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Empirical Policy Evaluation With Supergraphs

Daniel Vial

Abstract—We devise algorithms for the policy evaluation
problem in reinforcement learning, assuming access to a sim-
ulator and certain side information called the supergraph. Our
algorithms explore backward from high-cost states to find high-
value ones, in contrast to approaches that work forward from
all states. While several papers have demonstrated the utility of
backward exploration empirically, we conduct rigorous analyses
which show that our algorithms can reduce average-case sample
complexity from O(Slog S) to as low as O(log S). Analytically, we
adapt tools from the network science literature to provide a new
methodology for reinforcement learning problems.

Index Terms—Reinforcement learning, Markov decision
processes, policy evaluation, sample complexity, PageRank.

I. INTRODUCTION

EINFORCEMENT learning (RL) [1], [2], [3] is a

machine learning paradigm with applications in many
domains. At a high level, RL studies agents interacting with
uncertain environments — by taking actions, observing the
effects of those actions, and incurring costs — in hopes of
achieving some goal. Mathematically, this is often cast in the
following Markov decision process (MDP) model [4]. Let S
and A be finite sets of states and actions, respectively; for
simplicity, we assume S = {1, ..., S} for some S € N through-
out the paper. The uncertain environment is modeled by a
controlled Markov chain with transition matrix P, i.e.,

P(Si41 = 5'1S; = 5, A = a)
= P(s’ls, a) Vs, €eS,ae A

where {S;};°, and {A;};°, are the random sequences of states
and actions, respectively. State-action pair (s,a) € S x A
incurs instantaneous cost c(s, a) € Ry. Mappings 7 : S — A
are called policies and dictate the action taken at each state,
ie., A, = mw(S;). If the initial state is s € S and the agent
follows policy =, it incurs discounted cost

o0
V() =Er | (1—y) Y y'e(S, A)|So =5
=0
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o0
= (=) V'Pi(s, Yex (1)
=0
where [E; means A; = 7 (S;) inside the expectation, y € (0, 1)
is a discount factor, and Py (s, s') = P(s'|s, 7 (s)) and c; (s) =
c(s, m(s)) are the transition matrix and cost vector induced by
the policy 7.

To find good policies — roughly, = for which v, is small —
one often needs to estimate v, for a fixed , when the MDP
model is unknown but can be sampled from (we will soon
make this precise). For example, the empirical policy iteration
algorithm of [5] iteratively estimates v, and greedily updates
. Moving forward, we focus on the former step, which we
call empirical policy evaluation (EPE). The policy 7 will thus
be fixed for the remainder of the paper, so we dispense with
this subscript in (1) and (with slight abuse of notation) define
our problem as follows. Let y € (0, 1) be a discount factor,
c e Ri a cost vector, and P an S x S row stochastic matrix.
We seek an algorithm to estimate the value function

v=(>1-y)) y'Pe=0-yU-yP) e
t=0

2

We assume the algorithm has access to a simulator, i.e., P is
unknown but the agent can sample random states distributed as
P(s,-) (for any s € S) via interaction with the environment.
Since this interaction can be costly in applications, we aim
to estimate (2) with as few samples as possible. In contrast
to some works, we also assume c is a known input to the
algorithm. Thus, our algorithms are suitable for goal-oriented
applications where one knows instantaneous costs a priori —
for instance, which states correspond to winning or losing if
the MDP models a game — and aims to estimate long-term
discounted costs — for instance, how good or bad non-terminal
configurations of the game are.

A. Forward vs. Backward Exploration

To contextualize our contributions, we contrast two
approaches to EPE. The first is one of forward exploration,
where v is estimated by sampling trajectories beginning at each
state. We focus on a typical scheme employed in, e.g., [5],
which we refer to as the forward approach for the remainder
of the paper, and which proceeds as follows. First, let {W;}7°,
be a Markov chain with transition matrix P, fix s € S and
T € N, and rewrite (2) as

T—1

v(s) = (1= y) Y ¥ Ele(W)|Wo = s1+ O(llclooy”). (3)
=0

Here the O(||c|looy”) bias can be made small if T is cho-
sen large, and the first term can be estimated by simulating
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length-T" trajectories. More specifically, let {W,S’II}ITZ_O1 be a
trajectory obtained as follows: set Wy’ = s and, for 7 €
{1,...,T — 1}, sample W;"" from P(W,”',,-). Letting m € N
and repeating this for i € {1, ..., m}, we obtain an unbiased
estimate of the first term in (3):

1 m T—1 )
— > A= Y vie(w).
i=1 =0

This forward approach is simple both algorithmically and
analytically; see Appendix I of the supplementary material.
However, since trajectories must be sampled starting at each
state to estimate v, 2(S) samples are fundamentally required,
which may be prohibitive in practice.

The second approach we consider is one of backward explo-
ration. This approach relies on the idea that if there are only
a few high-cost states with only a few trajectories leading to
them, it is more efficient to work backward along just these
trajectories (or along a small set containing them) to identify
high-value states (those s for which v(s) is large). Put differ-
ently, if P and c are sparse, intuition suggests that backward
exploration from high-cost states is more sample-efficient than
forward exploration from all states. While intuitively reason-
able, there are two issues that prevent backward exploration
from reducing the linear sample complexity of the forward
approach. First, the agent must identify high-cost states in
order to explore backward from them, without visiting all
states. Second, the agent must explore a small set of tra-
jectories likely to lead to high-cost states, without starting at
each state and filtering out trajectories that do not reach the
high-cost set.

Several algorithmic and computational approaches have
been proposed to combat these issues. For instance, [6] uses
observed state-action-cost sequences to train a model that
generates samples of state-action pairs likely to lead to a
given state. This allows the agent to construct simulated
trajectories that are guaranteed to lead to high-cost states,
addressing the second issue; the observed sequences are also
used to identify high-cost states, addressing the first issue.
The authors of [7] similarly train a model that predicts which
trajectories lead to high-cost states while assuming costs are
known a priori. In a different vein, [8] considers physical
tasks like a robot navigating a maze which have clear goal
states, addressing the first issue. The state-action space is
assumed to have a certain continuity — “small” actions (e.g.,
a robot moving a small distance) lead to “nearby” states (e.g.,
physically close locations) — addressing the second issue. (We
do note the algorithms [6], [7], [8] operate on trajectories,
whereas we require a simulator.)

