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The Global Geometry of Centralized and Distributed
Low-rank Matrix Recovery Without Regularization
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Abstract—Low-rank matrix recovery is a fundamental problem
in signal processing and machine learning. A recent very popular
approach to recovering a low-rank matrix X is to factorize it as a
product of two smaller matrices, i.e., X = UV, and then optimize
over U, V instead of X. Despite the resulting non-convexity, recent
results have shown that many factorized objective functions actu-
ally have benign global geometry—with no spurious local minima
and satisfying the so-called strict saddle property—ensuring con-
vergence to a global minimum for many local-search algorithms.
Such results hold whenever the original objective function is re-
stricted strongly convex and smooth. However, most of these results
actually consider a modified cost function that includes a balancing
regularizer. While useful for deriving theory, this balancing regu-
larizer does not appear to be necessary in practice. In this work,
we close this theory-practice gap by proving that the unaltered
factorized non-convex problem, without the balancing regularizer,
also has similar benign global geometry. Moreover, we also extend
our theoretical results to the field of distributed optimization.

Index Terms—Low-rank matrix recovery, non-convex
optimization, geometric landscape, centralized optimization,
distributed optimization.

I. INTRODUCTION

N THE problem of low-rank matrix recovery, a great num-

ber of efforts have been made to minimize a loss function
f(X) over the non-convex rank constraint rank(X) < r, where
X € R™™ and r < min{n, m}. Among which, a popular way
is to replace the rank constraint with the Burer-Monteiro factor-
ization, i.e., X = UV with U € R and V € R™*" [1],
[2], changing the objective function from f(X) to g(U, V) =
f(UVT). This factorization approach can often lead to lower
computational and storage complexity, while raising new ques-
tions about whether an algorithm can converge to favorable
solutions since the bilinear form UV naturally introduces
non-convexity. Fortunately, it is observed that simple iterative al-
gorithms find global optimal solutions in many low-rank matrix
recovery problems [3]-[12].
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Recent years have seen a surge of interest in understanding
these surprising phenomena by analyzing the landscape of the
factorized cost function g(U, V). To accomplish this, many
existing works [8]-[16] actually add a balancing regularizer

R(U,V)=|U'U - V'V, (M

which implicitly forces U and V to have equal energy, to the
objective function g(U, V). These works then show that, for
broad classes of problems, the regularized cost functions have
a benign geometry, where every local minimum is a global
minimum and every first-order critical point is either a local
minimum or a strict saddle [17], [18]. This favorable property
ensures a convergence to a global minimum for many local
search methods [18]-[24].

A. What Is The Role of The Balancing Regularizer?

If (U, V) is a critical point of g(U, V), then (UG, VG~")
is also a critical point for any invertible G € R"*". This scaling
ambiguity in the critical points can result in an infinite num-
ber of connected critical points including those ill-conditioned
points when ||G||r goes to 0 or oo, which could bring new
challenges in analyzing the geometric landscape as one must
analyze the optimality of any critical point. In order to remove
this ambiguity, many researchers [8]-[16] utilize the balancing
regularizer (1). In particular, it has been shown that adding the
regularizer (1) forces all critical points (U, V) to be balanced,
ie, U'U=V'V,

B. Is The Balancing Regularizer Really Necessary?

Most previous works add the balancing regularizer (1) to
the cost function in order to simplify the landscape analysis.
However, we have observed that one can achieve almost the same
performance without adding the balancing regularizer in [10].
Also, in practice this additional regularizer is rarely utilized [25],
which implies a gap between theory and practice. This naturally
raises the main question that will be addressed in this work: Is the
balancing regularizer (1) truly necessary? In other words, can we
characterize the global geometry of the factorization approach
without the balancing regularizer?

