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ABSTRACT: Black orthorhombic (B-γ) CsSnI3 with reduced biotox-
icity and environmental impact and excellent optoelectronic properties is
being considered as a promising eco-friendly candidate for high-
performing perovskite solar cells (PSCs). A major challenge in a large-
scale implementation of CsSnI3 PSCs includes the rapid transformation
of Sn2+ to Sn4+ (within a few minutes) under an ambient-air condition.
Here, we demonstrate that ambient-air stable B-γ CsSnI3 PSCs can be
fabricated by incorporating N,N′-methylenebis(acrylamide) (MBAA)
into the perovskite layer and by using poly(3-hexylthiophene) as the
hole transporting material. The lone electron pairs of −NH and −CO units of MBAA are designed to form coordination bonding
with Sn2+ in the B-γ CsSnI3, resulting in a reduced defect (Sn4+) density and better stability under multiple conditions for the
perovskite light absorber. After a modification, the highest power conversion efficiency (PCE) of 7.50% is documented under an
ambient-air condition for the unencapsulated CsSnI3-MBAA PSC. Furthermore, the MBAA-modified devices sustain 60.2%, 76.5%,
and 58.4% of their initial PCEs after 1440 h of storage in an inert condition, after 120 h of storage in an ambient-air condition, and
after 120 h of 1 Sun continuous illumination, respectively.

■ INTRODUCTION

Perovskite solar cells (PSCs) have achieved a major milestone
in solar energy to electricity conversion by exceeding the
power conversion efficiency (PCE) of 25%.1,2 The state-of-the-
art high PCEs are mainly obtained from cells based on a lead-
incorporated perovskite photon absorber, with a structure of
APbX3 [A = Cs, MA (CH3NH3, methylammonium) or FA
(NHCHNH3, formamidinium); X = I, Br, and/or Cl].3−6

The presence of the heavy metal Pb downplays these high-
performing PSCs due to toxicity issues for both the
environment and humans.7,8 Although the amount of Pb
within a solar panel (m−2) is merely on the milligram scale, the
potential of Pb exposure (leakage) associated with the massive
production, transportation, installation, and operation of PSC
technology will require extreme care.8,9 To address this issue,
Sn-based perovskites with reduced biotoxicity and environ-
mental impact have been proposed as promising eco-friendly
alternatives to the Pb-based perovskites for the fabrication of
high-performing PSCs.10−12

One potential contender is the fully inorganic cesium tin
triiodide (CsSnI3).

13−15 The black orthorhombic (B-γ) CsSnI3
possesses a band-gap of ∼1.3 eV at room temperature (RT).
This band-gap value occurs within the ideal band-gap range of
a light absorber, in which the PCE of a single-junction cell can
approach the Shockley-Queisser limit.16,17 The B-γ CsSnI3
deposited using low-cost solution-processing also exhibits
excellent optoelectronic properties, such as a high optical

absorption coefficient, low exciton binding energy, and high
charge carrier mobilities.13,14,18 B-γ CsSnI3 was used as a light
absorber in a Schottky solar cell with a configuration of indium
tin oxide/CsSnI3/Au/Ti and a PCE of only 0.9%.19 This low
PCE is related to the speedy degradation from photoactive B-γ
CsSnI3 to the yellow polymorph structure (Y CsSnI3), and the
Y CsSnI3 will subsequently transform to the photoinactive
Cs2SnI6 due to a rapidly self-doping reaction from Sn2+ to Sn4+

upon exposure to oxygen under an ambient-air condi-
tion.10,12,16,20,21 Generally, Sn4+ works as nonradiative
recombination center for the photogenerated charge carriers
within the CsSnI3, resulting in a severely compromised device
performance (especially for the photovoltage).22,23 To reduce
the oxidation from Sn2+ to Sn4+ and enhance the efficiency and
stability of B-γ CsSnI3 PSCs, intensive efforts are being
pursued into the tuning of perovskite dimensionality,24 the
engineering of perovskite composition,25−28 and optimization
of the device configurations.21,29 However, the highest PCE of
the resulting PSCs still remains ∼5%,24 much lower than that
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of the lead-based (25.5%)2 or organotin-based (13.0%)30−33

