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Abstract
Measurements in the heliosphere and high-resolution fluid simulations give clear indi-
cations for the anisotropy of plasma turbulence in the presence of magnetic fields. How
this anisotropy affects transport processes like diffusion and dispersion remains an open
question. The first efforts to characterize Lagrangian single-particle diffusion and two-
particle dispersion in incompressible magnetohydrodynamic (MHD) turbulence were per-
formed a decade ago. We revisit those pioneering results through updated simulations
performed at higher Reynolds number. We present new investigations that use the dis-
persion of many Lagrangian tracer particles to examine the extremes of dispersion and
the anisotropy in direct numerical simulations. We then point out directions in which
Lagrangian statistics need to be developed to address the fundamental problem of anisotropic
MHD turbulence and transport in solar and stellar winds.

1 Introduction

To understand solar or stellar winds, we first study the fundamental behavior of
a turbulent plasma. Understanding the anisotropic dynamics of a turbulent plasma is
key to producing predictions and models for the scattering of energetic particles in a so-
lar wind. In his famous book on turbulence (Lesieur, 1987), Marcel Lesieur wrote “Tur-
bulence is a dangerous topic which is often at the origin of serious fights in the scientific
meetings devoted to it since it represents extremely different points of view, all of which
have in common their complexity, as well as an inability to solve the problem.” One point
of view follows from adopting the Lagrangian frame of reference, the natural point of view
for studying diffusive processes such as turbulence in the solar wind. This work devel-
ops Lagrangian statistics to quantify anisotropic MHD turbulence.

Anisotropy is introduced to a turbulent plasma by a macroscopic magnetic field1,
typically designated B0, and measured with respect to the root-mean-square (RMS) fluc-
tuations of the turbulent magnetic field BRMS. In the solar wind, ion foreshock, and mag-
netosheath, ranges have been reported such that the macroscopic magnetic field is be-
tween one and 2.5 times the RMS fluctuations (Zimbardo et al., 2010). In Earth’s plasma
sheet the macroscopic magnetic field is on the order of two times the RMS fluctuations
of the turbulent magnetic field (B0 ≈ 2BRMS) (Borovsky, 2005). In the magnetotail,
observational data indicates that the magnetic field is stronger, between 3 and 5 times
the RMS fluctuations (see table 1 of Zimbardo et al. (2010)). We examine a system with
a moderately strong anisotropy caused by a macroscopic magnetic field of magnitude 3
times the average RMS magnetic field fluctuations. The observations from our simula-
tions may reveal characteristics of the anisotropy due to the strongest macroscopic mag-
netic fields of the solar wind, or the weakest magnetic fields in the magnetotail.

Motivated by new experimental techniques developed over the last two decades,
e.g. La Porta, Voth, Moisy, and Bodenschatz (2000); Mordant, Lévêque, and Pinton (2004);
Xu, Bourgoin, Ouellette, Bodenschatz, et al. (2006); Biferale et al. (2008); Bourgoin, Pin-
ton, and Volk (2014); Bourgoin and Xu (2014); Liot, Seychelles, et al. (2016); Liot, Gay,
Salort, Bourgoin, and Chillà (2016); Lawson, Bodenschatz, Lalescu, and Wilczek (2018);
Polanco, Vinkovic, Stelzenmuller, Mordant, and Bourgoin (2018); Lawson, Bodenschatz,
Knutsen, Dawson, and Worth (2019), Lagrangian statistics of turbulent flows are attract-
ing increasing attention. In oceanography and atmospheric science, Lagrangian measure-
ments have a rich history, e.g. as discussed by Businger, Johnson, and Talbot (2006);
LaCasce (2008a, 2008b); Fossette, Putman, Lohmann, Marsh, and Hays (2012); Aksamit,
Sapsis, and Haller (2020). In space physics, the Cluster mission (Escoubet et al., 1997)

1 In fundamental studies the macroscopic magnetic field is more often called a guide field or a mean

field.

–2–



manuscript submitted to JGR-Space Physics

and the CubeSat project (Poghosyan & Golkar, 2017) have demonstrated that measure-
ments made from multiple space-crafts will be feasible in the future.

