r P RW being downloaded by a pW,Sq-peer such that W zS “

tru. Using (9) and (16), we can upper bound QV
pR´q
W pxq by

|x|W
|x|

ÿ

rPRW

�
prq
W Γ

prq
W

´

 
prq
W pxq ` I

p2q
W pxq

¯

. (26)

Combining (25) and (26), we upper bound QV
pRq
W pxq by

|x|W
|x|

ÿ

rPRW

Γ
prq
W

KW

ˆ

 
prq
W pxq

´

1 ´ ⇡
prq
W

¯
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´
´

1 ´ ⇡
prq
W ´ �

prq
W

¯

I
p1q
W pxq ` �

prq
W KW I

p2q
W pxq

˙

. (27)

Case 2 - x P S2

W : If x P S2

W , then RW “ W and there are

no non-rare pieces to download. Therefore,

QV
pRq
W pxq “ 0. (28)

For QV
pRq
W pxq, we can use similar techniques as in Case 1

and show that it is upper bounded by

|x|W
|x|

ÿ

rPW

Γ
prq
W

KW

ˆ

´

KW ´ 1 ´ C
p1q
W

¯

p1 ´ ⇡W q ´

´

1 ´ ⇡W ´ �
prq
W

¯

I
p1q
W pxq ` �

prq
W KW I

p2q
W pxq

˙

. (29)

Finally, using (21), (27), (23), (29), (28) and ÅQV W pxq from

(29), we can upper bound the unit-transition drift QV pxq by

ÿ

WPW

|x|W
|x|

ÅQV W pxq.

The rest of the proof is in the appendix, i.e., Section VII.

IV. DISCUSSION

A. Sharing vs Suppression Trade-off for Non-Rare Pieces

As indicated earlier in Section I, the mode-suppression

protocol [11] strictly forbids the download of non-rare pieces.

While this maintains a uniform piece distribution, there is an

accompanying undesirable effect: no piece is transferred in all

those contacts in which only the non-rare pieces are offered

to the contacted peer. As shown in Section V, this incurs

a high penalty on file-delivery time during a flash-crowd5.

Besides flash-crowds, under normal operating conditions also,

completely suppressing transfers of non-rare pieces is unnec-

essary and, as indicated in [11], a trade-off exists between

their suppression and sharing. RFwPMS allows for tuning

this trade-off via �W . Note that by choosing ↵W sufficiently

small, ⇣W pxq effectively becomes a function of the ratio of

the mismatch to the number of pieces of file-W . The higher

this ratio, the lesser the likelihood that the non-rare piece gets

replicated; the choice of the ratio instead of just the mismatch

matches the intuition that a file with large number of pieces

should allow more sharing of non-rare pieces as opposed to a

file with smaller number of pieces.

Taking �W Ñ 8, RFwPMS converges to rarest-first which

is unstable, whereas taking �W Ñ 0, RFwPMS converges

to mode-suppression [11]. Thus, by choosing ↵W sufficiently

5A situation in which the network suddenly encounters a very large number
of empty peers; this is commonly seen with torrents of popular files.

small, and �W appropriately, we expect to find the right trade-

off between sharing and suppression of the non-rare pieces.

Via numerical simulations, we find that choosing �W close to

1.5 appears to minimize the expected sojourn time.

By Lemma 4, RFwPMS is stable for any non-rares’ sharing

factor that is Op|x|´2´!q for some ! ° 0. However, the

specific choice of ⇣W pxq in (4) is presented as it allows the

transfer of non-rare pieces even for large network population

(by choosing ↵W ° 0 to be small enough). We also remark

that RFwPMS like mode-suppression is a centralized scheme

as it requires the knowledge of piece distribution in the

network; we assume that in practice, peers can keep such

estimates either via gossiping or via a centralized tracker.

B. Rarest-First vs Random-Selection for Rare Pieces

Another notable observation about MS [11] is that it per-

forms random-selection on the set of available rare pieces.