Despite all of the promising results [6], [7], [8] observed in
practice for backward exploration, theoretical understanding of
its limits and the determination of any guarantees are missing
in the literature. Furthermore, a framework within which one
can develop backward exploration algorithms with provable
guarantees while addressing the issues discussed above is also
missing. Our approach to developing such a framework is as
follows. First, as mentioned above, we assume the cost vector
is known a priori (like [7] and similar to [8]). Second, we

assume the agent is provided certain side information: A €
{0, 1}5*S satisfying the “absolute continuity” condition

A@s, ) =0=P(s,5) =0 Vs, €S. “4)

Note we can view A as the adjacency matrix for a graph
whose edges are a superset of those in the graph induced
by P; thus, we refer to this side information as the super-
graph. The utility of the supergraph is that it allows the agent
to determine which states may be “close” to high-cost states
in the induced graph, which may allow for construction of
trajectories leading to such states. In this work, we assume
the supergraph is provided and do not address the important
practical consideration of how to actually obtain it. However,
we do note it can likely be obtained from domain knowl-
edge. For instance, in a robot navigation task like [8], one-step
transitions between physically distant states s and s’ may be
impossible, which would allow us to conclude P(s,s') =0 a
priori and set A(s,s’) = 0. Unlike [8], however, our super-
graph assumption does not depend on state-action continuity
and thus should hold more generally; for example, if the MDP
models a game, the game’s rules may prevent transitions from
s to s’, so that A(s, s) = 0. We also emphasize that the reverse
of the implication in (4) need not hold. Thus, one can always
set A(s,s’) = 1 V 5,5 to ensure that (4) holds. Of course,
there is a trade off; as will be seen, our algorithms are most
efficient when A is sparse in a certain sense.

B. Our Contributions

In the remainder of the paper, we devise two backward
exploration-based EPE algorithms that exploit the supergraph.
Unlike [6], [7], [8], which only present empirical results,
our algorithms are amenable to rigorous accuracy and sample
complexity guarantees. Thus, beyond developing a framework
within which to generate backward exploration algorithms,
our main contribution is to offer theoretical evidence for the
empirical success of backward exploration. More precisely,
our contributions are as follows.

First, we devise an algorithm called Backward-EPE in
Section II that uses the supergraph to discover high-value
states while working backward from high-cost ones. We estab-
lish /o, accuracy and worst-case sample complexity O(SlogS),
equivalent to the average-case complexity of the forward
approach. More notably, we show the average-case sample
complexity of Backward-EPE is O(c_i(||c||1/||c||00)logS),
where d is the average degree in the supergraph. Note the
problem-instance dependent sparsity parameter in this bound,
c_l(||c|| 1/llclloo), precisely captures the intuition that backward
exploration depends on how many high-cost states are present
(the |lc|l1/lIc]lco term) and how many trajectories lead to them
(the d term, which is a function of the transition matrix).

In the extreme case, c_i||c||1/||c||oo = O(1), in which case
Backward-EPE reduces sample complexity from SlogS to
log S.

Next, we combine Backward-EPE with the forward
approach for our second algorithm Bidirectional-EPE in
Section III. We establish a (pseudo)-relative error guarantee for
this algorithm, which we argue is useful in, e.g., empirical pol-
icy iteration. Analytically, we show Bidirectional-EPE
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reduces the sample complexity of a plug-in method with the
same accuracy guarantee; empirically, we show it is more
efficient than using the backward or forward approach alone.
Both of our algorithms are inspired by methods that
estimate PageRank [9], a node centrality measure from
the network science literature that resembles the value
function (2). Critically, however, the PageRank estimation
literature assumes P is known, so the extension to EPE
is non-trivial. Thus, another contribution of this work to
adapt PageRank estimators to EPE. A further contribution
of our work is methodological: we generalize a deterministic
fixed-point equation (FPE) from the PageRank setting to a
family of random FPEs in the EPE setting (see Lemma 1
in Section II-B and Lemma 2 in Appendix B of the supple-
mentary material). These FPEs are distinct from the Bellman
equation and provide new tools for RL problems like EPE;
in particular, they allow us to derive sample complexity
bounds for our algorithms. Moreover, we address several
technical subtleties that arise when applying these FPEs (see
Remarks 3, 4, and 5). Finally, we note that side information to
guide backward exploration appears to be necessary to prove
such FPEs in the RL setting. Thus, another methodological
contribution is our supergraph construction, which enables
derivation of FPEs while being intuitively grounded in, and
motivated by, real-world settings like robots and games. To
demonstrate the utility of these methodological contributions,
we discuss other problems where we believe our approach
can be used in Section IV, along with other related work.
Frequently-used notation: For a matrix B and any ¢t € N,
B'(s,s"), B'(s, -), and B'(-,s') denote the (s, s')-th entry, s-th
row, and §'-th column of B’, respectively. We write 0,,x,, and
1,5, for the n x m matrices of zeroes and ones, respectively.
Matrix transpose is denoted by '. We use 1(-) for the indicator
function, i.e., 1(E) = 1 if statement E is true and 1(E) = 0
otherwise. For s € S, ¢; is the S-length vector with 1 in the s-th
entry and O elsewhere, i.e., es(s') = 1(s = 5’). Also for s € S,
Nin(s) = {s' € 8§ : A(s',s) = 1} and diy(s) = |Nin(s)| are
the incoming neighbors and in-degree of s in the supergraph.
Average degree is denoted by d = (1/5) Zf,s/:l A(s,s") =
(1/S) Zle din(s). For {a,}nen, {bn}nen C [0, 00), we use the
standard asymptotic notation a, = O(by), a, = Q(b,), an =
O(by,), and a, = o(by), resp., if limsup,_, ., (a,/b,) < o0,
liminf,— (@, /by) > 0, a, = O(b,) and a, = Q(b,), and
lim;,—, 0o (@, /by) = 0, resp. All random variables are defined
on a common probability space (2, F, IP), with E[.] = fQ -dP
denoting expectation and a.s. meaning P-almost surely.

II. BACKWARD EMPIRICAL POLICY EVALUATION
A. Algorithm

Our first algorithm is called Backward-EPE and is
based on the Approx-Contributions PageRank esti-
mator from [10]. The latter algorithm restricts attention to
the case ¢ = ey for some s* € S and assumes P is
known; our algorithm is a fairly natural generalization to
the case ¢ € R‘i and unknown P. For brevity, we restrict
attention to Backward-EPE in this section. For trans-
parency, Appendix A of the supplementary material discusses

Algorithm 1: Backward-EPE
Input: Simulator for transition matrix P; cost vector c;
discount factor y; supergraph in-neighbors
{Nin (s)}SS: |> termination parameter &; per-state
sample count n
1 k=0, b = Osx1, 1k = ¢, Uy =0, P = Ogxs

2 while ||7¢||co > € do
3 k < k41, sp ~ argmax g rr—1(s) uniformly,
Uk = Ug—1 U Nin(s1)
for s € S do
if 5 € Nin(sx) \ Ur—1 then {X}7_ | ~ P(s, -),
Py(s, ) = éZ?zl 1(X,,; = -); else
Pi(s, ) = Pr1(s,);
end
for s € S do
if 5 = s; then Ve (s) = Ve—1(8) + (1 — y)re—1(s),
ri(s) = y Pi(s, s)re—1(s); else Vi(s) = V1 (s),
ri(s) = rk—1(s) + y Pi(s, si)ri—1(sk);
9 end
10 end

Output: Estimate ¢, = V¢ of v=(1—y) > 2, y'P'c

Approx-Contributions and clarifies which aspects of
our analysis are borrowed from [10] and other existing work.