PSCs.
The stability of the light-absorber layer is a critical issue in

the large-scale implementation of solar cell technology. The
rapid degradation of B-γ CsSnI3 films (on the order of
minutes) and PSCs (on the order of hours) under an ambient-
air condition has been commonly reported,15,22,24,27,28 but the
development of ambient-air stable B-γ CsSnI3 PSCs has not
achieved much success. This limited success restricts the
advancement of B-γ CsSnI3 PSCs in replacing the detrimental
Pb-based PSCs and in achieving the environmental sustain-
ability of the PSC technology. Therefore, fabrication strategies
for simultaneously enhancing the PCE and ambient-air
operational stability of unencapsulated B-γ CsSnI3 PSCs are
urgently required.
Herein, environmentally sustainable B-γ CsSnI3 PSCs are

fabricated for achieving an efficient solar energy conversion
under an ambient-air condition. The lone electron pairs of
−NH and −CO functional groups in N,N′-methylenebis-
(acrylamide) (MBAA) are expected to enhance the electron
density around the Sn2+ within the B-γ CsSnI3 and protect it
from oxidation to Sn4+, resulting in a pinhole-free CsSnI3-
MBAA film with a high optical absorption, low defect density,
and high inert/ambient-air/thermal stability. After the
modification, the highest PCE of 7.50% was documented
under an ambient-air condition for the unencapsulated CsSnI3-
MBAA PSC, while the plain CsSnI3 PSC only exhibited a PCE

of 1.73% under the identical fabrication and measurement
condition. Furthermore, it is found that the degradation of
CsSnI3 started from the edge of the CsSnI3 grains. Therefore,
the strong coordination bonding between MBAA and CsSnI3
can stabilize the B-γ CsSnI3 through a grain covering and
defects passivation. With the utilization of poly(3-hexylth-
iophene) (P3HT) as a hole transport material (HTM), the
MBAA-modified devices sustained 60.2%, 76.5%, and 58.4% of
their initial PCEs after 1440 h of storage in an inert RT
condition, 120 h of storage in an ambient-air condition, and
120 h of 1 Sun continuous illumination in an ambient-air
condition at ∼45 °C, respectively.

■ RESULTS AND DISCUSSION

The perovskite light absorbers were deposited on top of
fluorine-doped tin oxide (FTO) coated glass/compact TiO2
(c-TiO2)/mesoporous TiO2 (mp-TiO2) substrates through a
one-step spin-coating process (fabrication details can be found
in the Experimental Section in the Supporting Information).
Figure 1a shows the optical absorption characteristics of the
plain CsSnI3 and perovskite film fabricated with 5 mg of
MBAA added into 1 mL of a CsSnI3 precursor solution (briefly
noted as CsSnI3-MBAA). The data indicate that an enhanced
optical absorption is obtained for nearly the whole B-γ CsSnI3
absorbing region of the CsSnI3-MBAA sample, which benefits
the photocurrent density enhancement of the CsSnI3-MBAA
based PSCs. The bandgap of the CsSnI3-MBAA is estimated as

