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Abstract—Evacuation planning methods aim to design routes
and schedules to relocate people to safety in the event of
natural or man-made disasters. The primary goal is to minimize
casualties which often requires the evacuation process to be
completed as soon as possible. In this paper, we present QueST, an
agent-based discrete event queuing network simulation system,
and STEERS, an iterative routing algorithm that uses QueST
for designing and evaluating large scale evacuation plans in
terms of total egress time and congestion/bottlenecks occurring
during evacuation. We use the Houston Metropolitan Area, which
consists of nine US counties and spans an area of 9,444 square
miles as a case study, and compare the performance of STEERS
with two existing route planning methods. We find that STEERS
is either better or comparable to these methods in terms of total
evacuation time and congestion faced by the evacuees. We also
analyze the large volume of data generated by the simulation
process to gain insights about the scenarios arising from following
the evacuation routes prescribed by these methods.

I. INTRODUCTION

Evacuation models are designed to ensure the safe relocation
of people from an area under threat of natural or man-made
disaster. Examples of such situations are hurricanes, floods,
tsunamis, wildfires, terrorist attacks, hazardous chemical spills,
etc. Any of these scenarios can pose a serious threat to human
lives and evacuation is often the best option to minimize
casualties. Large scale evacuation planning has proven to be
essential in the past. A prime example of this is Hurricane Rita
which made landfall in September 2005 and affected areas
in Florida, Mississippi, Louisiana, Texas, Arkansas, Missouri,
and Illinois. Before its landfall, approximately 2.5 million
people were evacuated from the Texas coastal area [1]. It
was one of the largest urban evacuations in US history. This
coastal area is still prone to hurricanes every year. Even at
the time of writing this article, Hurricane Laura in Aug 2020,
a category 4 hurricane on the verge of becoming category
5, is about to make landfall near the Louisiana and Texas
coastal area [2]. Evaluating the effectiveness of an evacuation
plan is an important part of the planning process. Simulation
techniques have been used extensively for this purpose [3]–[7].
However, simulating a hurricane evacuation scenario in the
above mentioned areas is quite challenging due to its sheer
scale. The Greater Houston area alone consists of nine US

counties with a population of about six million (Census 2010).
A simulator will have to work with a large road network.
Also, the simulation process will generate a large volume of
data containing the location traces of the evacuees during the
evacuation. This can amount to hundreds of gigabytes data.
These data need to be analyzed to understand the pros and cons
of different evacuation plans. To the best of our knowledge,
the existing literature lacks a system that has simulated an
evacuation planning method at this scale (in terms of network
size, number of evacuees, realistic representation of network
congestion and complex evacuation scenarios).

As our first contribution, we present an agent-based discrete
event queuing network simulation system named ‘Queuing
Simulation of Traffic’ (QueST) that is capable of simulating
evacuations at the scale mentioned above. The system rep-
resents a road network as a queuing network and vehicles
travelling through the network as agents. Given the agents’
initial locations, destinations, evacuation routes and the road
network, QueST simulates the movement of all the agents
until everyone reaches their destination. To capture the effect
of congestion, we use state-dependent queues. We also use
publicly available real-world traffic data to tune a traffic model
that can estimate the effective speed on a road at a given
traffic density. QueST uses this model to estimate travel time
on roads. The system is also inherently capable of capturing
scenarios where vehicles cannot enter a road due to that road
being full.

As our second contribution, we choose the Houston
metropolitan area as our case study and use QueST to de-
sign and then evaluate evacuation plans for this area. The
metropolitan has a total area of 9,444 square miles and is
inhabited by about six million people. The area has been
affected by major hurricanes (e.g. Hurricane Katrina & Rita
(2005), Ike (2008), Harvey (2017), Laura & Marco (2020)). An
illustration of the evacuation scenario for this area is shown
in Figure 1. The red dots represent the initial locations of
the evacuees and the green circles denote the safe zones.
We have used two existing routing methods to determine
the evacuation routes: Shortest Path routing and CASPER
[4]. In addition, we present a new routing method named
‘Shortest Time Estimate-based Evacuation Route Selection’
or STEERS, as our third contribution. In STEERS, we use978-1-7281-6251-5/20/$31.00 ©2020 IEEE



Fig. 1: Evacuation Scenario in Houston

the data generated by the simulator to iteratively find better
routes for the evacuees. Using the routes from these methods,
we have simulate the evacuation process. The simulation runs
provide us the location traces of the evacuees and the states
of the roads during the evacuation. We analyze these data for
calculating metrics such as the evacuation completion time,
egress time of each evacuee, congestion level on the roads,
blocking time of the evacuees on different roads etc. We also
present a comparative analysis of the three routing methods.