Backward-EPE is defined in Algorithm 1. The algo-
rithm takes as input cost vector ¢, discount factor y, and
desired accuracy ¢, and initializes four variables: a value func-
tion estimate vy = Osx1, a residual error vector ry = c,
a set Uy = ¥ we call the encountered set, and a transi-
tion matrix estimate Py = Ogys. Conceptually, the algorithm
then works backward from high-cost states, iteratively push-
ing mass from residual vector to estimate vector so as to
improve the estimate of v. More precisely, the first iteration
proceeds as follows. First, a high-cost state s; is chosen
(s1 € S such that ro(s;) = c(s1) is maximal) and its incoming
supergraph neighbors Nj,(s;) are added to the encountered
set (first line in while loop). For s € U; = Nin(s1) —
i.e., s for which P(s, s;) may be nonzero by (4) — an esti-
mate f’l (s,-) of P(s,-) is computed using n samples (first
for loop). The estimate v;(sy) is then incremented with the
(1 —y)ro(s) = (1 — y)c(s) component of v(sy), and Py (s, s1)
is used to estimate the P(s, s1)ro(s1) = P(s, s1)c(s1) compo-
nent of v(s) and to increment the corresponding residual 7 (s)
(second for loop).

In subsequent iterations k, the iterative update proceeds
analogously, choosing s to maximize rx_j(sx), adding Ni,(sx)
to the encountered set, incrementing v (sx) by (1 — y)re—1(s),
and using an estimate of P(s, si)rk—1(sx) to increment ri(s).
The only distinction is that at iteration k, P(s, -) is estimated
only for states s € Uy \ Ug—1. Put differently, the first time we
encounter state s — i.e., the first k for which s € Nj,(sx) — we
estimate P(s, -); we then retain that estimate for the remain-
der of the algorithm. Thus, the encountered set Uy tracks the
rows of P we have estimated up to and including iteration
k. Alternatively, one could estimate P(s, sx) with independent
samples at each iteration k for which s € Nj,(s); we discuss
the merits of this approach in Section IV.
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Remark 1: In practice, one can maintain a single P matrix
in Algorithm 1, updating rows Ni,(sx) \ Ukx—1 in the first for
loop and leaving other rows unchanged. Similarly, one can
maintain v, r vectors and only modify rows Ni,(sx) U {sx} in
the second for loop. In short, the computational complexity
of iteration k is typically lower than S; it appears to be S
in Algorithm 1 only because we distinguish f’k, Vi, Ik Across
iterations k for analytical clarity.

B. Invariant

The manner in which we update the estimate and residual
vectors may appear opaque, but it allows us to prove the fol-
lowing analogue of a fixed-point equation (FPE) from [10].
The FPE from [10], and others like it in the PageRank
literature, are fundamental analytical tools for PageRank esti-
mators. As will be seen, our analogue is similarly critical for
deriving sample complexity bounds for Backward-EPE and
(we believe) backward exploration approaches more generally
(see Section IV-A). Also, the forthcoming proof suggests that
our supergraph construct is the “correct” side information to
enable such analyzes in the RL setting.

To explain our FPE, let k, = inflk € Z4 : ||[rilloo < €}
denote the iteration at which Backward-EPE terminates, and
let ji5 denote the s-th row of (1 —y)(I—yf’k*)_l, so that fisc is
the value function for s € S defined on the final estimate IA’k*
of P. (More precisely, we will complete the unestimated rows
S\ Ui, of ﬁ’k* — in a manner to be discussed shortly — to obtain
a row stochastic estimate matrix. This will ensure that fisc is
a well-defined value function.) Then the result (roughly) says
that the FPE v (s) + fisrx = fLsc is preserved across iterations
k € {0, ..., k}. Conceptually, this means that if we run the
algorithm until it terminates to obtain ISk*, and then look back
at the sequence {Vy, ”k}];*:o generated by the algorithm, the
FPE will have held at each k. This non-causality is somewhat
unintuitive, yet crucial in our analysis.

Before we formally state the FPE result and prove it, we also
highlight the difficulty in conceiving of such a result: at ter-
mination of the algorithm, the stochastic matrix P is partially
estimated using IA’k* and a large class of stochastic matrices
will agree with [A’k*, but the FPE needs to hold irrespective
of the particular stochastic matrix used as a completion of
13k*. The following lemma overcomes this issue by proving an
FPE for every stochastic matrix which differs from ﬁk* only
in unestimated rows of P, i.e., rows indexed by S\ Uy,; in
other words, simultaneously multiple FPEs hold.

Lemma 1: Let Ys; ~ P(s,-) YV s € S,i € [n], indepen-
dent across s and i, and independent of the random variables
in Algorithm 1. From (Y i}scS,ic[n], define an offline esti-
mate P of P row-wise by P(s,-) = (1/n) Yo 1Y = ).
Furthermore, define
ﬁk* (s,), s€U,

P(s,-), seS\ U

=0-ye(-yP)

) — ﬁk*(sv ')1 NES Uk*
Pis, ) = {P(s, ), seS\ U

s ==yl (I—yP)",

P(s, ) = {

v(s) = usc ®)

v(s) = puse,  (6)

where k, = inf{k € Zy : ||[rrlloo < €} is the iteration at which
Algorithm 1 terminates. Then

Uk (8) + sk = V(s),  Vk(s) + psre = v(s)
Vke{0,...,k},s€S8 as. @)

Remark 2: In words, P and P fill the unestimated rows
of P with offline estimates and the true rows, respectively.
More generally, an analogue of (7) holds whenever unesti-
mated rows are consistent with the supergraph (4); see Lemma
2 in Appendix B of the supplementary material for details. We
also emphasize the offline estimate P is an analytical tool and
does not affect sample complexity.

