
IEEE JOURNAL ON SELECTED AREAS IN INFORMATION THEORY, VOL. 2, NO. 2, JUNE 2021 641

Empirical Policy Evaluation With Supergraphs
Daniel Vial and Vijay Subramanian , Senior Member, IEEE

Abstract—We devise algorithms for the policy evaluation
problem in reinforcement learning, assuming access to a sim-
ulator and certain side information called the supergraph. Our
algorithms explore backward from high-cost states to find high-
value ones, in contrast to approaches that work forward from
all states. While several papers have demonstrated the utility of
backward exploration empirically, we conduct rigorous analyses
which show that our algorithms can reduce average-case sample
complexity from O(S log S) to as low as O(log S). Analytically, we
adapt tools from the network science literature to provide a new
methodology for reinforcement learning problems.

Index Terms—Reinforcement learning, Markov decision
processes, policy evaluation, sample complexity, PageRank.

I. INTRODUCTION

R
EINFORCEMENT learning (RL) [1], [2], [3] is a

machine learning paradigm with applications in many

domains. At a high level, RL studies agents interacting with

uncertain environments – by taking actions, observing the

effects of those actions, and incurring costs – in hopes of

achieving some goal. Mathematically, this is often cast in the

following Markov decision process (MDP) model [4]. Let S

and A be finite sets of states and actions, respectively; for

simplicity, we assume S = {1, . . . , S} for some S ∈ N through-

out the paper. The uncertain environment is modeled by a

controlled Markov chain with transition matrix P, i.e.,

P
(

St+1 = s′|St = s, At = a
)

= P
(

s′|s, a
)

∀ s, s′ ∈ S, a ∈ A

where {St}∞t=0 and {At}∞t=0 are the random sequences of states

and actions, respectively. State-action pair (s, a) ∈ S × A

incurs instantaneous cost c(s, a) ∈ R+. Mappings π : S → A

are called policies and dictate the action taken at each state,

i.e., At = π(St). If the initial state is s ∈ S and the agent

follows policy π , it incurs discounted cost

vπ (s) = Eπ

[

(1 − γ)

∞
∑

t=0

γ tc(St, At)

∣

∣

∣

∣

∣

S0 = s

]

Manuscript received October 15, 2020; revised April 8, 2021; accepted
April 8, 2021. Date of publication April 16, 2021; date of current ver-
sion June 21, 2021. This work was supported in part by NSF under
Grant EPCN:1603861 and Grant CIF:AF:2008130. (Corresponding author:

Daniel Vial.)

Daniel Vial was with the Department of Electrical and Computer
Engineering, University of Michigan, Ann Arbor, MI 48109 USA. He is now
with the Department of Electrical and Computer Engineering, University of
Texas at Austin, Austin, TX 78701 USA (e-mail: dvial@utexas.edu).

Vijay Subramanian is with the Department of Electrical and Computer
Engineering, University of Michigan, Ann Arbor, MI 48109 USA (e-mail:
vgsubram@umich.edu).

This article has supplementary downloadable material available at
https://doi.org/10.1109/JSAIT.2021.3073257, provided by the authors. The
material includes appendices containing proofs and experimental details.

Digital Object Identifier 10.1109/JSAIT.2021.3073257

= (1 − γ)

∞
∑

t=0

γ tPt
π (s, ·)cπ (1)

where Eπ means At = π(St) inside the expectation, γ ∈ (0, 1)

is a discount factor, and Pπ (s, s′) = P(s′|s, π(s)) and cπ (s) =
c(s, π(s)) are the transition matrix and cost vector induced by

the policy π .

To find good policies – roughly, π for which vπ is small –

one often needs to estimate vπ for a fixed π , when the MDP

model is unknown but can be sampled from (we will soon

make this precise). For example, the empirical policy iteration

algorithm of [5] iteratively estimates vπ and greedily updates

π . Moving forward, we focus on the former step, which we

call empirical policy evaluation (EPE). The policy π will thus

be fixed for the remainder of the paper, so we dispense with

this subscript in (1) and (with slight abuse of notation) define

our problem as follows. Let γ ∈ (0, 1) be a discount factor,

c ∈ R
S
+ a cost vector, and P an S × S row stochastic matrix.

We seek an algorithm to estimate the value function

v = (1 − γ)

∞
∑

t=0

γ tPtc = (1 − γ)(I − γ P)−1c. (2)

We assume the algorithm has access to a simulator, i.e., P is

unknown but the agent can sample random states distributed as

P(s, ·) (for any s ∈ S) via interaction with the environment.

Since this interaction can be costly in applications, we aim

to estimate (2) with as few samples as possible. In contrast

to some works, we also assume c is a known input to the

algorithm. Thus, our algorithms are suitable for goal-oriented

applications where one knows instantaneous costs a priori –

for instance, which states correspond to winning or losing if

the MDP models a game – and aims to estimate long-term

discounted costs – for instance, how good or bad non-terminal

configurations of the game are.

A. Forward vs. Backward Exploration

To contextualize our contributions, we contrast two

approaches to EPE. The first is one of forward exploration,

where v is estimated by sampling trajectories beginning at each

state. We focus on a typical scheme employed in, e.g., [5],

which we refer to as the forward approach for the remainder

of the paper, and which proceeds as follows. First, let {Wt}∞t=0

be a Markov chain with transition matrix P, fix s ∈ S and

T ∈ N, and rewrite (2) as

v(s) = (1 − γ)

T−1
∑

t=0

γ t
E[c(Wt)|W0 = s] + O

(

‖c‖∞γ T
)

. (3)

Here the O(‖c‖∞γ T) bias can be made small if T is cho-

sen large, and the first term can be estimated by simulating

2641-8770 c© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Michigan Library. Downloaded on June 28,2021 at 19:10:06 UTC from IEEE Xplore. Restrictions apply.

642 IEEE JOURNAL ON SELECTED AREAS IN INFORMATION THEORY, VOL. 2, NO. 2, JUNE 2021

length-T trajectories. More specifically, let {Ws,i
t }T−1

t=0 be a

trajectory obtained as follows: set W
s,i
0 = s and, for t ∈

{1, . . . , T − 1}, sample W
s,i
t from P(W

s,i
t−1, ·). Letting m ∈ N

and repeating this for i ∈ {1, . . . , m}, we obtain an unbiased

estimate of the first term in (3):

1

m

m
∑

i=1

(1 − γ)

T−1
∑

t=0

γ tc
(

W
s,i
t

)

.

This forward approach is simple both algorithmically and

analytically; see Appendix I of the supplementary material.

However, since trajectories must be sampled starting at each

state to estimate v, �(S) samples are fundamentally required,

which may be prohibitive in practice.

The second approach we consider is one of backward explo-

ration. This approach relies on the idea that if there are only

a few high-cost states with only a few trajectories leading to

them, it is more efficient to work backward along just these

trajectories (or along a small set containing them) to identify

high-value states (those s for which v(s) is large). Put differ-

ently, if P and c are sparse, intuition suggests that backward

exploration from high-cost states is more sample-efficient than

forward exploration from all states. While intuitively reason-

able, there are two issues that prevent backward exploration

from reducing the linear sample complexity of the forward

approach. First, the agent must identify high-cost states in

order to explore backward from them, without visiting all

states. Second, the agent must explore a small set of tra-

jectories likely to lead to high-cost states, without starting at

each state and filtering out trajectories that do not reach the

high-cost set.

Several algorithmic and computational approaches have

been proposed to combat these issues. For instance, [6] uses

observed state-action-cost sequences to train a model that

generates samples of state-action pairs likely to lead to a

given state. This allows the agent to construct simulated

trajectories that are guaranteed to lead to high-cost states,

addressing the second issue; the observed sequences are also

used to identify high-cost states, addressing the first issue.

The authors of [7] similarly train a model that predicts which

trajectories lead to high-cost states while assuming costs are

known a priori. In a different vein, [8] considers physical

tasks like a robot navigating a maze which have clear goal

states, addressing the first issue. The state-action space is

assumed to have a certain continuity – “small” actions (e.g.,

a robot moving a small distance) lead to “nearby” states (e.g.,

physically close locations) – addressing the second issue. (We

do note the algorithms [6], [7], [8] operate on trajectories,

whereas we require a simulator.)

