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The Global Geometry of Centralized and Distributed

Low-rank Matrix Recovery Without Regularization
Shuang Li , Qiuwei Li , Zhihui Zhu , Gongguo Tang , and Michael B. Wakin

Abstract—Low-rank matrix recovery is a fundamental problem
in signal processing and machine learning. A recent very popular
approach to recovering a low-rank matrix X is to factorize it as a
product of two smaller matrices, i.e.,X = UV

�, and then optimize
over U,V instead of X. Despite the resulting non-convexity, recent
results have shown that many factorized objective functions actu-
ally have benign global geometry—with no spurious local minima
and satisfying the so-called strict saddle property—ensuring con-
vergence to a global minimum for many local-search algorithms.
Such results hold whenever the original objective function is re-
stricted strongly convex and smooth. However, most of these results
actually consider a modified cost function that includes a balancing
regularizer. While useful for deriving theory, this balancing regu-
larizer does not appear to be necessary in practice. In this work,
we close this theory-practice gap by proving that the unaltered
factorized non-convex problem, without the balancing regularizer,
also has similar benign global geometry. Moreover, we also extend
our theoretical results to the field of distributed optimization.

Index Terms—Low-rank matrix recovery, non-convex
optimization, geometric landscape, centralized optimization,
distributed optimization.

I. INTRODUCTION

I
N THE problem of low-rank matrix recovery, a great num-

ber of efforts have been made to minimize a loss function

f(X) over the non-convex rank constraint rank(X) ≤ r, where

X ∈ R
n×m and r � min{n,m}. Among which, a popular way

is to replace the rank constraint with the Burer-Monteiro factor-

ization, i.e., X = UV� with U ∈ R
n×r and V ∈ R

m×r [1],

[2], changing the objective function from f(X) to g(U,V) =
f(UV�). This factorization approach can often lead to lower

computational and storage complexity, while raising new ques-

tions about whether an algorithm can converge to favorable

solutions since the bilinear form UV� naturally introduces

non-convexity. Fortunately, it is observed that simple iterative al-

gorithms find global optimal solutions in many low-rank matrix

recovery problems [3]–[12].
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Recent years have seen a surge of interest in understanding

these surprising phenomena by analyzing the landscape of the

factorized cost function g(U,V). To accomplish this, many

existing works [8]–[16] actually add a balancing regularizer

R(U,V)
.
= ‖U�U−V�V‖2F , (1)

which implicitly forces U and V to have equal energy, to the

objective function g(U,V). These works then show that, for

broad classes of problems, the regularized cost functions have

a benign geometry, where every local minimum is a global

minimum and every first-order critical point is either a local

minimum or a strict saddle [17], [18]. This favorable property

ensures a convergence to a global minimum for many local

search methods [18]–[24].

A. What Is The Role of The Balancing Regularizer?

If (U,V) is a critical point of g(U,V), then (UG,VG−�)
is also a critical point for any invertible G ∈ R

r×r. This scaling

ambiguity in the critical points can result in an infinite num-

ber of connected critical points including those ill-conditioned

points when ‖G‖F goes to 0 or ∞, which could bring new

challenges in analyzing the geometric landscape as one must

analyze the optimality of any critical point. In order to remove

this ambiguity, many researchers [8]–[16] utilize the balancing

regularizer (1). In particular, it has been shown that adding the

regularizer (1) forces all critical points (U,V) to be balanced,

i.e., U�U = V�V.

B. Is The Balancing Regularizer Really Necessary?

Most previous works add the balancing regularizer (1) to

the cost function in order to simplify the landscape analysis.

However, we have observed that one can achieve almost the same

performance without adding the balancing regularizer in [10].

Also, in practice this additional regularizer is rarely utilized [25],

which implies a gap between theory and practice. This naturally

raises the main question that will be addressed in this work: Is the

balancing regularizer (1) truly necessary? In other words, can we

characterize the global geometry of the factorization approach

without the balancing regularizer?

Several works [25]–[28] answer this question by analyzing

the behavior of gradient descent on some particular optimiza-

tion problems, and show that the iterates of gradient descent

stay in the (approximately) balanced path from some specific

initialization and finally converge to a global optimal solution.

However, these results are restricted to gradient descent with a
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Fig. 1. (a, b) and (c, d) are the landscapes of the non-regularized function
g(u, v) and the regularized cost function g̃(u, v)withµ = 1

16
, respectively. One

can observe that although g has an infinite number of (connected) critical points
while g̃ has just three critical points at ±(1, 1) and (0, 0), both cost functions
have benign landscapes since any critical point is either a global minimizer or a
strict saddle. The points marked with green and blue in (b, d) denote the global
minimizers and saddle points, respectively.

specific initialization. There are also some works that analyze

the geometric landscape of some specific optimization prob-

lems, such as matrix factorization [29], or linear neural network

optimization [11], [30], [31].