Several works [25]-[28] answer this question by analyzing
the behavior of gradient descent on some particular optimiza-
tion problems, and show that the iterates of gradient descent
stay in the (approximately) balanced path from some specific
initialization and finally converge to a global optimal solution.
However, these results are restricted to gradient descent with a
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Fig. 1. (a, b) and (c, d) are the landscapes of the non-regularized function

g(u, v) and the regularized cost function g(u, v) with yu = % , respectively. One

can observe that although g has an infinite number of (connected) critical points
while g has just three critical points at +(1, 1) and (0, 0), both cost functions
have benign landscapes since any critical point is either a global minimizer or a
strict saddle. The points marked with green and blue in (b, d) denote the global
minimizers and saddle points, respectively.

specific initialization. There are also some works that analyze
the geometric landscape of some specific optimization prob-
lems, such as matrix factorization [29], or linear neural network
optimization [11], [30], [31].

In this work, we answer this question by directly analyzing
the landscape of the unaltered factorized non-convex problem,
without the balancing regularizer (1). In particular, over the
general class of problems where the cost function f is restricted
strongly convex and smooth (see Definition III.1), we show
under mild conditions that any critical point of the factorized
cost function ¢ (including any unbalanced critical point) is
either a global optimum or a strict saddle. This helps close
the theory-practice gap and resolves the open problem in [10].
Moreover, we extend our results to the corresponding distributed
setting and show that many global consensus problems inherit
the benign geometry of their original centralized counterpart.

Before proceeding, we present a toy example to illustrate our
main observation.

Example 1.1 (Matrix factorization — the scalar case): Con-
sider an asymmetric matrix factorization cost function g(u, v) =
1(1 — uv)?, whose critical points (u,v) satisfy uwv =1 or
(u,v) = (0,0). The critical points of the corresponding reg-
ularized function §(u,v) = (1 — uv)? + &(u? — v?)? with
some p > 0 satisfy (uv — 1)v + p(u? — v?)u = 0 and (uv —
1)u — p(u? — v?*)v = 0, which gives only three critical points
(1,1),(—=1,—1) and (0,0). Therefore, for g(u,v), one only
needs to check the Hessian evaluated at these three crit-

. . ~ ~ 1+2pu1— 2/1}
. o2 o2 _

ical points: V<g(1,1) = V4g(—1,—-1) = [1 91+ 2

0

-1 0
eigenvalue —1. Thus any critical point of g(u,v) is either a
global minimum or a strict saddle, which implies a favorable
landscape of the regularized cost function g(u, v). As can be
seen, adding the balancing regularizer can largely simplify the
landscape analysis. However, this does not imply that the orig-
inal function g(u, v) does not have a benign geometry. Indeed,
one can observe that any critical point of g(u,v) either satis-
fies uv = 1 (globally optimal) or (u,v) = (0,0) (strict saddle
. 9 0 -1
since V=¢(0,0) = {_1 0
landscapes of g and g are shown in Fig. 1.
The remainder of this letter is organized as follows. In
Section II, we formulate the problems in both centralized and

0, and VZg(0,0) = [ 1] which has a strictly negative

} has a negative eigenvalue —1). The
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distributed settings. We present our main theorem and its proof
in Section III. In Section IV, we conduct a series of experiments
to further support our theory. Finally, we conclude our work in
Section V.

II. PROBLEM FORMULATION

We first consider the following problem of minimizing a
general objective function over the set of low-rank matrices:

minimize f(X)

bject t k(X) < 2
ninimiz subject to rank(X) < r, 2)

which is a fundamental problem that often appears in the
fields of signal processing and machine learning. Plugging the
Burer-Monteiro type decomposition [1], [2], i.e., X = uv'’
with U € R™*" and V € IR™*", into the above cost function,
one can remove the low-rank constraint and get the following
unconstrained optimization

g(U, V) = f(UVT), 3)

minimize

UeR™ 7, VERm*T
which is a non-convex optimization problem we refer to as
centralized low-rank matrix recovery. The above optimization
appears in many applications including low-rank matrix approx-
imation [8], matrix sensing [9], matrix completion [32], and
linear neural network optimization [11], [30], [31]. Note that
in centralized low-rank matrix recovery, all the computations
happen at one “central” node that has full access, for example,
to the data matrix or the measurements.