We assert that knowing the distribution should allow for

more advantage than just random-selection, and that a load-

balancing scheme like rarest-first will reduce the duration of

the transient phase. While this is intuitively clear, we provide

theoretical proof for this in Lemma 3.

C. Inter-Swarm Collaboration

Our model in section II is general in terms of inter-swarm

behavior of peers and their secondary download preferences.

Here, we discuss three different behaviors that are covered:

a) Altruistic Swarms: In most wired P2P environments (e.g.,

the Internet), peers are generally insensitive to the consump-

tion of their download and upload bandwidths, and they may

download extra pieces in order to help other swarms. Such

behavior can be captured in our model by setting WW “ W

and FW “ F for every W P W . From [8], a network in which

all swarms are altruistic is called a universal swarm network.

b) Opportunistic Swarms: A different type of altruism is when

peers do not download any extra pieces but share their pieces

with those of other swarms who need them. We obtain this by

setting WW “ W and FW “ W for every W P W .

c) Selfish Swarms: In wireless P2P networks, peers are gener-

ally sensitive to the consumption of their download and upload

bandwidths. This holds by setting WW “ tW u and FW “ W .

Thus, the peers do not download any extra pieces nor do they

upload any piece to other swarms.

D. Piece-Selection Policies for Excess-Cache

In our original version of RFwPMS, random-selection was

assumed for the download of extra pieces, but the stability

result in Theorem 1 extends to any piece-selection policy one

ÅQV
W

pxq “

$

’

’

&

’

’

%

|λ|Cp1q `O
`

|x|´ω

W

˘

`
∞

rPRW

Γ
prq
W

KW

´

ψ
prq
W

pxq
´

1 ´ π
prq
W

¯

´
´

1 ´ π
prq
W

´ γ
prq
W

¯

I
p1q
W

pxq ` γ
prq
W

KW I
p2q
W

pxq
¯

, if x P S
1

W

|λ|Cp1q `
∞

rPW

Γ
prq
W

KW

´´

KW ´ 1 ´ C
p1q
W

¯

p1 ´ πW q´
´

1 ´ πW ´ γ
prq
W

¯

I
p1q
W

pxq ` γ
prq
W

KW I
p2q
W

pxq
¯

, if x P S
2

W

(29)
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may use for the excess-cache because the Lyapunov function

given by (12) and (13) is not affected by a piece download

from the set of extra pieces. This is stated below.

Proposition 2. For the multi-swarm model with non-persistent

peers in section II, RFwPMS with any piece-selection policy

for the excess-cache, is stable over the parameter region µ °

0, U ° 0, λ ° 0, and KW • 2 for all W P W .

E. Autonomous Swarms

One more case to consider is when all the swarms in the

network operate in isolation from each other. Specifically, a

peer belonging to swarm-W contacts and exchanges pieces

with peers in the same swarm. The fixed seed, on the other

hand, divides its uploading capacity across swarms, providing

a static non-zero fraction of its total capacity to each swarm;

optimal partition of the seed capacity is for future work. Such

swarms are called autonomous swarms in [8]. The stability of

RFwPMS holds for such swarms as well.

Corollary 1.1. Consider a multi-swarm network where each

swarm W P W behaves autonomously and the seed has

allocated a static non-zero fraction of its total capacity for

each swarm-W (say UW ° 0). Then, the network is stable.

Proof. Each swarm-W can be considered as an isolated single-

swarm network with fixed seed of capacity UW ° 0. Stability

then follows by applying Theorem 1 to each swarm.

V. SIMULATIONS

Next, we investigate the stability, scalability and sojourn

time performance of RFwPMS via numerical simulations. In

all cases, we set the seed contact rate U to 1, peer contact rate

µ to 1, ↵W to 10´12 and �W to 1.5.