In this work, we answer this question by directly analyzing

the landscape of the unaltered factorized non-convex problem,

without the balancing regularizer (1). In particular, over the

general class of problems where the cost function f is restricted

strongly convex and smooth (see Definition III.1), we show

under mild conditions that any critical point of the factorized

cost function g (including any unbalanced critical point) is

either a global optimum or a strict saddle. This helps close

the theory-practice gap and resolves the open problem in [10].

Moreover, we extend our results to the corresponding distributed

setting and show that many global consensus problems inherit

the benign geometry of their original centralized counterpart.

Before proceeding, we present a toy example to illustrate our

main observation.

Example I.1 (Matrix factorization – the scalar case): Con-

sider an asymmetric matrix factorization cost function g(u, v)
.
=

1
2 (1− uv)2, whose critical points (u, v) satisfy uv = 1 or

(u, v) = (0, 0). The critical points of the corresponding reg-

ularized function g̃(u, v)
.
= 1

2 (1− uv)2 + µ
4 (u

2 − v2)2 with

some µ > 0 satisfy (uv − 1)v + µ(u2 − v2)u = 0 and (uv −
1)u− µ(u2 − v2)v = 0, which gives only three critical points

(1, 1), (−1,−1) and (0,0). Therefore, for g̃(u, v), one only

needs to check the Hessian evaluated at these three crit-

ical points: ∇2g̃(1, 1) = ∇2g̃(−1,−1) =
[
1 + 2µ 1− 2µ
1− 2µ 1 + 2µ

]
	

0, and ∇2g̃(0, 0) =
[ 0 −1
−1 0

]
which has a strictly negative

eigenvalue −1. Thus any critical point of g̃(u, v) is either a

global minimum or a strict saddle, which implies a favorable

landscape of the regularized cost function g̃(u, v). As can be

seen, adding the balancing regularizer can largely simplify the

landscape analysis. However, this does not imply that the orig-

inal function g(u, v) does not have a benign geometry. Indeed,

one can observe that any critical point of g(u, v) either satis-

fies uv = 1 (globally optimal) or (u, v) = (0, 0) (strict saddle

since∇2g(0, 0) =
[
0 −1
−1 0

]
has a negative eigenvalue−1). The

landscapes of g and g̃ are shown in Fig. 1.

The remainder of this letter is organized as follows. In

Section II, we formulate the problems in both centralized and

distributed settings. We present our main theorem and its proof

in Section III. In Section IV, we conduct a series of experiments

to further support our theory. Finally, we conclude our work in

Section V.

II. PROBLEM FORMULATION

We first consider the following problem of minimizing a

general objective function over the set of low-rank matrices:

minimize
X∈Rn×m

f(X) subject to rank(X) ≤ r, (2)

which is a fundamental problem that often appears in the

fields of signal processing and machine learning. Plugging the

Burer-Monteiro type decomposition [1], [2], i.e., X = UV�

with U ∈ R
n×r and V ∈ R

m×r, into the above cost function,

one can remove the low-rank constraint and get the following

unconstrained optimization

minimize
U∈Rn×r,V∈Rm×r

g(U,V)
.
= f(UV�), (3)

which is a non-convex optimization problem we refer to as

centralized low-rank matrix recovery. The above optimization

appears in many applications including low-rank matrix approx-

imation [8], matrix sensing [9], matrix completion [32], and

linear neural network optimization [11], [30], [31]. Note that

in centralized low-rank matrix recovery, all the computations

happen at one “central” node that has full access, for example,

to the data matrix or the measurements.

In the second part of this work, we study the impact of

distributing the centralized low-rank matrix recovery problem

for general cost functions. Consider a separable cost function

f(UV�) =
∑J

j=1 fj(UV�
j ), where U ∈ R

n×r is the com-

mon variable in all of the objective functions {fj}j∈[J] and

Vj ∈ R
mj×r as a submatrix of V = [V�

1 · · · V�
J ]

� ∈ R
m×r

is the local variable only corresponding to objective function fj .

