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Abstract

This work is concerned with the compressible micropolar fluids system in three–dimensional space. We 
consider the asymptotic behavior of the solution to the Cauchy problem near the constant equilibrium state 
provided that the initial perturbation is sufficiently small. Under some assumptions of the initial data, we 
show that the solution of the Cauchy problem converges to its constant equilibrium state at the exact same 
L2–decay rates as the linearized equations, which shows the convergence rates are optimal. The proof is 
based on the spectral analysis of the semigroup generated by the linearized equations and the nonlinear 
energy estimates.
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1. Introduction

The micropolar fluids describe a class of microstructure related fluids, for example, animal 
blood, polymeric suspensions, and liquid crystals. The model has many potential applications 
in both mathematics and engineering [19,26]. The theory of micropolar fluids is introduced in 
[4,18]. The motion of the compressible micropolar fluids can be described by the following 
equations [18]:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂t ρ̃ + div(ρ̃ũ) = 0,

∂t (ρ̃ũ) + div (ρ̃ũ ⊗ ũ) + ∇P(ρ̃) − (μ + α)�ũ − (μ + λ − α)∇divũ − 2α∇ × w̃ = 0,

∂t (ρ̃w̃) + div (ρ̃ũ ⊗ w̃) + 4αw̃ − μ′�w̃ − (μ′ + λ′)∇divw̃ − 2α∇ × ũ = 0,

(ρ̃, ũ, w̃)T |t=0 = (ρ̃0, ũ0, w̃0)
T ,

(1.1)

for (x, t) ∈ R3 × [0, ∞). Here the unknowns ρ̃ = ρ̃(x, t), ũ = ũ(x, t), w̃ = w̃(x, t) denote 
the density, velocity and the micro–rotational velocity, respectively. The pressure P(ρ̃) is a 
C1–function satisfying P ′(ρ∞) > 0 with some constant ρ∞ > 0. The quantity α > 0 means 
dynamics microrotation viscosity. The constant coefficients μ, λ are the shear and bulk viscosity 
coefficients of the flow and satisfy the physical restrictions

μ > 0, 2μ + 3λ − 4α ≥ 0.

μ′ and λ′ are the angular viscosity coefficients satisfying

μ′ > 0, 2μ′ + 3λ′ ≥ 0.

Before stating the main result, we first review the known related work. Concerning the micro–
rotational velocity w̃ = 0, the equations (1.1) will become the three dimensional compressible 
Navier–Stokes equations, which have been extensively studied. Many works were dedicated to 
proving the existence and the time decay rate for the nonlinear system. The local existence and 
uniqueness of classical solutions to Cauchy problem were considered by [6,8,38,41]. The decay 
rates of solutions for the Cauchy problem have been investigated extensively since the first global 
existence of small solutions obtained by Matsumura–Nishida [36,37]. If the initial data belongs 
to Lp (1 ≤ p < 2), the decay rate was established in [23,29,36] and the reference therein by 
combining the linear decay rate of spectral analysis and the energy method, and in [9,10,20,31]
and the reference therein through the energy method.

Although there have been many results mentioned above about the compressible Navier–
Stokes system, rare studies were devoted to the micropolar fluids. In fact, the micropolar fluids 
system is more complicated because of the complex coupling structure containing curl. There 
are some results about the incompressible viscous micropolar fluids. Lukaszewicz in [25] estab-
lished the existence of local weak solutions by using linearization and a fixed point theorem. The 
existence of global weak solutions with initial density not necessarily strictly positive was estab-
lished in [45,46] by a semi–Galerkin method. The existence and uniqueness of strong solution 
were considered in [2] by using the spectral semi-Galerkin method and compactness arguments 
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and in [1,40] by an iterative approach. We can see [17,28] and the reference therein for the regu-
larity criteria.

The problems about the compressible micropolar fluids have also received considerable at-
tentions in the last few years. One can see [3,5] for the blowup criterion and [44] for the limit 
problem. The initial boundary value problems of this model in the one–dimensional case were 
described by [7,32–34,48]. One can refer to [32–34] for the local or global existence of the strong 
or generalized solutions and [7,48] for the asymptotic behavior. For the 3D case, this model with 
heat conduction was analyzed in relation to existence, uniqueness and stability of the spherically 
symmetric solutions to initial–boundary value problems. Dražić and Mujaković [12] used the 
Faedo–Galerkin method to prove the local existence of generalized spherically symmetric solu-
tions assuming that the initial functions were also spherically symmetric, and then proved the 
uniqueness of the solution in [35]. Based on these two results, by the combination of the local 
existence [12], the uniqueness theorem [35] and the extension principle, Dražić and Mujaković 
[13] proved the global existence of the spherically symmetric generalized solution. We can re-
fer to [21,22] for the large time behavior of the global symmetric generalized solution. For the 
Cauchy problems in 1D, we can refer to [24,39] and the reference therein for the well-posedness 
problem. For the 3D case, results are much less. Liu and Zhang [30] obtained the optimal time 
decay rates if the initial perturbation was small in HN ∩ L1 (N ≥ 4). However, there is no result 
showing that the solution to the compressible micropolar fluids equations has the exactly same 
decay rates as the linearized problem. Our aim in this work is investigating the lower and upper 
decay rates of the compressible micropolar fluids system.

It is worth mentioning that the optimal convergence rate is an important topic in the study of 
the fluid dynamics for the purpose of the computation. It was mentioned in [23] by an example 
that the solution of the nonlinear system with constant viscosity terms Bjk

ut + fj (u)xj
= Bjkuxj xk

,

had a sharp L2 decay rate of (1 + t)− n
4 with dimension n ≥ 2. The lower and upper decay rates 

of the solutions for incompressible Navier–Stokes equations were considered in [42,43]. When 
the average of the initial data 

∫
R3 u0(x)dx �= 0, it was shown in [42] that

(1 + t)−
3
4 � ‖u‖L2 � (1 + t)−

3
4 .

The case 
∫
R3 u0(x)dx = 0 was investigated in [43], it was proved that the lower bound decay 

rate depended on the order of the zero of the initial data. Later, [27] considered the compress-
ible Navier–Stokes–Poisson system, and shown the sharp decay rate of the solution to Cauchy 
problem with small initial data. Motivated by the work of [27,42,43], in this work, we use a 
similar method as [27] to derive the large time behavior of the global classical solution of the 
compressible micropolar fluids equations in R3, provided the prescribed initial data is close to 
the constant steady state (ρ∞, 0, 0)T with ρ∞ > 0. We will show that the behavior of the per-
turbation is asymptotically equivalent to that of the linearized problem. To establish this, much 
effort will be spent on the spectral analysis of the linearized system. To this end, we now linearize 
(1.1) near the constant state (ρ∞, 0, 0)T . Without loss of generality, the constant ρ∞ is taken to 
be 1. We define

m̃ = ρ̃ũ, W̃ = ρ̃w̃,
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and want to rewrite problem (1.1) in a symmetric form. By changing the unknown functions and 
denoting the perturbations by

ρ = ρ̃ − 1, m = 1√
P ′(1)

(m̃ − 0), W = 1√
P ′(1)

(
W̃ − 0

)
,

problem (1.1) is reduced to⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂tρ + √

P ′(1)divm = 0,

∂tm + √
P ′(1)∇ρ − (μ + α)�m − (μ + λ − α)∇divm − 2α∇ × W =N1,

∂tW + 4αW − μ′�W − (μ′ + λ′)∇divW − 2α∇ × m =N2,

(1.2)

here

N1 = −√P ′(1)div

(
m ⊗ m

1 + ρ

)
− 1√

P ′(1)
∇ [P(1 + ρ) − P(1) − P ′(1)ρ

]
− (μ + α)�

(
ρm

1 + ρ

)
− (μ + λ − α)∇div

(
ρm

1 + ρ

)
− 2α∇ ×

(
ρW

1 + ρ

)
,

N2 = −√P ′(1)div

(
m ⊗ W

1 + ρ

)
+ 4α

ρW

1 + ρ
− μ′�

(
ρW

1 + ρ

)
− (μ′ + λ′)∇div

(
ρW

1 + ρ

)
− 2α∇ ×

(
ρm

1 + ρ

)
.

Initial data of the system (1.2) is expressed as

(ρ,m,W)T |t=0 =
(

ρ̃0 − 1,
1√

P ′(1)
(m̃0 − 0),

1√
P ′(1)

(
W̃0 − 0

))T

= (ρ0,m0,W0)
T . (1.3)

Unfortunately, the method in [27] doesn’t work directly in the micropolar fluids system 
because of its complex linearized system. Here this problem is overcome as in [11,30] by in-
troducing the decomposition such that the solution to (1.2)–(1.3) can be decomposed into two 
parts in the form of ⎛⎝ ρ

m

W

⎞⎠=
⎛⎝ ρ

m�

W�

⎞⎠+
⎛⎝ 0

m⊥
W⊥

⎞⎠ , (1.4)

where

m� = �−1∇divm, m⊥ = −�−1∇ × (∇ × m),

and likewise for W�, W⊥. For brevity, the first part on the right–hand side of (1.4) is called the 
fluid part and the second part is called the electromagnetic part, and we also denote
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U� = (ρ,m�,W�)
T , U⊥ = (m⊥,W⊥)T .

The above decomposition is of great help in dealing with complex linearized system containing 
curl. We refer to [11,14,30] for the detailed spectrum analysis with the use of a similar decom-
position. In the aid of the above decomposition, we give explicit representations of solutions to 
the two eigenvalue problems.

We now derive the equations of U� and U⊥ respectively. Taking the divergence of the last two 
equations of (1.2), and then applying �−1∇ , it follows that⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂tρ + √
P ′(1)divm� = 0,

∂tm� + √
P ′(1)∇ρ − (2μ + λ)�m� = �−1∇divN1 = F1,

∂tW� + 4αW� − (2u′ + λ′)�W� = �−1∇divN2 = F2,

(ρ,m�,W�)
T |t=0 = (ρ0,m�0,W�0)

T ,

(1.5)

with

F1 ∼ −√P ′(1)div

(
m ⊗ m

1 + ρ

)
− 1√

P ′(1)
∇ [P(1 + ρ) − P(1) − P ′(1)ρ

]
− (μ + α)�

(
ρm

1 + ρ

)
− (μ + λ − α)∇div

(
ρm

1 + ρ

)
, (1.6)

and

F2 ∼ −√P ′(1)div

(
m ⊗ W

1 + ρ

)
+ 4α

ρW

1 + ρ
− μ′�

(
ρW

1 + ρ

)
− (μ′ + λ′)∇div

(
ρW

1 + ρ

)
.