Responding to the availability of high-quality measurements, high-resolution nu-
merical simulations are enabling increasingly detailed studies of the dynamics of Lagrangian
tracer particles, e.g. Yeung and Borgas (2004); Biferale et al. (2005); Buaria, Yeung, and
Sawford (2016); Sawford and Yeung (2015); Bianchi, Biferale, Celani, and Cencini (2016);
Schneide, Pandey, Padberg-Gehle, and Schumacher (2018). This explosion of work us-
ing Lagrangian tracer particles to explore the fundamental statistics of turbulence in neu-
tral fluids has been summarized in several reviews, including S. Pope (1994); Wilson and
Sawford (1996); Yeung (2002); Toschi and Bodenschatz (2009); Meneveau (2011) and
a comprehensive review dedicated to two-particle dispersion, Salazar and Collins (2009).

The first program to investigate MHD turbulence from the Lagrangian point of view
began over a decade ago as a collaboration between a group at the Max Planck Insti-
tute for Plasma Physics and a group at the Ruhr-Universität Bochum (Müller & Busse,
2007b; Busse et al., 2007; Müller & Busse, 2007a; Homann, Grauer, et al., 2007; Busse
& Müller, 2008; Homann et al., 2009; Busse et al., 2010). That work was based on di-
rect numerical simulations of three-dimensional incompressible homogeneous MHD tur-
bulence. Here we revisit some of the fundamental results of those earlier studies, using
new simulations at higher Reynolds number. We also expand on progress that has been
made more recently to use Lagrangian statistics for anisotropic turbulence driven by con-
vection and magnetoconvection (Pratt et al., 2017). We discuss further directions for fu-
ture work.

2 Direct Numerical Simulations for Lagrangian single-particle diffu-
sion and two-particle dispersion

To study diffusion and dispersion we produce simulations of statistically station-
ary, forced, homogeneous incompressible MHD turbulence. In each direct numerical sim-
ulation presented in this work, we solve the non-dimensional equations for incompress-
ible magnetohydrodynamics:

∂ω

∂t
− ∇× (v × ω + j ×B) = ν̂∇2ω + fω , (1)

∂B

∂t
− ∇× (v ×B) = η̂∇2B + f b , (2)

using a pseudospectral method in a three-dimensional rectangular simulation volume with
periodic boundary conditions. These equations include the solenoidal velocity field v,
vorticity ω = ∇ × v, magnetic field B, and current density j = ∇ × B. Each of the
quantities in eqs. (1) and (2) has been non-dimensionalized using relevant time and length
scales, commonly referred to as Alfvénic units. Two dimensionless parameters, ν̂ and η̂,
appear in the equations. They derive from the kinematic viscosity ν and the magnetic
diffusivity η. A fixed time-step and a low-storage third-order Runge–Kutta method (Williamson,
1980) are used for the time-integration. A static macroscopic magnetic field B0 point-
ing in the positive z-direction may be imposed.

To maintain a statistically stationary turbulent steady state, both the vorticity and
magnetic fields are forced on the largest scales of the simulation volume using a method
that allows the largest scale motions of the system to evolve. This deterministic homo-
geneous method of forcing establishes a constant injection of energy at large scales (see
Busse (2009) for a detailed discussion of this forcing method). In eqs. (1) and (2) forc-
ing terms fω and f b are introduced. For the simulations in Table 1, these forcing terms
are non-zero only for the wave-vector shell 1 ≤ |k| ≤ 2.5. The same amount of energy
is injected into each forced mode according to

fω(k, t) = γf,ω
ω̂(k, t)

|ω̂(k, t)|2
, (3)
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f b(k, t) = γf,B
B̂(k, t)

|B̂(k, t)|2
. (4)

The constants γf,ω and γf,B regulate the energy injection rate, and are equal for the sim-
ulations in Table 1. Using homogeneous forcing, the cross helicity of the forced modes
is maintained as a small non-zero value to prevent the emergence of states dominated
by Elsässer positive (z+) or negative (z−) interactions, i.e. states where the MHD tur-
bulent system becomes maximally imbalanced. Such a state can lead to a break-down
of the non-linear energy cascade, e.g. as discussed in Biskamp (2003). In a system in quasi-
stationary state, homogeneous forcing is expected to disturb the natural turbulent flow
only mildly. This forcing method is distinct from those used by Busse et al. (2007); Homann,
Grauer, et al. (2007); Busse and Müller (2008); Busse et al. (2010). Large-scale Alfvén
waves are permitted by this forcing method and are observed in the simulations exam-
ined in this work.