Despite all of the promising results [6], [7], [8] observed in

practice for backward exploration, theoretical understanding of

its limits and the determination of any guarantees are missing

in the literature. Furthermore, a framework within which one

can develop backward exploration algorithms with provable

guarantees while addressing the issues discussed above is also

missing. Our approach to developing such a framework is as

follows. First, as mentioned above, we assume the cost vector

is known a priori (like [7] and similar to [8]). Second, we

assume the agent is provided certain side information: A ∈
{0, 1}S×S satisfying the “absolute continuity” condition

A(s, s′) = 0 ⇒ P(s, s′) = 0 ∀ s, s′ ∈ S. (4)

Note we can view A as the adjacency matrix for a graph

whose edges are a superset of those in the graph induced

by P; thus, we refer to this side information as the super-

graph. The utility of the supergraph is that it allows the agent

to determine which states may be “close” to high-cost states

in the induced graph, which may allow for construction of

trajectories leading to such states. In this work, we assume

the supergraph is provided and do not address the important

practical consideration of how to actually obtain it. However,

we do note it can likely be obtained from domain knowl-

edge. For instance, in a robot navigation task like [8], one-step

transitions between physically distant states s and s′ may be

impossible, which would allow us to conclude P(s, s′) = 0 a

priori and set A(s, s′) = 0. Unlike [8], however, our super-

graph assumption does not depend on state-action continuity

and thus should hold more generally; for example, if the MDP

models a game, the game’s rules may prevent transitions from

s to s′, so that A(s, s′) = 0. We also emphasize that the reverse

of the implication in (4) need not hold. Thus, one can always

set A(s, s′) = 1 ∀ s, s′ to ensure that (4) holds. Of course,

there is a trade off; as will be seen, our algorithms are most

efficient when A is sparse in a certain sense.

B. Our Contributions

In the remainder of the paper, we devise two backward

exploration-based EPE algorithms that exploit the supergraph.

Unlike [6], [7], [8], which only present empirical results,

our algorithms are amenable to rigorous accuracy and sample

complexity guarantees. Thus, beyond developing a framework

within which to generate backward exploration algorithms,

our main contribution is to offer theoretical evidence for the

empirical success of backward exploration. More precisely,

our contributions are as follows.

First, we devise an algorithm called Backward-EPE in

Section II that uses the supergraph to discover high-value

states while working backward from high-cost ones. We estab-

lish l∞ accuracy and worst-case sample complexity O(S log S),

equivalent to the average-case complexity of the forward

approach. More notably, we show the average-case sample

complexity of Backward-EPE is O(d̄(‖c‖1/‖c‖∞) log S),

where d̄ is the average degree in the supergraph. Note the

problem-instance dependent sparsity parameter in this bound,

d̄(‖c‖1/‖c‖∞), precisely captures the intuition that backward

exploration depends on how many high-cost states are present

(the ‖c‖1/‖c‖∞ term) and how many trajectories lead to them

(the d̄ term, which is a function of the transition matrix).

In the extreme case, d̄‖c‖1/‖c‖∞ = O(1), in which case

Backward-EPE reduces sample complexity from S log S to

log S.

Next, we combine Backward-EPE with the forward

approach for our second algorithm Bidirectional-EPE in

Section III. We establish a (pseudo)-relative error guarantee for

this algorithm, which we argue is useful in, e.g., empirical pol-

icy iteration. Analytically, we show Bidirectional-EPE

Authorized licensed use limited to: University of Michigan Library. Downloaded on June 28,2021 at 19:10:06 UTC from IEEE Xplore. Restrictions apply.

VIAL AND SUBRAMANIAN: EMPIRICAL POLICY EVALUATION WITH SUPERGRAPHS 643

reduces the sample complexity of a plug-in method with the

same accuracy guarantee; empirically, we show it is more

efficient than using the backward or forward approach alone.

Both of our algorithms are inspired by methods that

estimate PageRank [9], a node centrality measure from

the network science literature that resembles the value

function (2). Critically, however, the PageRank estimation

literature assumes P is known, so the extension to EPE

is non-trivial. Thus, another contribution of this work to

adapt PageRank estimators to EPE. A further contribution

of our work is methodological: we generalize a deterministic

fixed-point equation (FPE) from the PageRank setting to a

family of random FPEs in the EPE setting (see Lemma 1

in Section II-B and Lemma 2 in Appendix B of the supple-

mentary material). These FPEs are distinct from the Bellman

equation and provide new tools for RL problems like EPE;

in particular, they allow us to derive sample complexity

bounds for our algorithms. Moreover, we address several

technical subtleties that arise when applying these FPEs (see

Remarks 3, 4, and 5). Finally, we note that side information to

guide backward exploration appears to be necessary to prove

such FPEs in the RL setting. Thus, another methodological

contribution is our supergraph construction, which enables

derivation of FPEs while being intuitively grounded in, and

motivated by, real-world settings like robots and games. To

demonstrate the utility of these methodological contributions,

we discuss other problems where we believe our approach

can be used in Section IV, along with other related work.

Frequently-used notation: For a matrix B and any t ∈ N,

Bt(s, s′), Bt(s, ·), and Bt(·, s′) denote the (s, s′)-th entry, s-th

row, and s′-th column of Bt, respectively. We write 0n×m and

1n×m for the n × m matrices of zeroes and ones, respectively.

Matrix transpose is denoted by T. We use 1(·) for the indicator

function, i.e., 1(E) = 1 if statement E is true and 1(E) = 0

otherwise. For s ∈ S, es is the S-length vector with 1 in the s-th

entry and 0 elsewhere, i.e., es(s
′) = 1(s = s′). Also for s ∈ S,

Nin(s) = {s′ ∈ S : A(s′, s) = 1} and din(s) = |Nin(s)| are

the incoming neighbors and in-degree of s in the supergraph.

Average degree is denoted by d̄ = (1/S)
∑S

s,s′=1 A(s, s′) =
(1/S)

∑S
s=1 din(s). For {an}n∈N, {bn}n∈N ⊂ [0,∞), we use the

standard asymptotic notation an = O(bn), an = �(bn), an =
�(bn), and an = o(bn), resp., if lim supn→∞(an/bn) < ∞,

lim infn→∞(an/bn) > 0, an = O(bn) and an = �(bn), and

limn→∞(an/bn) = 0, resp. All random variables are defined

on a common probability space (�,F , P), with E[·] =
∫

�
· dP

denoting expectation and a.s. meaning P-almost surely.

II. BACKWARD EMPIRICAL POLICY EVALUATION

A. Algorithm

Our first algorithm is called Backward-EPE and is

based on the Approx-Contributions PageRank esti-

mator from [10]. The latter algorithm restricts attention to

the case c = es∗ for some s∗ ∈ S and assumes P is

known; our algorithm is a fairly natural generalization to

the case c ∈ R
S
+ and unknown P. For brevity, we restrict

attention to Backward-EPE in this section. For trans-

parency, Appendix A of the supplementary material discusses

Algorithm 1: Backward-EPE

Input: Simulator for transition matrix P; cost vector c;

discount factor γ ; supergraph in-neighbors

{Nin(s)}S
s=1; termination parameter ε; per-state

sample count n

1 k = 0, v̂k = 0S×1, rk = c, Uk = ∅, P̂k = 0S×S

2 while ‖rk‖∞ > ε do

3 k ← k + 1, sk ∼ arg maxs∈S rk−1(s) uniformly,

Uk = Uk−1 ∪ Nin(sk)

4 for s ∈ S do

5 if s ∈ Nin(sk) \ Uk−1 then {Xs,i}n
i=1 ∼ P(s, ·),

P̂k(s, ·) = 1
n

∑n
i=1 1(Xs,i = ·); else

P̂k(s, ·) = P̂k−1(s, ·);
6 end

7 for s ∈ S do

8 if s = sk then v̂k(s) = v̂k−1(s) + (1 − γ)rk−1(s),

rk(s) = γ P̂k(s, sk)rk−1(sk); else v̂k(s) = v̂k−1(s),

rk(s) = rk−1(s) + γ P̂k(s, sk)rk−1(sk);
9 end

10 end

Output: Estimate v̂k∗ = v̂k of v = (1 − γ)
∑∞

t=0 γ tPtc

Approx-Contributions and clarifies which aspects of

our analysis are borrowed from [10] and other existing work.

Backward-EPE is defined in Algorithm 1. The algo-

rithm takes as input cost vector c, discount factor γ , and

desired accuracy ε, and initializes four variables: a value func-

tion estimate v̂0 = 0S×1, a residual error vector r0 = c,

a set U0 = ∅ we call the encountered set, and a transi-

tion matrix estimate P̂0 = 0S×S. Conceptually, the algorithm

then works backward from high-cost states, iteratively push-

ing mass from residual vector to estimate vector so as to

improve the estimate of v. More precisely, the first iteration

proceeds as follows. First, a high-cost state s1 is chosen

(s1 ∈ S such that r0(s1) = c(s1) is maximal) and its incoming

supergraph neighbors Nin(s1) are added to the encountered

set (first line in while loop). For s ∈ U1 = Nin(s1) –

i.e., s for which P(s, s1) may be nonzero by (4) – an esti-

mate P̂1(s, ·) of P(s, ·) is computed using n samples (first

for loop). The estimate v̂1(s1) is then incremented with the

(1 − γ)r0(s) = (1 − γ)c(s) component of v(s1), and P̂1(s, s1)

is used to estimate the P(s, s1)r0(s1) = P(s, s1)c(s1) compo-

nent of v(s) and to increment the corresponding residual r1(s)

(second for loop).