(1.7)

Taking the curl of the last two equations of (1.2) and then applying �−1curl, one deduces⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂tm⊥ − (μ + α)�m⊥ − 2α∇ × W⊥ = N1,

∂tW⊥ + 4αW⊥ − μ′�W⊥ − 2α∇ × m⊥ = N2,

(m⊥,W⊥)T |t=0 = (m⊥0,W⊥0)
T ,

(1.8)

with

N1 ∼ −(μ + α)�

(
ρm

1 + ρ

)
− 2α∇ ×

(
ρW

1 + ρ

)
, (1.9)

and

N2 ∼ 4α
ρW

1 + ρ
− μ′�

(
ρW

1 + ρ

)
− 2α∇ ×

(
ρm

1 + ρ

)
, (1.10)

where we have replaced −∇ × ∇ × W by �W − ∇divW , likewise for −∇ × ∇ × m.
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We now record the following existence and uniqueness of the solution to (1.2)–(1.3). The 
proof has been described in [47], for convenience, we just state the result in the following theo-
rem.

Theorem 1.1. Assume that ‖(ρ0, u0,w0)‖H 3 ≤ δ for some sufficiently small δ. The Cauchy prob-
lem (1.2)–(1.3) admits a unique solution (ρ, u, w)T satisfying

‖(ρ,u,w)(t)‖2
H 3 +

t∫
0

(
‖∇ρ(τ)‖2

H 2 + ‖∇(u,w)(τ)‖2
H 3

)
dτ ≤ C ‖(ρ0, u0,w0)‖2

H 3 .

(1.11)

To avoid confusion, we should point out that the notation (ρ, u, w)T in Theorem 1.1 has the 
following relation with that used in our paper:

ρ = ρ̃ − 1, u = ũ − 0 = m̃

ρ̃
=

√
P ′(1)m

1 + ρ
, w = w̃ − 0 = W̃

ρ̃
=

√
P ′(1)W

1 + ρ
.

Based on the stability result above, the main purpose of the paper is to investigate the follow-
ing theorem concerning the convergence rates of the solution of Eqs. (1.2)–(1.3).

Theorem 1.2. Under the assumptions of

‖(ρ0,m0,W0)‖H 3∩L1 � δ; (1.12)∫
R3

ρ0(x)dx �= 0;
∫
R3

m⊥0(x)dx �= 0, (1.13)

and ∫
R3

|xρ0(x)|dx < ∞;
∫
R3

∣∣xm�0(x)
∣∣dx < ∞;

∫
R3

|xm⊥0(x)|dx < ∞, (1.14)

for t > t0 with some t0 suitably large, we have

(1 + t)−
3
4 � ‖(ρ,m)‖L2 � (1 + t)−

3
4 , (1.15)

(1 + t)−
5
4 � ‖W‖L2 � (1 + t)−

5
4 , (1.16)

and

(1 + t)−
5
4 � ‖∇(ρ,m)‖L2 � (1 + t)−

5
4 . (1.17)

In order to obtain the optimal decay rates (1.15)–(1.17), based on the method in [27], we 
also need to introduce the decomposition (1.4) to overcome the difficulty caused by the curl
term. We consider the linearized systems (2.1) and (3.1) near a constant equilibrium state and 
investigate the spectrum of the semigroup in terms of the decomposition of wave modes at the 
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lower frequency and higher frequency, respectively. Under the conditions (1.12)–(1.14), we ob-
tain the lower and upper decay rates of the linearized cases. Moreover, in Section 4, in virtue 
of the careful analysis on the semigroup, and the local energy estimates, we show that the dif-
ference (ρh, mh, Wh)

T = (ρ − ρ̄, m − m̄, W − W̄ )T has a faster decay rate than the linearized 
one obtained in Proposition 3.2. This implies the solution (ρ, m, W)T has the same decay rate as 
(ρ̄, m̄, W̄ )T .

Remark 1.3. About the global existence in Theorem 1.1, we only assume that the H 3 norms 
of the initial data are small, while their higher order Sobolev norms could be arbitrarily large. 
Under the smallness assumption of ‖(ρ0,m0,W0)‖H 3∩L1 , we can obtain the upper decay rates 
of ‖(ρ,m,W)‖L2 . This maybe is an improved factor since it requires that the HN(N ≥ 4) norms 
of the initial data are small in [30]. What’s more, under the further assumptions of the initial data 
(1.13)–(1.14), we investigate the lower decay rates of the linearized equations and prove that the 
solution of the nonlinear system also has the same decay property as the linearized one, in this 
case, we show the decay rates are optimal.

Remark 1.4. Notice that the micro–rotational velocity decays faster than the density ρ̃ and the 
velocity ũ. Here the damping term 4αw̃ plays a crucial role in obtaining the faster decay rate for 
w̃.

Remark 1.5. If the initial data ‖(ρ0,m0,W0)‖HN∩L1 (N ≥ 3) is suitably small, by combining 
the linear estimates and the Fourier splitting method, we can derive the following decay results

∥∥∥∇k (ρ,m)

∥∥∥
L2

≤ C(1 + t)
−
(

3
4 + k

2

)
, f or k = 0,1, . . . ,N − 1, (1.18)

and ∥∥∥∇ lW

∥∥∥
L2

≤ C(1 + t)
−
(

5
4 + l

2

)
, f or l = 0,1, . . . ,N − 2. (1.19)

In fact, we can give the proof by induction. We have already proved in Theorem 1.2 that when 
k, l = 0, (1.18)–(1.19) hold true. Now, we assume that (1.18) holds for k = 	 − 1 with 	 =
1, 2, · · · , N − 1. From [47], we know

d

dt

∥∥∥∇	 (ρ,u,w)

∥∥∥2

HN−	
+ C

∥∥∥∇	+1ρ

∥∥∥2

HN−	−1
+ C

∥∥∥∇	+1 (u,w)

∥∥∥2

HN−	
≤ 0. (1.20)

We define

S(t) =
{
ξ ∈ R3 : |ξ | ≤

√
a

1 + t

}
,

with a = 	+2
C

. Then

∥∥∥∇	+1ρ

∥∥∥2

L2
=
∫

3

|ξ |2(	+1)
∣∣ρ̂∣∣2 dξ ≥

∫
3

|ξ |2(	+1)
∣∣ρ̂∣∣2 dξ
R R /S(t)
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≥ a

1 + t

∫
R3/S(t)

|ξ |2	
∣∣ρ̂∣∣2 dξ

≥ a

1 + t

∫
R3

|ξ |2	
∣∣ρ̂∣∣2 dξ − a2

(1 + t)2

∫
S(t)

|ξ |2(	−1)
∣∣ρ̂∣∣2 dξ

≥ a

1 + t

∫
R3

|ξ |2	
∣∣ρ̂∣∣2 dξ − a2

(1 + t)2

∫
R3

|ξ |2(	−1)
∣∣ρ̂∣∣2 dξ.

It is clearly that

∥∥∥∇	+1 (ρ,u,w)

∥∥∥2

HN−	
≥ a

1 + t

∥∥∥∇	 (ρ,u,w)

∥∥∥2

HN−	
− a2

(1 + t)2

∥∥∥∇	−1 (ρ,u,w)

∥∥∥2

HN−	
.

(1.21)

It follows from (1.20) and (1.21) that

d

dt

∥∥∥∇	 (ρ,u,w)

∥∥∥2

HN−	
+ Ca

1 + t

∥∥∥∇	 (ρ,u,w)

∥∥∥2

HN−	
≤ C(1 + t)

−
(

5+2	
2

)
. (1.22)

Multiplying both sides by (1 + t)	+2 and solving the inequality directly, we can prove (1.18).
Energy estimates on (1.2)3 yield

d

dt

∥∥∥∇ lW

∥∥∥2

L2
+ C

∥∥∥∇ lW

∥∥∥2

L2
≤ d

dt

∥∥∥∇ lW

∥∥∥2

L2
+ C

∥∥∥∇ lW

∥∥∥2

L2
+ C

∥∥∥∇ l+1W

∥∥∥2

L2

≤ C

∥∥∥∇ l+1(ρ,u)

∥∥∥2

L2
≤ C(1 + t)−

5+2l
2 . (1.23)

By Gronwall inequality, we prove (1.19).
We should also note that, the decay rates (1.18)–(1.19) are optimal with k = 0, 1, · · · , N − 2

and l = 0, 1, · · · , N − 3, which can be proved in the same way as Theorem 1.2.

Notation. Through out the paper, we use f � g to denote f ≤ Cg and f � g to denote f ≥ Cg, 
where C > 0 is some positive constant. f ∼ g means f � g and f � g. For simplicity, the 
notation ‖(f, g)‖X means ‖f ‖X + ‖g‖X with f, g ∈ X.

The rest of the paper is structured as follows. In Section 2, we will analyze the property of 
the solution semigroup etA and obtain the decay property of the solution to the linearized fluid 
part. In Section 3, we use the similar method as in Section 2 to explore the decay rates of the 
solution to the linearized electromagnetic part system. In Section 4, by using the linear estimates 
and some energy methods, we will prove that the difference (ρh, mh�, mh⊥, Wh�, Wh⊥)T has a 
faster decay rate than (ρ̄, m̄�, m̄⊥, W̄�, W̄⊥)T , which implies the optimal time decay rate of the 
solution to the micropolar fluids system (1.2)–(1.3) and gives the proof of Theorem 1.2.
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2. L2 decay rates for the solution of the linearized fluid part

In this section, we will give some analysis on the semigroup generated by the linearized fluid 
part and obtain the upper and lower bound decay rates for the solution of the linearized one.

2.1. Spectral representation

The solution Ū� = (ρ̄, m̄�, W̄�)
T of the linearized fluid part satisfies⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂t ρ̄ + √
P ′(1)divm̄� = 0,

∂t m̄� + √
P ′(1)∇ρ̄ − (2μ + λ)�m̄� = 0,

∂t W̄� + 4αW̄� − (2u′ + λ′)�W̄� = 0,

(ρ̄, m̄�, W̄�)
T |t=0 = (ρ0,m�0,W�0)

T .

(2.1)

If we denote Ū1� = (ρ̄, m̄�)
T to be the solution of the first two equations of (2.1), taking the 

Fourier transform to system (2.1) with respect to the space variable, by the semigroup theory for 
evolution equations, the solution Ū� = (ρ̄, m̄�, W̄�)

T can be expressed as⎧⎨⎩
ˆ̄U1�(ξ) = etA(ξ) ˆ̄U1�0(ξ), ˆ̄U1�0 = (ρ̂0, m̂�0)

T ,

ˆ̄W�(ξ) = e−[4α+(2μ′+λ′)|ξ |2]t Ŵ�0,

(2.2)

where A(ξ) is defined as(
0 −√

P ′(1)iξT

− √
P ′(1)iξ − (2μ + λ)|ξ |2I3×3

)
.