Proof of Lemma 1: We begin with the second identity in (7).
We fix s € S and use induction on k. For k = 0, (7) is
immediate, since b9 = Ogx; and ry = ¢ in Algorithm 1. For
k € [k], the iterative update of Algorithm 1 implies (a.s.)

Vi (s) + pste = Vk—1(5) + (1 = y)re—1(se) 1(s = s)

N
+ 37 s (1 DS # 52)

s'=1
+ yPu(s, Sk)rkfl(sk))
= Vk—1(8) + MsTh—1
+ rk—l(Sk)(—ﬁ(Sk) + A —=pY)1(s=sp)
+ 7P s0) ®)

where for the second equality we added and subtracted
s (sk)7k—1(sk). Now since Vr—1(s) + Msrk—1 = v(s) by the
inductive hypothesis, and since by definition

() — (1= Pl =s0) = A —y) > y'P'(s.50)

=1

=y =) Y y'P'(s, )P(, )
t=0
= yﬁﬁ(’ S]()’

it suffices to show Pi(s’, sx) = P(s',sg) V s’ € S (since then
the term in parentheses in (8) will be zero). Towards this end,
we fix s € S and consider two cases:

1) If &' € Uy, Algorithm 1 implies Pi(s', s¢) = P, (5, s¢)
(once we estimate P(s’,-), our estimate remains
unchanged). Moreover, Uy C Uy, in Algorithm 1
(the encountered set only grows), so s € U, and
Pr (', sx) = P(s', s3) by definition of P.

2) If s ¢ Uy, Algorithm 1 implies Pi(s’, sx) = 0 (before
encountering s, our estimate of P(s’, -) is 01xs). On the
other hand, Nj,(sx) C Uy, so s’ ¢ Nin(sg) and A(s, s;) =
0 by definition of Nj,(sg). Thus, P(s’, sx) = 0 by (4) and
P(s', s;) = 0 by definition.

The proof of the first identity in (7) is identical, except in the
very last step we must also use the fact that P(s', sx) = 0 =
P(s', sy) = 0 by definition of P. ]

Owing to the fact that (7) holds across iterations, we will
refer to these identities as the P-invariant and the P-invariant,
respectively. These invariants will be pivotal in the theorems
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to come; interestingly though, only one invariant is useful for
each theorem, while the other fails. This is due to technical
subtleties discussed in Remarks 3, 4, and 5.

C. Results

Our first result is an
Backward-EPE.
Theorem 1: Fix ¢,5 > 0 and define

20eler® | (2_5[ log(4||c||oo/a)D
e2(1 —y)? &S -y '
Then assuming n > n*(e, §) in Algorithm 1, P(||V, — v]leo >
2e) < 6.

Proof sketch: The full proof is deferred to Appendix C
of the supplementary material but we sketch it here. First, by
the P-invariant (7), the triangle inequality, and the termination
criteria of Backward-EPE,

accuracy guarantee for

n*(e, §) =

19 = vl < [Pk =] + 17 = Vlloo < & + 7 = Viloo-

Now since v and v are the value functions corresponding to
P and P, respectively, and since P is an unbiased estimate of
P, we should expect the second term to be small for large n.
Howeyver, this is not immediate, because Vv is a biased estimate
of v in general. Thus, we further bound ||V — v||« by another
random variable. First, for large 7, similar to (3),

Pz -9) Y A (G IO
t=1

Second, using convexity of | - ||« and row stochasticity of P,
a simple calculation yields

(7= #)el = (7 =)l
o0 oo

+ ” (- P)P’_ICHOO

Iterating this inequality and substituting into (9) gives a bound
on ||V — v|e in terms of ||(P — P)P'"!¢|leo. Furthermore,
this latter random variable has the same distribution as
(P — P)P'"'¢||o0, SO We can bound |7 — v|s in terms of
(P — P)P"¢|ls (see Remark 3). Finally, defining d;—1 =
P~ ¢, the s-th entry of PP~ !¢ is

S N n
D Plshdiah =) (% D (Y= s’)>dt1 )

s'=1 s'=1 i=1
1 n
= - Zdt—l(Ys,i)»
ni
=

and similarly, the s-th entry of PP 1¢ is Ed,—1(Ys,i).
Therefore,

= max
[ seS

H (P — P)Plilc‘H - Z(dt_l (YS,,') — Ed;_ (YS,,‘))

n-
i=1

1 & ‘

which is bounded by e with high probability by standard
Chernoff bounds. u

Remark 3: Tt may seem wasteful that we use the P-invariant
instead of the P-invariant, since P fills unestimated rows of

ﬁk* with the actual rows of P, and thus v should be a better
estimate of v. We explain this choice as follows. First note
that by the arguments in the proof sketch, bounding ||v — v|
amounts to bounding ||(P — P)P'~!¢||s. It is tempting to use
the union bound to bound such terms as

Uk*> .

The issue with this approach is that there is a complicated
dependence between {Xj ;}?_; and Uy, in Algorithm 1. We also
note that we replace ||(P — P)P''¢|lso by [|(P — P)P""'¢l0o
in the proof sketch above owing to a similar issue.

Theorem 1 says that if we take n > n*(e,8) sam-
ples per state encountered, the estimate vy, produced by
Backward-EPE will be 2¢-accurate. Since Backward-EPE
encounters |Uy,| states by definition, the total number of
samples needed to ensure 2e-accuracy is n*(e, 8)|U,|.
Hence, our next goal is to bound |U,|, in order to bound
this overall complexity. By the backward exploration intuition
discussed in Section I, we should expect a nontrivial bound
|Uk,| = o(S) if the cost vector and supergraph are sufficiently
sparse. However, even when both objects are maximally
sparse, one can construct adversarial examples for which
Ur, = S. For instance, suppose we restrict to ¢ having
a single high-cost state and the supergraph to having the
minimal number of edges S. Then taking ¢ =[1 0 ... 0] and
A= 1S><1€-1r will satisfy this restriction, but will yield Uy, = S
(assuming ¢ < 1). Note the key issue in this example (and,
we suspect, in most adversarial examples) is the interaction
between the cost vector and the supergraph; in particular,
if high-cost states have high in-degrees, |Uk,| will be large
(even if there are few high-cost states and few edges overall).

In light of this, our best hope for a nontrivial bound on
|Uk,| is an average-case analysis, i.e., bounding [E|Uj, | while
randomizing over the inputs of Backward-EPE. As it turns
out, we only need to randomize over the cost vector; roughly,
by considering random cost vectors for which the expected
cost of any given state does not dominate the average expected
cost. For such cost vectors, the interaction between cost and in-
degree discussed in the previous paragraph will “average out,”
and consequently the adversarial examples will not dominate
in expectation. This is formalized in the following theorem.