Figure 1. Deposition of perovskite films. (a) Optical absorption of the CsSnI3 and CsSnI3-MBAA films. (b) Steady-state PL spectra of the CsSnI3
and CsSnI3-MBAA films. (c) TRPL spectra and corresponding fitting results of the CsSnI3 and CsSnI3-MBAA films. (d) XRD patterns of the
CsSnI3 and CsSnI3-MBAA films. Surface morphologies measured by AFM for the (e) CsSnI3 and (f) CsSnI3-MBAA films. (g) Depth distribution
statistics of the CsSnI3 and CsSnI3-MBAA films in (e, f). Surface SEM images of the (h) CsSnI3 and (i) CsSnI3-MBAA films. HRTEM images of
the as-prepared (j) CsSnI3 and (k) CsSnI3-MBAA samples.
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∼1.3 eV,14,18,20 which is identical with the plain CsSnI3 sample,
as shown by the Tauc plots of optical absorption spectra in
Figure S1. The optical absorption for perovskite films with
different MBAA addition can be found in Figure S2. Steady-
state photoluminescence (PL) spectroscopy was performed to
measure the emission characteristics of the perovskite light
absorbers on top of quartz substrates, as shown in Figure 1b.
Compared to the CsSnI3 sample, the peak intensity of the
CsSnI3-MBAA sample is enhanced and shows a slight blue shift
in position, from 951 to 947 nm. It can be deduced that more
photogenerated free carriers are consumed by a nonradiative
recombination within the plain CsSnI3 sample, indicating that
the defect density within the CsSnI3-MBAA light absorber is
diminished due to a defect passivation of MBAA.34,35 The
steady-state PL spectra for varying the MBAA content in
perovskite films can be found in Figure S3. It was found that
the CsSnI3-MBAA (5 mg mL−1) sample exhibited the highest
PL peak intensity. Figure 1c shows the time-resolved
photoluminescence (TRPL) spectra of the CsSnI3 and
CsSnI3-MBAA samples, and two PL lifetimes of each spectrum
can be extracted accordingly (the fitting methods are presented
in the Supporting Information, Note 1). The average PL decay
lifetime was calculated as 3.60 ns for the CsSnI3 sample. After
the incorporation of the MBAA, the average PL lifetime was
significantly increased to 12.38 ns, and detailed parameters are
listed in the Supporting Information, Table 1. Typically, the
fast lifetime component originates from the quenching of
charge carriers at the surface, while the slow lifetime

component corresponds to the trap-induced nonradiative
recombination of charge carriers within the bulk perov-
skite.35−37 Therefore, the defect density in the CsSnI3-MBAA
sample was much decreased as compared to its CsSnI3
counterpart.
To investigate the crystalline properties, the X-ray diffraction

(XRD) patterns of the CsSnI3 samples with and without
MBAA modification are documented and shown in Figure 1d.
Typical characteristic peaks of the B-γ CsSnI3 structure can be
found in both samples (the simulated XRD pattern of B-γ
CsSnI3 is shown in Figure S4).14,20,38 The surface morphol-
ogies of the perovskite films have been checked with atomic
force microscopy (AFM). The root-mean-square (RMS)
roughness was 64.5 and 35.9 nm for the CsSnI3 and CsSnI3-
MBAA samples (Figure 1e−g), respectively. According to the
AFM images, there are numbers of pinholes distributed on the
surface of plain CsSnI3 sample, which may increase the
nonradiative recombination of charge carriers and further
reduce the solar cell performance.30,37,39 These results indicate
that the MBAA incorporation into the CsSnI3 system results in
an improved quality of the perovskite film due to the reduced
density of pinholes and surface roughness. Figure 1h,i shows
the surface scanning electron microscopy (SEM) images of the
perovskite films. Similar to the AFM results shown in Figure
1e−g, some pinholes are found on the surface of the bare
CsSnI3 sample (Figure 1h), but the quality of the CsSnI3-
MBAA film has been much improved, as shown in Figure 1i.
The schematic of the crystal grains arrangement within the

Figure 2. Detailed chemical interactions between MBAA and CsSnI3. (a) The real images show the color changes of the CsSnI3 and CsSnI3-MBAA
samples with 50 °C annealing for 2 min. (b) Optical absorption of the as-deposited CsSnI3 and CsSnI3-MBAA films. (c) XRD patterns of the as-
deposited CsSnI3 and CsSnI3-MBAA films. (d) 119Sn NMR spectra of CsSnI3 and CsSnI3-MBAA samples in DMSO-d6 solution. (e)

1H NMR
(−NH) spectra of CsSnI3-MBAA and MBAA samples in DMSO-d6 solution. (f)