The rest of the article is organized as follows, in section
II, we review existing works on queuing networks, evacuation
modeling and simulation models for evacuation. In section III,
we present the details of our simulation model. Section IV
briefly describes two existing routing algorithms and STEERS.
Details of the data we have used and of the traffic model we
have tuned are presented in section V. Section VI contains
the details of the simulation experiments together with related
analysis and results. Finally, we conclude the article by men-
tioning our future plans with this system in section VII.

II. LITERATURE REVIEW

Research on evacuation planning can be categorized into
three main categories: Macroscopic, Microscopic, and Meso-
scopic models. Macroscopic models approach evacuation plan-
ning as an optimization problem and do not consider micro-
scopic level details such as individual behavior or decision
of selecting egress routes. Hamacher and Tjandra first pre-
sented such a mathematical model for evacuation where they
modeled the problem as a dynamic network flow problem on
a capacity limited network [8]. To solve it as a static flow
problem, they introduced the idea of Time Expanded Graphs
(TEG). Although TEG based methods provide optimal results,
they are computationally very expensive. To overcome this,
Lu, George and Shekhar proposed the ‘Capacity Constrained
Route Planner’ (CCRP), a heuristic algorithm that generates
both schedules and routes for the evacuees and does not need
time expanded graphs [9]. Later the method was improved
by Kim, George and Shekhar [10] to have lower run-time
complexity for application to large transportation networks.

One limitation of the CCRP algorithm is that it assumes
travel time on a specific road to be a constant. As a solution,
Shahabi and Wilson [4] presented ‘Capacity-Aware Shortest
Path Evacuation Routing’ (CASPER). It is a heuristic method
for evacuation routing that considers the effect of congestion
on the effective speed on a road. CASPER utilizes traffic
models for this purpose and can work with different traffic
models. For validation, the authors compared the estimated
evacuation time of CASPER with the simulated evacuation
time of a flocking simulation model [11]. However, they only
did this validation for a small evacuation scenario. Later, the
authors extended their work for dynamic environments [12] .

All the proposed methods mentioned so far used a macro-
scopic approach for finding egress routes. Microscopic simu-
lation models such as car following models [13]–[16], cellular
automata models [17], and multi-agent models have been
used to analyze vehicular traffic flow. In these models, each
vehicle is considered as a separate object and therefore their
behavior and interaction with other objects is modeled at a
high level of detail. However, these simulation models tend
to be computationally expensive. To address the resulting
scalability issue, Gawron presented a queuing network model
[18] for traffic micro-simulation where each road in the road
network is represented as a queue. The model used a fixed-
increment time progression approach. It was later implemented
in MATSim [19], an open-source framework for transport
simulation. Another queue-based discrete event simulation
model with the next-event time progression approach [20] was
later added to MATSim. Both of these are microscopic models.
In contrast, we present a mesoscopic simulation model, where
we combine macroscopic supply (e.g., link capacities and link
performance in terms of the speed-density relationship) with
microscopic demand (e.g., individual drivers).

Most of the recent works on evacuation planning and
simulation use car following models for mobility simulation.
Na and Banerjee [5] presented an agent-based discrete event
simulation framework, embedded within a GIS module to
simulate evacuation plans designed for no-notice disasters.
The authors used the car following model of Yang and
Koutsopoulos [13] for simulating the agents’ movements. In
their experiments, they simulated an evacuation of the city of
San Francisco. Hasan and Hentenryck [6] presented several
zone-based evacuation planning algorithms where each zone
is assigned a schedule for its evacuation. They used the SUMO
simulator [16], which is based on a car following model, to
evaluate their proposed algorithms. The same simulator was
used by Chen, Shafi and Chen [7] where the authors presented
a simulation pipeline for understanding the challenges of
emergency evacuation through case studies. Two case studies
were presented in this work. To the best of our knowledge, the
largest evacuation scenario simulated in the literature worked
with approximately 1 million evacuees in the coastal city of
Padang, Indonesia [3]. The authors of this work used MATSim
for traffic simulation. In comparison, our study area is more
than thirty times larger and also contains about six times the
number of evacuees.