In the second part of this work, we study the impact of
distributing the centralized low-rank matrix recovery problem
for general cost functions. Consider a separable cost function
FUVT) =37 f;(UV]), where U € R™" is the com-
mon variable in all of the objective functions {f;};cs and
V; € R™*" as a submatrix of V.= [V --- V]]T € R™*"
is the local variable only corresponding to objective function f;.
Then, the centralized optimization (3) becomes

J
inimi (UV]). 4
minimize ; f;(UV;) @
In the distributed setting, one distributes (4) across a network of
J agents and considers the following optimization

J
minimize > f;(U/V1)st. Ul =... =U". 3)
{Uv’},{\/g};1 U7V
Here, U’ and V; are the so-called consensus and local vari-
ables at node j. In this work, we consider the above equality-
constrained distributed problem (5) by reformulating it as the
following unconstrained optimization problem

J
minimize >~ f;(UIV])+> w;,;|[U-U|%. (6)
UVt i3 T
= 1,7)€G

Here, G denotes any connected network over [J]? with [J] =
{1,..., J}and [J]? = [J] x [J][29],and {w; ;} (;,j)eg are sym-
metric positive weights, i.e., w; ; = w; ; > 0. The second term
is added to the objective function for the purpose of promoting
equality among the consensus variables U7,
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In this work, our main goal is to characterize the global
geometry of the non-convex centralized cost function (3) and
non-convex distributed cost function (6). In particular, we show
that under the same assumptions as required in the previous
works, any critical point is either a global minimum or a strict
saddle, where the Hessian has a strictly negative eigenvalue,
without adding the balancing regularizer.

III. MAIN RESULTS
A. Landscape of Centralized Low-rank Matrix Recovery

In this subsection, we present the geometric landscape of
the centralized optimization (3). We start by introducing the
restricted strongly convex and smooth property.

Definition IIL.1: ([5], [10]) A function f(X) is said to be
(2r, 4r)-restricted strongly convex and smooth if

a|D|% < V2£(X)[D,D] < §||D||% Q)

holds for any matrix X € R™*" with rank at most 2r and D €
R™ ™ with rank at most 4r. Here, o and [ are some positive

2
constants, and V* f(X)[D,D] = 3, . ., %DUDM de-
notes a bilinear form of the Hessian of f(X).

Unlike the standard strongly convex and smooth condition
which requires (7) to hold for any X and D, the above restricted
version only requires (7) to hold for low-rank matrices, making it
amenable for low-rank matrix recovery problems. For example,
in matrix sensing the goal is to recover a low-rank matrix X
from linear measurements .A(X). The linear operator .4 often
satisfies the restricted isometry property (RIP), which can be
interpreted as satisfying (7) for all low-rank matrices D and all
X; see [10] for details.

Theorem II1.1: Assume that the cost function f(X) in (2)
satisfies the (2r, 4r)-restricted strongly convex and smooth prop-
erty with positive constants « and 3 satisfying 8/« < 3/2. Also
assume that f(X) has a critical point X* with rank(X*) < r.
Then, any critical point (U, V) of ¢(U,V) in (3) is either
a global minimum (i.e., UV' = X*) or a strict saddle (i.e.,
Aamin(V29(U, V) < 0).

Proof: Tt follows from [10, Proposition 1] that the critical
point X* of f(X) with rank(X*) = r* < r is its global mini-
mum, namely, f(X*) < f(X) holds for any X € R™*™ with
rank(X) < r. Moreover, the equality holds only at X = X*.
Then, for any critical point (U, V) with UV = X*, we have
9(U,V) = f(X*), and hence (U, V) is a global minimum.

For any critical point (U, V) with UV # X*, we next
show that there exists a direction D € R("+7)*" such that
V2¢(U,V)[D,D] < 0, namely, (U, V) is a strict saddle of
¢g(U, V). The remaining part of this proof is inspired by the
proof of [29, Lemma 11.3] and [30, Theorem 8] and is split into
two cases: 1) rank(UV") = r, and 2) rank(UV ") < r.