A. Stability Check

We start by illustrating the stability of RFwPMS. Let us

consider a two-swarm network consisting of a master-file F

of 9 pieces, i.e., F “ r9s. The two swarms entering the

network are denoted by W1 and W2, each having a peer-

arrival rate of 20. Peers from swarm-W1 wish to download

file W1 “ r6s whereas those from swarm-W2 are interested

in file W2 “ r3, 9s. We initiate the system in a state where

both swarms are in the one-club scenario: both have 500 peers

with all in swarm-W1 missing piece 1 and all in swarm-

W2 missing piece 4. For the autonomous case, the seed’s

upload capacity is divided evenly among the two swarms,

i.e., pUW1
, UW2

q “ p0.5, 0.5q. Fig. 1 shows the evolution

of the number of peers in the network for different swarm

behaviors. Note that each swarm is able to escape the one-club

in finite time, after which a stable regime persists with minimal

fluctuations. An interesting observation is the sudden drop in

the population of swarm-W2 in altruistic and opportunistic

swarms. This is because piece 4 (missing in swarm-W2), is

widely available in swarm-W1. Thus, due to altruism on the

part of swarm-W1 peers, the one-club peers in swarm-W2

quickly grab piece 4 and leave the network.

B. Scalability Check

Scalability is also necessary for a P2P network, i.e., its

system-wide throughput should scale with the number of peers.

For our multi-swarm model, this means that the expected

sojourn time of peers should not increase by scaling up

the arrival rate vector λ. To check this we consider a two-

swarm network in which the master-file comprises 14 pieces

(F “ r14s) and the two swarms entering the network are

interested in files W1 “ r8s and W2 “ r6, 14s. For the

autonomous case, the seed’s upload capacity is again split

equally. Table I lists the (steady-state) expected sojourn times

for the arrival rate vectors λ “ p8, 4q and 16λ. It can be seen

that the expected sojourn time practically stays constant in

all the four swarm behaviors. Based on this and many other

similar empirical checks, we believe that RFwPMS is scalable;

however, we leave the proof of this as a conjecture.

The expected sojourn time indeed improves when swarms

are more altruistic. Another observation is that the expected

sojourn time for autonomous swarms is lesser than that for al-

truistic swarms. This is not unexpected though; in autonomous

swarms, every peer makes contacts within their own swarm,

thus the likelihood that the next contact is useless is lower.

C. Sojourn Time Performance in Multiple Swarms

In Table II we compare the expected sojourn times of RFw-

PMS for two different files under different swarm behaviors.

The values tabulated were computed on a two-swarm network

in which the arrival rate vector was fixed at λ “ p4, 1q. Again

the seed’s upload capacity is split evenly in the autonomous

case. Note that altruistic and autonomous cases are Pareto

better than opportunistic and selfish cases.

D. RFwPMS vs. Mode-Suppression

Via simulations MS [11] has been shown to outperform

other previously proposed piece-selection policies. Here, we

compare the performance of RFwPMS and MS in a single-

swarm network. Table III compares the expected sojourn times

of RFwPMS and MS for different values of file pieces K with

the arrival rate fixed at � “ 4. It can be seen that using

RFwPMS (with �W “ 1.5), the expected sojourn time is

indeed reduced. This reduction is not expected to be significant

when K is large (roughly 100 or more) as the increased chunk

diversity in steady-state reduces the number of contacts in

which only the non-rare pieces are offered.

Fig. 2 compares the flash-crowd response of MS, RFwPMS

and RNwPMS (swapping out RF for RN in our policy, see

Lemma 3) for K “ 100 (“large”) and an initial population of

500 empty peers; RFwPMS empties the system in about half

the time as MS whereas RNwPMS takes the most amount of

time. The explanation behind this is indicated in second part

of Fig. 2: MS [11] works towards minimizing the mismatch at

all times and wastes many contacts; RNwPMS transfers many

pieces that are not the rarest and gets stuck in a one-club like

scenario that uses just the seed for uploads; and RFwPMS

minimizes the mismatch rapidly after it has built up while

waiting for the Kth piece to be shared by the seed.
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Fig. 1. Number of peers in the network for different swarm behaviours when W1 “ r6s, W2 “ r3, 9s and λ “ p20, 20q.