The characteristic polynomial of A(ξ) is

det(A(ξ) − λ̄I) =
(
λ̄ + (2μ + λ)|ξ |2

)2 (
λ̄2 + (2μ + λ)|ξ |2λ̄ + P ′(1)|ξ |2

)
= 0, (2.3)

which implies the eigenvalues of (2.3)

λ0 = −(2μ + λ)|ξ |2 (double),

λ1 = −(μ + λ/2)|ξ |2 + i

2

√
4P ′(1)|ξ |2 − (2μ + λ)2|ξ |4,

λ2 = −(μ + λ/2)|ξ |2 − i

2

√
4P ′(1)|ξ |2 − (2μ + λ)2|ξ |4.

The matrix exponential etA has the spectral resolution

etA = eλ0tP0 + eλ1tP1 + eλ2tP2,
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where the project operators P0, P1 and P2 can be computed as

Pi =
∏
j �=i

A(ξ) − λjI

λi − λj

.

Note the fact that

∇divm� = ∇divm = �m�,

by a direct computation, we can obtain the exact expression of the semigroup

etA = eλ0tP0 + eλ1tP1 + eλ2tP2

=
⎛⎜⎝ λ1e

λ2t−λ2e
λ1 t

λ1−λ2
− iξT

√
P ′(1)

(
eλ1 t−eλ2t

)
λ1−λ2

− iξ
√

P ′(1)
(
eλ1t−eλ2 t

)
λ1−λ2

λ1e
λ1 t−λ2e

λ2 t

λ1−λ2
I3×3

⎞⎟⎠ . (2.4)

Now we turn to deal with the terms of the matrix exponential etA. We need to verify the 
approximation of the semigroup etA for both lower frequency and high frequency. In terms of 
the definition of the eigenvalues, we are able to obtain that it holds for |ξ | ≤ η that

λ1e
λ2t − λ2e

λ1t

λ1 − λ2
= e

−
(
μ+ λ

2

)
|ξ |2t

[
cos(bt) +

(
μ + λ

2

)
sin(bt)

b
|ξ |2
]

, (2.5)

λ1e
λ1t − λ2e

λ2t

λ1 − λ2
= e

−
(
μ+ λ

2

)
|ξ |2t

[
cos(bt) −

(
μ + λ

2

)
sin(bt)

b
|ξ |2
]

, (2.6)

eλ1t − eλ2t

λ1 − λ2
= sin(bt)

b
e
−
(
μ+ λ

2

)
|ξ |2t

, (2.7)

where

b = 1

2

√
4P ′(1)|ξ |2 − (2μ + λ)2|ξ |4 ∼ |ξ | + O(|ξ |3), (2.8)

and

η = 2
√

P ′(1)

2μ + λ
.

By direct computation, we have the leading orders of the eigenvalues for ξ � 1 as

λ1 ∼ −(2μ + λ)|ξ |2 + P ′(1)

2μ + λ
+ O(|ξ |−1),

λ2 ∼ − P ′(1)

2μ + λ
+ O(|ξ |−1).
529



L. Tong, R. Pan and Z. Tan Journal of Differential Equations 293 (2021) 520–552
This approximation implies

λ1e
λ2t − λ2e

λ1t

λ1 − λ2
,

λ1e
λ1t − λ2e

λ2t

λ1 − λ2
,

eλ1t − eλ2t

λ1 − λ2
� e−R0t , |ξ | ≥ η. (2.9)

2.2. The L2–decay rates of (ρ̄, m̄�, W̄�)
T

In aid of the matrix exponential etA and the analysis of the lower and high frequency 
(2.5)–(2.9), we can deduce the following upper bound decay rates of (ρ̄, m̄�, W̄�)

T .

Lemma 2.1. Under the assumption that (ρ0, m0, W0)
T ∈ H 3 ∩ L1, we can deduce for k =

0, 1, 2, 3 ∥∥∥∇k
(
ρ̄, m̄�

)∥∥∥
L2

� (1 + t)−
3
4 − k

2

(∥∥(ρ0,m�0)
∥∥

L1 +
∥∥∥∇k(ρ0,m�0)

∥∥∥
L2

)
(2.10)

and ∥∥∥∇kW̄�

∥∥∥
L2

∼ e−ct
∥∥W�0

∥∥
Hk . (2.11)

Proof. Owing to the formula (2.2) and (2.4), it follows

ˆ̄ρ(ξ, t) = λ1e
λ2t − λ2e

λ1t

λ1 − λ2
ρ̂0 − iξT

√
P ′(1)

(
eλ1t − eλ2t

)
λ1 − λ2

m̂�0

and

ˆ̄m�(ξ, t) = − iξ
√

P ′(1)
(
eλ1t − eλ2t

)
λ1 − λ2

ρ̂0 + λ1e
λ1t − λ2e

λ2t

λ1 − λ2
m̂�0. (2.12)

It’s clearly that the lower and high frequency analysis on the semigroup can imply

ˆ̄ρ(ξ, t)�

⎧⎨⎩ e
−
(
μ+ λ

2

)
|ξ |2t (|ρ̂0| + |m̂�0|

)
, |ξ | ≤ η,

e−R0t
(|ρ̂0| + |m̂�0|

)
, |ξ | ≥ η,

(2.13)

and

ˆ̄m�(ξ, t) �

⎧⎨⎩ e
−
(
μ+ λ

2

)
|ξ |2t (|ρ̂0| + |m̂�0|

)
, |ξ | ≤ η,

e−R0t
(|ρ̂0| + |m̂�0|

)
, |ξ | ≥ η.

(2.14)

By Plancherel’s Theorem, one has

∥∥∥∇k(ρ̄, m̄�)

∥∥∥2

L2
=
∥∥∥(∇̂kρ̄, ∇̂km̄�

)∥∥∥2

L2
.
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Further, it follows from (2.13)–(2.14)

∥∥∥(∇kρ̄,∇km̄�

)∥∥∥2

L2
=
∫

|ξ |≤η

|ξ |2k

(∣∣∣ ˆ̄ρ∣∣∣2 +
∣∣∣ ˆ̄m�

∣∣∣2)dξ +
∫

|ξ |≥η

|ξ |2k

(∣∣∣ ˆ̄ρ∣∣∣2 +
∣∣∣ ˆ̄m�

∣∣∣2)dξ

�
∫

|ξ |≤η

e
−2
(
μ+ λ

2

)
|ξ |2t |ξ |2k

(
|ρ̂0|2 + |m̂�0|2

)
dξ +

∫
|ξ |≥η

e−2R0t |ξ |2k
(
|ρ̂0|2 + |m̂�0|2

)
dξ

�
∥∥(ρ̂0, m̂�0)

∥∥2
L∞

∫
|ξ |≤η

|ξ |2ke
−2
(
μ+ λ

2

)
|ξ |2t

dξ + e−2R0t

∫
|ξ |≥η

|ξ |2k
(
|ρ̂0|2 + |m̂�0|2

)
dξ

� (1 + t)−
3
2 −k

(∥∥(ρ0,m�0)
∥∥2

L1 +
∥∥∥∇k(ρ0,m�0)

∥∥∥2

L2

)
,

which proves (2.10).
Notice that

ˆ̄W� = e−[4α+(2μ′+λ′)|ξ |2]t Ŵ�0 =
⎧⎨⎩ O(1)e−ct Ŵ�0, |ξ | ≤ η,

O(1)e−R0t Ŵ�0, |ξ | ≥ η,

with the constants R0 ≥ c > 0, it follows that

∥∥∥̂∇kW̄ �

∥∥∥2

L2
=
∫

|ξ |≤η

|ξ |2k
∣∣∣ ˆ̄W�

∣∣∣2 dξ +
∫

|ξ |≥η

|ξ |2k
∣∣∣ ˆ̄W�

∣∣∣2 dξ

∼ e−2ct
∥∥∥∇kW�0

∥∥∥2

L2
+ e−2R0t

∥∥∥∇kW�0

∥∥∥2

L2

∼ e−2ct
∥∥∥∇kW�0

∥∥∥2

L2
,

therefor, we prove (2.11). Hence, we complete the proof of Lemma 2.1. �
Before obtaining the lower decay rates for the solution (ρ̄, m̄�)

T , let’s present some prop-
erties of (ρ̂0(ξ), m̂�0(ξ))T as well as m̂⊥0(ξ). For simplicity, we let Y = ρ̂0(0) or m̂⊥0(0), 
X = ρ̂0(ξ), m̂�0(ξ) or m̂⊥0(ξ).

Lemma 2.2. Let |ξ | ∈ [0, η], under the conditions of (1.12)–(1.14), we know that

Y �= 0, (2.15)

and there exist some ξ̄i ∈ (0, ξ), with i = 1, 2, 3, such that

X(ξ) = X(0) + ∂X(ξ̄i)
ξ. (2.16)
∂ξ
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Proof. We just prove the case Y = ρ̂0(0) and X = ρ̂0(ξ), the other terms can be proved in the 
same way. From (1.13), we can easily obtain

ρ̂0(0) =
∫
R3

e−iξxρ0(x)dx|ξ=0 =
∫
R3

ρ0(x)dx �= 0. (2.17)

Since ρ0 ∈ L1, we can derive∣∣∣∣∣∣∣
∫
R3

e−iξxρ0(x)dx

∣∣∣∣∣∣∣�
∫
R3

|ρ0(x)|dx < ∞. (2.18)

The condition (1.14) implies∣∣∣∣∣∣∣
∫
R3

∂
(
e−iξxρ0(x)

)
∂ξ

dx

∣∣∣∣∣∣∣=
∣∣∣∣∣∣∣
∫
R3

ixe−iξxρ0(x)dx

∣∣∣∣∣∣∣�
∫
R3

|xρ0(x)|dx < ∞. (2.19)

It concludes from (2.18)–(2.19) that ρ̂0(ξ) is continuous in [−η, η], and has the derivative of 
order one. Thus, there exists ξ̄1 ∈ (0, ξ) such that

ρ̂0(ξ) = ρ̂0(0) + ∂ρ̂0(ξ̄1)

∂ξ
ξ. �

Having completed this preparatory work, we now go to the proof of the lower bound time 
decay rates of the solution (ρ̄, m̄�)

T .