III. QUEUING NETWORK SIMULATION MODEL

The QueST system involves two parts: (1) building a queu-
ing network from a given road network (Section III-A), and
(2) the simulation of the evacuation process (Section III-B).

A. Constructing the Queuing Network

Let’s consider the sample road network in Figure 2a where
the nodes denote the junctions and the edges denote the roads.
Each edge has the following properties: length of the road
(elength), number of lanes (elanes), and number of vehicles
that fit on it per lane and per unit length (eK).

Given these values, we can calculate the maximum number
of vehicles that can simultaneously exist on the road. We call
it the capacity of the road eC , given by: eC = eK ∗ elength ∗
elanes. To transform the road network into a queuing network,
we consider each edge as a queue that has eC number of
servers and no buffer or waiting space. The service pattern
of each queue is state-dependent, i.e., the service time on a
queue (which corresponds to the travel time on its associated
edge) is dependent on the number of vehicles present in the
queue. Once we have transformed all the edges into queues,
we connect the pairs of queues whose corresponding edges
are incident edges in the road network. This completes the
construction of the queuing network. The edge to queue
mapping for the sample network is shown in Figure 2b. The
corresponding queuing network is shown in Figure 2c.

B. Simulation Process

To describe the simulation process of the evacuation, we use
our sample network again. The evacuees start evacuation from
node 1 and 2 and they need to be evacuated to node 4. In the
corresponding queuing network (Figure 2c), vehicles will enter
the system through queue A and B, and exit it through queue
C. The two evacuation routes are shown in Figure 2d. Evacuees
from nodes 1 and 2 follow routes 1 and 2 respectively. The
vehicles arrive at the initial nodes (i.e., nodes 1 and 2 in our
example) at a given rate. The inter-arrival time of the vehicles
can be modeled using any distribution, e.g., an exponential
distribution. If the edge a vehicle wants to enter has available
capacity, it can enter the edge immediately. Otherwise, it will
have to wait. Each vehicle follows a predetermined route and
it does so in a hold-and-wait manner. As a concrete example,
let’s say a vehicle is currently on edge (1, 3) and it wants to
enter edge (3, 4) next. The vehicle will wait for a free space to
be available on edge (3, 4) and until that time it will hold space
on edge (1, 3). A detailed algorithmic description of a single
vehicle’s traversing behavior is presented in Algorithm 1. The
hold-and-wait behavior is described in lines 4-6. The travel
time of a vehicle on an edge is calculated using the calcu-
late service time function. We can use different formulations
for calculating this value. Constant, linear, exponential, power
and logistic models [4], [21] are some of the formulations used
in the literature. These models use the capacity and current
number of vehicles on the road to calculate the travel time.

Vehicles that request access to the same edge are granted
access in a first-come-first-served manner. In case multiple

Algorithm 1: Vehicle Route Traversal Process
Input: Evacuation Route (a sequence of edges): route

1 prev edge ← null
2 for edge in route do
3 edge request ← request for access to edge
4 while edge request not successful do

// wait till space is available on edge
5 wait

// access to edge acquired, now release
6 prev edge Release prev edge
7 service time ← calculate service time(edge)
8 while elapsed time on edge < service time do
9 wait

10 prev edge ← edge

vehicles request access at the same time, the tie is broken by
granting them access in an arbitrary order.

IV. EVACUATION ROUTING ALGORITHMS

In this section, we describe the routing algorithms that we
have used in our experiments. First, we present the statement
of the evacuation routing problem. Then, we describe two
existing routing algorithms, namely Shortest Path Routing
and CASPER [4]. Finally, we describe our iterative routing
algorithm, STEERS.