Table 1 provides a summary of the fundamental parameters of the simulations we
consider. Each simulation is performed on a grid of 10243 collocation points. In the ta-
ble, we record the strength of the macroscopic magnetic field B0 imposed in the z di-
rection, as well as the root-mean-square of the magnetic fluctuations BRMS, averaged over
the simulation time. We measure length in units of the Kolmogorov microscale ηkol = (ν̂3/εv)1/4

and time in units of the Kolmogorov time-scale τη = (ν̂/εv)1/2, where εv = ν̂〈
∑

k k2v̂2〉
is the time-averaged rate of kinetic energy dissipation; the Kolmogorov microscales are
the smallest length and time scales that characterize turbulent flows.

The Kolmogorov microscales define the resolution requirements for a direct numer-
ical simulation (DNS). All of our simulations fulfill the classic criterion of S. B. Pope (2000);
Yeung and Pope (1989) for a DNS, i.e. kmaxηkol > 1.5. This criterion has been widely
used to evaluate whether homogeneous isotropic turbulence is sufficiently resolved (see
also Yeung, Sreenivasan, and Pope (2018) for a recent study of the effect of resolution
on homogeneous isotropic turbulence). For reference, the Eulerian kinetic and magnetic
energy spectra for the simulations described in Table 1 are provided in Figure 1.
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Figure 1. Energy spectra for the simulations in Table 1 (a) kinetic energy spectra, and (b)

magnetic energy spectra. These spectra are compensated by k3/2.

For simulations of MHD turbulence that are anisotropic because of the effect of a
mean magnetic field, a box that is elongated in the z-direction has been used in many
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earlier works, including for example Mason, Cattaneo, and Boldyrev (2006). To deter-
mine the necessary elongation of the simulation volume in the z-direction, we consider
the correlation length of the velocity field in each direction. We measure a correlation
length of the velocity field in the z-direction, Lc,‖, that is larger than in the x and y di-
rections, in agreement with previous studies, e.g. Chandran (2008); Boldyrev (2005); Cho,
Lazarian, and Vishniac (2002). To accommodate this larger Lc,‖ within our simulation
volume, we elongate the simulation volume in the z-direction, so that the condition on
the box length in the z-direction Lz � Lc,‖ is satisfied. The elongation of the simu-
lation box, as measured by the ratio of the box length in the z-direction to the box length
in the x-direction, Lz/Lx, is listed in the table for each simulation. The simulation vol-
ume has sides of length Lx = Ly = 2π in the perpendicular directions.

2.1 Lagrangian tracer particles

For the simulations in Table 1, the positions of Lagrangian tracer particles are ini-
tialized in a homogeneous random distribution at a time when the turbulent flow is in
a statistically stationary steady state. The total number of particles in each simulation
is np ≈ 8.3 million. This is a high density of tracer particles, comparable to earlier works
(Müller & Busse, 2007b; Busse et al., 2007; Müller & Busse, 2007a; Homann, Grauer,
et al., 2007; Busse & Müller, 2008; Homann et al., 2009; Busse et al., 2010). The num-
ber of Lagrangian tracer particles that we use produces statistics that are well-resolved
in space.

At each time step the particle velocities are interpolated from the instantaneous
Eulerian velocity field using a tricubic polynomial interpolation scheme (for a clear anal-
ysis of the impact of the interpolation scheme on Lagrangian statistics, see Homann, Dreher,
and Grauer (2007)). Particle positions are calculated by numerical integration of the equa-
tions of motion using a low-storage third-order Runge–Kutta method identical to that
used for the Eulerian fields. Each simulation is run for a sufficient time that Lagrangian
particle pair-separations exhibit a diffusive trend. This length of time is approximately
400 τη, an amount of time that allows the particles in our hydrodynamic simulations (HNO-
VIS and HPUFF) to cross the simulation volume approximately once, on average. Be-
cause the Lagrangian tracer particles do not cross the simulation volume multiple times,
the periodic boundary conditions have no observed effect on the statistics produced.