In subsequent iterations k, the iterative update proceeds

analogously, choosing sk to maximize rk−1(sk), adding Nin(sk)

to the encountered set, incrementing v̂k(sk) by (1 −γ)rk−1(s),

and using an estimate of P(s, sk)rk−1(sk) to increment rk(s).

The only distinction is that at iteration k, P(s, ·) is estimated

only for states s ∈ Uk \ Uk−1. Put differently, the first time we

encounter state s – i.e., the first k for which s ∈ Nin(sk) – we

estimate P(s, ·); we then retain that estimate for the remain-

der of the algorithm. Thus, the encountered set Uk tracks the

rows of P we have estimated up to and including iteration

k. Alternatively, one could estimate P(s, sk) with independent

samples at each iteration k for which s ∈ Nin(sk); we discuss

the merits of this approach in Section IV.

Authorized licensed use limited to: University of Michigan Library. Downloaded on June 28,2021 at 19:10:06 UTC from IEEE Xplore. Restrictions apply.

644 IEEE JOURNAL ON SELECTED AREAS IN INFORMATION THEORY, VOL. 2, NO. 2, JUNE 2021

Remark 1: In practice, one can maintain a single P̂ matrix

in Algorithm 1, updating rows Nin(sk) \ Uk−1 in the first for

loop and leaving other rows unchanged. Similarly, one can

maintain v̂, r vectors and only modify rows Nin(sk) ∪ {sk} in

the second for loop. In short, the computational complexity

of iteration k is typically lower than S; it appears to be S

in Algorithm 1 only because we distinguish P̂k, v̂k, rk across

iterations k for analytical clarity.

B. Invariant

The manner in which we update the estimate and residual

vectors may appear opaque, but it allows us to prove the fol-

lowing analogue of a fixed-point equation (FPE) from [10].

The FPE from [10], and others like it in the PageRank

literature, are fundamental analytical tools for PageRank esti-

mators. As will be seen, our analogue is similarly critical for

deriving sample complexity bounds for Backward-EPE and

(we believe) backward exploration approaches more generally

(see Section IV-A). Also, the forthcoming proof suggests that

our supergraph construct is the “correct” side information to

enable such analyzes in the RL setting.

To explain our FPE, let k∗ = inf{k ∈ Z+ : ‖rk‖∞ ≤ ε}
denote the iteration at which Backward-EPE terminates, and

let µ̂s denote the s-th row of (1−γ)(I−γ P̂k∗)
−1, so that µ̂sc is

the value function for s ∈ S defined on the final estimate P̂k∗
of P. (More precisely, we will complete the unestimated rows

S\Uk∗ of P̂k∗ – in a manner to be discussed shortly – to obtain

a row stochastic estimate matrix. This will ensure that µ̂sc is

a well-defined value function.) Then the result (roughly) says

that the FPE v̂k(s) + µ̂srk = µ̂sc is preserved across iterations

k ∈ {0, . . . , k∗}. Conceptually, this means that if we run the

algorithm until it terminates to obtain P̂k∗ , and then look back

at the sequence {v̂k, rk}k∗
k=0 generated by the algorithm, the

FPE will have held at each k. This non-causality is somewhat

unintuitive, yet crucial in our analysis.

Before we formally state the FPE result and prove it, we also

highlight the difficulty in conceiving of such a result: at ter-

mination of the algorithm, the stochastic matrix P is partially

estimated using P̂k∗ and a large class of stochastic matrices

will agree with P̂k∗ , but the FPE needs to hold irrespective

of the particular stochastic matrix used as a completion of

P̂k∗ . The following lemma overcomes this issue by proving an

FPE for every stochastic matrix which differs from P̂k∗ only

in unestimated rows of P, i.e., rows indexed by S \ Uk∗ ; in

other words, simultaneously multiple FPEs hold.

Lemma 1: Let Ys,i ∼ P(s, ·) ∀ s ∈ S, i ∈ [n], indepen-

dent across s and i, and independent of the random variables

in Algorithm 1. From {Ys,i}s∈S,i∈[n], define an offline esti-

mate P̃ of P row-wise by P̃(s, ·) = (1/n)
∑n

i=1 1(Ys,i = ·).
Furthermore, define

P(s, ·) =
{

P̂k∗(s, ·), s ∈ Uk∗
P̃(s, ·), s ∈ S \ Uk∗

µs = (1 − γ)eT
s

(

I − γ P
)−1

, v(s) = µsc (5)

P(s, ·) =
{

P̂k∗(s, ·), s ∈ Uk∗
P(s, ·), s ∈ S \ Uk∗

µs = (1 − γ)eT
s

(

I − γ P
)−1

, v(s) = µsc, (6)

where k∗ = inf{k ∈ Z+ : ‖rk‖∞ ≤ ε} is the iteration at which

Algorithm 1 terminates. Then

v̂k(s) + µsrk = v(s), v̂k(s) + µsrk = v(s)

∀ k ∈ {0, . . . , k∗}, s ∈ S a.s. (7)

Remark 2: In words, P and P fill the unestimated rows

of P with offline estimates and the true rows, respectively.

More generally, an analogue of (7) holds whenever unesti-

mated rows are consistent with the supergraph (4); see Lemma

2 in Appendix B of the supplementary material for details. We

also emphasize the offline estimate P̃ is an analytical tool and

does not affect sample complexity.

Proof of Lemma 1: We begin with the second identity in (7).

We fix s ∈ S and use induction on k. For k = 0, (7) is

immediate, since v̂0 = 0S×1 and r0 = c in Algorithm 1. For

k ∈ [k∗], the iterative update of Algorithm 1 implies (a.s.)

v̂k(s) + µsrk = v̂k−1(s) + (1 − γ)rk−1(sk)1(s = sk)

+
S
∑

s′=1

µs(s
′)
(

rk−1(s
′)1
(

s′ �= sk

)

+ γ P̂k(s
′, sk)rk−1(sk)

)

= v̂k−1(s) + µsrk−1

+ rk−1(sk)

(

−µs(sk) + (1 − γ)1(s = sk)

+ γµsP̂k(·, sk)

)

(8)

where for the second equality we added and subtracted

µs(sk)rk−1(sk). Now since v̂k−1(s) + µsrk−1 = v(s) by the

inductive hypothesis, and since by definition

µs(sk) − (1 − γ)1(s = sk) = (1 − γ)

∞
∑

t=1

γ tPt(s, sk)

= γ (1 − γ)

∞
∑

t=0

γ tPt(s, ·)P(·, sk)

= γµsP(·, sk),

it suffices to show P̂k(s
′, sk) = P(s′, sk) ∀ s′ ∈ S (since then

the term in parentheses in (8) will be zero). Towards this end,

we fix s′ ∈ S and consider two cases:

1) If s′ ∈ Uk, Algorithm 1 implies P̂k(s
′, sk) = P̂k∗(s

′, sk)

(once we estimate P(s′, ·), our estimate remains

unchanged). Moreover, Uk ⊂ Uk∗ in Algorithm 1

(the encountered set only grows), so s′ ∈ Uk∗ and

P̂k∗(s
′, sk) = P(s′, sk) by definition of P.

2) If s′ /∈ Uk, Algorithm 1 implies P̂k(s
′, sk) = 0 (before

encountering s′, our estimate of P(s′, ·) is 01×S). On the

other hand, Nin(sk) ⊂ Uk, so s′ /∈ Nin(sk) and A(s′, sk) =
0 by definition of Nin(sk). Thus, P(s′, sk) = 0 by (4) and

P(s′, sk) = 0 by definition.

The proof of the first identity in (7) is identical, except in the

very last step we must also use the fact that P(s′, sk) = 0 ⇒
P̃(s′, sk) = 0 by definition of P̃.

Owing to the fact that (7) holds across iterations, we will

refer to these identities as the P-invariant and the P-invariant,

respectively. These invariants will be pivotal in the theorems

Authorized licensed use limited to: University of Michigan Library. Downloaded on June 28,2021 at 19:10:06 UTC from IEEE Xplore. Restrictions apply.

VIAL AND SUBRAMANIAN: EMPIRICAL POLICY EVALUATION WITH SUPERGRAPHS 645

to come; interestingly though, only one invariant is useful for

each theorem, while the other fails. This is due to technical

subtleties discussed in Remarks 3, 4, and 5.

C. Results

Our first result is an accuracy guarantee for

Backward-EPE.