Non-degenerate case: rank(UV ') = r

Let UV =PXQ" be an SVD of UV'. It follows
fromrank(UV ") = 7 thatrank(U) = rank(V) = r, which fur-
ther implies that U'U and V'V are invertible. Then, we
define two matrices G = (UTU) 'UTPEY?, and G, =
(VTV) " 1'VTQXY2 It can be seen that G1 G4 = I,.. We also
define balanced factors U = PX/2 and V = QEl/Q.

IEEE SIGNAL PROCESSING LETTERS, VOL. 27, 2020

It can be seen that the new matrix pair (U, V) satisfies
U'u=V'V. (8)
Recall that for any critical point (U,V) of g=
f(UVT), we have Vg(U,V)=0, ie, VF(UVV =
0 and (Vf(UV")'U=0. Together with the
equalities in  (8), we get V(g+4RYU,V)=

VA(UVH)V 4+ uUUTU-VTV)
(VAUVI)YU-puV(U'U-V'V)
is the balancing regularizer introduced in (1) and p > 0 is a
regularizer parameter. This immediately implies that the new
matrix pair (U, V) is a critical point of the regularized cost
function g(U, V) + £R(U, V).

On the other hand, it follows from [10] that there exists a
matrix D = [DE D] € RF7)% such that

UV =UV',

=0, where R(-)

V2 (g(ﬁ,\N/‘) + %R(ﬁ,?)) []5,]5} <0 )

holds for any UV’ #X5

Dy DG,
D = = [ZU 1
[DV} [D{,Gg
UDJ, + Dy V" andII = UD], + DgV". Note that IT = TI.
It follows from (9) that

1
Construct 1), and denote II=

0> <2w<ﬁﬁ>,ﬁﬁﬁg> +V2F(OVT) [ﬁ, ﬁ}
+(1/2)|ID5U + U'Dg — DLV - VI Dy %
> <2W(ﬁ\~ﬂ),ﬁﬁﬁg> FV2F(OVT) {ﬁ, ﬁ}
= V?¢(U,V)[D, D],

which further implies that any non-degenerate critical point
(U, V) with UV # X* is a strict saddle.

Degenerate case: rank(UV ") < r

Note that rank(U'UV'V) <rank(UV') <r, which
implies that det(UTUVTV) = det(UTU)det(VTV) = 0.
Then, either det(U'U) =0 or det(V'V) = 0. Or equiva-
lently, either rank(U'U) < r or rank(V'V) < r. Note that
rank(U) = rank(U "U) and rank(V) = rank(V " V). Then, of
the following two statements, at least one of them is true.

(i) 3b +# Osuch thatb € nuli(U), ie., Ub = 0.

(i) Ib # Osuch thatb € null(V),ie., Vb =0.

Note that for any critical point (U, V), either

VF(UV'") =0 = (U, V)is a global minimum, or
VAUV #0=3(i,j), (V/(UV'), ee]) #0.

Next, we focus on the second case and show that such kinds of
critical points are strict saddles.

Assume that (i) is true. Construct D = [D{; Dy,]" with
D{; =be/ € R™" and Dy, = (ozb)ejT € R™™. Then, we
have DyDY, = a||b||§eiejT, and UDI, = U(cvb)e]T =0.
Plugging into the bilinear form of the Hessian, we get

V29(U, V) [D, D] = 2|3 (VF(UV"), eie;)

+V2F(UV) [e;(Vb)T,e;(Vb)]
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Convergence of gradient descent and distributed gradient descent for solving the matrix sensing problems in terms of different optimality errors. Here,

m = 50, n = 40, r = 5, and the number of measurements p = 3 max{m, n}r.

Now using the fact that (Vf(UV '), ee]) #0, |[b]3#0
and that V2 f(UV ")[e;(Vb)',e;(Vb)'] is constant with re-
spect to «, we can always choose « in order to let the first
2(2Vf(UVT), ee /) be negative enough so that
V2g(U, V)[D, D] is negative. Therefore, we can conclude that
such a critical point (U, V) is a strict saddle. Similarly, we can
consider the case when (ii) is true and finish the proof. [ |

We note that, in Theorem IIL.1, the requirement 3/a < 3/2
is the same as in [10] where matrix sensing and other low-rank
matrix recovery problems are discussed.