2.2 Reynolds number for anisotropic MHD turbulence

For an isotropic system with B0 = 0, we define the Reynolds number in the stan-
dard way as

Re = 〈E1/2
v LE〉/ν̂ , (5)

from the kinetic energy Ev, a characteristic length scale LE, and the viscosity ν̂. For sta-
tistically homogeneous isotropic turbulent flows, LE is commonly defined as a dimensional
estimate of the size of the largest eddies, LE = Ev

3/2/εv, using εv, the rate of kinetic
energy dissipation. The calculated value of this length scale LE is included in Table 1 for
each of our simulations.

To compare isotropic and anisotropic turbulent flows, we use a more basic defini-
tion of the Reynolds number (see chapter 6.1.2 of S. B. Pope (2000))

Re = c (ηkol/LF)−4/3 . (6)

This definition requires knowledge of the forcing length scale LF, and a constant c. Our
method of forcing affects a minimum length scale

LF = 2π/kf,max = 2π/3 . (7)
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We determine the constant c by comparison with the definition of the Reynolds num-
ber in the isotropic case given in eq. (5). The Reynolds number is calculated in this way
for simulation ANOVIS3 in Table 1. The magnetic Reynolds number is defined from the
Reynolds number and the magnetic Prandtl number, i.e. Rem = PrmRe. In all simu-
lations in this work, the magnetic Prandtl number Prm = 1 so that the magnetic Reynolds
number is equal to the Reynolds number.

3 Single-particle diffusion and two-particle dispersion in MHD tur-
bulence

Perhaps the most fundamental result from studies of Lagrangian statistics in MHD
turbulence is a comparison of single-particle diffusion and two-particle dispersion. While
single-particle diffusion exhibits the same essential behavior in hydrodynamic turbulence
and MHD turbulence, two-particle relative dispersion in MHD turbulence differs signif-
icantly from the hydrodynamic behavior (Busse et al., 2007). This is a significant ob-
servation, because single particle statistics are heavily impacted by the largest scales; two-
particle statistics effectively limit contributions from the largest scales of the flow. A single-
particle diffusion curve follows the evolution of the average square distance a particle has
moved from its initial position, represented by 〈ξ2〉. We compare single-particle diffu-
sion curves for two isotropic turbulence flows: in hydrodynamic turbulence (simulation
HNOVIS) and in MHD turbulence (simulation ANOVIS0), see Figure 2. These two dif-
fusion curves exhibit nearly identical behavior. This figure also includes the curves for
an anisotropic MHD turbulence simulation, ANOVIS3, which is significantly different
from either isotropic case. The results from ANOVIS3 have been split into diffusion in
the direction of the mean magnetic field, and diffusion in the direction perpendicular to
the mean magnetic field. Diffusion in both these distinct directions takes a character-
istically similar shape. Each of the curves in Figure 2 exhibits a clear ballistic scaling
as t2 at early times, and has entered a diffusive regime with scaling close to t at late times.
At early intermediate times, both the diffusion parallel and perpendicular to the mean
magnetic field grow more slowly in anisotropic MHD than in either isotropic simulation.
This slow-down is larger in the direction parallel to the mean magnetic field. During the
later part of the intermediate time period, the separation process accelerates; diffusion
then slows as the diffusive regime is reached. These observations agree with results first
reported in Busse and Müller (2008) and Busse (2009).