A. Problem Statement

Given a set of source locations S = {s1, s2, ..., sn}, a set
of safe zones D = {d1, d2, ..., dm}, number of evacuees wi
at each source location si (1 ≤ i ≤ n), and a road network
G = (V,E), the goal of the evacuation routing problem is to:
(1) find a set of routes

R = {ri | ri = route(si, dj), si ∈ S, dj ∈ D}

that contains a route from each source node in S to any
safe zone in D, and (2) determine a schedule for moving
the evacuees on the chosen routes. Different objectives have
been considered for the choice of routes and schedules in the
literature. Most routing algorithms primarily try to optimize
the evacuation completion time, which is the time when every
evacuee has reached a safe zone [4], [8]–[10]. Multi-objective
formulations are also available [22]. However, even the sim-
plest setting of minimizing the maximum delay (referred to as
the makespan), for constant link capacity, is NP-complete.

B. Two Existing Routing Algorithms

We describe two prior algorithms, which are used as base-
lines for our experiments: Shortest Path Routing and CASPER.
1) Shortest Path Routing (SP): In this method, each source
location is paired with its respective nearest (by road) safe
zone. The shortest path from each source location to their
paired safe zone is used as the evacuation route for that source.
2) CASPER: It is a heuristic method that considers the effect
of congestion during the route calculation. The method uses
Dijkstra’s algorithm as a subroutine but with a modified cost
function. This function utilizes a traffic model to estimate the
delay caused by congestion. For details about this method, we
refer to the work of Shahabi and Wilson [4].



(a) Sample Road Network

Edge Queue
(1, 3) A
(2, 3) B
(3, 4) C

(b) Edge to queue
mapping (c) Corresponding Queuing Network

Route-1 (1, 3) → (3, 4) A → C
Route-2 (2, 3) → (3, 4) B → C

(d) Evacuation Routes

Fig. 2: Queuing Network Construction

Algorithm 2: Algorithm for STEERS
Input: Percentage of routes to update in each iteration: p
Output: Evacuation Routes

1 Set number of evacuees to one for each source location
2 current routes← shortest path routes
3 do
4 Run simulation using current routes
5 Calculate avg. travel time on each edge from simulation

results
6 Set the edge weights to the calculated travel times
7 new routes ← Re-calculated shortest path routes
8 candidate source locations ← randomly choose p%

of the source locations
9 for src in candidate source locations do

10 if estimated cost on new route for src < simulated
cost on current route of src then

11 update the current route of src to the
new route

12 while there is an estimated improvement in travel time on at
least one route ;

13 return current routes

C. Shortest Time Estimate-based Evacuation Route Selection
(STEERS)

We present an iterative routing algorithm that uses the
output from our simulation tool to find good routes. The
main idea for the algorithm is as follows: when we simulate
the movement of the vehicles through the road network, the
simulator knows the state of all the edges in the network at all
times. This provides us with valuable information about how
congested the roads become and the average travel time on
those roads. We use this information to come up with better
routes. The outline of the algorithm is shown in Algorithm 2.

The algorithm first sets the number of evacuees at each
source location to one and the initial routes to the shortest
paths (lines 1-2). A simulation is then run with this setting (line
4). From the results of the simulation, we calculate the average
travel time on each edge (line 5). We then calculate new routes
for each of the source locations using these values as edge
weights (line 7). However, we only update a certain percentage
(p%) of routes and do so only if there is an estimated
improvement in travel time (lines 9-11). The intuition here is
that evacuees from these locations are trying to change their
route (and possibly their destination too) to decrease their
egress time. This completes one iteration of the algorithm.
The iterations continue until no better route can be found for
any of the source locations (line 12). The algorithm can also
be terminated after a certain number of iterations or when

Data Source Usage
Road Network
Data of Houston

HERE Maps To build the road
network graph and
the queuing net-
work

Census Data
(2010) for Houston
Metropolitan Area

U.S. Census Bu-
reau

To determine num-
ber of evacuees and
their initial loca-
tions

Real-world Traffic
Data

Georgia
Department of
Transportation
(GDOT)

To calculate the
parameters of our
traffic model

TABLE I: Summary of Data used

Property Value
Number of Nodes 129,950
Number of Edges 182,084
Average Degree 1.4

TABLE II: Properties of the Directed Graph Representing the
Road Network of the Houston Metropolitan Area

the maximum estimated improvement among all the sources
is smaller than a certain threshold. The latest set of routes
are returned as the final evacuation routes. Our motivation for
designing the algorithm in this way is to find an equilibrium
where no evacuee can change their route and do better than
their current route.