13C NMR (−CO) spectra of CsSnI3-MBAA and MBAA samples in
DMSO-d6 solution. (g) XPS Sn 3d5/2 spectra of CsSnI3 and CsSnI3-MBAA samples. (h) XPS O 1s spectra of CsSnI3-MBAA and MBAA samples.
(i) XPS C 1s spectra of CsSnI3-MBAA and MBAA samples.
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plain CsSnI3 and CsSnI3-MBAA samples is proposed in Figure
S5. It is supposed that MBAA molecules will work as an
adhesion agent for bonding the adjacent perovskite grains
through the coordination between the dendric functional
groups (−NH and −CO) of MBAA and elements of perovskite
(as discussed later), forming a more compact arrangement of
crystal grains with fewer pinholes. The surface SEM images of
different perovskite films fabricated with different MBAA
proportions in perovskite precursor solutions are presented in
Figure S6. To characterize the nanostructure of as-deposited
perovskite samples, high-resolution transmission electron
microscopy (HRTEM) was conducted, and the results are
shown in Figure 1j,k (the image without remark can be found
in Figures S7 and S8). A high crystallinity can be observed for
both perovskite samples. With regard to the plain CsSnI3
sample (Figure 1j), the d-spacing value is estimated as 0.35 nm,
which corresponds to the (220) facet of B-γ CsSnI3 (the
simulated d-spacing value of B-γ CsSnI3 can be seen in the
Supporting Information, Table 2).20 As for the CsSnI3-MBAA
sample (Figure 1k), the spacing between the lattice fringe of
the perovskite crystal grain is 0.44 nm, which corresponds to
the (200) facet of B-γ CsSnI3. The ∼1.4 nm thick layer of
amorphous MBAA molecules evenly covered the crystalline B-
γ CsSnI3 grain in the CsSnI3-MBAA sample (Figure 1k). This
is also confirmed by the energy-dispersive X-ray (EDS)
elemental mapping in Figure S9. This thin layer of MBAA
can protect the underneath B-γ CsSnI3 grain from degradation
when contacting the ambient air. Thus, the CsSnI3-MBAA is a
good candidate for PSC fabrication due to the desired
bandgap, low defect density, and compact and pinhole-free
crystal grains. These properties of CsSnI3-MBAA are believed
to originate from the chemical interactions40 between the
functional groups of MBAA and the elements of perovskite
during the perovskite crystallization process.
As discussed previously, the advantages brought by MBAA

are expected to originate from the chemical interactions
between the functional groups of MBAA and the elements of
perovskite. To verify this assumption, several material
characterizations were performed to understand the nature of
the CsSnI3-MBAA samples by probing the detailed chemical
interactions between MBAA and CsSnI3. Figure 2a shows the
images of the CsSnI3 and CsSnI3-MBAA samples before and
after a 2 min annealing treatment at 50 °C. Obviously, the
color of the CsSnI3 sample is pale as compared to the CsSnI3-
MBAA sample in the initial stage, suggesting that the material
species of the two precursor films are different. The color of
the CsSnI3-MBAA samples turns dark rapidly under the 50 °C
heating treatment, showing that the addition of MBAA can
accelerate the phase transition of the CsSnI3. To distinguish
the material species within the two precursor films, the optical
absorption spectroscopy and XRD measurements were
conducted on the as-deposited CsSnI3 and CsSnI3-MBAA
films without an annealing treatment, and the results are
presented in Figure 2b,c. On the one hand, from optical
absorption results (Figure 2b and Figure S10), a small
absorption edge around 950 nm can be clearly observed,
indicating that a minor fraction of B-γ CsSnI3 has already
existed within the CsSnI3-MBAA precursor film. On the other
hand, the absorption feature of B-γ CsSnI3 was not found in
the CsSnI3 precursor film spectrum (Figure 2b and Figure
S11). The obtained XRD patterns (Figure 2c) of the precursor
films agree well with the optical absorption results that a weak
(101) peak of the B-γ CsSnI3 structure was detected in the

CsSnI3-MBAA precursor film, and a strong (200) peak of CsI
(PDF No. 00-006-0311) and (020) peak of SnI2 (PDF No. 04-
007-0473) were observed in the CsSnI3 precursor film (Figure
S12).41−43 Thus, the addition of MBAA into the CsSnI3
precursor solution will affect the crystallization process of the
CsSnI3 through chemical interactions between MBAA and
CsSnI3.
Theoretically, strong coordination interactions can be

formed when the lone electron pairs in the functional groups
(−NH and −CO) are delocalized to the 5p empty orbitals of
Sn2+ (4d105s2) in CsSnI3.