The velocity autocorrelation function has a differential relation to diffusion; these
are Green–Kubo relations, e.g. as discussed in Alder, Gass, and Wainwright (1970); Dubbel-
dam, Ford, Ellis, and Snurr (2009). Because of this, the velocity autocorrelation func-
tion is typically used to shed new light on diffusion by providing information about the
relaxation of fluctuations over long times and distances. For Brownian motion, the ve-
locity autocorrelation function is fit well by a single decaying exponential. A single de-
caying exponential has also been shown to be a good fit for hydrodynamic turbulence
in both experimental and numerical studies (Sato & Yamamoto, 1987; Yeung & Pope,
1989). A single decaying exponential is an excellent fit for the velocity autocorrelation
function of simulation HNOVIS (see Figure 3). However for the MHD simulations ANOVIS0
and ANOVIS3, it is not clear whether a single decaying exponential is a reasonable model.
Isotropic MHD turbulence leads to a swifter overall decay of the velocity autocorrela-
tion function than hydrodynamic turbulence. In anisotropic MHD turbulence, this swift
decay is further exaggerated, fundamentally changing the initial shape of the decay of
the velocity autocorrelation function so that a decaying exponential produces a poor fit.
In the anisotropic case, large scale Alfvénic fluctuations are clearly visible in the veloc-
ity autocorrelation function. The characteristic time of decay for the velocity autocor-
relation function is smaller in the anisotropic case than in the isotropic case. In the di-
rection aligned with the mean magnetic field this decay time is slightly shorter than in
the direction perpendicular. Small-scale fluctuations in the velocity are therefore more
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Figure 2. Evolution of mean-square distance from the initial position for the three simu-

lations described in Table 1. The mean-square distance for the anisotropic MHD simulation

ANOVIS3 is separated into distances parallel and perpendicular to the mean magnetic field.

Each curve is produced from the average of at least 4 independent initial times.

probable in the direction perpendicular to the magnetic field. Over long times, the ab-
solute diffusion parallel to the mean magnetic field is therefore smaller because of the
different prevalence in velocity fluctuations.

For two-particle dispersion, Busse et al. (2007) find considerable differences between
isotropic hydrodynamic turbulence and isotropic MHD turbulence. We examine pairs
of particles that are initially separated by 2ηkol, the smallest initial separation that is re-
solved by our grid (see Figure 4). Each of these curves exhibits a clear ballistic scaling
as t2 at early times, and has entered a diffusive regime at late times. In the diffusive regime
of these dispersion curves, a mildly superdiffusive slope is evident. The anisotropic MHD
simulation ANOVIS3 is the most superdiffusive with a slope near three at these late times.
The dispersion curves of simulation ANOVIS3 also show an oscillation that we attribute
to large-scale Alfvénic fluctuations. We find that the rate of dispersion is slower for MHD
turbulence than for hydrodynamic turbulence. This rate of dispersion first slows down
at early intermediate times, as the dispersion curves depart from ballistic scaling. The
slow-down is more significant for the anisotropic MHD simulation ANOVIS3 than for
the isotropic MHD simulation ANOVIS0. This slow-down feature that is common be-
tween isotropic and anisotropic MHD simulations may be explained as an effect of the
local, fluctuating magnetic field. This field appears to be sufficient to produce a degree
of anisotropy in the relative dispersion process, even in a globally isotropic simulation.

4 Direct Numerical Simulations for Lagrangian many-particle disper-
sion

To examine many-particle dispersion, we conduct a separate series of simulations
that use a significantly different initial set-up of Lagrangian tracer particles. The posi-
tions of the Lagrangian tracer particles are initialized into spherical volumes of a spec-
ified size and density of tracer particles, henceforth called droplets. The droplets are ho-
mogeneously and randomly distributed throughout the simulation volume at a time when
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Figure 3. Velocity autocorrelation function for the three simulations described in Table 1.

The velocity autocorrelation function for the anisotropic MHD simulation ANOVIS3 is separated

into velocities in the direction parallel and perpendicular to the mean magnetic field. Each curve

is produced from the average of at least 4 independent initial times.

the turbulent flow is in a statistically stationary steady state. A visualization of such a
droplet dispersing is shown in Figure 5. Simulations using this initial droplet set-up for
Lagrangian particles were published in Pratt et al. (2017) for a study of convection, and
a similar initial set-up was used to study Navier–Stokes turbulence in Bianchi et al. (2016).
Each simulation described in Table 2 has this initial set-up, and a total number of tracer
particles of np ≈ 4.5 million.