V. DATA SOURCES AND CALIBRATION

We have used data from multiple sources for our simulation
experiments. In this section, we provide details about the
sources of these data and how we used them in our system.
A summary is provided in Table I.

A. Road Network Data

We have used HERE maps data [23] to construct the road
network of our study area. The data contains details including:
name of the roads, their start and end nodes, geometry,
function class (e.g arterial, collector), number of lanes, speed
limit, etc. We have used this information to (1) build a directed
graph representing the road network of the whole study area—
Table II shows some properties of this graph; (2) construct the
queuing network (section III-A); and (3) design evacuation
routes (section IV).
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B. Census Data

We have collected the census data of 2010 from the US
Census Bureau, which contains all the census block groups in
the Houston Metropolitan area (33,641 in total). Each block
group is a polygon and contains the number of housing units
in it and the number of people living in those houses. The total
number of people in this area is 5,861,300. We determined the
centroid of each block group and then used these points as the
initial locations (i.e. sources) of the evacuees. The number of
evacuees in each source location is set equal to the number
of people living in the corresponding block group. Before
simulation, we snapped the location of the sources to their
nearest nodes in the road network. The snapped locations are
shown as red dots in Figure 1. As safe zones, we chose six
locations on major highways coming out of the metropolitan
area (green circles in Figure 1). The intuition is that when
evacuees reach any of these places, they are out of danger and
can follow the highway to their preferred location.

C. Traffic Data

To get a realistic estimation of evacuation time, we need to
estimate travel time on roads in different congestion situations.
The effective speed on a road is heavily influenced by the
number of vehicles travelling on it. In traffic flow theory,
the metric traffic density (number of vehicles per lane and
per unit length) is generally used to estimate effective speed.
We study the correlation between traffic density and speed by
analyzing traffic data (vehicle count and speed) from Georgia
Department of Transportation (GDOT1). We have extracted
one year of traffic data (year 2019) from 233 roadside sensors.
The roads monitored by these sensors have a total of 986 lanes
and are also of varying function classes. We calculated the
traffic density vs. speed data points from the raw, per hour
traffic count and speed data. A visualization of the data points
from one sensor, monitoring a road of function class one, is
shown in Figure 3 (blue dots).

Our observation from several such plots is that the speed-
vs-density relationship seems to fit a reverse ‘S’ shaped curve.

1https://gdottrafficdata.drakewell.com/publicmultinodemap.asp

Similar observation was reported by Wang et al. [21]. We have
thus used their proposed logistic model to estimate speed from
density. A logistic curve fitting the observed data is shown in
Figure 3 (red curve). It has five parameters: free flow speed
(vf ), average speed at stop and go condition (vb), density (kt)
at which the traffic flow transitions from free flow to congested
flow, scale parameter (θ1) and shape parameter (θ2). The
speed-vs-density relationship according to the logistic model
is shown in equation 1 (here Θ represents all five parameters).

v(k,Θ) = vb +
vf − vb(

1 + e
k−kt
θ1

)θ2 (1)

We fit a logistic curve to data from each lane of a road.
Then we grouped the curves based on the function class of
the roads. We observed clear differences among the optimized
parameter values of different function class roads. However,
intra-class variations also exist. We choose the median values
for each function class as the representative value of that class.
For the free flow speed parameter, we use the speed limit value
when available. During simulation, depending on the function
class of a road, we use the appropriate parameter values to
estimate speed from traffic density.

VI. EXPERIMENT RESULTS

In this section we provide details about the experiments we
have performed. First, we describe the experiment settings in-
cluding some details about the implementation of our system.
Then we provide detailed analysis of the simulation results.

A. Experiment Settings

We have simulated the evacuation at two scales:
1) Small Scale: Here, we assume that there is only one
evacuee at each source location. So, effectively we simulate
the evacuation of 33,641 vehicles.
2) Large Scale: At this scale, we evacuate everyone (about six
million people) from the study area. We assume that at each
source location, on average every three people (the average
number of people per household in the US) use one car. So
during simulation, about two million cars travel through the
network from the sources to the safe zones.