B. Landscape of Distributed Low-rank Matrix Recovery

The following corollary extends the benign geometry to the
distributed setting introduced in Section II.

Corollary III.1: Under the assumptions in Theorem III.1,
any critical point ({UJ} {V }) of the distributed problem
(6) satisfies Ul = =TU’ =U for some U, and
(U, {V;})is elther a strict saddle or a global minimizer of (6).

This result follows from Theorem III.1 and Lemma III.1,
which is a summary of [29, Proposition 2.3 and Theorem 2.7].

Lemma IIl.1: [29] Let {w; ; }(; j)eg be symmetric positive
weights on any connected network G over [.J]2. Then, (i) any crit-
ical point ({U7}, {V;}) of the distributed problem (6) satisfies
U! =U? =... = U’ = U for some U, and (ii) (U, {V,}) is
a critical point of the centralized problem (4).

IV. SIMULATION RESULTS

In this section, we conduct several experiments to further
support our theory. In particular, we first consider the following
centralized matrix sensing problem

1
U,V) = AUV —=X*)[3, (10
yemminimize g(U, V) = 5 lA( Mz, (10)
where A : R"*™ — IRP is a linear sensing operator, and X* €

R™"™ is the true low-rank matrix with rank(X*) = r. In order
to compare the non-regularized setting with the regularized
setting, we apply gradient descent with random initialization
to minimize the following regularized cost function g(U, V) =
AUV = X")[3 + £[UTU - V'V||2% with p equal to
1071, 1072, 1073, 10~* and 0. Note that the regularized cost
function g(U, V) reduces to the non-regularized cost function
g(U, V) when p = 0. To set up the experiment, we choose
m =50, n =40, r = 5, and p = 3max{m, n}r. The true data

matrix X* is generated as X* = U*V*T, where U* and V* are
two Gaussian random matrices with entries following A/(0, 1).
The linear sensing operator is generated as a p X nm Gaussian
random matrix with entries following A/(0,1). We plot the
fitting error g(U, V) and the optimality error [[UV T — X*||2,
as a function of the iteration number in Fig. 2 (a) and (b),
respectively. One can observe that global optimality is achieved
in all regularized and unregularized (1 = 0) cases.! Therefore, in
the case of centralized matrix sensing, the balancing regularizer
R(U, V) in (1) is not necessary to obtain a benign landscape.
Next, we repeat the above experiments on the corre-
sponding distributed matrix sensing problem, namely, mini-
mizing the following cost functions g4(U, V) = g4(U, V) +
HIUTU - VIV3, and g4(U, V) = 5 307 A (U/V] —
X3 + D0 jyeg wii U7 — U % We set =0 and 10
with o = 0: —=2: —12. We choose J =5, n = 50, m; = 5,
m = Z;-le m; = 25,7 =5, and p = 3max{m, n}r. We gen-
erate {w; ;}¢ by performing hard thresholding on a random
non-negative symmetric matrix with off-diagonal entries being
uniformly distributed random numbers in the interval (0,1)
and zero diagonal entries. Other parameters are set same
as in the centralized framework. We again present the fit-
ting error ijl |A;(UIV] — X7)|]3, the optimality error
Zle U/V] — X5||%, and the consensus error ), ||U7 —
U||% as a function of the iteration number in Fig. 2 (c), (d) and
(e), respectively. While the existing literature does not guarantee
a benign geometry for the distributed problem with regulariza-
tion, we do see near-optimal convergence with near-consensus
when the regularizer is sufficiently small. Our Corollary III.1
does apply to the distributed unregularized problem, and in this
case we do indeed see global optimality and exact consensus.

V. CONCLUSION

This work closes the theory-practice gap for the factorization
approach in low-rank matrix optimization when the cost function
is restricted strongly convex and smooth by showing that the
balancing regularizer is not necessary in geometric analysis,
in agreement with practical observations. We have proved that
any critical point of the unaltered factorized objective function
(without regularizer) is either a global minimum or a strict saddle
in both centralized and distributed settings.

T All errors in the centralized experiments eventually decay below 10720,
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