For the simulations in Table 2, a stochastic forcing method, as described by Eswaran
and Pope (1988b, 1988a); Busse (2009), is used. For simulations HPUFF and APUFF0,
the forcing terms are non-zero only for the wave-vector shell 1 ≤ |k| ≤ 2.5. For sim-
ulation APUFF3, this forcing wave-vector shell is shifted to 2.5 ≤ |k| ≤ 3.5; this ad-
justment was made because forcing wave-vectors in the lower k shell in combination with
the mean magnetic field was found to lead to a build-up of energy at large scales, sig-
nificantly changing the energy spectra. For reference, the Eulerian kinetic and magnetic
energy spectra of the simulations described in Table 2 are provided in Figure 6. As with
the previous series of simulations, large-scale Alfvénic fluctuations are permitted by the
stochastic forcing method and are observed in our simulations. Aside from the different
initial set-up of Lagrangian tracer particles and the use of a stochastic forcing method,
the simulations in Table 2 follow a similar set-up to the simulations in Table 1.

5 Many-particle dispersion in MHD turbulence

Lagrangian statistics are known to be sensitive to extreme events in the fluctuat-
ing turbulent fields, e.g. Yeung and Borgas (2004); Boffetta and Sokolov (2002). In Pratt
et al. (2017), we developed an analysis using the convex hull to calculate the extremes
of dispersion of a group of many Lagrangian tracer particles. The simplest diagnostic
resulting from this approach is the maximal ray internal to a convex hull. For a group
of particles G, the maximal ray can be calculated:

r = max
i,j∈G

√
(xi − xj)2 + (yi − yj)2 + (zi − zj)2 . (8)
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Figure 4. Evolution of mean-square separation of pairs of Lagrangian tracer particles in ho-

mogeneous isotropic hydrodynamic turbulence (simulation HNOVIS), homogeneous isotropic

MHD turbulence (simulation ANOVIS0), and homogeneous anisotropic MHD turbulence (sim-

ulation ANOVIS3). The behavior for pairs with an initial separation of 2ηkol is shown (a) for

particles initially separated in the direction perpendicular to the mean magnetic field and separa-

tion distance measured perpendicular to the field, and (b) for particles initially separated in the

direction parallel to the mean magnetic field, and separation distance measured aligned with the

mean magnetic field.

This measure of separation is based on pairs of particles within the droplet that are fur-
thest apart at a given point in time, so that it always is defined as the largest extent of
dispersion of the group. Thus different particles may be used to determine the maximal
ray as the convex hull evolves in time; in contrast, two-particle dispersion always con-
siders a fixed pair of particles. The maximal ray evolves with similar ballistic, interme-
diate, and diffusive phases to two-particle dispersion (see Figure 7). However, because
it measures the extreme of dispersion, during the initial short ballistic regime the max-
imal ray dispersion curve grows slightly more quickly than t2. In the intermediate regime,
we observe that even the extremes of dispersion are slowed by the presence of magnetic
fields, with dispersion in the anisotropic MHD simulation APUFF3 growing more slowly
than in the isotropic case APUFF0. This has interesting overlap with the earlier obser-
vation (Busse, 2009) that intermittency in particle accelerations is lower in isotropic MHD
turbulence than in isotropic hydrodynamic turbulence, and lower still in anisotropic MHD
turbulence. The extremes of dispersion, not just the averages, are suppressed by the anisotropy
of the magnetic fluctuations.