Theorem 2: Let C be an Ri-valued random vector s.t.
E|Cll1 < oo,EC(s) < BE|CJ1/S=:c for some constant
B € [1,00). Then if Algorithm 1 is initialized with cost
vector C,

p(|-Ppc

SZ]P’<

€U,

> n’Uk*)

[e.0]

- )

i=1

=N

Sed
<

REAE e(1—y)

where the expectation is with respect to C and the randomness
in Algorithm 1.

Proof: As for Theorem 1, we exploit the P-invariant (7)
(note we proved Lemma 1 for fixed ¢ but the same arguments
hold for random C owing to their almost-sure nature). First
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observe

k*
V() = D, () = (1 =) D 1) 1(s = s)

k=1

k*
>e(l—y) ) s =)

k=1

where the first inequality holds by the P-invariant (7), the
equality by Algorithm 1, and the second inequality by def-
inition of k,. On the other hand, we have

|Uk.| =

ks
U Nin(o0)| = 3 dns0)
k=1

ke S N ks
=D D da@lG=50= dn(s) ) 1(s =0
s=1 k=1

k=1 s=1
Combining the previous two inequalities and taking expecta-
tion, we have therefore shown

R _
E|U,| < propu ; din () E¥(s). (10)

Now consider Ev(s). By definition (5),

Ev(s) = Ef:C = (1—y) »_ y'EP'(s,)C
t=0

= (- i ny[E[T)’(s, -)|c]c].
=0

Now after realizing C, we fill some rows of P with samples
generated during the algorithm and other rows with samples
generated offline; in contrast, all rows of P are filled with
offline samples. But in either case, these samples have the
same distribution, so we can replace P by P in the previous
equation. Moreover, P is independent of the random variables
in Algorithm 1, including ro = C. In summary,

E[F’(s, .)|c] =E[P'(s,)IC] = E[P'(s,)]. (11

Combining the previous two equations and using the assump-
tion on C, we obtain

Ev(s) = (1 —y) ) y'E[P'(s, ) ]EIC]

=0
too )

< (A=) yE[Ps)]elsaa =¢
=0

where we also used row stochasticity of P. Substituting
into (10) completes the proof. |

Remark 4: This proof fails if we use the P-invariant
instead of the P-invariant. In particular, we cannot express
E[P!(s, -)|C] as deterministic in (11), since C influences which
states are encountered during the algorithm and thus influ-
ences which rows of P are estimates and which are exact. This
illustrates the utility of the P-invariant: it allows us to “decor-
relate” the estimated transition matrix from the cost vector,
i.e., to obtain E[P'(s, )C] = E[P'(s, )]E[C]. In the current
work, this is our only use of this decorrelation trick, but it
may useful in analyzes of algorithms like Backward-EPE
(see Section 1V).

D. Discussion

We now return to interpret our results and derive
Backward-EPE’s overall sample complexity, which (we
recall) is n*(e, 8)|Ug,|. In the worst case, |Ur,| = 2(5),
and thus the worst-case sample complexity for fixed c is
O(Sn*(g, 8)). Neglecting loglog factors and constants, ignor-
ing log terms for quantities that have polynomial scaling (e.g.,
writing log(1/(1 — y))/(1 — y)? as simply 1/(1 — y)?), and
assuming y is either constant or grows to 1, Theorem 1 implies

S (e, 8) = O(Slog(S/9) clZe (1 = 1)72).
For comparison, the complexity of the forward approach is

O(Stog(s/8)llelZe (1 = 1)) (12)
(see Appendix I of the supplementary material). Thus, in the
worst case Backward-EPE has similar complexity to that of
the forward approach, with a slightly improved dependence on
the discount factor y (see Section IV-E). (The extra 1/(1 —y)
factor in (12) arises since O(1/(1—y))-length trajectories must
be sampled to make the bias in (3) small.)

In the average case, however, the sample complexity of
Backward-EPE can be dramatically lower. In particular,
Theorem 2 implies average-case sample complexity

Sed - log(S/8)ICII%
e(l—y) &1 -y)?
_ o ICidlog(s/$)ICIZ |

e3(1 - )’
(This argument is not precise, since ||C|loc is random in
Theorem 2; we address this shortly.) Thus, if y, §, and

IClloo/€ are constants, Backward-EPE has average case
complexity

]E|Uk*| x n*(e, 8) = 0(

O((ICN11/1Clloo) x d x logSS). 13)

Note (13) captures the intuition that backward exploration is
efficient when the costs and supergraph are sufficiently sparse,
since ||C||1/||Clloo and d quantify cost and supergraph sparsity,
respectively. We also note that when y, §, and ||C|l« /€ are
constants, the forward approach’s complexity (12) becomes
simply O(Slog S). In the extreme case, ||C||1/||Clloo, d = O(1)
and Backward-EPE reduces sample complexity to O(log S).

We can make this argument rigorous with further assump-
tions on C. For example, the following corollary considers
random binary cost vectors with H nonzero entries. Such cost
vectors could arise, for example, in MDP models of games,
where states corresponding to losing configurations of the
game have unit cost and other states have zero cost.

Corollary 1: Fix H € S and define Cy = (Y°5_, ase; : a; €
0,1} VsesS, Zf:l as; = H} to be the set of binary vectors
with H nonzero entries. Assume the cost vector C is chosen
uniformly at random from Cy and y, §, ¢ are constants. Then
to guarantee P(||Vk, —v]leo > 2¢|C) < 8 a.s., Backward-EPE
requires O(min{Hd, S}logS) samples in expectation.

Proof: See Appendix D of the supplementary material. W
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Fig. 1. Numerical illustration of Backward-EPE

E. Tightness of Our Bounds

At present, we lack lower bounds for the problem of EPE
with supergraphs. In fact, even in the case where the cost
vector has a single nonzero entry — i.e., the PageRank setting —
the literature contains no tight lower bounds for the analogous
PageRank problem, to the best of our knowledge. However,
we next offer some speculative thoughts on this issue.

For simplicity, we restrict to the setting of Corollary 1.
In this case, intuition suggests that any reasonable algorithm
requires average sample complexity at least

Ec|{s' € S : A(s', s) = C(s) = 1 for some s € S}|

= IEC|UseS:C(s):lNin(s)| (14)

where the expectation is with respect to the random cost vector
C from Corollary 1. Indeed, at a minimum, any algorithm
should sample from P(s’, -) whenever s’ belongs to the set on
the left side of (14), since these rows may contribute non-
negligibly to v(s).