Lemma 2.3. Under the conditions of (1.12)–(1.14), we obtain∥∥(ρ̄, m̄�)
∥∥

L2 ≥ C0(1 + t)−
3
4 , (2.20)

and ∥∥∇(ρ̄, m̄�)
∥∥

L2 ≥ C0(1 + t)−
5
4 . (2.21)

Proof. In terms of the formula (2.2) and the frequency analysis (2.5)–(2.8), we can see when 
|ξ | ≤ η,

ˆ̄ρ = e
−
(
μ+ λ

2

)
|ξ |2t

[
cos(bt) +

(
μ + λ

2

)
sin(bt)

b
|ξ |2
]

ρ̂0 − iξT
√

P ′(1)
sin(bt)

b
e
−
(
μ+ λ

2

)
|ξ |2t

m̂�0

= e
−
(
μ+ λ

2

)
|ξ |2t

cos(bt)ρ̂0 +
(

μ + λ

2

)
e
−
(
μ+ λ

2

)
|ξ |2t sin(bt)

b
|ξ |2ρ̂0

− iξT
√

P ′(1)
sin(bt)

e
−
(
μ+ λ

2

)
|ξ |2t

m̂�0.

b
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By Plancherel’s Theorem, it is easy to verify that

‖ρ̄‖2
L2 =

∫
|ξ |≤η

∣∣∣ ˆ̄ρ∣∣∣2 dξ +
∫

|ξ |≥η

∣∣∣ ˆ̄ρ∣∣∣2 dξ

�
∫

|ξ |≤η

e
−2
(
μ+ λ

2

)
|ξ |2t

[
cos(bt)ρ̂0 − iξT

√
P ′(1) sin(bt)

b
m̂�0

]2

dξ

−
∫

|ξ |≤η

e
−2
(
μ+ λ

2

)
|ξ |2t sin2(bt)

|b|2 |ξ |4|ρ̂0|2dξ −
∫

|ξ |≥η

e−2R0t
(
|ρ̂0|2 + |m̂�0|2

)
dξ

�
∫

|ξ |≤η

e
−2
(
μ+ λ

2

)
|ξ |2t [

cos(|ξ |t)ρ̂0(0) − sin(|ξ |t)m̂�0(0)
]2

dξ

−
∫

|ξ |≤η

e
−2
(
μ+ λ

2

)
|ξ |2t |ξ |6t2

(∣∣ρ̂0(0)
∣∣2 + ∣∣m̂�0(0)

∣∣2)dξ

−
∫

|ξ |≤η

e
−2
(
μ+ λ

2

)
|ξ |2t |ξ |2

(∣∣∣∣∂ρ̂0(ξ̄1)

∂ξ

∣∣∣∣2 +
∣∣∣∣∂m̂�0(ξ̄2)

∂ξ

∣∣∣∣2
)

dξ

−
∫

|ξ |≤η

e
−2
(
μ+ λ

2

)
|ξ |2t sin2(bt)

|b|2 |ξ |4|ρ̂0|2dξ −
∫

|ξ |≥η

e−2R0t
(
|ρ̂0|2 + |m̂�0|2

)
dξ

= J1 + J2 + J3 + J4 + J5, (2.22)

where we have used (2.16) and the fact that∣∣∣cos
(
|ξ |t + |ξ |3t

)
− sin

(
|ξ |t + |ξ |3t

)∣∣∣� |cos (|ξ |t) − sin (|ξ |t)| − |ξ |3t.

J5 is estimated by

|J5| = e−2R0t

∫
|ξ |≥η

(
|ρ̂0|2 + |m̂�0|2

)
dξ ≤ Ce−2R0t

∥∥(ρ0,m�0)
∥∥2

L2 . (2.23)

In terms of the Taylor expansion (2.8), J4 can be bounded as

|J4| �
∫

|ξ |≤η

e
−2
(
μ+ λ

2

)
|ξ |2t |ξ |2|ρ̂0|2dξ

�
∥∥ρ̂0
∥∥2

L∞

∫
|ξ |≤η

e
−2
(
μ+ λ

2

)
|ξ |2t |ξ |2dξ

� (1 + t)−
5
2 ‖ρ0‖2

L1 . (2.24)
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Like (2.24), we deduce

|J2| + |J3| � (1 + t)−
5
2 . (2.25)

To estimate the term J1 on the right-hand side of (2.22), we make the change of variables 
y = |ξ |√t , to deduce for sufficiently large time t

J1 � t−
3
2

∫
y≤η

√
t

e
−2
(
μ+ λ

2

)
y2 [

cos
(
y
√

t
)

ρ̂0(0) − sin
(
y
√

t
)

m̂�0(0)
]2

dy

≥ C0t
− 3

2

[ηt/π]−1∑
k=0

kπ+ π
12√
t∫

kπ√
t

e
−2
(
μ+ λ

2

)
y2 [

cos
(
y
√

t
)

− sin
(
y
√

t
)]2

dy

≥ C0t
− 3

2

[ηt/π]−1∑
k=0

kπ+ π
12√
t∫

kπ√
t

e
−2
(
μ+ λ

2

)
y2

cos2
(
y
√

t + π/4
)

dy

≥ C0t
− 3

2

[ηt/π]−1∑
k=0

kπ+ π
12√
t∫

kπ√
t

e
−2
(
μ+ λ

2

)
y2

dy

≥ C0(1 + t)−
3
2 , (2.26)

with some positive constant C0 depending on ρ̂0(0) and m̂�0(0).
In terms of (2.23)–(2.26), we know that

‖ρ̄‖2
L2 ≥ C0(1 + t)−

3
2 − C(1 + t)−

5
2 ≥ C0(1 + t)−

3
2 ,

for t large enough. Likewise, one can obtain∥∥m̄�

∥∥2
L2 ≥ C0(1 + t)−

3
2 . (2.27)

Now we deal with the decay rates for the first–order derivative of (ρ̄, m̄�)
T . We employ the 

Plancherel’s Theorem and use the same method as proving (2.20) to imply

‖∇ρ̄‖2
L2 =

∫
|ξ |≤η

|ξ |2
∣∣∣ ˆ̄ρ∣∣∣2 dξ +

∫
|ξ |≥η

|ξ |2
∣∣∣ ˆ̄ρ∣∣∣2 dξ

�
∫

|ξ |2e−2
(
μ+ λ

2

)
|ξ |2t

[
cos(bt)ρ̂0 − iξT

√
P ′(1) sin(bt)

b
m̂�0

]2

dξ
|ξ |≤η
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−
∫

|ξ |≤η

e
−2
(
μ+ λ

2

)
|ξ |2t sin2(bt)

|b|2 |ξ |6|ρ̂0|2dξ −
∫

|ξ |≥η

e−2R0t |ξ |2
(
|ρ̂0|2 + |m̂�0|2

)
dξ

≥ C0(1 + t)−
5
2 − C(1 + t)−

7
2 ≥ C0(1 + t)−

5
2 . (2.28)

Similarly,

∥∥∇m̄�

∥∥2
L2 ≥ C0(1 + t)−

5
2 . (2.29)

To this end, we have proved (2.21) of Lemma 2.3. �
3. Decay rates for the solution of the linearized electromagnetic part

In this section, we should deal with the electromagnetic part. First of all, we give the spectral 
analysis on the semigroup generated by the linearized electromagnetic part.

3.1. Spectral representation for electromagnetic part

Recall that the electromagnetic part Ū⊥ = (m̄⊥, W̄⊥)T satisfies the following equations

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂t m̄⊥ − (μ + α)�m̄⊥ − 2α∇ × W̄⊥ = 0,

∂t W̄⊥ + 4αW̄⊥ − μ′�W̄⊥ − 2α∇ × m̄⊥ = 0,

(m̄⊥, W̄⊥)T |t=0 = (m⊥0,W⊥0)
T .

(3.1)

From [30], we know that

⎧⎪⎨⎪⎩
ˆ̄m⊥ =

(
k1e

k2 t−k2e
k1 t

k1−k2
− (μ + α)|ξ |2 ek1 t−ek2 t

k1−k2

)
m̂⊥0 + ek1 t−ek2 t

k1−k2
2αiξ × Ŵ⊥0,

ˆ̄W⊥ = ek1 t−ek2 t

k1−k2
2αiξ × m̂⊥0 +

(
k1e

k2 t−k2e
k1 t

k1−k2
− (μ′|ξ |2 + 4α)ek1 t−ek2 t

k1−k2

)
Ŵ⊥0,

(3.2)

with the real character roots⎧⎪⎨⎪⎩
k1 = −[(μ+α+μ′)|ξ |2+4α

]+√(μ+α−μ′)2|ξ |4+16α2+8α(μ′+α−μ)|ξ |2
2 ,

k2 = −[(μ+α+μ′)|ξ |2+4α
]−√(μ+α−μ′)2|ξ |4+16α2+8α(μ′+α−μ)|ξ |2

2 .

(3.3)

It is obvious that (3.2) can be rewritten as

( ˆ̄m⊥
ˆ̄W⊥

)
= Ĝ

(
m̂⊥0

Ŵ⊥0

)
, (3.4)
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where

Ĝ =
⎛⎜⎝ k1e

k2 t−k2e
k1 t

k1−k2
− (μ + α)|ξ |2 ek1 t−ek2 t

k1−k2

ek1 t−ek2 t

k1−k2
2αiξ×

ek1 t−ek2 t

k1−k2
2αiξ× k1e

k2 t−k2e
k1 t

k1−k2
− (μ′|ξ |2 + 4α)ek1 t−ek2 t

k1−k2

⎞⎟⎠ .