Then, the centralized optimization (3) becomes

minimize
U,{Vj}

J∑

j=1

fj(UV�
j ). (4)

In the distributed setting, one distributes (4) across a network of

J agents and considers the following optimization

minimize
{Uj},{Vj}

J∑

j=1

fj(U
jV�

j ) s.t. U1 = · · · = UJ . (5)

Here, Uj and Vj are the so-called consensus and local vari-

ables at node j. In this work, we consider the above equality-

constrained distributed problem (5) by reformulating it as the

following unconstrained optimization problem

minimize
{Uj},{Vj}

J∑

j=1

fj(U
jV�

j )+
∑

(i,j)∈G

wi,j‖U
j−Ui‖2F . (6)

Here, G denotes any connected network over [J ]2 with [J ]
.
=

{1, . . . , J} and [J ]2 = [J ]× [J ] [29], and{wi,j}(i,j)∈G are sym-

metric positive weights, i.e., wj,i = wi,j > 0. The second term

is added to the objective function for the purpose of promoting

equality among the consensus variables Uj .

Authorized licensed use limited to: COLORADO SCHOOL OF MINES. Downloaded on June 28,2021 at 19:12:15 UTC from IEEE Xplore.  Restrictions apply. 



1402 IEEE SIGNAL PROCESSING LETTERS, VOL. 27, 2020

In this work, our main goal is to characterize the global

geometry of the non-convex centralized cost function (3) and

non-convex distributed cost function (6). In particular, we show

that under the same assumptions as required in the previous

works, any critical point is either a global minimum or a strict

saddle, where the Hessian has a strictly negative eigenvalue,

without adding the balancing regularizer.

III. MAIN RESULTS

A. Landscape of Centralized Low-rank Matrix Recovery

In this subsection, we present the geometric landscape of

the centralized optimization (3). We start by introducing the

restricted strongly convex and smooth property.

Definition III.1: ([5], [10]) A function f(X) is said to be

(2r, 4r)-restricted strongly convex and smooth if

α‖D‖2F ≤ ∇2f(X)[D,D] ≤ β‖D‖2F (7)

holds for any matrix X ∈ R
n×m with rank at most 2r and D ∈

R
n×m with rank at most 4r. Here, α and β are some positive

constants, and∇2f(X)[D,D] =
∑

i,j,k,l
∂2f(X)

∂Xij∂Xkl
DijDkl de-

notes a bilinear form of the Hessian of f(X).
Unlike the standard strongly convex and smooth condition

which requires (7) to hold for any X and D, the above restricted

version only requires (7) to hold for low-rank matrices, making it

amenable for low-rank matrix recovery problems. For example,

in matrix sensing the goal is to recover a low-rank matrix X

from linear measurements A(X). The linear operator A often

satisfies the restricted isometry property (RIP), which can be

interpreted as satisfying (7) for all low-rank matrices D and all

X; see [10] for details.

Theorem III.1: Assume that the cost function f(X) in (2)

satisfies the (2r, 4r)-restricted strongly convex and smooth prop-

erty with positive constants α and β satisfying β/α ≤ 3/2. Also

assume that f(X) has a critical point X� with rank(X�) ≤ r.

Then, any critical point (U,V) of g(U,V) in (3) is either

a global minimum (i.e., UV� = X�) or a strict saddle (i.e.,

λmin(∇2g(U,V)) < 0).

Proof: It follows from [10, Proposition 1] that the critical

point X� of f(X) with rank(X�) = r� ≤ r is its global mini-

mum, namely, f(X�) ≤ f(X) holds for any X ∈ R
n×m with

rank(X) ≤ r. Moreover, the equality holds only at X = X�.

Then, for any critical point (U,V) with UV� = X�, we have

g(U,V) = f(X�), and hence (U,V) is a global minimum.

For any critical point (U,V) with UV� 
= X�, we next

show that there exists a direction D ∈ R
(n+m)×r such that

∇2g(U,V)[D,D] < 0, namely, (U,V) is a strict saddle of

g(U,V). The remaining part of this proof is inspired by the

proof of [29, Lemma 11.3] and [30, Theorem 8] and is split into

two cases: 1) rank(UV�) = r, and 2) rank(UV�) < r.

Non-degenerate case: rank(UV�) = r
Let UV� = PΣQ� be an SVD of UV�. It follows

from rank(UV�) = r that rank(U) = rank(V) = r, which fur-

ther implies that U�U and V�V are invertible. Then, we

define two matrices G1
.
= (U�U)−1U�PΣ1/2, and G2

.
=

(V�V)−1V�QΣ1/2. It can be seen that G1G
�
2 = Ir. We also

define balanced factors Ũ
.
= PΣ1/2 and Ṽ

.
= QΣ1/2.