Assuming our conjecture that (14) lower bounds sample
complexity holds, we can compare it to the upper bound in
Corollary 1 as follows:

Ec|Uses:co=1Nn(®)| < ) din()Pc(C(s) = 1)
seS
= Z din(s)H/S = Hd.
seS

15)

Hence, the tightness of our upper bound is controlled by the
inequality in (15), which is tight if the sets {Nj,(s) : C(s) = 1}
have little “overlap”. In other words, the gap (if any) depends
on how much “double-counting” of incoming neighbors of
high-cost states occurs (implicitly) in our analysis. As far
as we are aware, sharpening the upper bound to account for
this double-counting is an open problem even in the simpler
PageRank case.

In summary, the gap in our upper bound arises from (15),
but closing this gap is nontrivial even when ¢ = e;. Finally, we
note that (15) is tight for certain instances of the supergraph.
In Appendix E of the supplementary material, we provide such
instances by showing the following: given H and d, there exists
a supergraph with average degree d arbitrarily close to d such

that (15) (and thus the upper bound of Corollary 1) is tight.
See Claim 1 in Appendix E of the supplementary material for
details.

F. Numerical Illustration

To conclude this section and to illustrate our analysis, we
present empirical results in Figure 1. Here we generate random
problem instances P, ¢ in a manner that yields three differ-
ent cases of the complexity factor d|C I1/1ICllc identified
above; roughly, (1), G)(«/E), and O(S) (left). In all cases,
the sample complexity of Backward-EPE decays relative to
that of the forward approach, suggesting sublinear complex-
ity (middle). Moreover, the different scalings of d||C||1/I|Clloo
reflect in different rates of decay in relative complexity, sug-
gesting d ICIl1/lICllsc indeed determines sample complexity.
We also note algorithmic parameters are chosen to ensure both
algorithms yield similar /o, error (right). Error bars show stan-
dard deviation across problem instances. Further details can be
found in Appendix H of the supplementary material.

III. BIDIRECTIONAL EMPIRICAL POLICY EVALUATION
A. Algorithm

Our second algorithm is called Bidirectional-EPE
and is inspired by the Bidirectional-PPR PageRank
estimator from [11] (see Appendix A of the supplementary
material for further discussion of this PageRank estimator). As
will be seen, this algorithm is conducive to a stronger accu-
racy guarantee; namely, a (pseudo)-relative error guarantee.
The utility of such a guarantee is that the resulting estimates
tend to better preserve the ordering of the actual value function
when compared to an /o, guarantee. Preserving this ordering
is important in the problem of finding good policies; e.g., in
the greedy update of policy iteration mentioned in Section I.

As its name suggests, Bidirectional-EPE proceeds
in two stages: it first conducts backward exploration using
Backward-EPE, then improves the resulting estimate
via forward exploration. The analysis of this bidirectional
approach relies on the P-invariant (7). Similar to Theorem 1,
we can make |v(s) — v(s)| small by taking n large in
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Backward-EPE; when this holds, we have

v(s) A v(s) = Vg, (5) + sTk, - (16)

Since u; is a probability distribution over S, the residual term
in (16) satisfies

ng

1
MsTk, = EZ;Nbrk* (Zs) ~ E Z s (Zs,i)

i=1

where in the approximate equality {Zs,i}g | are distributed as
Hs and np is large. By (16),

1 &
V) & B9 + - > e (Zs). (17)
i=1

Intuitively, the right side of (17) is a more accurate estimate
of v(s) than ¥y, (s) alone; the only remaining question is how
to generate {Zs,i}g 1~ This can indeed be done in our model;
namely, by generating Geometric(1 — y)-length trajectories on
P. More specifically, given P, we first generate a Geometric(1 —
y) random variable Ly ; and set Z?l = s5; we then sample Z{ ;
from E(Z;;l, -) foreacht € [L, ;]; and finally we set Z; ; = ZYL;’
Then conditioned on P, Z;; is distributed as Ms. To see why,
let PZ denote probability conditioned on P. Then

o

PE(z,; =) = ZIP’B(ZS,I' = 5|Ly; = )PE(Ly; = 1)
=0
o

Pl(s, sH(1 = y)y" = ps(s).
t=0

Thus, sampling from p; amounts to sampling from P(s, -).
To do so, we either saﬁple from P(s, -) (if s ¢ Uy,) or from
ﬁk* (s,-) (if s € Ug,); the former is exactly what was done
in Backward-EPE, and the latter can be done after running
Backward-EPE. Put differently, to generate Z;; we sam-
ple from P(s, -) unless we have already sampled from P(s, -)
during Backward-EPE, in which case we sample from the
empirical estimate 13/{* (s, -) obtained during Backward-EPE.

The Bidirectional-EPE algorithm is formally defined
in Algorithm 2. As above, write np for the per-state forward
trajectory count; we also write np for the per-state sample
count in the Backward-EPE subrountine. We denote the
ultimate estimate of v by ¥pp.

B. Results

As alluded to above, Bidirectional-EPE is conducive
to a pseudo-relative error guarantee. In particular, we have
the following relative-plus-additive error bound. Note v(s) can
be arbitrarily small, so we should not expect a relative error
guarantee for all states; however, for high-value states, the
relative guarantee will dominate.

Theorem 3: Fix g, € (0, 1) and g4p, 6 > 0, and define

324¢ log(4S/5)
€1 Eabs
3log(452/8)
2. .
(log(l + 24))" min, jes:p(i j=0 PG, J)

n;(grelv Eabs, 8) =

ng(greh Eabs, 8) =

Algorithm 2: Bidirectional-EPE

Input: Simulator for transition matrix P; cost vector c;
discount factor y; supergraph in-neighbors
{Nin (s)}sszl; termination parameter &; per-state
backward, forward sample counts ng, ng
1 Run Backward-EPE (Algorithm 1) with inputs P
simulator, c, y, {Ni,,(s)}le, g, B
2 Let V,, rk,, Uk,, f’k* be estimate vector, residual vector,
encountered states, and P estimate at termination of
Backward-EPE, and define P in (6)
3 for s €S do
Generate samples {Z; ;};_; from s, set
P8 (s) = Pr () + 70 Lty i (Ze)
5 end
Output: Estimate ¥pp of v= (1 —1y) Y =y P'c

1=y
Then assuming ng > 1} (&rel, €abs, 8) and ng > nj(€rel, Eabs, 8)
in Algorithm 2, we have

P(US {080 = v(9)] > eriv() + eans}) <8, (18)

Proof sketch: The proof separately treats errors arising
from the backward and forward exploration stages; we briefly
describe each stage here and defer details to Appendix F of the
supplementary material. For the backward exploration stage,
Lemma 3 in Appendix F of the supplementary material shows
that if np > n}kg(grelv Eabs, 6),