In Pratt et al. (2017), we used the surface area s and volume v of the convex hull
surrounding the Lagrangian tracer particles to quantify the anisotropy in each simula-
tion. For a perfect sphere, the non-dimensional ratio s/v2/3 takes a value of (36π)1/3 ≈
4.8; for an anisotropic shape like a pancake or needle, this ratio will be larger. The mag-
nitude of this ratio, compared with 4.8, indicates how anisotropic the convex hull around
a group of Lagrangian tracer particles is. During intermediate times corresponding to
the early intermediate range of time scales, the anisotropy ratio grows dramatically for
all simulations. For the hydrodynamic simulation HPUFF, this period lasts between ap-
proximately τη and 8τη; for the MHD simulations this period lasts more than twice as

–9–



manuscript submitted to JGR-Space Physics

Figure 5. Diffusion of a single droplet with initial diameter 14ηkol, composed of approximately

16 thousand Lagrangian tracer particles, in simulation HPUFF. The series of 6 snapshots doc-

uments the dispersion of the particles over approximately 40 τη. Particles are colored by the

kinetic energy of the flow.

long, between approximately τη and 20τη. The time of the peak correlates with the ac-
celeration of dispersion in the pair dispersion curves or the maximal ray curves for each
of these simulations. After this rise in the anisotropy ratio, it falls to lower levels (see
Figure 8), eventually indicating isotropic growth of the droplets in the early diffusive regime,
with a shape near spherical. Many works have argued that anisotropy in MHD turbu-
lence is length scale dependent, e.g. as discussed by Cho and Vishniac (2000); Schekochi-
hin, Cowley, and Yousef (2008); Verdini, Grappin, Hellinger, Landi, and Müller (2015).
Figure 8 demonstrates that anisotropy is time-scale dependent, from the Lagrangian point
of view. In addition, the evolution of the anisotropy ratio reveals a new structure to that
scale dependence.

The anisotropy ratio becomes larger in both isotropic and anisotropic MHD than
in our hydrodynamic simulation. It is also slightly larger in isotropic MHD turbulence
than in anisotropic MHD turbulence. However the strong overlap of the shaded regions
in Figure 8, which indicate one standard deviation above and below the average line, in-
dicate that this difference between the average lines for these simulations is not statis-
tically significant. The difference in the anisotropy ratio between hydrodynamic turbu-
lence and MHD turbulence is clearly statistically significant. A comparison between pan-
els (a) and (b) of this figure demonstrates that, for initially smaller groups of particles,
a larger anisotropy ratio is achieved. This also gives an indication that intermittency is
different on different length scales of a turbulent flow.
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Figure 6. Energy spectra for the simulations in Table 2 (a) kinetic energy spectra, and (b)

magnetic energy spectra. These spectra are compensated by k3/2.

6 Summary and Discussion

Lagrangian tracer particles provide a powerful tool for quantifying diffusion and
dispersion in MHD turbulence. In the simulations presented here, we have confirmed that
single-particle diffusion curves are similar for isotropic hydrodynamic and magnetohy-
drodynamic turbulence. However, for anisotropic MHD turbulence the single-particle dif-
fusion curves exhibit characteristic differences; they show slower diffusion at intermedi-
ate separation times. Two-particle dispersion curves for isotropic MHD turbulence have
clear differences from isotropic hydrodynamic turbulence. Anisotropic MHD turbulence
makes those differences larger. We obtain these results from three simulations that have
identical resolution and closely comparable Reynolds numbers and general set-up. These
simulations have higher Reynolds numbers, and a weaker mean magnetic field than ear-
lier works (Busse et al., 2007; Busse & Müller, 2008; Busse, 2009), but our findings agree
in a broad sense.

Single-particle diffusion and two-particle dispersion curves provide critical infor-
mation, however they do not provide a complete picture of transport processes for anisotropic
MHD turbulence. We therefore extend our examination of dispersion using the novel many-
particle methods developed in Pratt et al. (2017). This is a new application of statis-
tical methods originally developed to examine anisotropy in convection simulations. These
methods use a convex hull algorithm to describe the outer surface of a group of many
particles that are initially tightly packed into a spherical configuration, which we call a
droplet. The maximal ray, which represents the extremes of dispersion, is found to fol-
low a pattern similar to the two-particle dispersion: the speed of dispersion can be or-
dered with hydrodynamic turbulence producing the fastest dispersion, then isotropic MHD
turbulence, and then anisotropic MHD turbulence. Thus MHD turbulence can be shown
to suppress even the extremes of particle dispersion. When we examine the anisotropy
ratio for groups of many Lagrangian tracer particles, both isotropic and anisotropic MHD
turbulence are more anisotropic than hydrodynamic turbulence. The anisotropy ratio
clearly reveals the dependence of anisotropy on separation time scales, a concept that
translates to length-scale dependent anisotropy, which has been observed in the Eule-
rian frame of reference.
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Figure 7. Evolution of mean-square maximal ray r of the droplets for the simulations de-

scribed in Table 2. Droplets have identical initial particle density, and an initial diameter of (a)

4ηkol, and (b) 14ηkol.