Theorem 1: Fix ε, δ > 0 and define

n∗(ε, δ) = 2‖c‖2
∞γ 2

ε2(1 − γ)2
log

(

2S

δ

⌈

log(4‖c‖∞/ε)

1 − γ

⌉)

.

Then assuming n ≥ n∗(ε, δ) in Algorithm 1, P(‖v̂k∗ − v‖∞ ≥
2ε) ≤ δ.

Proof sketch: The full proof is deferred to Appendix C

of the supplementary material but we sketch it here. First, by

the P-invariant (7), the triangle inequality, and the termination

criteria of Backward-EPE,
∥

∥v̂k∗ − v
∥

∥

∞ ≤
∥

∥v̂k∗ − v
∥

∥

∞ + ‖v − v‖∞ ≤ ε + ‖v − v‖∞.

Now since v and v are the value functions corresponding to

P and P, respectively, and since P is an unbiased estimate of

P, we should expect the second term to be small for large n.

However, this is not immediate, because v is a biased estimate

of v in general. Thus, we further bound ‖v − v‖∞ by another

random variable. First, for large T , similar to (3),

‖v − v‖∞ ≤ (1 − γ)

T−1
∑

t=1

γ t
∥

∥

∥

(

P
t − Pt

)

c

∥

∥

∥

∞
+ ε

2
. (9)

Second, using convexity of ‖ · ‖∞ and row stochasticity of P,

a simple calculation yields
∥

∥

∥

(

P
t − Pt

)

c

∥

∥

∥

∞
≤
∥

∥

∥

(

P
t−1 − Pt−1

)

c

∥

∥

∥

∞

+
∥

∥

∥

(

P − P
)

Pt−1c

∥

∥

∥

∞
.

Iterating this inequality and substituting into (9) gives a bound

on ‖v − v‖∞ in terms of ‖(P − P)Pt−1c‖∞. Furthermore,

this latter random variable has the same distribution as

‖(P̃ − P)Pt−1c‖∞, so we can bound ‖v − v‖∞ in terms of

‖(P̃ − P)Pt−1c‖∞ (see Remark 3). Finally, defining dt−1 =
Pt−1c, the s-th entry of P̃Pt−1c is

S
∑

s′=1

P̃(s, s′)dt−1(s
′) =

S
∑

s′=1

(

1

n

n
∑

i=1

1
(

Ys,i = s′)
)

dt−1(s
′)

= 1

n

n
∑

i=1

dt−1

(

Ys,i

)

,

and similarly, the s-th entry of PPt−1c is Edt−1(Ys,i).

Therefore,

∥

∥

∥

(

P̃ − P
)

Pt−1c

∥

∥

∥

∞
= max

s∈S

∣

∣

∣

∣

∣

1

n

n
∑

i=1

(

dt−1

(

Ys,i

)

− Edt−1

(

Ys,i

))

∣

∣

∣

∣

∣

which is bounded by ε with high probability by standard

Chernoff bounds.

Remark 3: It may seem wasteful that we use the P-invariant

instead of the P-invariant, since P fills unestimated rows of

P̂k∗ with the actual rows of P, and thus v should be a better

estimate of v. We explain this choice as follows. First note

that by the arguments in the proof sketch, bounding ‖v − v‖∞
amounts to bounding ‖(P − P)Pt−1c‖∞. It is tempting to use

the union bound to bound such terms as

P

(
∥

∥

∥

(

P − P
)

Pt−1c

∥

∥

∥

∞
≥ η

∣

∣

∣
Uk∗

)

≤
∑

s∈Uk∗

P

(
∣

∣

∣

∣

∣

1

n

n
∑

i=1

(

dt−1

(

Xs,i

)

− Edt−1

(

Xs,i

))

∣

∣

∣

∣

∣

≥ η

∣

∣

∣

∣

∣

Uk∗

)

.

The issue with this approach is that there is a complicated

dependence between {Xs,i}n
i=1 and Uk∗ in Algorithm 1. We also

note that we replace ‖(P − P)Pt−1c‖∞ by ‖(P̃ − P)Pt−1c‖∞
in the proof sketch above owing to a similar issue.

Theorem 1 says that if we take n ≥ n∗(ε, δ) sam-

ples per state encountered, the estimate v̂k∗ produced by

Backward-EPE will be 2ε-accurate. Since Backward-EPE

encounters |Uk∗ | states by definition, the total number of

samples needed to ensure 2ε-accuracy is n∗(ε, δ)|Uk∗ |.
Hence, our next goal is to bound |Uk∗ |, in order to bound

this overall complexity. By the backward exploration intuition

discussed in Section I, we should expect a nontrivial bound

|Uk∗ | = o(S) if the cost vector and supergraph are sufficiently

sparse. However, even when both objects are maximally

sparse, one can construct adversarial examples for which

Uk∗ = S. For instance, suppose we restrict to c having

a single high-cost state and the supergraph to having the

minimal number of edges S. Then taking c = [1 0 . . . 0] and

A = 1S×1eT
1 will satisfy this restriction, but will yield Uk∗ = S

(assuming ε < 1). Note the key issue in this example (and,

we suspect, in most adversarial examples) is the interaction

between the cost vector and the supergraph; in particular,

if high-cost states have high in-degrees, |Uk∗ | will be large

(even if there are few high-cost states and few edges overall).

In light of this, our best hope for a nontrivial bound on

|Uk∗ | is an average-case analysis, i.e., bounding E|Uk∗ | while

randomizing over the inputs of Backward-EPE. As it turns

out, we only need to randomize over the cost vector; roughly,

by considering random cost vectors for which the expected

cost of any given state does not dominate the average expected

cost. For such cost vectors, the interaction between cost and in-

degree discussed in the previous paragraph will “average out,”

and consequently the adversarial examples will not dominate

in expectation. This is formalized in the following theorem.

Theorem 2: Let C be an R
S
+-valued random vector s.t.

E‖C‖1 < ∞, EC(s) ≤ βE‖C‖1/S =: c̄ for some constant

β ∈ [1,∞). Then if Algorithm 1 is initialized with cost

vector C,

E
∣

∣Uk∗

∣

∣ ≤ Sc̄d̄

ε(1 − γ)

where the expectation is with respect to C and the randomness

in Algorithm 1.

Proof: As for Theorem 1, we exploit the P-invariant (7)

(note we proved Lemma 1 for fixed c but the same arguments

hold for random C owing to their almost-sure nature). First

Authorized licensed use limited to: University of Michigan Library. Downloaded on June 28,2021 at 19:10:06 UTC from IEEE Xplore. Restrictions apply.

646 IEEE JOURNAL ON SELECTED AREAS IN INFORMATION THEORY, VOL. 2, NO. 2, JUNE 2021

observe

v(s) ≥ v̂k∗(s) = (1 − γ)

k∗
∑

k=1

rk−1(s)1(s = sk)

≥ ε(1 − γ)

k∗
∑

k=1

1(s = sk)

where the first inequality holds by the P-invariant (7), the

equality by Algorithm 1, and the second inequality by def-

inition of k∗. On the other hand, we have

∣

∣Uk∗

∣

∣ =
∣

∣

∣
∪k∗

s=1Nin(sk)

∣

∣

∣
≤

k∗
∑

k=1

din(sk)

=
k∗
∑

k=1

S
∑

s=1

din(s)1(s = sk) =
S
∑

s=1

din(s)

k∗
∑

k=1

1(s = sk).

Combining the previous two inequalities and taking expecta-

tion, we have therefore shown

E
∣

∣Uk∗

∣

∣ ≤ 1

ε(1 − γ)

S
∑

s=1

din(s)Ev(s). (10)

Now consider Ev(s). By definition (5),

Ev(s) = EµsC = (1 − γ)

∞
∑

t=0

γ t
EP

t
(s, ·)C

= (1 − γ)

∞
∑

t=0

γ t
E

[

E

[

P
t
(s, ·)|C

]

C
]

.

Now after realizing C, we fill some rows of P with samples

generated during the algorithm and other rows with samples

generated offline; in contrast, all rows of P̃ are filled with

offline samples. But in either case, these samples have the

same distribution, so we can replace P by P̃ in the previous

equation. Moreover, P̃ is independent of the random variables

in Algorithm 1, including r0 = C. In summary,

E

[

P
t
(s, ·)|C

]

= E
[

P̃t(s, ·)|C
]

= E
[

P̃t(s, ·)
]

. (11)

Combining the previous two equations and using the assump-

tion on C, we obtain

Ev(s) = (1 − γ)

∞
∑

t=0

γ t
E
[

P̃t(s, ·)
]

E[C]

≤ (1 − γ)

∞
∑

t=0

γ t
E
[

P̃t(s, ·)
]

c̄1S×1 = c̄

where we also used row stochasticity of P̃. Substituting

into (10) completes the proof.