P(Ulehy(s) - v(s)| > %v(s) + 8azbs }) < g
with v defined as in (6). We prove (19) in two steps. First, we
show that if ng > n}(eres, €abs, 8), then |P(s, s") — P(s, s")| <
AP(s,s") for some A € (0,1) and all 5,5’ € S. This fol-
lows from standard Chernoff bounds after replacing P by P
(which is necessary for similar reasons as those discussed in
Remark 3). Second, we show that if |P(s,s’) — P(s,s")| <
AP(s,s"), then v is close to v (in the sense of (19)). To illus-
trate the second step, note we can use the upper bound on P
to write

19)

T T
A=Y y'Pis,de <=y > y' (1 + 1P, )e

=0 =0

T
<1+0Ta-y) Z yIP (s, e
=0
For large enough 7T, the left and right sides are within ggp/2-
additive errors of v(s) and (1 + M Tv(s), respectively; having
chosen 7, we can choose A to ensure (1 +1)7 <1+ Erel/2.
It is from here that the relative-plus-additive guarantee of
Theorem 3 arises.

For the forward exploration stage, we let G denote the
o-algebra generated by all the random variables from the
Backward-EPE subroutine of Bidirectional-EPE, and
we show that when np > ny(re, €aps, 8),

9)

Eabs

2

Erel

P(|93D(s) —u()] = ) +
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Erel Eabs 3
X 1([us) = v(9)] = v + 22 ) < 72 (20)
Here we use probability conditioned on G so that the only
randomness in |[Vgp(s) — v(s)| is that from the forward explo-
ration. Moreover, we can bound this term by exploiting the
P-invariant to write |vpp(s) — v(s)| as the deviation of an
empirical average from its mean (similar to the Theorem 1
proof sketch) and then use standard Chernoff bounds. Roughly
speaking, this requires us to use the indicator function in (20)
to replace v(s) by v(s) in the probability term; we then sep-
arately address the cases of large v(s) and small v(s) using a
modification of the approach from [11], which has a similar
accuracy guarantee. ]
Remark 5: While the choice of invariant used to prove
Theorems 1 and 2 was subtle (see Remarks 3 and 4), choos-
ing the P-invariant for Theorem 3 is rather obvious, since we
explicitly use the matrix P in Algorithm 2.

C. Discussion

We next discuss Theorem 3. To simplify notation, we restrict
to the setting of Corollary 1; however, the key insights extend
to the more general setting of Theorem 2. Also, we assume the
relative error tolerance &,;, the discount factor y, and inac-
curacy probability § are constants independent of S. Finally,
we note Theorem 3 holds for random C; see Remark 9 in
Appendix F of the supplementary material.

We begin by deriving the asymptotic sample complexity of
Bidirectional-EPE in the setting of Corollary 1. For the
backward exploration stage (i.e., the Backward-EPE subrou-
tine), we require per-state sample complexity 1y (&res, €abs, 6);
note this is deterministic since ||Cll.c = 1 pointwise in
Corollary 1. Thus, the average-case sample complexity is (by
Corollary 1),

nE (&rel, Eabs, 8)E| Uk*

log(S) log(1/&aps) Hd
= . — x — ] (21)

min; jes.pi j>0 P J) e
For the forward exploration stage, we require
15 (&rel, €abs, ) = O(s10g(S)/eaps) trajectories of expected

length y /(1 —y) for each of S states. We are assuming y is a
constant, and thus the expected forward complexity is simply
O(eSlog S/eqps). Combined with (21), and writing Kpp for
the overall expected sample of Bidirectional-EPE in
the setting of Corollary 1,

Hdlog(S) log(1/&aps
KBD=0< 0g(8) 10g(1/¢abs)

£ min; jes.p(i j~0 P(i, j)

eSlog S
+ . (22
Eabs

Here the termination parameter ¢ for the Backward-EPE
subroutine is a free parameter that can be chosen to minimize
the overall sample complexity. For example,

H;lgabs
e=0 - —
Smin; jes:pi jy-0 P, )

SHd
= Kpp =0 - —log§
Eabs MIN; jeS:p(i j>0 P, )

(23)

where for simplicity we wrote 1og(1/&aps)/+/€abs as simply
1/./€abs (note this choice of & minimizes (22) if we also ignore
the log(1/e4ps) term in that expression). To interpret (23), we
consider a specific choice of g4,s. To motivate this, we first
observe that in the setting of Corollary 1,

Ev=(1-y)) y'P' xEC
=0

i H H
= y),;yp x < lsx1 = Sl
i.e., the “typical” value is H/S. It is thus sensible to choose
eabs = O(H/S), so that we obtain a relative guarantee for
above-typical values and settle for the absolute guarantee for
below-typical values. Substituting into (23), we conclude that
Bidirectional-EPE requires

(24)

d
KBD =0 \/ - — SlOgS
min; jes:pi j>0 P, )

samples in order to guarantee (18) in the setting of Corollary 1.

It is interesting to compare Bidirectional-EPE to
a plug-in estimator that lends itself to the same accu-
racy guarantee. For this plug-in estimator, we simply esti-
mate v by computing (1 — y) Y, y'P'C, where P(s, ) =
(1/n) Z?:l 1(Ys; = -) with Yg; ~ P(s,-) as in Lemma 1.
Then by the same argument following (47) in the proof of
Theorem 3 in the supplementary material, the plug-in estimate
will satisfy the guarantee (18) whenever n > nj(&rel, Eabs, ).
Consequently, the sample complexity of the plug-in estimator
is, under the assumptions leading to (24),

Slog S
: 82 ) (25)
min; jes:p j)>0 P3, j)

Comparing (24) and (25), we see Bidirectional-EPE

is more efficient than the plug-in whenever d <
1/min; jes . pgjy-0 P(i,j). To interpret this inequality, first
suppose the supergraph is the graph induced by P, i..,

A(s,5) =0« P(s,s") = 0. Then

- 1
>
€S s€S:P(s,5')>0
1
S erS Zs/ES:P(s,s/)>O P(s, s

Snz(erelv Eabs, 8) = 0(

P(s, s")
P(s, s)

<
min; jes.pi jy>0 P, J)
1
min; jeS:p(i.j)>0 P, )
More generally, this suggests the complexity of
Bidirectional-EPE is order-wise similar to that

of the plug-in method whenever degrees in the super-
graph and induced graph are order-wise similar. If
additionally most transitions are roughly uniform (in
the sense that P(i,j) ~ P(@,j) if P@,j), PG, J) > 0),
then 1/min;jes:pij>0P>,j) = maxses dout(s), where
dout(s) = Zf,zlA(s, s') is the out-degree of s. Thus,
d = o(1/min; jes.pi jy-0 P(i,j)) if the maximum out-degree
dominates the average degree.