TABLE I
EXPECTED SOJOURN TIMES FOR

DIFFERENT ARRIVAL RATE VECTORS

Swarms’ Arrival ErSojourn Times
Behavior Ratesa W1 “ r8s W2 “ r6, 14s

Altruistic
λ 11.2 14.9

16λ 11.5 14.9

Opportunistic
λ 15.1 20.9

16λ 15.4 21.9

Selfish
λ 18.2 26.5

16λ 18.5 26.1

Autonomous
λ 10.3 10.9

16λ 10.9 10.8
aλ “ p8, 4q. Simulation End-time: 1000 units

TABLE II
EXPECTED SOJOURN TIMES FOR

DIFFERENT FILES

Swarms’ Files ErSojourn Times
Behavior W1 W2 Swarm W1 Swarm W2

Altruistic
r2s r1, 3s 5.5 5.1

r20s r10, 30s 23.6 34.5

Opportunistic
r2s r1, 3s 6.9 14.2

r20s r10, 30s 23.9 40.0

Selfish
r2s r1, 3s 7.8 16.5

r20s r10, 30s 35.9 72.8

Autonomous
r2s r1, 3s 5.6 6.9

r20s r10, 30s 23.5 21.2

Simulation End-time: 1000 units

TABLE III
EXPECTED SOJOURN TIMES FOR

RFWPMS AND MS

K
ErSojourn Times Percent.

MS RFwPMS Improv.

2 6.2 5.2 16.1

10 18.3 12.3 32.6

20 32.4 22.8 29.7

40 55.4 43.7 21.1

80 101.6 85.9 15.5

100 119.4 105.5 11.6

200 226.1 206.8 8.6

500 536.5 503.1 6.2

Simulation End-time: 5000 units
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Fig. 2. Flash-crowd Response, 500 empty peers, K “ 100 and λ “ 0.

VI. CONCLUSION

In this work, we proposed and studied a piece-selection

policy, RFwPMS, for a BitTorrent-like P2P network with

multiple swarms. RFwPMS combines rarest-first (for rare

pieces) with an adjustable sharing versus suppression choice

for non-rare pieces. As a result, RFwPMS reduces the expected

sojourn time of a peer and the file-delivery time during a

flash-crowd. Using a Lyapunov drift analysis, we proved the

stability of RFwPMS in a general multi-swarm setting and

demonstrated a policy whose stability region is not affected by

bundling swarms. Lastly, since RFwPMS uses rarest-first with

a minor modification (use of the non-rares’ sharing factor), it

is amenable to be incorporated into the BitTorrent protocol.

Our work also opens several avenues for future work. One

is on formally investigating the scalability of RFwPMS, and

another is on designing excess-cache update policies that

can further reduce the sojourn time in multi-swarms. An

investigation of the performance of RFwPMS in real torrent

deployments is also an interesting direction.

VII. APPENDIX

Lemma 2. For any W P W , VW pxq Ñ 8 as |x|W Ñ 8.

Proof. From Lemma 2 in [11], it follows that for any state x,

⇡W § pKW ´1q{KW . We have two cases. Case 1 - x P S1

W :

Let ⇢W P p0, 1q be a constant such that ⇢W ´ pKW ´

1q{pKW q “ �W ° 0 and define RW
∆
“ tx : ⇡W pxq • ⇢W u.

For all x P S1

W X RW , VW is lower bounded by p�W |x|W q2

which goes to infinity as |x|W Ñ 8. For all x P S1

W X RW ,

VW pxq is lower bounded by C
p1q
W p1´⇢W q|x|W which goes to

infinity as |x|W Ñ 8. Case 2 - x P S2

W : Let x P S2

W . Then

using the fact that ⇡W “ ⇡W , we can lower bound VW pxq by

C
p1q
W |x|W {KW which goes to infinity as |x|W Ñ 8.

Lemma 3. For any x P S1

W , QV
pR`q
W pxq is upper bounded

by

ÿ

rPRW ,
S:W zSâtru

x
pSq
W

|x|

¨

˚

˝

U

|RW zS|
` µ

ÿ

V :WPWV ,
T :rPT

x
pT q
V

⇠pT X RW qzS

˛

‹

‚
Ψ

prq
W ,

which can be further upper bounded by

|x|W
|x|

ÿ

rPRW

Γ
prq
W

KW

´

1 ´ ⇡
prq
W ´ �

prq
W

¯

Ψ
prq
W .