Remark 4: This proof fails if we use the P-invariant

instead of the P-invariant. In particular, we cannot express

E[Pt(s, ·)|C] as deterministic in (11), since C influences which

states are encountered during the algorithm and thus influ-

ences which rows of P are estimates and which are exact. This

illustrates the utility of the P-invariant: it allows us to “decor-

relate” the estimated transition matrix from the cost vector,

i.e., to obtain E[P
t
(s, ·)C] = E[P̃t(s, ·)]E[C]. In the current

work, this is our only use of this decorrelation trick, but it

may useful in analyzes of algorithms like Backward-EPE

(see Section IV).

D. Discussion

We now return to interpret our results and derive

Backward-EPE’s overall sample complexity, which (we

recall) is n∗(ε, δ)|Uk∗ |. In the worst case, |Uk∗ | = �(S),

and thus the worst-case sample complexity for fixed c is

O(Sn∗(ε, δ)). Neglecting log log factors and constants, ignor-

ing log terms for quantities that have polynomial scaling (e.g.,

writing log(1/(1 − γ))/(1 − γ)2 as simply 1/(1 − γ)2), and

assuming γ is either constant or grows to 1, Theorem 1 implies

Sn∗(ε, δ) = O
(

S log(S/δ)‖c‖2
∞ε−2(1 − γ)−2

)

.

For comparison, the complexity of the forward approach is

O
(

S log(S/δ)‖c‖2
∞ε−2(1 − γ)−3

)

(12)

(see Appendix I of the supplementary material). Thus, in the

worst case Backward-EPE has similar complexity to that of

the forward approach, with a slightly improved dependence on

the discount factor γ (see Section IV-E). (The extra 1/(1−γ)

factor in (12) arises since O(1/(1−γ))-length trajectories must

be sampled to make the bias in (3) small.)

In the average case, however, the sample complexity of

Backward-EPE can be dramatically lower. In particular,

Theorem 2 implies average-case sample complexity

E
∣

∣Uk∗

∣

∣× n∗(ε, δ) = O

(

Sc̄d̄

ε(1 − γ)
× log(S/δ)‖C‖2

∞
ε2(1 − γ)2

)

= O

(

‖C‖1d̄ log(S/δ)‖C‖2
∞

ε3(1 − γ)3

)

.

(This argument is not precise, since ‖C‖∞ is random in

Theorem 2; we address this shortly.) Thus, if γ , δ, and

‖C‖∞/ε are constants, Backward-EPE has average case

complexity

O
(

(‖C‖1/‖C‖∞) × d̄ × log S
)

. (13)

Note (13) captures the intuition that backward exploration is

efficient when the costs and supergraph are sufficiently sparse,

since ‖C‖1/‖C‖∞ and d̄ quantify cost and supergraph sparsity,

respectively. We also note that when γ , δ, and ‖C‖∞/ε are

constants, the forward approach’s complexity (12) becomes

simply O(S log S). In the extreme case, ‖C‖1/‖C‖∞, d̄ = O(1)

and Backward-EPE reduces sample complexity to O(log S).

We can make this argument rigorous with further assump-

tions on C. For example, the following corollary considers

random binary cost vectors with H nonzero entries. Such cost

vectors could arise, for example, in MDP models of games,

where states corresponding to losing configurations of the

game have unit cost and other states have zero cost.

Corollary 1: Fix H ∈ S and define CH = {
∑S

s=1 ases : as ∈
{0, 1} ∀ s ∈ S,

∑S
s=1 as = H} to be the set of binary vectors

with H nonzero entries. Assume the cost vector C is chosen

uniformly at random from CH and γ, δ, ε are constants. Then

to guarantee P(‖v̂k∗−v‖∞ ≥ 2ε|C) ≤ δ a.s., Backward-EPE

requires O(min{Hd̄, S} log S) samples in expectation.

Proof: See Appendix D of the supplementary material.

Authorized licensed use limited to: University of Michigan Library. Downloaded on June 28,2021 at 19:10:06 UTC from IEEE Xplore. Restrictions apply.

VIAL AND SUBRAMANIAN: EMPIRICAL POLICY EVALUATION WITH SUPERGRAPHS 647

Fig. 1. Numerical illustration of Backward-EPE

E. Tightness of Our Bounds

At present, we lack lower bounds for the problem of EPE

with supergraphs. In fact, even in the case where the cost

vector has a single nonzero entry – i.e., the PageRank setting –

the literature contains no tight lower bounds for the analogous

PageRank problem, to the best of our knowledge. However,

we next offer some speculative thoughts on this issue.

For simplicity, we restrict to the setting of Corollary 1.

In this case, intuition suggests that any reasonable algorithm

requires average sample complexity at least

EC

∣

∣

{

s′ ∈ S : A(s′, s) = C(s) = 1 for some s ∈ S
}
∣

∣

= EC

∣

∣∪s∈S:C(s)=1Nin(s)
∣

∣ (14)

where the expectation is with respect to the random cost vector

C from Corollary 1. Indeed, at a minimum, any algorithm

should sample from P(s′, ·) whenever s′ belongs to the set on

the left side of (14), since these rows may contribute non-

negligibly to v(s′).
Assuming our conjecture that (14) lower bounds sample

complexity holds, we can compare it to the upper bound in

Corollary 1 as follows:

EC

∣

∣∪s∈S:C(s)=1Nin(s)
∣

∣ ≤
∑

s∈S
din(s)PC(C(s) = 1)

=
∑

s∈S
din(s)H/S = Hd̄. (15)

Hence, the tightness of our upper bound is controlled by the

inequality in (15), which is tight if the sets {Nin(s) : C(s) = 1}
have little “overlap”. In other words, the gap (if any) depends

on how much “double-counting” of incoming neighbors of

high-cost states occurs (implicitly) in our analysis. As far

as we are aware, sharpening the upper bound to account for

this double-counting is an open problem even in the simpler

PageRank case.

In summary, the gap in our upper bound arises from (15),

but closing this gap is nontrivial even when c = es. Finally, we

note that (15) is tight for certain instances of the supergraph.

In Appendix E of the supplementary material, we provide such

instances by showing the following: given H and d, there exists

a supergraph with average degree d̄ arbitrarily close to d such

that (15) (and thus the upper bound of Corollary 1) is tight.

See Claim 1 in Appendix E of the supplementary material for

details.

F. Numerical Illustration

To conclude this section and to illustrate our analysis, we

present empirical results in Figure 1. Here we generate random

problem instances P, c in a manner that yields three differ-

ent cases of the complexity factor d̄‖C‖1/‖C‖∞ identified

above; roughly, �(1), �(
√

S), and �(S) (left). In all cases,

the sample complexity of Backward-EPE decays relative to

that of the forward approach, suggesting sublinear complex-

ity (middle). Moreover, the different scalings of d̄‖C‖1/‖C‖∞
reflect in different rates of decay in relative complexity, sug-

gesting d̄‖C‖1/‖C‖∞ indeed determines sample complexity.

We also note algorithmic parameters are chosen to ensure both

algorithms yield similar l∞ error (right). Error bars show stan-

dard deviation across problem instances. Further details can be

found in Appendix H of the supplementary material.

III. BIDIRECTIONAL EMPIRICAL POLICY EVALUATION

A. Algorithm

Our second algorithm is called Bidirectional-EPE

and is inspired by the Bidirectional-PPR PageRank

estimator from [11] (see Appendix A of the supplementary

material for further discussion of this PageRank estimator). As

will be seen, this algorithm is conducive to a stronger accu-

racy guarantee; namely, a (pseudo)-relative error guarantee.

The utility of such a guarantee is that the resulting estimates

tend to better preserve the ordering of the actual value function

when compared to an l∞ guarantee. Preserving this ordering

is important in the problem of finding good policies; e.g., in

the greedy update of policy iteration mentioned in Section I.

As its name suggests, Bidirectional-EPE proceeds

in two stages: it first conducts backward exploration using

Backward-EPE, then improves the resulting estimate

via forward exploration. The analysis of this bidirectional

approach relies on the P-invariant (7). Similar to Theorem 1,

we can make |v(s) − v(s)| small by taking n large in

Authorized licensed use limited to: University of Michigan Library. Downloaded on June 28,2021 at 19:10:06 UTC from IEEE Xplore. Restrictions apply.