27,28,40,44−46 To further explore the
molecular origins of the material characteristics within CsSnI3-
MBAA, detailed coordination bonding interactions between
the MBAA and CsSnI3 were measured with liquid-state nuclear
magnetic resonance (NMR) spectroscopy, Fourier transform
infrared (FTIR) spectroscopy, and X-ray photoelectron
spectroscopy (XPS) methods. Figure 2d shows the 119Sn
NMR spectra for the CsSnI3 and CsSnI3-MBAA samples [with
the same concentration of device fabrication in deuterated
dimethyl sulfoxide (DMSO-d6)]. A chemical shift from
−600.36 ppm of the plain CsSnI3 sample to −599.23 ppm of
the CsSnI3-MBAA sample can be found from the 119Sn NMR
spectra, indicating Sn should be the active site within
CsSnI3.

46−48 In 1H NMR spectra (Figures S13 and S14) of
the neat MBAA sample, the resonance signal is attributed to
the −NH (Figure 2e) units, appearing at δ = 8.75, 8.74, and
8.72 ppm. The resonance signal shows an overall chemical shift
of Δδ ≈ 0.28 ppm to 8.47, 8.46, and 8.44 ppm for the CsSnI3-
MBAA sample, revealing the chemical interaction between the
−NH group and CsSnI3. Furthermore, 13C NMR results
(Figures S15 and S16) show that the resonance signal of δ =
165.04 ppm arising from the −CO group (Figure 2f) in MBAA
undergoes a chemical shift of Δδ ≈ 0.26 ppm to δ = 165.30
ppm for the CsSnI3-MBAA sample. Such a variation of the
MBAA molecule structure further verifies the occurrence of the
chemical interactions between the −CO group of the MBAA
and perovskite. These NMR results indicate that the chemical
environment (localized electron density) of Sn can be tuned
(increased) via the lone electron pairs from the functional
groups (−NH and −CO) within the MBAA, which agrees well
with a recent report46 in which organic additives are
incorporated into a perovskite precursor solution for the
purpose of preventing the Sn2+ from self-oxidization to Sn4+.
The FTIR spectroscopy measurements provided the addi-

tional information on chemical interactions between the
MBAA and CsSnI3. The FTIR spectra of the MBAA, CsSnI3,
and CsSnI3-MBAA samples are shown in Figure S17. The
−NH stretching vibration of the MBAA molecule was
identified at 3287 cm−1, which showed a shift to 3305 cm−1

for the CsSnI3-MBAA sample (Figure S18). The −NH
bending vibration (Figure S19) at 1555 cm−1 was measured
for the MBAA molecule, which split into two peaks at 1549
and 1541 cm−1 in the CsSnI3-MBAA sample. The −CO
stretching vibration (Figure S20) was located at 1655 cm−1 of
the MBAA molecule, and it shifted to 1658 cm−1 in the
CsSnI3-MBAA sample. The infrared peak variations demon-
strate that MBAA was not only physically adsorbed on the
surface of CsSnI3 but also chemically interacted with CsSnI3
via the −NH and −CO functional groups.40,45 The XPS
measurements were conducted to investigate the chemical
interactions between the MBAA and CsSnI3 as well, and the
full XPS spectra of the MBAA, CsSnI3, and CsSnI3-MBAA
samples are shown in Figure S21. The Sn 3d5/2 XPS spectra in
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Figure 2g further confirmed that the Sn from CsSnI3 should be
the active site to coordinate with the −NH and −CO units in
MBAA, since the peak binding energy of the Sn 3d5/2 spectrum
exhibited a clear shift toward a lower binding energy (∼0.1 eV)
from CsSnI3 to CsSnI3-MBAA, while the differences of I 3d5/2
and Cs 3d5/2 XPS spectra between CsSnI3 and CsSnI3-MBAA
samples are not significant, as shown in Figures S22 and S23. It
is noteworthy that the proportion of Sn4+ was much reduced in
the CsSnI3-MBAA sample, indicating that the self-doping of
Sn2+ to Sn4+ has been significantly reduced.15,24,46 Generally,
the defect density of CsSnI3 is strongly associated15,20,22 with
the density of Sn4+. These results suggest that the PSCs
fabricated using the MBAA-modified CsSnI3 light absorber
with a lower defect density will exhibit promising device
performances. Figure 2h shows the O 1s XPS spectra for the
MBAA and CsSnI3-MBAA samples. A clear −CO peak shift
can be observed after the formation of the coordination
bonding (adjustment of localized electron density) between
−CO units and CsSnI3. The C 1s XPS spectra49,50 in Figure 2i
also reflects that the fitted −CO and −C(NH) peaks exhibit a