In experiments with both scales, we assume that evacuation
from all the sources start at the same time. However, at
each source location, every car leaves at two second time
intervals. We consider evacuation routes from three routing
algorithms: Shortest Path routing, CASPER, and STEERS.
Also, we consider evacuation by private vehicles only.

We have used the process-based discrete-event simulation
framework Simpy2 in our implementation. The entire system
is implemented in Python. The simulations and subsequent
analyses were performed in a High Performance Computing
cluster, with 128GB RAM and 16 CPU cores allocated to our
task. Our simulator is currently a single threaded program. The
sixteen cores are allocated to help speed up the analyses of
the simulation results.

2https://simpy.readthedocs.io/en/latest/

https://simpy.readthedocs.io/en/latest/


Routing
Algorithm

Route
Length (km)

Travel
Time
(hour)

Destination
Safe Zone

SP 173.03 4.05 A
CASPER 141.85 2.54 A
STEERS 88.09 2.26 A

TABLE III: Details of Last Evacuee’s route

A B C D E F
SP 16787 1742 2920 4095 5530 2567
CASPER 9830 3388 3532 6506 7211 3174
STEERS 8763 2558 3377 5993 6213 6737

TABLE IV: Number of Evacuees Assigned to Safe Zones

B. Analysis of the Results

We have organized our analyses by addressing some key
questions regarding the evacuation process. Here, we present
each of these questions and the necessary analyses to answer
them. At first, we answer the questions using the results from
the small-scale simulation. Later, we inspect the large-scale
simulation results and present our findings.
Evacuees from which source location reach a safe zone last?
The length, travel time, and destination of the routes taken by
the last evacuee are shown in Table III. We can see from this
table that in the small scale scenario, STEERS routes evacuate
everyone faster (i.e., in 2.26 hours) than the other two methods.
Also, we see that the last evacuee’s destination is safe zone
‘A’ for all three methods. To understand why that is the case,
we look at the number of evacuees assigned to each safe zone
in Table IV. In all three methods, safe zone ‘A’ is assigned
the largest number of evacuees. This happens because it is
spatially closer to more source locations than other safe zones
(Figure 1). As more travelers head towards ‘A’, congestion
occurs on the roads leading to this destination. However, as
seen from Table IV, CASPER and STEERS try to re-distribute
the evacuees to other safe zones to avoid this situation.
Which road segments are the most congested? To identify
the road segments that are most congested throughout the
evacuation, we record the traffic density on every road during
the simulation. Figure 4 shows the top 300 roads which have
the highest mean traffic density (throughout the evacuation)
for all three routing methods. The figure shows how SP
routes cause high congestion on routes towards safe zone ‘A’.
CASPER and STEERS, on the other hand, successfully spread
out the congestion over other roads by doing a more balanced
assignment of the evacuees to the safe zones.
How long does each evacuee experience congested traffic
flow? Congested traffic flow occurs when vehicles are at stand-
still or are travelling at a considerably lower speed than the free
flow speed on a road. Naturally, we want to avoid congested
traffic flow. For our analysis, we consider traffic flow of an
evacuee to be congested when the traveler is at standstill or is
travelling at less than 30% of the free flow speed of the road
segment. To quantify the evacuee’s experience, we calculate

for each evacuee, the ratio of travel time under congested
traffic flow to total travel time. We show these values (in
percentage) in Figure 5 using a box-plot. The figure shows
that on SP routes, half of the evacuees experience congested
traffic flow for more than 67.7% (the median) of their total
evacuation time. CASPER shows improvement in this respect
with a corresponding median value of 45.1%. STEERS further
improves this with the lowest median value of 26.7%. Also,
the variance of this same metric is found to be lower for
STEERS (323.36) than SP (1004.15) and CASPER (644.96).
The results imply that the experience (regarding congestion)
of different evacuees is more similar in STEERS compared to
SP and CASPER. In this sense, STEERS produces a more fair
assignment of routes as compared to SP and CASPER.