648 IEEE JOURNAL ON SELECTED AREAS IN INFORMATION THEORY, VOL. 2, NO. 2, JUNE 2021

Backward-EPE; when this holds, we have

v(s) ≈ v(s) = v̂k∗(s) + µsrk∗ . (16)

Since µs is a probability distribution over S, the residual term

in (16) satisfies

µsrk∗ = EZs∼µs rk∗(Zs) ≈ 1

nF

nF
∑

i=1

rk∗
(

Zs,i

)

where in the approximate equality {Zs,i}nF

i=1 are distributed as

µs and nF is large. By (16),

v(s) ≈ v̂k∗(s) + 1

nF

nF
∑

i=1

rk∗
(

Zs,i

)

. (17)

Intuitively, the right side of (17) is a more accurate estimate

of v(s) than v̂k∗(s) alone; the only remaining question is how

to generate {Zs,i}nF

i=1. This can indeed be done in our model;

namely, by generating Geometric(1−γ)-length trajectories on

P. More specifically, given P, we first generate a Geometric(1−
γ) random variable Ls,i and set Z0

s,i = s; we then sample Zt
s,i

from P(Zt−1
s,i , ·) for each t ∈ [Ls,i]; and finally we set Zs,i = Z

Ls,i

s,i .

Then conditioned on P, Zs,i is distributed as µs. To see why,

let P
P denote probability conditioned on P. Then

P
P
(

Zs,i = s′) =
∞
∑

t=0

P
P
(

Zs,i = s′|Ls,i = t
)

P
P
(

Ls,i = t
)

=
∞
∑

t=0

Pt(s, s′)(1 − γ)γ t = µs(s
′).

Thus, sampling from µs amounts to sampling from P(s, ·).
To do so, we either sample from P(s, ·) (if s /∈ Uk∗) or from

P̂k∗(s, ·) (if s ∈ Uk∗); the former is exactly what was done

in Backward-EPE, and the latter can be done after running

Backward-EPE. Put differently, to generate Zs,i we sam-

ple from P(s, ·) unless we have already sampled from P(s, ·)
during Backward-EPE, in which case we sample from the

empirical estimate P̂k∗(s, ·) obtained during Backward-EPE.

The Bidirectional-EPE algorithm is formally defined

in Algorithm 2. As above, write nF for the per-state forward

trajectory count; we also write nB for the per-state sample

count in the Backward-EPE subrountine. We denote the

ultimate estimate of v by v̂BD.

B. Results

As alluded to above, Bidirectional-EPE is conducive

to a pseudo-relative error guarantee. In particular, we have

the following relative-plus-additive error bound. Note v(s) can

be arbitrarily small, so we should not expect a relative error

guarantee for all states; however, for high-value states, the

relative guarantee will dominate.

Theorem 3: Fix εrel ∈ (0, 1) and εabs, δ > 0, and define

n∗
F(εrel, εabs, δ) = 324ε log(4S/δ)

ε2
relεabs

n∗
B(εrel, εabs, δ) =

3 log
(

4S2/δ
)

(

log
(

1 + εrel

2

))2
mini,j∈S:P(i,j)>0 P(i, j)

Algorithm 2: Bidirectional-EPE

Input: Simulator for transition matrix P; cost vector c;

discount factor γ ; supergraph in-neighbors

{Nin(s)}S
s=1; termination parameter ε; per-state

backward, forward sample counts nB, nF

1 Run Backward-EPE (Algorithm 1) with inputs P

simulator, c, γ , {Nin(s)}S
s=1, ε, nB

2 Let v̂k∗ , rk∗ , Uk∗ , P̂k∗ be estimate vector, residual vector,

encountered states, and P estimate at termination of

Backward-EPE, and define P in (6)

3 for s ∈ S do

4 Generate samples {Zs,i}n
i=1 from µs, set

v̂BD(s) = v̂k∗(s) + 1
nF

∑nF

i=1 rk∗(Zs,i)

5 end

Output: Estimate v̂BD of v = (1 − γ)
∑∞

t=0 γ tPtc

×
⌈

log(2‖c‖∞/εabs)

(1 − γ)

⌉2

.

Then assuming nF ≥ n∗
F(εrel, εabs, δ) and nB ≥ n∗

B(εrel, εabs, δ)

in Algorithm 2, we have

P

(

∪S
s=1

{
∣

∣v̂BD(s) − v(s)
∣

∣ > εrelv(s) + εabs

}

)

≤ δ. (18)

Proof sketch: The proof separately treats errors arising

from the backward and forward exploration stages; we briefly

describe each stage here and defer details to Appendix F of the

supplementary material. For the backward exploration stage,

Lemma 3 in Appendix F of the supplementary material shows

that if nB ≥ n∗
B(εrel, εabs, δ),

P

(

∪S
s=1

{

∣

∣v(s) − v(s)
∣

∣ >
εrel

2
v(s) + εabs

2

})

≤ δ

2
(19)

with v defined as in (6). We prove (19) in two steps. First, we

show that if nB ≥ n∗
B(εrel, εabs, δ), then |P(s, s′) − P(s, s′)| ≤

λP(s, s′) for some λ ∈ (0, 1) and all s, s′ ∈ S. This fol-

lows from standard Chernoff bounds after replacing P by P̃

(which is necessary for similar reasons as those discussed in

Remark 3). Second, we show that if |P(s, s′) − P(s, s′)| ≤
λP(s, s′), then v is close to v (in the sense of (19)). To illus-

trate the second step, note we can use the upper bound on P

to write

(1 − γ)

T̄
∑

t=0

γ tPt(s, ·)c ≤ (1 − γ)

T̄
∑

t=0

γ t(1 + λ)tPt(s, ·)c

≤ (1 + λ)T̄(1 − γ)

T̄
∑

t=0

γ tPt(s, ·)c.

For large enough T̄ , the left and right sides are within εabs/2-

additive errors of v(s) and (1 + λ)T̄v(s), respectively; having

chosen T̄ , we can choose λ to ensure (1 + λ)T̄ ≤ 1 + εrel/2.

It is from here that the relative-plus-additive guarantee of

Theorem 3 arises.

For the forward exploration stage, we let G denote the

σ -algebra generated by all the random variables from the

Backward-EPE subroutine of Bidirectional-EPE, and

we show that when nF ≥ n∗
F(εrel, εabs, δ),

P

(

∣

∣v̂BD(s) − v(s)
∣

∣ ≥ εrel

2
v(s) + εabs

2

∣

∣

∣
G

)

Authorized licensed use limited to: University of Michigan Library. Downloaded on June 28,2021 at 19:10:06 UTC from IEEE Xplore. Restrictions apply.

VIAL AND SUBRAMANIAN: EMPIRICAL POLICY EVALUATION WITH SUPERGRAPHS 649

× 1
(

∣

∣v(s) − v(s)
∣

∣ ≤ εrel

2
v(s) + εabs

2

)

≤ δ

2S
. (20)

Here we use probability conditioned on G so that the only

randomness in |v̂BD(s) − v(s)| is that from the forward explo-

ration. Moreover, we can bound this term by exploiting the

P-invariant to write |v̂BD(s) − v(s)| as the deviation of an

empirical average from its mean (similar to the Theorem 1

proof sketch) and then use standard Chernoff bounds. Roughly

speaking, this requires us to use the indicator function in (20)

to replace v(s) by v(s) in the probability term; we then sep-

arately address the cases of large v(s) and small v(s) using a

modification of the approach from [11], which has a similar

accuracy guarantee.

Remark 5: While the choice of invariant used to prove

Theorems 1 and 2 was subtle (see Remarks 3 and 4), choos-

ing the P-invariant for Theorem 3 is rather obvious, since we

explicitly use the matrix P in Algorithm 2.

C. Discussion

We next discuss Theorem 3. To simplify notation, we restrict

to the setting of Corollary 1; however, the key insights extend

to the more general setting of Theorem 2. Also, we assume the

relative error tolerance εrel, the discount factor γ , and inac-

curacy probability δ are constants independent of S. Finally,

we note Theorem 3 holds for random C; see Remark 9 in

Appendix F of the supplementary material.