Note that the first upper bound is the exact Lyapunov drift

obtained when peers use random-selection on the available

rare pieces (the RNwPMS policy).

Proof. Using (7) and (15), QV
pR`q
W pxq is given by

ÿ

rPRW

ÿ

S:W zSâtru

x
pSq
W

|x|

ˆ

U trPRp:,W,Squpxq

|Rp:,W,Sq|
Ψ

prq
W

` µ
ÿ

V :WPWW

ÿ

T :rPT

x
pT q
V trPRpT,W,Squpxq

⇠|RpT,W,Sq|
Ψ

prq
W

˙

. (30)

Let us define

⇡
pS,:q
W pxq

∆
“ min

qPRW zS
⇡

pqq
W pxq and
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Ψ
pS,:q
W

∆
“ 1 ´ 2

´

⇡W ´ ⇡
pS,:q
W

¯

|x|W ´ I
p1q
W pxq.

Then we can upper bound the first term in (30) as follows.

First Term “
ÿ

rPRW ,
S:W zSâtru

x
pSq
W

|x|

U trPRp:,W,Squpxq

|Rp:,W,Sq|
Ψ

prq
W

“
ÿ

S:|SXW |†KW ´1,
r:rPRp:,W,Sq

x
pSq
W

|x|

U

|Rp:,W,Sq|
Ψ

pS,:q
W (A1)

“
ÿ

S:|SXW |†KW ´1

x
pSq
W

|x|

|RW zS|U

|RW zS|
Ψ

pS,:q
W

§

ÿ

S:|SXW |†KW ´1,

r:rPRW zS

x
pSq
W

|x|

U

|RW zS|
Ψ

prq
W (A2)

“
ÿ

rPRW ,
S:W zSâtru

x
pSq
W

|x|

U

|RW zS|
Ψ

prq
W . (A3)

For steps (A1) and (A3) we change the order of summation

and inequality (A2) follows using Ψ
pS,:q
W § Ψ

prq
W for every

r P RW zS. Now let us define

⇡
pS,T q
W pxq

∆
“ min

qPpTXRW qzS
⇡

pqq
W pxq and

Ψ
pS,T q
W pxq

∆
“ 1 ´ 2

´

⇡W ´ ⇡
pS,T q
W

¯

|x|W ´ I
p1q
W pxq.

Then, using the same technique as in steps (A1) and (A3), and

noting that Ψ
pS,T q
W § Ψ

prq
W for every r P pT XRW qzS, we can

upper bound the second term in (30) by

ÿ

rPRW ,
S:W zSâtru

x
pSq
W

|x|
µ

ÿ

V :WPWV ,
T :rPT

x
pT q
V

⇠pT X RW qzS
Ψ

prq
W .

Combining the two results, we get the first desired upper

bound. The second upper bound follows by noting that Ψ
prq
W §

0 and upper bounding |RW zS| and |pTXRW qzS| by KW .

Lemma 4. For any ! ° 0, QV
pRq
W pxq is upper bounded

by |x|W {|x| ˆ O
`

|x|´!W

˘

over the region S1

W . Consequently,

for any ✏ ° 0, there exists N˚ “ N˚p✏q P R` such that

QV
pRq
W pxq § ✏{2 for all |x|W • N˚.

Proof. Fix ! ° 0. With ↵W ° 0, ⇣W pxq P Op|x|´2´!q. From

(10) and (19), we can upper bound QV
pRq
W pxq by

ÿ

nPNW ,
S:W zSÖtnu

x
pSq
W

|x|
K2

W

ˆ

U ` µ
|x|

⇠

˙

´

1 ` 2|x|W ` C
p2q
W

¯

loooooooooooooooooooooooomoooooooooooooooooooooooon

Op|x|2q

⇣W pxq

Since ⇣W pxq P Op|x|´2´!q, the Lemma follows.