Here we use the notations Ĝ11, Ĝ12, Ĝ21 and Ĝ22 to denote the four elements of Ĝ for 
simplicity. Due to the definition of k1,2 in (3.3), in terms of Taylor’s expansion, we can easily 
find that when |ξ | � 1,

k1 = −μ|ξ |2 + O(|ξ |4),
k2 = −4α − (μ′ + α)|ξ |2 + O(|ξ |4),
k1 − k2 = 4α + (μ′ + α − μ)|ξ |2 + O(|ξ |4), (3.5)

which implies

Ĝ11 = α|ξ |2 + O(|ξ |4)
4α + (μ′ + α − μ)|ξ |2 + O(|ξ |4)e

−4αt−(μ′+α)|ξ |2t+O(|ξ |4)t

− −4α − (μ′ − μ)|ξ |2 + O(|ξ |4)
4α + (μ′ + α − μ)|ξ |2 + O(|ξ |4)e

−μ|ξ |2t+O(|ξ |4)t

∼ |ξ |2e−ct + e−μ|ξ |2t , (3.6)

Ĝ12 = Ĝ21 = 2αiξ

4α + (μ′ + α − μ)|ξ |2 + O(|ξ |4)e
k1t
[
1 − e−(4α+(μ′+α−μ)|ξ |2+O(|ξ |4))t]

∼ |ξ |e−μ|ξ |2t , (3.7)

and

Ĝ22 = (μ′ − μ)|ξ |2 + 4α + O(|ξ |4)
4α + (μ′ + α − μ)|ξ |2 + O(|ξ |4)e

−4αt−(μ′+α)|ξ |2t+O(|ξ |4)t

− −α|ξ |2 + O(|ξ |4)
4α + (μ′ + α − μ)|ξ |2 + O(|ξ |4)e

−μ|ξ |2t+O(|ξ |4)t

∼ e−ct + |ξ |2e−μ|ξ |2t . (3.8)

When |ξ | � 1, from [30], we know

|Ĝ11| + |Ĝ12| + |Ĝ21| + |Ĝ22| ≤ Ce−R0t . (3.9)

Now we estimate the decay rates of ( ˆ̄m⊥, ˆ̄W⊥)T according to the analysis on the terms of Ĝ.
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3.2. The L2 decay rates of (m̄⊥, W̄⊥)T

With the help of the analysis on the terms of Ĝ, we show the following results.

Lemma 3.1. It holds that for k = 0, 1, 2, 3,∥∥∥∇km̄⊥
∥∥∥2

L2
� (1 + t)−

3
2 −k

(
‖(m⊥0,W⊥0)‖2

L1 +
∥∥∥∇k (m⊥0,W⊥0)

∥∥∥2

L2

)
, (3.10)∥∥∥∇kW̄⊥

∥∥∥2

L2
� (1 + t)−

5
2 −k

(
‖(m⊥0,W⊥0)‖2

L1 +
∥∥∥∇k (m⊥0,W⊥0)

∥∥∥2

L2

)
, (3.11)

and for l = 0, 1, ∥∥∥∇ lm̄⊥
∥∥∥2

L2
≥ C0(1 + t)−

3
2 −l , (3.12)∥∥W̄⊥

∥∥2
L2 ≥ C0(1 + t)−

5
2 . (3.13)

Proof. Since

ˆ̄m⊥ = Ĝ11m̂⊥0 + Ĝ12Ŵ⊥0, (3.14)

based on Plancherel’s Theorem, (3.6)–(3.7) and (3.9), one can deduce∥∥∥∇km̄⊥
∥∥∥2

L2
=
∥∥∥∇̂km̄⊥

∥∥∥2

L2
�
∫

|ξ |≤η

|ξ |2k
∣∣∣Ĝ11m̂⊥0

∣∣∣2 + |ξ |2k
∣∣∣Ĝ12Ŵ⊥0

∣∣∣2 dξ

+
∫

|ξ |≥η

|ξ |2k
∣∣∣Ĝ11m̂⊥0

∣∣∣2 + |ξ |2k
∣∣∣Ĝ12Ŵ⊥0

∣∣∣2 dξ

�
∫

|ξ |≤η

|ξ |2ke−2μ|ξ |2t ∣∣m̂⊥0
∣∣2 + |ξ |2k+2e−2μ|ξ |2t

∣∣∣Ŵ⊥0

∣∣∣2 dξ

+
∫

|ξ |≤η

|ξ |2k+4e−2ct
∣∣m̂⊥0

∣∣2 dξ

+
∫

|ξ |≥η

|ξ |2ke−2R0t
∣∣m̂⊥0

∣∣2 + |ξ |2ke−2R0t
∣∣∣Ŵ⊥0

∣∣∣2 dξ

�
∥∥∥(m̂⊥0, Ŵ⊥0

)∥∥∥2

L∞

∫
|ξ |≤η

|ξ |2ke−2μ|ξ |2t dξ + e−2ct

∫
|ξ |≤η

|ξ |2k
∣∣m̂⊥0

∣∣2 dξ

+ e−2R0t

∫
|ξ |≥η

|ξ |2k
(
|m̂⊥0|2 + |Ŵ⊥0|2

)
dξ

� (1 + t)−
3
2 −k

(
‖(m⊥0,W⊥0)‖2

L1 +
∥∥∥∇k (m⊥0,W⊥0)

∥∥∥2

L2

)
. (3.15)
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Further more, we just estimate like (3.15) and it derives from (3.7)–(3.9)

∥∥∥∇kW̄⊥
∥∥∥2

L2
=
∥∥∥̂∇kW̄⊥

∥∥∥2

L2
�
∫

|ξ |≤η

|ξ |2k
∣∣∣Ĝ21m̂⊥0

∣∣∣2 + |ξ |2k
∣∣∣Ĝ22Ŵ⊥0

∣∣∣2 dξ

+
∫

|ξ |≥η

|ξ |2k
∣∣∣Ĝ21m̂⊥0

∣∣∣2 + |ξ |2k
∣∣∣Ĝ22Ŵ⊥0

∣∣∣2 dξ

�
∫

|ξ |≤η

|ξ |2k+2e−2μ|ξ |2t ∣∣m̂⊥0
∣∣2 + |ξ |2k+4e−2μ|ξ |2t

∣∣∣Ŵ⊥0

∣∣∣2 + |ξ |2ke−2ct
∣∣∣Ŵ⊥0

∣∣∣2 dξ

+
∫

|ξ |≥η

|ξ |2ke−2R0t
∣∣m̂⊥0

∣∣2 + |ξ |2ke−2R0t
∣∣∣Ŵ⊥0

∣∣∣2 dξ

�
∥∥∥(m̂⊥0, Ŵ⊥0

)∥∥∥2

L∞

∫
|ξ |≤η

|ξ |2k+2e−2μ|ξ |2t dξ + e−2ct

∫
|ξ |≤η

|ξ |2k
∣∣∣Ŵ⊥0

∣∣∣2 dξ

+ e−2R0t

∫
|ξ |≥η

|ξ |2k
(
|m̂⊥0|2 + |Ŵ⊥0|2

)
dξ

� (1 + t)−
5
2 −k

(
‖(m⊥0,W⊥0)‖2

L1 +
∥∥∥∇k (m⊥0,W⊥0)

∥∥∥2

L2

)
.

On the other hand, together with (2.16), it stems from (3.6)–(3.7) and (3.9) again that

∥∥∥∇ l ˆ̄m⊥
∥∥∥2

L2
=
∫

|ξ |≤η

|ξ |2l
∣∣∣Ĝ11m̂⊥0 + Ĝ12Ŵ⊥0

∣∣∣2 dξ

+
∫

|ξ |≥η

|ξ |2l
∣∣∣Ĝ11m̂⊥0 + Ĝ12Ŵ⊥0

∣∣∣2 dξ

�
∫

|ξ |≤η

|ξ |2le−2μ|ξ |2t ∣∣m̂⊥0
∣∣2 dξ −

∫
|ξ |≤η

|ξ |2l+4e−2ct
∣∣m̂⊥0

∣∣2 dξ

−
∫

|ξ |≤η

|ξ |2l+2e−2μ|ξ |2t
∣∣∣Ŵ⊥0

∣∣∣2 dξ

−
∫

|ξ |≥η

e−2R0t |ξ |2l

(∣∣m̂⊥0
∣∣2 +

∣∣∣Ŵ⊥0

∣∣∣2)dξ

�
∫

|ξ |2le−2μ|ξ |2t dξ
∣∣m̂⊥0(0)

∣∣2 −
∫

|ξ |2l+2e−2μ|ξ |2t
∣∣∣∣∂m̂⊥0(ξ̄3)

∂ξ

∣∣∣∣2 dξ
|ξ |≤η |ξ |≤η
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− e−2ct

∫
|ξ |≤η

|ξ |2l+4
∣∣m̂⊥0

∣∣2 dξ −
∫

|ξ |≤η

|ξ |2l+2e−2μ|ξ |2t
∣∣∣Ŵ⊥0

∣∣∣2 dξ

− e−2R0t

∫
|ξ |≥η

|ξ |2l
(
|m̂⊥0|2 + |Ŵ⊥0|2

)
dξ

≥ C0(1 + t)−
3
2 −l ,

with a positive constant C0 depending on m̂⊥0(0). With this method once again, it gives∥∥∥ ˆ̄W⊥
∥∥∥2

L2
=
∫

|ξ |≤η

∣∣∣Ĝ21m̂⊥0 + Ĝ22Ŵ⊥0

∣∣∣2 dξ +
∫

|ξ |≥η

∣∣∣Ĝ21m̂⊥0 + Ĝ22Ŵ⊥0

∣∣∣2 dξ

�
∫

|ξ |≤η

|ξ |2e−2μ|ξ |2t ∣∣m̂⊥0
∣∣2 dξ −

∫
|ξ |≤η

|ξ |4e−2μ|ξ |2t
∣∣∣Ŵ⊥0

∣∣∣2 dξ −
∫

|ξ |≤η

e−2ct
∣∣∣Ŵ⊥0

∣∣∣2 dξ

−
∫

|ξ |≥η

e−2R0t

(∣∣m̂⊥0
∣∣2 +

∣∣∣Ŵ⊥0

∣∣∣2)dξ

�
∫

|ξ |≤η

|ξ |2e−2μ|ξ |2t dξ
∣∣m̂⊥0(0)

∣∣2 −
∫

|ξ |≤η

|ξ |4e−2μ|ξ |2t
∣∣∣∣∂m̂⊥0(ξ̄3)

∂ξ

∣∣∣∣2 dξ

−
∫

|ξ |≤η

|ξ |4e−2μ|ξ |2t
∣∣∣Ŵ⊥0

∣∣∣2 dξ − e−2ct

∫
|ξ |≤η

∣∣∣Ŵ⊥0

∣∣∣2 dξ

− e−2R0t

∫
|ξ |≥η

(
|m̂⊥0|2 + |Ŵ⊥0|2

)
dξ

≥ C0(1 + t)−
5
2 . (3.16)

This completes the proof of Lemma 3.1. �
It should be noted that the solution (ρ̄, m̄, W̄ ) of the linearized micropolar fluids system has 

an optimal decay rate. Indeed, from Lemma 2.1, Lemma 2.3 and Lemma 3.1, we can present the 
following important proposition.