We begin by deriving the asymptotic sample complexity of

Bidirectional-EPE in the setting of Corollary 1. For the

backward exploration stage (i.e., the Backward-EPE subrou-

tine), we require per-state sample complexity n∗
B(εrel, εabs, δ);

note this is deterministic since ‖C‖∞ = 1 pointwise in

Corollary 1. Thus, the average-case sample complexity is (by

Corollary 1),

n∗
B(εrel, εabs, δ)E

∣

∣Uk∗

∣

∣

= O

(

log(S) log(1/εabs)

mini,j∈S:P(i,j)>0 P(i, j)
× Hd̄

ε

)

. (21)

For the forward exploration stage, we require

n∗
F(εrel, εabs, δ) = O(ε log(S)/εabs) trajectories of expected

length γ /(1 −γ) for each of S states. We are assuming γ is a

constant, and thus the expected forward complexity is simply

O(εS log S/εabs). Combined with (21), and writing KBD for

the overall expected sample of Bidirectional-EPE in

the setting of Corollary 1,

KBD = O

(

Hd̄ log(S) log(1/εabs)

ε mini,j∈S:P(i,j)>0 P(i, j)
+ εS log S

εabs

)

. (22)

Here the termination parameter ε for the Backward-EPE

subroutine is a free parameter that can be chosen to minimize

the overall sample complexity. For example,

ε = �

⎛

⎝

√

Hd̄εabs

S mini,j∈S:P(i,j)>0 P(i, j)

⎞

⎠

⇒ KBD = O

⎛

⎝

√

SHd̄

εabs mini,j∈S:P(i,j)>0 P(i, j)
log S

⎞

⎠ (23)

where for simplicity we wrote log(1/εabs)/
√

εabs as simply

1/
√

εabs (note this choice of ε minimizes (22) if we also ignore

the log(1/εabs) term in that expression). To interpret (23), we

consider a specific choice of εabs. To motivate this, we first

observe that in the setting of Corollary 1,

Ev = (1 − γ)
∑

t=0

γ tPt × EC

= (1 − γ)
∑

t=0

γ tPt × H

S
1S×1 = H

S
1S×1

i.e., the “typical” value is H/S. It is thus sensible to choose

εabs = �(H/S), so that we obtain a relative guarantee for

above-typical values and settle for the absolute guarantee for

below-typical values. Substituting into (23), we conclude that

Bidirectional-EPE requires

KBD = O

⎛

⎝

√

d̄

mini,j∈S:P(i,j)>0 P(i, j)
S log S

⎞

⎠ (24)

samples in order to guarantee (18) in the setting of Corollary 1.

It is interesting to compare Bidirectional-EPE to

a plug-in estimator that lends itself to the same accu-

racy guarantee. For this plug-in estimator, we simply esti-

mate v by computing (1 − γ)
∑∞

t=0 γ tP̃tC, where P̃(s, ·) =
(1/n)

∑n
i=1 1(Ys,i = ·) with Ys,i ∼ P(s, ·) as in Lemma 1.

Then by the same argument following (47) in the proof of

Theorem 3 in the supplementary material, the plug-in estimate

will satisfy the guarantee (18) whenever n ≥ n∗
B(εrel, εabs, δ).

Consequently, the sample complexity of the plug-in estimator

is, under the assumptions leading to (24),

Sn∗
B(εrel, εabs, δ) = O

(

S log S

mini,j∈S:P(i,j)>0 P(i, j)

)

. (25)

Comparing (24) and (25), we see Bidirectional-EPE

is more efficient than the plug-in whenever d̄ ≤
1/ mini,j∈S : P(i,j)>0 P(i, j). To interpret this inequality, first

suppose the supergraph is the graph induced by P, i.e.,

A(s, s′) = 0 ⇔ P(s, s′) = 0. Then

d̄ = 1

S

∑

s∈S

∑

s′∈S:P(s,s′)>0

P(s, s′)

P(s, s′)

≤
1
S

∑

s∈S
∑

s′∈S:P(s,s′)>0 P(s, s′)

mini,j∈S:P(i,j)>0 P(i, j)

= 1

mini,j∈S:P(i,j)>0 P(i, j)

More generally, this suggests the complexity of

Bidirectional-EPE is order-wise similar to that

of the plug-in method whenever degrees in the super-

graph and induced graph are order-wise similar. If

additionally most transitions are roughly uniform (in

the sense that P(i, j) ≈ P(i, j′) if P(i, j), P(i, j′) > 0),

then 1/ mini,j∈S:P(i,j)>0 P(i, j) ≈ maxs∈S dout(s), where

dout(s) =
∑S

s′=1 A(s, s′) is the out-degree of s. Thus,

d̄ = o(1/ mini,j∈S:P(i,j)>0 P(i, j)) if the maximum out-degree

dominates the average degree.

Remark 6: At a higher level, the dependence on

mini,j∈S:P(i,j)>0 P(i, j) is undesirable but seems to be

Authorized licensed use limited to: University of Michigan Library. Downloaded on June 28,2021 at 19:10:06 UTC from IEEE Xplore. Restrictions apply.

650 IEEE JOURNAL ON SELECTED AREAS IN INFORMATION THEORY, VOL. 2, NO. 2, JUNE 2021

Fig. 2. Numerical illustration of Bidirectional-EPE

unavoidable for a relative error guarantee (see Appendix F-A

of the supplementary material).

Generally, it is difficult to compare the sample complex-

ity (24) to the bounds from Section II analytically, owing to

the different error guarantees. Thus, we present an empirical

comparison in Figure 2. Here we simulate all three algorithms

using the case d̄‖C‖1/‖C‖∞ ≈ �(1) from Figure 1. We

choose algorithmic parameters so that all algorithms maintain

average relative error (1/S)
∑S

s=1(|v̂(s) − v(s)|/v(s)) ≈ 25%

across S (right). For these parameters, the sample complex-

ities of the forward approach and Backward-EPE scale

like S2 (obtained via linear fits on a log-log scale, left). In

contrast, the complexity of Bidirectional-EPE scales

like S1.7, suggesting a subquadratic sample complexity. Thus,

as discussed above, Bidirectional-EPE appears more

sample-efficient if one aims to bound relative error.

IV. FUTURE DIRECTIONS AND RELATED WORK

A. Adaptation of Other PageRank Algorithms

In this work, we adapted the PageRank estimators from [10],

[11] to EPE. However, the PageRank literature contains many

other algorithms either explicitly or conceptually related to

these estimators, see, e.g., [12], [13], [14], [15], [16], [17].

Each of these algorithms rely on analyzes similar to that

of [10], [11], which we extended to the EPE setting in this

work. Thus, while we have focused on two specific algorithms

in this paper, our analysis should be viewed as an example of

how to extend a larger family of algorithms to EPE.

B. Finite Horizon Empirical Policy Evaluation

Another extension of this work is devising backward and

bidirectional exploration-based EPE algorithms for the finite

horizon cumulative cost value function

v(s) = E

[

T
∑

t=0

c(Zt)

∣

∣

∣

∣

∣

Z0 = s

]

=
T
∑

t=0

Pt(s, ·)c.

Here one aims to estimate multi-step transition distributions of

the form Pt(s, ·). Though our algorithms do not immediately

apply, relevant analogues of Approx-Contributions

exist in the case where P is known. In particular, [18] provides

an algorithm to estimate Pt(s, ·) when P is known. The algo-

rithm is analogous to Approx-Contributions in that it

explores backward from high-cost states. Moreover, [18] pro-

vides a bidirectional variant. Both of these algorithms could

be adapted to EPE using our approach; this would yield ana-

logues of Backward-EPE and Bidirectional-EPE for

finite horizons.

C. Reusing Samples Versus Resampling

As mentioned in Section II, an alternative of

Backward-EPE would take independent samples from

P(s, ·) for each s ∈ Nin(sk) and at each iteration k, rather than

only sampling from P(s, ·) when we first encounter s as in

Backward-EPE. This alternative scheme is formally defined

in Appendix G of the supplementary material. An interesting

property is that, while the invariants of Lemma 1 fail, a

related error process is a zero-mean martingale (see Appendix

G of the supplementary material), and thus the ultimate

estimate is unbiased. Analytically, this is an advantage over

Backward-EPE, where the P- and P-invariants hold but the

corresponding value functions v and v are biased estimates

of v. The disadvantage of this alternative approach is that it

may sample many times from each row of P, and thus the

overall sample complexity may exceed that of the forward

approach. Put differently, Backward-EPE is conservative in

the sense that it performs no worse than the forward approach

in the worst case (see Section II), but it sacrifices desirable

properties that could perhaps improve performance in other

cases. A useful avenue for future work would thus be to

investigate this tradeoff.

D. PageRank Estimation With Limited Knowledge

A problem that has received little attention is PageRank esti-

mation when the estimator has limited knowledge of P. For

instance, consider a third party who wishes to identify influ-

ential Twitter users for advertising. Since PageRank serves

as a measure of influence in networks, the third party may

wish to identify high PageRank users, but the Twitter graph

(as encoded by P) is not publicly available, and thus exist-

ing PageRank estimators do not apply. However, Twitter does

Authorized licensed use limited to: University of Michigan Library. Downloaded on June 28,2021 at 19:10:06 UTC from IEEE Xplore. Restrictions apply.