It can be seen that the new matrix pair (Ũ, Ṽ) satisfies

ŨṼ� = UV�, Ũ�Ũ = Ṽ�Ṽ. (8)

Recall that for any critical point (U,V) of g =
f(UV�), we have ∇g(U,V) = 0, i.e., ∇f(UV�)V =
0 and (∇f(UV�))�U = 0. Together with the

equalities in (8), we get ∇(g + µ
4R)(Ũ, Ṽ)=[

∇f(ŨṼ�)Ṽ + µŨ(Ũ�Ũ− Ṽ�Ṽ)

(∇f(ŨṼ�))�Ũ− µṼ(Ũ�Ũ− Ṽ�Ṽ)

]
=0, where R(·)

is the balancing regularizer introduced in (1) and µ > 0 is a

regularizer parameter. This immediately implies that the new

matrix pair (Ũ, Ṽ) is a critical point of the regularized cost

function g(U,V) + µ
4R(U,V).

On the other hand, it follows from [10] that there exists a

matrix D̃ = [D̃�
Ũ
D̃�

Ṽ
]� ∈ R

(n+m)×r such that

∇2
(
g(Ũ, Ṽ) +

µ

4
R(Ũ, Ṽ)

) [
D̃, D̃

]
< 0 (9)

holds for any ŨṼ� 
= X�.

Construct D = [
DU

DV

] = [
D̃

Ũ
G−1

1

D̃
Ṽ
G−1

2

], and denote Π
.
=

UD�
V
+DUV� and Π̃

.
= ŨD̃�

Ṽ
+ D̃

Ũ
Ṽ�. Note thatΠ = Π̃.

It follows from (9) that

0 >
〈
2∇f(ŨṼ�), D̃

Ũ
D̃�

Ṽ

〉
+∇2f(ŨṼ�)

[
Π̃, Π̃

]

+ (µ/2)‖D̃�
Ũ
Ũ+ Ũ�D̃

Ũ
− D̃�

Ṽ
Ṽ − Ṽ�D̃

Ṽ
‖2F

≥
〈
2∇f(ŨṼ�), D̃

Ũ
D̃�

Ṽ

〉
+∇2f(ŨṼ�)

[
Π̃, Π̃

]

= ∇2g(U,V)[D,D],

which further implies that any non-degenerate critical point

(U,V) with UV� 
= X� is a strict saddle.

Degenerate case: rank(UV�) < r
Note that rank(U�UV�V) ≤ rank(UV�) < r, which

implies that det(U�UV�V) = det(U�U)det(V�V) = 0.
Then, either det(U�U) = 0 or det(V�V) = 0. Or equiva-

lently, either rank(U�U) < r or rank(V�V) < r. Note that

rank(U) = rank(U�U) and rank(V) = rank(V�V). Then, of

the following two statements, at least one of them is true.

(i) ∃b 
= 0 such thatb ∈ null(U), i.e., Ub = 0.

(ii) ∃b 
= 0 such thatb ∈ null(V), i.e., Vb = 0.

Note that for any critical point (U,V), either

∇f(UV�) = 0 ⇒ (U,V)is a global minimum, or

∇f(UV�) 
= 0 ⇒ ∃ (i, j),
〈
∇f(UV�), eie

�
j

〉

= 0.

Next, we focus on the second case and show that such kinds of

critical points are strict saddles.

Assume that (i) is true. Construct D = [D�
U
D�

V
]� with

D�
U

= be�i ∈ R
r×n and D�

V
= (αb)e�j ∈ R

r×m. Then, we

have DUD�
V

= α‖b‖22eie
�
j , and UD�

V
= U(αb)e�j = 0.

Plugging into the bilinear form of the Hessian, we get

∇2g(U,V) [D,D] = 2α‖b‖22
〈
∇f(UV�), eie

�
j

〉

+∇2f(UV)�[ei(Vb)�, ei(Vb)�]
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Fig. 2. Convergence of gradient descent and distributed gradient descent for solving the matrix sensing problems in terms of different optimality errors. Here,
m = 50, n = 40, r = 5, and the number of measurements p = 3max{m,n}r.

Now using the fact that
〈
∇f(UV�), eie

�
j

〉

= 0, ‖b‖22 
= 0

and that ∇2f(UV�)[ei(Vb)�, ei(Vb)�] is constant with re-

spect to α, we can always choose α in order to let the first

term α‖b‖22
〈
2∇f(UV�), eie

�
j

〉
be negative enough so that

∇2g(U,V)[D,D] is negative. Therefore, we can conclude that

such a critical point (U,V) is a strict saddle. Similarly, we can

consider the case when (ii) is true and finish the proof. �

We note that, in Theorem III.1, the requirement β/α ≤ 3/2
is the same as in [10] where matrix sensing and other low-rank

matrix recovery problems are discussed.