Proposition 3.2. Under the conditions of (1.12)–(1.14), it holds for l = 0, 1

C0(1 + t)−
3
4 − l

2 ≤
∥∥∥∇ l (ρ̄, m̄)

∥∥∥
L2

≤ C ‖(ρ0,m0,W0)‖H 3∩L1 (1 + t)−
3
4 − l

2 , (3.17)

and

C0(1 + t)−
5
4 ≤ ∥∥W̄∥∥

L2 ≤ C ‖(ρ0,m0,W0)‖H 3∩L1 (1 + t)−
5
4 , (3.18)

with C0 > 0 depending on ρ̂0(0), m̂�0(0), m̂⊥0(0) suitably smaller than δ given in Theorem 1.1.
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Proof. The upper decay rates hold clearly. For the lower decay rates, in view of (3.13) and (2.11), 
we can obtain∥∥W̄∥∥

L2 = ∥∥W̄� + W̄⊥
∥∥

L2 ≥ ∥∥W̄⊥
∥∥

L2 − ∥∥W̄�

∥∥
L2 ≥ C0(1 + t)−

5
4 − Ce−ct ≥ C0(1 + t)−

5
4 .

For the term m̄, from (2.12) and (3.14), and use the same method as proving (2.20)–(2.21), we 
get

∥∥∥∇ lm̄

∥∥∥2

L2
=
∥∥∥∇ lm̄� + ∇ lm̄⊥

∥∥∥2

L2
≥ C0(1 + t)−

3
2 −l . �

4. Estimates on the nonlinear equations

In this section, we want to deduce the L2 decay rates for the nonlinear system. Define

ρh = ρ − ρ̄, mh� = m� − m̄�, Wh� = W� − W̄�, mh⊥ = m⊥ − m̄⊥, Wh⊥ = W⊥ − W̄⊥.

The nonlinear system (1.2)–(1.3) is reformulated as follows:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂tρh + √
P ′(1)divmh� = 0,

∂tmh� + √
P ′(1)∇ρh − (2μ + λ)�mh� = �−1∇divN1 = F1,

∂tWh� + 4αWh� − (2u′ + λ′)�Wh� = �−1∇divN2 = F2,

(ρh,mh�,Wh�)
T |t=0 = (ρh0,mh�0,Wh�0)

T = (0,0,0)T ,

(4.1)

and ⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂tmh⊥ − (μ + α)�mh⊥ − 2α∇ × Wh⊥ = N1,

∂tWh⊥ + 4αWh⊥ − μ′�Wh⊥ − 2α∇ × mh⊥ = N2,

(mh⊥,Wh⊥)T |t=0 = (mh⊥0,Wh⊥0)
T = (0,0)T ,

(4.2)

where F1, F2, N1, N2 are defined as (1.6)–(1.7) and (1.9)–(1.10). For the sake of convenience, 
we denote

F1 = ∇f1 + divf2, N1 = ∇f,

with

f1 ∼ ρ2 + div

(
ρm

1 + ρ

)
, f2 ∼ m ⊗ m

1 + ρ
+ ∇

(
ρm

1 + ρ

)
, f ∼ ∇

(
ρm

1 + ρ

)
+ ρW

1 + ρ
.

In order to deduce the L2 decay rates for the nonlinear system, we just need to prove that 
the solutions (ρh, mh�, Wh�)

T and (mh⊥, Wh⊥)T to (4.1) and (4.2) have a faster decay rates than 
(ρ̄, m̄�, W̄�)

T and (m̄⊥, W̄⊥)T .
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We can represent the solution in terms of the Duhamel principle

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Û1h� = (ρ̂h, m̂h�)
T =

t∫
0

e(t−s)A(0, F̂1)
T ds,

Ŵh� =
t∫

0

e−[4α+(2μ′+λ′)|ξ |2](t−s)F̂2(s)ds,

Ûh⊥ = (m̂h⊥, Ŵh⊥)T =
t∫

0

Ĝ(ξ, t − s)(N̂1, N̂2)
T (s)ds.

(4.3)

In the following, we should assume

N(t) = sup
0≤τ≤t

{∥∥(ρh,mh�,Wh�,mh⊥,Wh⊥)
∥∥

H 2 (1 + τ)
3
4 + ε

2

+
∥∥∥∇3(ρh,mh�,Wh�,mh⊥,Wh⊥)

∥∥∥
L2

}
. (4.4)

We claim that for 0 ≤ ε ≤ 1,

N(t) ≤ Cδ, (4.5)

with δ defined in Theorem 1.1.

Lemma 4.1. Under the assumption of (4.4) and Proposition 3.2, we have

∥∥(ρh,mh�,Wh�,mh⊥,Wh⊥)
∥∥

L2 � (1 + t)
−
(

3
4 + ε

2

) (
δ2 + N2(t)

)
. (4.6)

Proof. From (4.3) and (2.4), we know

ρ̂h(ξ, t) = −
t∫

0

iξT
√

P ′(1)
(
eλ1(t−s) − eλ2(t−s)

)
λ1 − λ2

F̂1(s)ds,

and

m̂h�(ξ, t) =
t∫

0

λ1e
λ1(t−s) − λ2e

λ2(t−s)

λ1 − λ2
F̂1(s)ds.

It derives from (2.5)–(2.9) that
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∥∥∥∥∥ iξT
(
eλ1t − eλ2t

)
λ1 − λ2

F̂1

∥∥∥∥∥
2

L2

+
∥∥∥∥λ1e

λ1t − λ2e
λ2t

λ1 − λ2
F̂1

∥∥∥∥2

L2

≤
∫

|ξ |≤η

e
−2
(
μ+ λ

2

)
|ξ |2t ∣∣∣F̂1

∣∣∣2 dξ +
∫

ξ≥η

e−2R0t
∣∣∣F̂1

∣∣∣2 dξ

≤
∫

|ξ |≤η

e
−2
(
μ+ λ

2

)
|ξ |2t |ξ |2

∣∣∣(f̂1, f̂2

)∣∣∣2 dξ + e−2R0t

∫
ξ≥η

∣∣∣F̂1

∣∣∣2 dξ

≤ C(1 + t)−
5
2

(
‖(f1, f2)‖2

L1 + ‖F1‖2
L2

)
.

Thus, one has

∥∥(ρh,mh�)
∥∥

L2 ≤ C

t∫
0

(1 + t − s)−
5
4
(‖f1‖L1 + ‖f2‖L1 + ‖F1(s)‖L2

)
ds, (4.7)

and

∥∥Wh�

∥∥
L2 ≤ C

t∫
0

e−c(t−s) ‖F2(s)‖L2 ds. (4.8)

In light of (3.6)–(3.9), it can be computed directly

∥∥∥Ĝ11N̂1(s)

∥∥∥2

L2
�
∫

|ξ |≤η

|ξ |4e−2ct
∣∣∣N̂1

∣∣∣2 + e−2μ|ξ |2t
∣∣∣N̂1

∣∣∣2 dξ +
∫

ξ≥η

e−2R0t
∣∣∣N̂1

∣∣∣2 dξ

�
∫

|ξ |≤η

|ξ |4e−2ct
∣∣∣N̂1

∣∣∣2 dξ +
∫

|ξ |≤η

e−2μ|ξ |2t |ξ |2
∣∣∣f̂ ∣∣∣2 dξ +

∫
ξ≥η

e−2R0t
∣∣∣N̂1

∣∣∣2 dξ

� (1 + t)−
5
2

(
‖f ‖2

L1 + ‖N1‖2
L2

)
,

and ∥∥∥Ĝ12N̂2(s)

∥∥∥2

L2
�
∫

|ξ |≤η

|ξ |2e−2μ|ξ |2t
∣∣∣N̂2

∣∣∣2 dξ +
∫

ξ≥η

e−2R0t
∣∣∣N̂2

∣∣∣2 dξ

� (1 + t)−
5
2

(
‖N2‖2

L1 + ‖N2‖2
L2

)
.

Likely, we have

∥∥∥Ĝ21N̂1(s)

∥∥∥2

L2
�
∫

|ξ |2e−2μ|ξ |2t
∣∣∣N̂1

∣∣∣2 dξ +
∫

e−2R0t
∣∣∣N̂1

∣∣∣2 dξ
|ξ |≤η ξ≥η
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�
∫

|ξ |≤η

e−2μ|ξ |2t |ξ |4
∣∣∣f̂ ∣∣∣2 dξ +

∫
ξ≥η

e−2R0t
∣∣∣N̂1

∣∣∣2 dξ

� (1 + t)−
7
2

(
‖f ‖2

L1 + ‖N1‖2
L2

)
,

and∥∥∥Ĝ22N̂2(s)

∥∥∥2

L2
�
∫

|ξ |≤η

e−2ct
∣∣∣N̂2

∣∣∣2 dξ +
∫

|ξ |≤η

|ξ |4e−2μ|ξ |2t
∣∣∣N̂2

∣∣∣2 dξ +
∫

ξ≥η

e−2R0t
∣∣∣N̂2

∣∣∣2 dξ

� e−2ct ‖N2‖2
L2 + (1 + t)−

7
2

(
‖N2‖2

L1 + ‖N2‖2
L2

)
� (1 + t)−

7
2

(
‖N2‖2

L1 + ‖N2‖2
L2

)
.

Therefore, we end up with

‖mh⊥‖L2 ≤
t∫

0

(1 + t − s)−
5
4
(‖f (s)‖L1 + ‖(N1,N2)(s)‖L1∩L2

)
ds, (4.9)

and

‖Wh⊥‖L2 ≤
t∫

0

(1 + t − s)−
7
4
(‖f (s)‖L1 + ‖(N1,N2)(s)‖L1∩L2

)
ds. (4.10)

Now, it turns to estimate the nonlinear terms f1, f2, f , F1, F2, N1, N2. Note that we denote

mh = m − m̄ = m� + m⊥ − m̄� − m̄⊥ = mh� + mh⊥,

Wh = W − W̄ = W� + W⊥ − W̄� − W̄⊥ = Wh� + Wh⊥.