VIAL AND SUBRAMANIAN: EMPIRICAL POLICY EVALUATION WITH SUPERGRAPHS 651

allow limited data requests [19], which may allow the third

party to partially recover relevant entries of P. This setting

could be abstracted as the follows: devise an algorithm that

estimates PageRank while only sampling from P and mini-

mizing sample complexity. This is similar to the problem we

considered in this work, with one major difference: we jus-

tified the existence of a supergraph based on, for example,

physical limitations that prevent transitions between states; if

P represents Twitter, states (i.e., Twitter users) can be con-

nected arbitrarily. Thus, we could perhaps replace knowledge

of the supergraph with sampling of incoming neighbors, i.e.,

given a Twitter user, we can sample a random follower via data

request. This would serve a similar purpose as the supergraph,

and we suspect many of our ideas could be recycled.

E. Other Related Work

In addition to our discussion of [5] in Section I, we clar-

ify some connections to other RL papers. First, recall from

Section II-D that the complexity of Backward-EPE has a

(1−γ)−2 dependence on the discount factor γ . At first glance,

this appears to violate a (1−γ)−3 lower bound from [20]; see

also [21] for matching upper bounds. The distinction here is

that [20], [21] consider the problem of learning near-optimal

policies, whereas Backward-EPE addresses the simpler task

of learning the value function for a fixed policy. Next, we note

the PageRank/RL connection was previously explored in [22];

however, [22] aimed to adapt RL algorithms to PageRank esti-

mation, so our goals are complementary. Generally, we refer

the reader to [1], [2], [3], [4] for general background on RL

and MDPs.

Finally, we clarify distinctions between our work and oth-

ers that exploit sparsity in reinforcement learning. Roughly

speaking, these works presuppose that the value function can

be approximated as v ≈ �θ , where � is S × d feature matrix

and θ is a d × 1 parameter vector, with typically d � S.

Here one can overparameterize by choosing d large – pos-

sibly larger than the number of observed transitions – and

impose sparsity via �1 regularization to learn relevant features

and avoid overfitting. See, for example, [23], [24], [25], [26]

for policy evaluation, [27] for multi-task learning, and [28] for

bandits. These papers are distinct from ours, which exploits

sparsity in the transition matrix and cost vector and makes no

assumption of a low-dimensional representation (of course,

this means we do not benefit from such a representation

either). Another distinction is that the aforementioned works

assume the data is collected from a trajectory. Hence, while

our work and [23], [24], [25], [26] all study policy evaluation,

our formulation asks how data should be collected from the

simulator, while [23], [24], [25], [26] ask how one can learn

in feature space and select relevant features.

REFERENCES

[1] D. P. Bertsekas, Reinforcement Learning and Optimal Control. Belmont,
MA, USA: Athena Sci., 2019.

[2] D. P. Bertsekas and J. N. Tsitsiklis, Neuro-Dynamic Programming.
Belmont, MA, USA: Athena Sci., 1996.

[3] R. S. Sutton and A. G. Barto, Introduction to Reinforcement Learning,
hboxvol. 135. Cambridge, MA, USA: MIT Press, 1998.

[4] P. R. Kumar and P. Varaiya, Stochastic Systems: Estimation,
Identification, and Adaptive Control. Philadelphia, PA, USA: SIAM,
2015.

[5] W. B. Haskell, R. Jain, and D. Kalathil, “Empirical dynamic program-
ming,” Math. Oper. Res., vol. 41, no. 2, pp. 402–429, 2016.

[6] A. Goyal et al., “Recall traces: Backtracking models for efficient
reinforcement learning,” in Proc. Int. Conf. Learn. Represent., 2018,
pp. 1–20.

[7] A. D. Edwards, L. Downs, and J. C. Davidson, “Forward-backward
reinforcement learning,” 2018. [Online]. Available: arXiv:1803.10227.

[8] C. Florensa, D. Held, M. Wulfmeier, M. Zhang, and P. Abbeel, “Reverse
curriculum generation for reinforcement learning,” in Proc. Conf. Robot
Learn., 2017, pp. 482–495.

[9] L. Page, S. Brin, R. Motwani, and T. Winograd, “The PageRank citation
ranking: Bringing order to the Web,” Stanford InfoLab, Stanford, CA,
USA, Rep. 1999-66, 1999.

[10] R. Andersen, C. Borgs, J. Chayes, J. Hopcroft, V. Mirrokni, and
S.-H. Teng, “Local computation of PageRank contributions,” Internet
Math., vol. 5, nos. 1–2, pp. 23–45, 2008.

[11] P. Lofgren, S. Banerjee, and A. Goel, “Personalized PageRank estima-
tion and search: A bidirectional approach,” in Proc. 9th ACM Int. Conf.
Web Search Data Min., 2016, pp. 163–172.

[12] R. Andersen, F. Chung, and K. Lang, “Local graph partitioning using
PageRank vectors,” in Proc. IEEE Symp. Found. Comput. Sci., Berkeley,
CA, USA, 2006, pp. 475–486.

[13] P. Berkhin, “Bookmark-coloring algorithm for personalized pagerank
computing,” Internet Math., vol. 3, no. 1, pp. 41–62, 2006.

[14] G. Jeh and J. Widom, “Scaling personalized Web search,” in Proc. 12th
Int. Conf. World Wide Web, 2003, pp. 271–279.

[15] D. Vial and V. Subramanian, “On the role of clustering in personalized
PageRank estimation,” ACM Trans. Model. Perform. Eval. Comput. Syst.,
vol. 4, no. 4, p. 21, 2019.

[16] S. Wang, R. Yang, X. Xiao, Z. Wei, and Y. Yang, “FORA: Simple
and effective approximate single-source personalized PageRank,” in
Proc. 23rd ACM SIGKDD Int. Conf. Knowl. Discov. Data Min., 2017,
pp. 505–514.

[17] H. Wang, Z. Wei, J. Gan, S. Wang, and Z. Huang, “Personalized
PageRank to a target node, revisited,” in Proc. 26th ACM SIGKDD Int.
Conf. Knowl. Discov. Data Min., 2020, pp. 657–667.

[18] S. Banerjee and P. Lofgren, “Fast bidirectional probability estimation
in Markov models,” in Advances in Neural Information Processing
Systems. Red Hook, NY, USA: Curran, 2015, pp. 1423–1431.

[19] Rate Limiting, Twitter Develop. Doc., San Francisco,
CA, USA. Accessed: Sep. 24, 2020. [Online]. Available:
https://developer.twitter.com/en/docs/basics/rate-limiting

[20] M. G. Azar, R. Munos, and H. J. Kappen, “Minimax PAC bounds on the
sample complexity of reinforcement learning with a generative model,”
Mach. Learn., vol. 91, no. 3, pp. 325–349, 2013.

[21] A. Sidford, M. Wang, X. Wu, L. F. Yang, and Y. Ye, “Near-optimal time
and sample complexities for solving Markov decision processes with a
generative model,” in Proc. 32nd Int. Conf. Neural Inf. Process. Syst.,
2018, pp. 5192–5202.

[22] V. S. Borkar and A. S. Mathkar, “Reinforcement learning for matrix
computations: PageRank as an example,” in Proc. Int. Conf. Distrib.
Comput. Internet Technol., 2014, pp. 14–24.

[23] M. Geist and B. Scherrer, “l1-penalized projected Bellman residual,” in
Proc. Eur. Workshop Reinforcement Learn., 2011, pp. 89–101.

[24] M. Ghavamzadeh, A. Lazaric, R. Munos, and M. Hoffman, “Finite-
sample analysis of lasso-TD,” in Proc. Int. Conf. Mach. Learn., 2011,
pp. 1177–1184.

[25] M. W. Hoffman, A. Lazaric, M. Ghavamzadeh, and R. Munos,
“Regularized least squares temporal difference learning with nested l2
and l1 penalization,” in Proc. Eur. Workshop Reinforcement Learn.,
2011, pp. 102–114.

[26] J. Z. Kolter and A. Y. Ng, “Regularization and feature selection in least-
squares temporal difference learning,” in Proc. 26th Annu. Int. Conf.
Mach. Learn., 2009, pp. 521–528.

[27] D. Calandriello, A. Lazaric, and M. Restelli, “Sparse multi-task rein-
forcement learning,” Intelligenza Artificiale, vol. 9, no. 1, pp. 5–20,
2015.

[28] Y. Abbasi-Yadkori, D. Pal, and C. Szepesvari, “Online-to-confidence-set
conversions and application to sparse stochastic bandits,” in Proc. 15th
Int. Conf. Artif. Intell. Stat., 2012, pp. 1–9.

[29] P. Lofgren and A. Goel, “Personalized PageRank to a target node,” 2013.
[Online]. Available: arXiv:1304.4658.

[30] D. P. Dubhashi and A. Panconesi, Concentration of Measure for the
Analysis of Randomized Algorithms. Cambridge, U.K.: Cambridge Univ.
Press, 2009.

Authorized licensed use limited to: University of Michigan Library. Downloaded on June 28,2021 at 19:10:06 UTC from IEEE Xplore. Restrictions apply.