B. Landscape of Distributed Low-rank Matrix Recovery

The following corollary extends the benign geometry to the

distributed setting introduced in Section II.

Corollary III.1: Under the assumptions in Theorem III.1,

any critical point ({Uj}, {Vj}) of the distributed problem

(6) satisfies U1 = U2 = · · · = UJ = U for some U, and

(U, {Vj}) is either a strict saddle or a global minimizer of (6).

This result follows from Theorem III.1 and Lemma III.1,

which is a summary of [29, Proposition 2.3 and Theorem 2.7].

Lemma III.1: [29] Let {wi,j}(i,j)∈G be symmetric positive

weights on any connected networkG over [J ]2. Then, (i) any crit-

ical point ({Uj}, {Vj}) of the distributed problem (6) satisfies

U1 = U2 = · · · = UJ = U for some U, and (ii) (U, {Vj}) is

a critical point of the centralized problem (4).

IV. SIMULATION RESULTS

In this section, we conduct several experiments to further

support our theory. In particular, we first consider the following

centralized matrix sensing problem

minimize
U∈Rn×r,V∈Rm×r

g(U,V)
.
=

1

2
‖A(UV� −X�)‖22, (10)

where A : R
n×m → R

p is a linear sensing operator, and X� ∈
R

n×m is the true low-rank matrix with rank(X�) = r. In order

to compare the non-regularized setting with the regularized

setting, we apply gradient descent with random initialization

to minimize the following regularized cost function g̃(U,V) =
1
2‖A(UV� −X�)‖22 +

µ
4 ‖U

�U−V�V‖2F with µ equal to

10−1, 10−2, 10−3, 10−4 and 0. Note that the regularized cost

function g̃(U,V) reduces to the non-regularized cost function

g(U,V) when µ = 0. To set up the experiment, we choose

m = 50, n = 40, r = 5, and p = 3max{m,n}r. The true data

matrixX� is generated as X� = U�V��, where U� and V� are

two Gaussian random matrices with entries following N (0, 1).
The linear sensing operator is generated as a p× nm Gaussian

random matrix with entries following N (0, 1). We plot the

fitting error g(U,V) and the optimality error ‖UV� −X�‖2F
as a function of the iteration number in Fig. 2 (a) and (b),

respectively. One can observe that global optimality is achieved

in all regularized and unregularized (µ = 0) cases.1 Therefore, in

the case of centralized matrix sensing, the balancing regularizer

R(U,V) in (1) is not necessary to obtain a benign landscape.

Next, we repeat the above experiments on the corre-

sponding distributed matrix sensing problem, namely, mini-

mizing the following cost functions g̃d(U,V) = gd(U,V) +
µ
4 ‖U

�U−V�V‖2F , and gd(U,V) = 1
2

∑J
j=1 ‖Aj(U

jV�
j −

X�
j )‖

2
2 +

∑
(i,j)∈G wi,j‖U

j −Ui‖2F . We set µ = 0 and 10α

with α = 0 : −2 : −12. We choose J = 5, n = 50, mj = 5,

m =
∑J

j=1 mj = 25, r = 5, and p = 3max{m,n}r. We gen-

erate {wi,j}G by performing hard thresholding on a random

non-negative symmetric matrix with off-diagonal entries being

uniformly distributed random numbers in the interval (0,1)

and zero diagonal entries. Other parameters are set same

as in the centralized framework. We again present the fit-

ting error
∑J

j=1 ‖Aj(U
jV�

j −X�
j )‖

2
2, the optimality error

∑J
j=1 ‖U

jV�
j −X�

j‖
2
F , and the consensus error

∑
j ‖U

j −

U‖2F as a function of the iteration number in Fig. 2 (c), (d) and

(e), respectively. While the existing literature does not guarantee

a benign geometry for the distributed problem with regulariza-

tion, we do see near-optimal convergence with near-consensus

when the regularizer is sufficiently small. Our Corollary III.1

does apply to the distributed unregularized problem, and in this

case we do indeed see global optimality and exact consensus.

V. CONCLUSION

This work closes the theory-practice gap for the factorization

approach in low-rank matrix optimization when the cost function

is restricted strongly convex and smooth by showing that the

balancing regularizer is not necessary in geometric analysis,

in agreement with practical observations. We have proved that

any critical point of the unaltered factorized objective function

(without regularizer) is either a global minimum or a strict saddle

in both centralized and distributed settings.

1All errors in the centralized experiments eventually decay below 10−20.
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