It is easy to verify from (4.4), Lemma 2.1, Lemma 3.1 and Lemma A.2 that∥∥∥∥m ⊗ m

1 + ρ

∥∥∥∥
L1

� ‖m̄‖2
L2 + ‖m̄‖L2 ‖mh‖L2 + ‖mh‖2

L2 � (1 + t)−
3
2 (δ2 + N2(t)), (4.11)

likewise, one has

‖∇ρ · ∇m‖L1 +
∥∥∥ρ∇2m

∥∥∥
L1

+ ‖ρ∇m‖L1 � (1 + t)
−
(

3
2 + ε

2

)
(δ2 + N2(t)). (4.12)

We can estimate the remaining terms as (4.11) and (4.12), hence

‖(f1, f2, f,N1,N2)‖L1 � (1 + t)−
3
2

(
δ2 + N2(t)

)
. (4.13)
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It derives from the assumption (4.4), Lemma 2.1, Lemma 3.1 and Lemma A.2 once again that

‖m · ∇m‖L2 = ‖m̄‖L∞ ‖∇m̄‖L2 + ‖m̄‖L∞ ‖∇mh‖L2 + ‖∇m̄‖L2 ‖mh‖L∞ + ‖mh‖L∞ ‖∇mh‖L2

� (1 + t)
−2
(

3
4 + ε

2

)
(δ2 + N2(t)), (4.14)

and likely

‖ρW‖L2 +
∥∥∥ρ∇2m

∥∥∥
L2

+ ‖∇m · ∇ρ‖L2 � (1 + t)
−
(

3
2 + ε

2

)
(δ2 + N2(t)). (4.15)

We can estimate like (4.14)–(4.15) to imply

‖(F1,F2,N1,N2)‖L2 � (1 + t)
−
(

3
2 + ε

2

)
(δ2 + N2(t)). (4.16)

In light of (4.7)–(4.10), (4.13) and (4.16) together with (A.1) of Lemma A.1, we have

∥∥((ρh,mh�,mh⊥)
∥∥

L2 ≤ C

t∫
0

(1 + t − s)−
5
4 (1 + s)−

3
2 ds(δ2 + N2(t)) ≤ C(1 + t)−

5
4 (δ2 + N2)

≤ C(1 + t)
−
(

3
4 + ε

2

)
(δ2 + N2(t));

∥∥Wh�

∥∥
L2 �

t∫
0

e−c(t−s)(1 + s)−
3
2 ds(δ2 + N2(t)) � (1 + t)−

3
2 (δ2 + N2(t))

and

‖Wh⊥‖L2 ≤ C

t∫
0

(1 + t − s)−
7
4 (1 + s)−

3
2 ds(δ2 + N2(t)) ≤ C(1 + t)−

3
2 (δ2 + N2(t)),

which prove (4.6). �
In the following lemma, we employ the energy method to obtain the decay rates of the deriva-

tives of (ρh, mh�, Wh�, mh⊥, Wh⊥)T .

Lemma 4.2. Under the same conditions of Lemma 4.1, it holds that

∥∥∇(ρh,mh�,Wh�,mh⊥,Wh⊥)
∥∥

H 1 ≤ C(1 + t)
−
(

3
4 + ε

2

)
(δ2 + N2(t)). (4.17)

Proof. Applying ∇k with k = 0, 1, 2 to (4.1) and multiplying by ∇kρh, ∇kmh�, ∇kWh�, respec-
tively, we have
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d

dt

∥∥∥∇k(ρh,mh�,Wh�)

∥∥∥2

L2
+
∥∥∥∇k+1(mh�,Wh�)

∥∥∥2

L2
+
∥∥∥∇kWh�

∥∥∥2

L2

�
∫
R3

∇kF1 · ∇kmh�dx +
∫
R3

∇kF2 · ∇kWh�dx. (4.18)

The similar method as (4.18) yields

1

2

d

dt

∥∥∥∇k(mh⊥,Wh⊥)

∥∥∥2

L2
+ (μ + α)

∥∥∥∇k+1mh⊥
∥∥∥2

L2
+ μ′

∥∥∥∇k+1Wh⊥
∥∥∥2

L2
+ 4α

∥∥∥∇kWh⊥
∥∥∥2

L2

≤
∫
R3

∇kN1 · ∇kmh⊥dx +
∫
R3

∇kN2 · ∇kWh⊥dx + 4α

∫
R3

∇kWh⊥ · curl∇kmh⊥dx

≤
∫
R3

∇kN1 · ∇kmh⊥dx +
∫
R3

∇kN2 · ∇kWh⊥dx + 4α

∥∥∥∇kWh⊥
∥∥∥2

L2
+ α

∥∥∥∇k+1mh⊥
∥∥∥2

L2
,

which from the Cauchy–Schwarz inequality further implies

1

2

d

dt

∥∥∥∇k(mh⊥,Wh⊥)

∥∥∥2

L2
+ μ

∥∥∥∇k+1mh⊥
∥∥∥2

L2
+ μ′

∥∥∥∇k+1Wh⊥
∥∥∥2

L2

≤
∫
R3

∇kN1 · ∇kmh⊥dx +
∫
R3

∇kN2 · ∇kWh⊥dx. (4.19)

We now estimate the right-hand side of (4.18)–(4.19). For k = 0, by Hölder’s inequality, we 
deduce ∫

R3

ρW

1 + ρ
Wh�dx ≤ ‖ρ‖L3 ‖W‖L2

∥∥Wh�

∥∥
L6

� (1 + t)
−2
(

3
4 + ε

2

)
(δ2 + N2(t))2 + ε1

∥∥∇Wh�

∥∥2
L2 . (4.20)

By the integration by parts, we know

∫
R3

div

(
m ⊗ m

1 + ρ

)
· mh�dx = −

∫
R3

m ⊗ m

1 + ρ
· ∇mh�dx ≤ ‖m‖L∞ ‖m‖L2

∥∥∇mh�

∥∥
L2

� (1 + t)
−2
(

3
4 + ε

2

)
(δ2 + N2(t))2 + ε1

∥∥∇mh�

∥∥2
L2 , (4.21)

and ∫
3

�

(
ρm

1 + ρ

)
· mh�dx ≤

∥∥∥∥∇ ( ρm

1 + ρ

)∥∥∥∥
L2

∥∥∇mh�

∥∥
L2
R
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≤ ‖m∇ρ‖L2

∥∥∇mh�

∥∥
L2 + ‖ρ∇m‖L2

∥∥∇mh�

∥∥
L2

� (1 + t)
−2
(

3
4 + ε

2

)
(δ2 + N2(t))2 + ε1

∥∥∇mh�

∥∥2
L2 . (4.22)

We can estimate the remaining terms like (4.20)–(4.22), and it implies

∫
R3

F1 · mh�dx +
∫
R3

F2 · Wh�dx � (1 + t)
−2
(

3
4 + ε

2

)
(δ2 + N2(t))2

+ ε1
∥∥(∇mh�,∇Wh�

)∥∥2
L2 , (4.23)

and ∫
R3

N1 · mh⊥dx +
∫
R3

N2 · Wh⊥dx � (1 + t)
−2
(

3
4 + ε

2

)
(δ2 + N2(t))2

+ ε1 ‖(∇mh⊥,∇Wh⊥)‖2
L2 . (4.24)

Combining the assumption (4.4), Lemma 2.1, Lemma 3.1 and Lemma A.2, we can estimate∥∥∥∇m · ∇2ρ

∥∥∥
L2

� ‖∇mh‖L∞
∥∥∥∇2ρh

∥∥∥
L2

+ ‖∇m̄‖L∞
∥∥∥∇2ρh

∥∥∥
L2

+ ‖∇mh‖L6

∥∥∥∇2ρ̄

∥∥∥
L3

+ ‖∇m̄‖L∞
∥∥∥∇2ρ̄

∥∥∥
L2

� (1 + t)
−
(

3
4 + ε

2

)
(δ2 + N2(t)), (4.25)

and ∥∥∥m · ∇3ρ

∥∥∥
L2

� ‖mh‖L∞
∥∥∥∇3ρh

∥∥∥
L2

+ ‖m̄‖L∞
∥∥∥∇3ρh

∥∥∥
L2

+ ‖mh‖L∞
∥∥∥∇3ρ̄

∥∥∥
L2

+ ‖m̄‖L∞
∥∥∥∇3ρ̄

∥∥∥
L2

� (1 + t)
−
(

3
4 + ε

2

)
(δ2 + N2(t)). (4.26)

Following the procedure leading to (4.14)–(4.15) and (4.25)–(4.26), we end up with

‖∇(F1,F2,N1,N2)‖L2 � (1 + t)
−
(

3
4 + ε

2

)
(δ2 + N2(t)). (4.27)

Due to the integration by parts and (4.27), it implies∫
3

∇F1 · ∇mh�dx +
∫

3

∇2F1 · ∇2mh�dx +
∫

3

∇F2 · ∇Wh�dx +
∫

3

∇2F2 · ∇2Wh�dx
R R R R
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� ‖∇(F1,F2)‖2
L2 + ε1

∥∥∥(∇mh�,∇3mh�,∇Wh�,∇3Wh�

)∥∥∥2

L2

� ε1

∥∥∥(∇mh�,∇3mh�,∇Wh�,∇3Wh�

)∥∥∥2

L2
+ (1 + t)

−2
(

3
4 + ε

2

)
(δ2 + N2(t))2 (4.28)

and∫
R3

∇N1 · ∇mh⊥dx +
∫
R3

∇2N1 · ∇2mh⊥dx +
∫
R3

∇N2 · ∇Wh⊥dx +
∫
R3

∇2N2 · ∇2Wh⊥dx

� ε1

∥∥∥(∇mh⊥,∇3mh⊥,∇Wh⊥,∇3Wh⊥
)∥∥∥2

L2
+ (1 + t)

−2
(

3
4 + ε

2

)
(δ2 + N2(t))2. (4.29)

It follows by plugging (4.23)–(4.24) and (4.28)–(4.29) into (4.18)–(4.19)

d

dt

∥∥(ρh,mh�,Wh�,mh⊥,Wh⊥)
∥∥2

H 2 + ∥∥∇(mh�,mh⊥,Wh⊥)
∥∥2

H 2 + ∥∥Wh�

∥∥2
H 3

� (1 + t)
−2
(

3
4 + ε

2

)
(δ2 + N2(t))2. (4.30)

Applying ∇ l with l = 0, 1 to (4.1)2 and multiplying by ∇ l∇ρh, we have

d

dt

∫
R3

∇ lmh� · ∇ l+1ρhdx +
∥∥∥∇ l+1ρh

∥∥∥2

L2

�
∫
R3

∇ lF1 · ∇ l+1ρhdx +
∥∥∥∇ l+1mh�

∥∥∥2

L2
+
∥∥∥∇ l+2mh�

∥∥∥2

L2
. (4.31)

In view of (4.16) and (4.27), one can deduce

∫
R3

F1 · ∇ρhdx +
∫
R3

∇F1 · ∇2ρhdx

� ‖F1‖2
L2 + ‖∇F1‖2

L2 + ε1

∥∥∥(∇ρh,∇2ρh

)∥∥∥2

L2

� (1 + t)
−2
(

3
4 + ε

2

)
(δ2 + N2(t))2 + ε1

∥∥∥(∇ρh,∇2ρh

)∥∥∥2

L2
. (4.32)

Plugging (4.32) into (4.31), we get

d

dt

1∑
l=0

∫
R3

∇ lmh� · ∇ l+1ρhdx + ‖∇ρh‖2
H 1 � (1 + t)

−2
(

3
4 + ε

2

)
(δ2 + N2(t))2 + ∥∥∇mh�

∥∥2
H 2 .