Lemma 5. For any ✏ ° 0 and any W P W , there exists a

countable set AW and a finite constant BW • 0 such that

ÅQV W pxq § ´✏ txPAW upxq ` BW txPAW upxq, and

NW “ max
xPAW

|x|W † 8.

Proof. The Lemma can be proved by using a similar approach

as in the stability proof of [11]. The Big-O term present in
ÅQV W pxq (when x P S1

W ) is upper bounded by ✏{2 for all

|x|W • N˚. The proof is omitted for brevity.

Lemma 6. For any ✏1
° 0, there exists a finite set A and a

finite constant B • 0 such that

QV pxq § ´✏1
txPAupxq ` B txPAupxq.

Proof. Fix ✏1
° 0. For any ✏ ° 0 and any swarm W P W ,

it follows from Lemma 5 that ÅQV W pxq § ´✏, except

possibly over AW where its population and corresponding

term ÅQV W pxq are bounded from above by NW and BW • 0

respectively. We can write the state-space as S “
î

H:HÑW

SH,

where

SH

∆
“ t|x|W § NW @W P H, |x|U ° NU@U P WzHu .

Case 1 - H “ H: Consider a state x P SH. Since |x|W °

NW for all W P W , from Lemma 5, it follows that
ÅQV W pxq § ´✏ for all W P W . This gives QV pxq § ´✏.
Choosing ✏ • ✏1 ensures QV pxq § ´✏1.

Case 2 - H “ W: The set SW is finite. Thus, for any state

x P SW , we can write QV pxq § BW

∆
“ max

xPSW

pQV pxqq`
†

8.

Case 3 - H ‰ H à W: Consider a state x P SH. We can

upper bound QV pxq as follows.

QV pxq “
ÿ

WPH

|x|W
|x|

ÅQV W pxq `
ÿ

UPWzH

|x|U
|x|

ÅQV U pxq

†

∞
WPH NWBW∞
UPWzH |x|U

`

∞
UPWzH |x|U∞

WPH NW `
∞

UPWzH |x|U
p´✏q.

Note that
∞

UPWzH |x|U Ñ 8 over the set SH, which implies
∞

WPW1
NWBW∞

UPW2
|x|U

Ñ0 and

∞
UPW2

|x|U∞
WPW1

NW `
∞

UPW2
|x|U

Ñ1.

Thus, for any � ° 0, there exists NH “ NHp�q P R`

such that QV pxq § � ` p1 ´ �qp´✏q for any x P SH with∞
UPW2

|x|U • NH. Choosing ✏ “ 2✏1 and 0 † � §
✏{2
1`✏

ensures QV pxq § ´✏1.

For all H such that H ‰ H à W , let us define

AH

∆
“ SH X

#

ÿ

UPH

|x|U † NH

+

(finite),

and then A
∆
“

˜

§

�‰HàW

AH

¸

Y SW (finite),

B
∆
“ max

xPA
pQV pxqq`

† 8.

Then, for any state x, we can write

QV pxq § ´✏1
txPAupxq ` B txPAupxq,

establishing the result.

Combining Lemma 6 and Proposition 1, Theorem 1 holds.
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and D. Towsley, “On the scalability of p2p swarming

systems,” Computer Networks, vol. 151, pp. 93–113,

Mar 2019. [Online]. Available: http://dx.doi.org/10.1016/

j.comnet.2019.01.006

[15] A. Legout, G. Urvoy-Keller, and P. Michiardi, “Rarest

first and choke algorithms are enough,” in ACM SIG-

COMM, ser. IMC ’06. ACM, 2006, pp. 203–216.

[16] B. Hajek, Random Processes for Engineers. Cambridge

University Press, 2015.

[17] R. Srikant and L. Ying, Communication Networks: An

Optimization, Control, and Stochastic Networks Perspec-

tive. Cambridge University Press, 2014.

1162
Authorized licensed use limited to: University of Michigan Library. Downloaded on June 28,2021 at 15:28:12 UTC from IEEE Xplore.  Restrictions apply. 