clear shift after the MBAA addition into the CsSnI3 system
(the concentration of elements in atom% of MBAA and
CsSnI3-MBAA samples can be found in the Supporting
Information, Table 3).
PSCs were fabricated with a configuration of FTO/c-TiO2/

mp-TiO2/perovskite/HTM/Au. Two HTMs were adopted in
this study for exploring the best choice for this configuration;
one is the typical 2,2′,7,7′-tetrakis(N,N-di-p-methoxyphenyl-
amine)-9,9′-spirobifluorene (spiro-OMeTAD) with Li salt and
4-tert-butylpyridine (TBP) dopants, and the other is dopant-
free P3HT. The HTMs were deposited on top of the CsSnI3-
MBAA layer with a single-step dynamic spin-coating process
(Methods Section in the Supporting Information). As can be
seen from the photovoltaic parameters histogram (Figures S24
and S25), the PSCs exhibited the highest efficiency when the
HTMs were spin-coated at 2000 rpm for 30 s (Supporting
Information, Note 2). The photovoltaic characteristics of the
highest-performing devices based on P3HT and spiro-
OMeTAD are shown in Figure S26. Figure S27 shows the
statistics of photovoltaic parameters, including PCE, open-

Figure 3. Photovoltaic results. (a) A relation between the highest PCE and the amount of MBAA addition into the CsSnI3 system. (b) J−V
characteristics determined under simulated AM 1.5 G illumination for the devices fabricated with CsSnI3 and CsSnI3-MBAA films. (c) The steady-
state output result of the CsSnI3-MBAA PSC under simulated AM 1.5 G illumination. (d) IPCE spectra of the PSCs fabricated with CsSnI3 and
CsSnI3-MBAA films. (e) J−V characteristics of the electron-only devices fabricated with CsSnI3 and CsSnI3-MBAA films, and the data are fitted by
a space-charge limited current (SCLC) model. (f) Nyquist plots of CsSnI3 and CsSnI3-MBAA PSCs measured at Voc under dark condition, inset is
the equivalent circuit employed to fit the plots.
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circuit voltage (Voc), short-circuit current density (Jsc), and fill
factor (FF), of spiro-OMeTAD and P3HT-based PSCs. It is
well-known that hygroscopic additives (Li salts and TBP) of
spiro-OMeTAD will adsorb moisture under an ambient-air
condition, leading to serious device degradation.51,52 To avoid
this demerit, the ambient-air stable CsSnI3 devices were
fabricated with P3HT53,54 as the HTM (Figures S28−S30).
The cross-section SEM images of the PSCs fabricated with