(4.33)
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Multiplying (4.33) by η1 for suitably small η1 and adding it to (4.30), then there exist some 
positive constant a, such that

d

dt
M(t) + aM(t) �

∥∥(ρh,mh�,mh⊥,Wh⊥)
∥∥2

L2 + (1 + t)
−2
(

3
4 + ε

2

)
(δ2 + N2(t))2,

where

M = ∥∥(ρh,mh�,Wh�,mh⊥,Wh⊥)
∥∥2

H 2 +
1∑

l=0

∫
R3

∇ lmh� · ∇ l+1ρhdx

∼ ∥∥(ρh,mh�,Wh�,mh⊥,Wh⊥)
∥∥2

H 2 .

By Gronwall inequality, and (4.6) of Lemma 4.1, we obtain

M �
t∫

0

e−a(t−s)(1 + s)
−2
(

3
4 + ε

2

)
ds(δ2 + N2)2 � (1 + t)

−2
(

3
4 + ε

2

)
(δ2 + N2(t))2.

Therefore, we have proved (4.17). �
To enclose the a priori estimates, we need to prove that∥∥∥∇3(ρh,mh,Wh)

∥∥∥
L2

≤ C.

In fact, note that

(ρ̃, ũ, w̃) =
(

1 + ρ,

√
P ′(1)m

1 + ρ
,

√
P ′(1)W

1 + ρ

)
= (1 + ρ,u,w).

By the existence Theorem 1.1, we obtain

‖(ρ,m,W)‖2
H 3 � ‖(ρ,u,w)‖2

H 3 � ‖(ρ0, u0,w0)‖2
H 3 � ‖(ρ0,m0,W0)‖2

H 3 � δ2.

Thus

‖(ρh,mh,Wh)‖H 3 � ‖(ρ,m,W)‖H 3 + ∥∥(ρ̄, m̄, W̄ )
∥∥

H 3 � ‖(ρ0, u0,w0)‖H 3

� ‖(ρ0,m0,W0)‖H 3 . (4.34)

The combination of (4.6), (4.17) and (4.34) leads to

N(t) � δ2 + N2(t) + δ, (4.35)

which together with the smallness of δ > 0 leads to the estimates (4.5). Hence, we obtain the 
optimal decay rates for (ρ, m, W)T and prove (1.15) and (1.16) of Theorem 1.2.
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In the following, we want to prove (1.17) of Theorem 1.2. Assume

N1(t) = sup
0≤s≤t

{∥∥∇(ρh,mh�,Wh�,mh⊥,Wh⊥)
∥∥

H 1 (1 + s)
5
4 +ε′

+
∥∥∥∇3(ρh,mh�,Wh�,mh⊥,Wh⊥)

∥∥∥
L2

}
. (4.36)

We claim that for 0 < ε′ ≤ 1/4,

N1(t) ≤ δ. (4.37)

By the assumption (4.36), Lemma 2.1 and Lemma 3.1, estimating in the same way as proving 
(4.16) in Lemma 4.1, we obtain

‖(F1,F2,N1,N2)‖L2 + ‖∇ (F1,F2,N1,N2)‖L2 � (1 + t)
−
(

5
4 +ε′

)
(δ2 + N2

1 (t)). (4.38)

Like (4.7)–(4.8) and (4.9)–(4.10), we know∥∥∇(ρh,mh�,Wh�,mh⊥,Wh⊥)
∥∥

L2

≤ C

t∫
0

(1 + t − s)−
7
4
(‖(f1, f2, f,N1,N2)(s)‖L1 + ‖∇(F1,F2,N1,N2)(s)‖L2

)
ds

≤ C

t∫
0

(1 + t − s)−
7
4 (1 + s)

−
(

5
4 +ε1

)
ds(δ2 + N2

1 )

≤ C(1 + t)
−
(

5
4 +ε1

)
(δ2 + N2

1 ). (4.39)

Taking (4.18) and (4.19) with k = 1, 2 and (4.31) with l = 1, we obtain

d

dt

⎛⎜⎝∥∥∇(ρh,mh�,Wh�,mh⊥,Wh⊥)
∥∥2

H 1 + ε1

∫
R3

∇mh� · ∇2ρhdx

⎞⎟⎠
+
∥∥∥∇2 (mh�,mh⊥,Wh�,Wh⊥

)∥∥∥2

H 1
+
∥∥∥∇2ρh

∥∥∥2

L2

�
∫
R3

F1 · ∇2mh�dx +
∫
R3

∇F1 · ∇3mh�dx +
∫
R3

N1 · ∇2mh⊥dx

+
∫
R3

∇N1 · ∇3mh⊥dx +
∫
R3

N2 · ∇2Wh⊥dx +
∫
R3

∇N2 · ∇3Wh⊥dx

+
∫

3

F2 · ∇2Wh�dx +
∫

3

∇F2 · ∇3Wh�dx + ε1

∫
3

∇F1 · ∇2ρhdx
R R R
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� ε

∥∥∥(∇2ρh,∇2mh�,∇3mh�,∇2mh⊥,∇3mh⊥,∇2Wh�,∇3Wh�,∇2Wh⊥,∇3Wh⊥)

∥∥∥2

L2

+ ‖(F1,F2,N1,N2)‖2
L2 + ‖∇(F1,F2,N1,N2)‖2

L2 . (4.40)

From (4.40) and (4.38), we have

d

dt
M1(t) + bM1(t) ≤ C(1 + t)

−2
(

5
4 +ε1

)
(δ2 + N2

1 )2

+ ∥∥∇(ρh,mh�,Wh�,mh⊥,Wh⊥)
∥∥2

L2 , (4.41)

where

M1(t) =
⎛⎜⎝∥∥∇(ρh,mh�,Wh�,mh⊥,Wh⊥)

∥∥2
H 1 + ε1

∫
R3

∇mh� · ∇2ρhdx

⎞⎟⎠
∼ ∥∥∇(ρh,mh�,Wh�,mh⊥,Wh⊥)

∥∥2
H 1 .

By Gronwall inequality, we have

M1(t) ≤ C

t∫
0

e−b(t−s)(1 + s)
−2
(

5
4 +ε1

)
(δ2 + N2

1 )2ds

≤ C(1 + t)
−2
(

5
4 +ε1

)
(δ2 + N2

1 )2. (4.42)

That is,

∥∥∇(ρh,mh�,Wh�,mh⊥,Wh⊥)
∥∥

H 1 ≤ C(1 + t)
−
(

5
4 +ε1

)
(δ2 + N2

1 ). (4.43)

It holds from (4.34) and (4.43) that

N1(t) � δ2 + N2
1 (t) + δ, (4.44)

which together with the smallness of δ > 0 leads to the estimates (4.37). Hence, we obtain the 
optimal decay rate for (∇ρ, ∇m)T and prove (1.17) of Theorem 1.2.

Appendix A. Analytic tools

Lemma A.1. Let r1 > 1, 0 ≤ r2 ≤ r1, then it holds that

t∫
0

(1 + t − s)−r1(1 + s)−r2ds ≤ C(r1, r2)(1 + t)−r2 (A.1)
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where C(r1, r2) is defined as

C(r1, r2) = 2r2+1

r1 − 1
.

Proof. The proof can be seen in [16]. �
Lemma A.2. Let l ≥ 0 be an integer, it holds∥∥∥∇ l(gh)

∥∥∥
Lp0

� ‖g‖Lp1

∥∥∥∇ lh

∥∥∥
Lp2

+
∥∥∥∇ lg

∥∥∥
Lp3

‖h‖Lp4 . (A.2)

In the above, p0, p1, p2, p3, p4 ∈ [1, +∞] such that

1

p 0
= 1

p 1
+ 1

p 2
= 1

p 3
+ 1

p 4
.

Proof. The proof can be seen in [15]. �
References

[1] J.L. Boldrini, M. Durán, M.A. Rojas-Medar, Existence and uniqueness of strong solution for the incompressible 
micropolar fluid equations in domains of R3, Ann. Univ. Ferrara, Sez. 7: Sci. Mat. 56 (1) (2010) 37–51.

[2] J.L. Boldrini, M.A. Rojas-Medar, E. Fernández-Cara, Semi–Galerkin approximation and strong solutions to the 
equations of the nonhomogeneous asymmetric fluids, J. Math. Pures Appl. 82 (11) (2003) 1499–1525.

[3] M.T. Chen, Blowup criterion for viscous, compressible micropolar fluids with vacuum, Nonlinear Anal., Real World 
Appl. 13 (2) (2012) 850–859.

[4] D.W. Condiff, J.S. Dahler, Fluid mechanics aspects of antisymmetric stress, Phys. Fluids 7 (6) (1964) 842–854.
[5] M.T. Chen, B. Huang, J.W. Zhang, Blowup criterion for the three–dimensional equations of compressible viscous 

micropolar fluids with vacuum, Nonlinear Anal. 79 (2013) 1–11.
[6] Y. Cho, H. Kim, On classical solutions of the compressible Navier–Stokes equations with nonnegative initial densi-

ties, Manuscr. Math. 120 (1) (2006) 91–129.
[7] H.B. Cui, H.Y. Yin, Stationary solutions to the one–dimensional micropolar fluid model in a half line: existence, 

stability and convergence rate, J. Math. Anal. Appl. 449 (1) (2017) 464–489.
[8] S. Denis, Solutions faibles globales des équations de Navier–Stokes pour un fluide compressible, C. R. Acad. Sci., 

Sér. 1 Math. 303 (13) (1986) 639–642.
[9] K. Deckelnick, Decay estimates for the compressible Navier–Stokes equations in unbounded domains, Math. Z. 

209 (1) (1992) 115–130.
[10] K. Deckelnick, L2 decay for the compressible Navier–Stokes equations in unbounded domains, Commun. Partial 

Differ. Equ. 18 (1993) 1445–1476.
[11] R.J. Duan, Global smooth flows for the compressible Euler–Maxwell system. The relaxation case, J. Hyperbolic 

Differ. Equ. 8 (2) (2011) 375–413.
[12] I. Dražić, N. Mujaković, 3D flow of a compressible viscous micropolar fluid with spherical symmetry: a local 

existence theorem, Bound. Value Probl. 2012 (2012) 69.
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