What is the rate of evacuation throughout the evacuation
process? Evacuation completion time only tells us when all
of the evacuees have reached a safe zone. However, it is often
important to evacuate each person as quickly as possible. In
Figure 6, the percentage of people evacuated with time is
shown for each of the three routing methods. The slope of
the tangent at any point of the curve denotes the evacuation
rate at that point of time. We have added some randomness
in the simulation runs by (i) letting each evacuee leave his
source location in a five minute time window from the start
of the simulation, and by (ii) adding some randomness to
the estimated travel time given by the logistic traffic model.
We have done this to account for the inherent uncertainty
regarding when evacuees start their evacuation and the actual
travel time on the road. This is also important to see how
the results for the same routing method change because of
the added randomness. With this randomness, we ran five
simulations for each of the three routing methods. Summary
of the evacuation completion times from these simulation runs
are shown in Figure 7. We see an interesting pattern from
Figures 6 and 7. For the same routing method, evacuees
reach their safe zones at different times in different simulation
runs. This is apparent by examining Figure 7. However, the
curves showing the evacuation rate in different simulation
runs (Figure 6), are very similar, i.e., the red, green, and
blue curves are very tightly grouped. This implies that the
added randomness affects when a specific person reaches a
safe zone. But the overall evacuation rate at different points
of time remains similar. This is true for routes prescribed by all
the three routing methods. In general, the green curves are the
steepest ascending in Figure 6. This suggests that routes found
by STEERS results in a higher evacuation rate as compared
to routes found by SP or CASPER.

How do the routing methods perform in the large scale
evacuation scenario? So far, we have seen how the different
routing methods perform comparatively in the small scale
scenario. Now, we present a comparative analysis of the
methods in the large scale scenario. Before going into details,
we mention that in the large scale scenario, the same set of
routes from SP and STEERS are used. Ideally in STEERS,
we would run the simulations iteratively with all evacuees



(a) SP (b) CASPER (c) STEERS

Fig. 4: Most Congested Roads.
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Fig. 7: Evacuation completion times in five simulation runs.
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Fig. 8: Evacuation rate in large scale scenario
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Fig. 9: Per evacuee egress time in large scale scenario

instead of just one evacuee per source location. However, each
iteration of a large scale simulation takes about 1.5-2 days.
That is why in this work, we decided to inspect how the routes
generated from iterative small scale simulation perform in the
large scale scenario. In contrast, CASPER generates different
evacuation routes based on the actual number of evacuees at
the source locations and can do so without requiring any extra
resource. For this reason, we have generated new CASPER
routes using the actual number of evacuees.

The percentage of people evacuated with time is shown in
Figure 8. We can see from the plot that for all the three
methods the evacuation completion time is more than 100
hours. However, about half of the people are evacuated in
a day. Following the SP routes results in the longest time to
complete the evacuation. Surprisingly, STEERS routes show a
lower evacuation completion time (122 hours) than CASPER



(135 hours). We can see that between hour 25 and 90, the blue
curve is steeper than the green one. This means evacuation rate
in this time window is higher for CASPER than STEERS. Near
hour 90, the blue curve becomes almost flat, implying that the
evacuation rate is very low there. We can look at Figure 9
to understand why this is happening. This figure shows the
egress time of different evacuees using a box-plot. We can see
that the third quartile for CASPER (35.62 hour) is less than
the third quartile for STEERS (40.76 hour). This means that
CASPER routes have evacuated more people than STEERS
in 40 hours. This is also confirmed in Figure 8. However,
a small number of evacuees in CASPER have high egress
time that even exceeds the maximum egress time in STEERS.
These are the people who are arriving at the safe zones in
the flat region of the blue curve. Due to the better evacuation
completion time of STEERS, but the higher evacuation rate
of CASPER, there is no clear winner between STEERS and
CASPER in the large scale scenario. However, as mentioned
earlier, running STEERS with all the evacuees is expected to
capture the evacuation scenario in a more realistic manner.
Further studies will be carried out to understand the relative
trade-offs between the two methods.

VII. CONCLUSION AND FUTURE PLANS

We present a discrete event queuing simulation system
(QueST) and simulate an evacuation in the Houston Metropoli-
tan area. In the simulator, we use a traffic model that we
tuned using real-world traffic data. We also present an iterative
algorithm (STEERS) that can leverage the data generated by
the simulator to find evacuation routes. Through experiments,
we show in multiple ways that the performance of STEERS is
either better or comparable to two existing routing algorithms.
In future works, we plan to add more features to our simulator,
such as zone based scheduling, contraflow lanes, etc.
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