CsSnI3 and CsSnI3-MBAA are presented in Figure S31.
Functional layers in the CsSnI3-MBAA based PSC were
compact as compared to those of the CsSnI3 device, which is in
good agreement with AFM and surface SEM results in Figure
1e,f,h,i. The champion PCE of PSCs increased gradually with
the same trend of MBAA concentration and reached the peak
PCE of 7.50% at an MBAA concentration of 5 mg mL−1 in the
CsSnI3 precursor solution, then decreased with more MBAA
added into the system, as shown in Figure 3a (Figures S32 and
S33). The PCE decrease for the 8 mg mL−1 MBAA sample can
be ascribed to the poor morphology (Figure S6) of the
perovskite light absorber due to the MBAA aggregation at the
grain boundaries.40,45 Figure 3b shows the current density−
voltage (J−V) characteristics for the CsSnI3 and CsSnI3-MBAA
devices under a simulated air mass (AM) 1.5 G radiation in an
ambient-air condition. The CsSnI3-MBAA device exhibited an
overall PCE of 7.50% with a Voc of 0.45 V, Jsc of 24.85 mA
cm−1, and FF of 0.67 (the PCEs and stabilities of the state-of-
the-art CsSnI3-based devices can be found in Supporting
Information, Table 4). Comparatively, the PCE of the CsSnI3

device was much inferior with a value of 1.73%, Voc of 0.30 V,
Jsc of 16.06 mA cm−2, and FF of 0.36. The hysteresis55,56

between the forward (FW) and backward (BW) scans for the
CsSnI3-MBAA device was insignificant (with an overall PCE of
7.32% for the FW scan), as demonstrated in Figure S34 and
Supporting Information, Table 5. The steady-state output of
the CsSnI3-MBAA device at the maximum power point57,58 is
shown in Figure 3c. It exhibited a stable efficiency of 7.28%
within a 400 s period. The incident photon-to-electron
conversion efficiency (IPCE) spectra of the CsSnI3 and
CsSnI3-MBAA devices are shown in Figure 3d. The integrated
current values were 24.38 and 15.82 mA cm−2 for the CsSnI3-
MBAA and CsSnI3 devices, respectively, which agrees closely
with the Jsc values extracted from J−V characteristics.
Furthermore, the suitability of the CsSnI3-MBAA film for the
large-area (1 cm2) device fabrication was investigated, as
shown in Figure S35. PCEs of 7.12% and 7.06% were extracted
from the BW and FW J−V scans for the large-area CsSnI3-
MBAA device (a histogram of PCEs for 20 devices can be seen
in Figure S36). From these results, it can be concluded that the
introduction of MBAA into CsSnI3-based PSCs can signifi-
cantly enhance all aspects of the device, leading to a much-
improved device performance.
To calculate the trap density of CsSnI3 and CsSnI3-MBAA

samples, the electron-only devices with a configuration of FTO
glass/c-TiO2/mp-TiO2/perovskite (with and without MBAA)/
phenyl-C61-butyric acid methyl ester (PCBM)/Ag were
fabricated. Figure 3e shows J−V curves of the electron-only

Figure 4. Stability results. Stability measurements of the unencapsulated CsSnI3 and CsSnI3-MBAA PSCs under (a) inert RT condition, (b) ∼10%
relative humidity ambient atmosphere at RT, and (c) 1 Sun continuous illumination in an ambient-air condition with ∼10% relative humidity at
∼45 °C (10 devices for each group). (d) Evolution of color change for as-prepared CsSnI3 (marked as C) and CsSnI3-MBAA (marked as T)
solutions under ∼10% relative humidity ambient atmosphere at RT. (e) XRD patterns for CsSnI3 and CsSnI3-MBAA films after 20 d of exposure to
ambient atmosphere at RT; the facets of B-γ CsSnI3 are marked in red, the facets of Cs2SnI6 are marked in black, and the facets of CsI are marked
in green. HRTEM images for the CsSnI3 after (f) 2 and (g) 5 d of exposure to ambient atmosphere at RT. (h) HRTEM images for the CsSnI3-
MBAA after 5 d of exposure to an ambient atmosphere at RT.
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devices measured under a dark condition. Generally, an ohmic
response within the low-bias region is obtained due to the
linear correlation between the current and bias voltage. Traps
will be filled by injected carriers (nonlinear increase of current)
when the applied voltage exceeds the trap-filled limit voltage
(VTFL).