In order to fully understand how magnetic fields affect MHD turbulence and anisotropy,
further development of Lagrangian statistics is needed. One aspect in particular that would
be helpful to clarify transport processes is the analysis of particle trajectories in MHD
turbulence; studies of particle trajectories in neutral fluid turbulence have produced in-
teresting results in recent years (Ouellette & Gollub, 2007; Xu et al., 2007; Choi et al.,
2010; Siu & Taylor, 2011; Bos et al., 2015). Quantifying the trajectories involves calcu-
lating the curvature and torsion that a particle experiences along its path. To better un-
derstand these trajectories, studies of the extremes of acceleration (Homann, Grauer, et
al., 2007) need to be further developed for anisotropic MHD turbulence. Intriguing ex-
perimental results for the acceleration PDF of neutral-fluid turbulence (e.g. Mordant,
Crawford, and Bodenschatz (2004); Liot, Gay, et al. (2016)) make it likely that there is
a great deal more to understand about MHD turbulence through the peculiar behavior
of the Lagrangian acceleration. In addition, studies of anisotropic MHD turbulence are
often based on relatively few simulations, and therefore do not reveal the role of the mean
magnetic field in generating anisotropy and changing transport properties. A larger range
of anisotropic simulations needs to be studied in conjunction so that the influence of a
mean magnetic field can be established. These areas of study are included in our ongo-
ing and planned work.
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Chillà, F. (2016). Simultaneous temperature and velocity Lagrangian measure-
ments in turbulent thermal convection. J. Fluid Mech., 794 , 655–675.

Mason, J., Cattaneo, F., & Boldyrev, S. (2006). Dynamic alignment in driven mag-
netohydrodynamic turbulence. Phys. Rev. Lett., 97 (25), 255002.

Meneveau, C. (2011). Lagrangian dynamics and models of the velocity gradient ten-
sor in turbulent flows. Annu. Rev. Fluid Mech, 43 , 219–245.

Mordant, N., Crawford, A. M., & Bodenschatz, E. (2004). Three-dimensional
structure of the Lagrangian acceleration in turbulent flows. Phys. Rev. Lett.,
93 (21), 214501.
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Table 1. Parameters for Simulations of Lagrangian Single-particle Diffusion and Two-particle

Dispersion: magnitude of the static macroscopic magnetic field B0, the root-mean-square of mag-

netic fluctuations BRMS averaged over the full simulation time, Kolmogorov time scale τη, the

large-eddy length scale LE, and the Kolmogorov microscale ηkol. Each simulation is performed on

a grid of N3 = 10243, and uses 8.3 million Lagrangian tracer particles in a homogeneous random

distribution.

B0 BRMS τη(10−2) LE ηkol (10−3) Re elongation

HNOVIS – – 4.47 3.56 3.46 7571 1

ANOVIS0 0. 1.10 5.15 2.81 3.59 7230 1

ANOVIS3 3. 1.09 5.74 5.56 3.79 7570 2

Table 2. Parameters for Simulations of Lagrangian Many-particle Dispersion: magnitude of

the static macroscopic magnetic field B0, the root-mean-square of magnetic fluctuations BRMS

averaged over the full simulation time, Kolmogorov time scale τη, the large-eddy length scale LE,

and the Kolmogorov microscale ηkol. Each simulation is performed on a grid of N3 = 10243 and

uses 4.5 million particles initialized into droplets.

B0 BRMS τη(10−2) LE ηkol (10−3) Re elongation

HPUFF – – 4.20 3.70 3.55 10570 1

APUFF0 0. 1.78 4.89 2.49 3.83 5640 1

APUFF3 3. 1.17 4.82 2.57 3.80 5940 2
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