Remark 6: At a higher level, the
min; jes:pi j)~0 P(i,j) is undesirable but

dependence on
seems to be
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Fig. 2. Numerical illustration of Bidirectional-EPE

unavoidable for a relative error guarantee (see Appendix F-A
of the supplementary material).

Generally, it is difficult to compare the sample complex-
ity (24) to the bounds from Section II analytically, owing to
the different error guarantees. Thus, we present an empirical
comparison in Figure 2. Here we simulate all three algorithms
using the case d|ICll1/IICllse =~ ©(1) from Figure 1. We
choose algorithmic parameters so that all algorithms maintain
average relative error (1/5) Zle(h?(s) —v(s)|/v(s)) =~ 25%
across S (right). For these parameters, the sample complex-
ities of the forward approach and Backward-EPE scale
like $? (obtained via linear fits on a log-log scale, left). In
contrast, the complexity of Bidirectional-EPE scales
like S'7, suggesting a subquadratic sample complexity. Thus,
as discussed above, Bidirectional-EPE appears more
sample-efficient if one aims to bound relative error.

IV. FUTURE DIRECTIONS AND RELATED WORK
A. Adaptation of Other PageRank Algorithms

In this work, we adapted the PageRank estimators from [10],
[11] to EPE. However, the PageRank literature contains many
other algorithms either explicitly or conceptually related to
these estimators, see, e.g., [12], [13], [14], [15], [16], [17].
Each of these algorithms rely on analyzes similar to that
of [10], [11], which we extended to the EPE setting in this
work. Thus, while we have focused on two specific algorithms
in this paper, our analysis should be viewed as an example of
how to extend a larger family of algorithms to EPE.

B. Finite Horizon Empirical Policy Evaluation

Another extension of this work is devising backward and
bidirectional exploration-based EPE algorithms for the finite
horizon cumulative cost value function

T T
Zy = s] = ZPt(s, .
=0

v(s) =E [Z c(Zy)
t=0

Here one aims to estimate multi-step transition distributions of

the form P!(s, -). Though our algorithms do not immediately

apply, relevant analogues of Approx-Contributions

exist in the case where P is known. In particular, [18] provides
an algorithm to estimate P'(s, -) when P is known. The algo-
rithm is analogous to Approx-Contributions in that it
explores backward from high-cost states. Moreover, [18] pro-
vides a bidirectional variant. Both of these algorithms could
be adapted to EPE using our approach; this would yield ana-
logues of Backward-EPE and Bidirectional-EPE for
finite horizons.

C. Reusing Samples Versus Resampling

As mentioned in Section II, an alternative of
Backward-EPE would take independent samples from
P(s, -) for each s € Nj,(sx) and at each iteration k, rather than
only sampling from P(s,-) when we first encounter s as in
Backward-EPE. This alternative scheme is formally defined
in Appendix G of the supplementary material. An interesting
property is that, while the invariants of Lemma 1 fail, a
related error process is a zero-mean martingale (see Appendix
G of the supplementary material), and thus the ultimate
estimate is unbiased. Analytically, this is an advantage over
Backward-EPE, where the P- and P-invariants hold but the
corresponding value functions v and v are biased estimates
of v. The disadvantage of this alternative approach is that it
may sample many times from each row of P, and thus the
overall sample complexity may exceed that of the forward
approach. Put differently, Backward-EPE is conservative in
the sense that it performs no worse than the forward approach
in the worst case (see Section II), but it sacrifices desirable
properties that could perhaps improve performance in other
cases. A useful avenue for future work would thus be to
investigate this tradeoff.

D. PageRank Estimation With Limited Knowledge

A problem that has received little attention is PageRank esti-
mation when the estimator has limited knowledge of P. For
instance, consider a third party who wishes to identify influ-
ential Twitter users for advertising. Since PageRank serves
as a measure of influence in networks, the third party may
wish to identify high PageRank users, but the Twitter graph
(as encoded by P) is not publicly available, and thus exist-
ing PageRank estimators do not apply. However, Twitter does
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allow limited data requests [19], which may allow the third
party to partially recover relevant entries of P. This setting
could be abstracted as the follows: devise an algorithm that
estimates PageRank while only sampling from P and mini-
mizing sample complexity. This is similar to the problem we
considered in this work, with one major difference: we jus-
tified the existence of a supergraph based on, for example,
physical limitations that prevent transitions between states; if
P represents Twitter, states (i.e., Twitter users) can be con-
nected arbitrarily. Thus, we could perhaps replace knowledge
of the supergraph with sampling of incoming neighbors, i.e.,
given a Twitter user, we can sample a random follower via data
request. This would serve a similar purpose as the supergraph,
and we suspect many of our ideas could be recycled.

E. Other Related Work

In addition to our discussion of [5] in Section I, we clar-
ify some connections to other RL papers. First, recall from
Section II-D that the complexity of Backward-EPE has a
(1—y)~2 dependence on the discount factor . At first glance,
this appears to violate a (1—y)~3 lower bound from [20]; see
also [21] for matching upper bounds. The distinction here is
that [20], [21] consider the problem of learning near-optimal
policies, whereas Backward-EPE addresses the simpler task
of learning the value function for a fixed policy. Next, we note
the PageRank/RL connection was previously explored in [22];
however, [22] aimed to adapt RL algorithms to PageRank esti-
mation, so our goals are complementary. Generally, we refer
the reader to [1], [2], [3], [4] for general background on RL
and MDPs.

Finally, we clarify distinctions between our work and oth-
ers that exploit sparsity in reinforcement learning. Roughly
speaking, these works presuppose that the value function can
be approximated as v &~ ®6, where ® is S x d feature matrix
and 6 is a d x 1 parameter vector, with typically d <« S.
Here one can overparameterize by choosing d large — pos-
sibly larger than the number of observed transitions — and
impose sparsity via £ regularization to learn relevant features
and avoid overfitting. See, for example, [23], [24], [25], [26]
for policy evaluation, [27] for multi-task learning, and [28] for
bandits. These papers are distinct from ours, which exploits
sparsity in the transition matrix and cost vector and makes no
assumption of a low-dimensional representation (of course,
this means we do not benefit from such a representation
either). Another distinction is that the aforementioned works
assume the data is collected from a trajectory. Hence, while
our work and [23], [24], [25], [26] all study policy evaluation,
our formulation asks how data should be collected from the
simulator, while [23], [24], [25], [26] ask how one can learn
in feature space and select relevant features.
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