35,59,60 The electron trap density of the CsSnI3 film was
estimated to be 3.40 × 1015 cm−3. After the incorporation of
MBAA, the trap density was diminished to 2.90 × 1015 cm−3

(Supporting Information, Note 3). The current exhibits a
quadratic relationship with voltage in the high-bias region. The
electron mobilities of the CsSnI3 and CsSnI3-MBAA films were
calculated as 1.05 × 10−3 and 1.95 × 10−3 cm2 V−1 s−1,
respectively (Supporting Information, Note 3). The hole-only
devices were fabricated with a structure of FTO/poly(3,4-
ethylenedioxythiophene) polystyrene sulfonate (PE-
DOT:PSS)/perovskite/Spiro-OMeTAD/Au. The J−V curves
of the hole-only devices measured under dark can be found in
Figure S37. The calculated hole trap densities of the CsSnI3
and CsSnI3-MBAA samples were 4.10 × 1015 and 3.64 × 1015

cm−3, respectively. The hole mobilities of the CsSnI3 and
CsSnI3-MBAA films were calculated as 2.50 × 10−4 and 5.46 ×
10−4 cm2 V−1 s−1, respectively. The transient photovoltage
(TPV) measurements of the CsSnI3 and CsSnI3-MBAA
devices were performed to estimate the charge carrier lifetimes
of the two samples,61 as shown in Figure S38. The electron
diffusion lengths were estimated as 1.02 and 1.94 μm for
CsSnI3 and CsSnI3-MBAA samples, and the hole diffusion
lengths were estimated as 0.49 and 1.05 μm for CsSnI3 and
CsSnI3-MBAA samples, respectively (Supporting Information,
Note 3). The obtained charge carrier diffusion lengths accord
with recent results.17 As expected, the addition of MBAA
assisted the formation of the B-γ CsSnI3 film with a reduced
trap density. Electrochemical impedance spectroscopy (EIS)
was conducted to quantify the charge transfer and recombi-
nation dynamics within the PSCs. Figure 3f shows the Nyquist
plots and the equivalent circuit model of both CsSnI3 and
CsSnI3-MBAA PSCs measured under an ambient-air dark
condition at Voc. The corresponding fitting parameters are
listed in the Supporting Information, Table 6. After the
incorporation of the MBAA, the recombination resistance
(Rrec)

35,62 was significantly increased from 1092 to 1913 Ω,
indicating that the defect passivation by reducing the Sn4+

content through an MBAA modification can successfully
suppress the charge carrier recombination. The corresponding
low-frequency capacitance63,64 (Figure S39) decreased from
∼0.002 F of the CsSnI3 device to ∼0.001 F of the CsSnI3-
MBAA device, which could mean more free carriers were
collected by the charge carrier transport layer within the
MBAA-modified device.
The stability issue of Sn-based PSCs is critical for their

potential in substituting the Pb-based PSCs. MBAA and P3HT
were utilized for the enhancement of the overall stability of the
lead-free B-γ CsSnI3 films and PSCs. To confirm the
achievements of using this strategy, the stabilities were
measured under different conditions for the perovskite
precursor solutions with and without MBAA incorporation
and for the corresponding perovskite films and devi-
ces.15,24,28,65 The unencapsulated CsSnI3 devices maintained
merely 20.3% of their original PCE after being stored under an
inert RT condition for 1440 h, while the average PCE of
MBAA-modified devices maintained 60.2% of their original
value, nearly 3 times that of the former, during the same period
under the identical condition (Figure 4a). For the unencapsu-

lated devices stored under ambient-air condition (RT and
∼10% relative humidity), the average PCE of the CsSnI3
devices decreased to 9.8% of their original value after 120 h of
storage, while the CsSnI3-MBAA devices maintained 76.5% of
their original PCE during the same storage period and retained
25.2% of their original PCE after 600 h of a storage period
(Figure 4b). Furthermore, the CsSnI3-MBAA devices main-
tained 58.4% of their initial PCE after 120 h of 1 Sun
continuous illumination under ambient-air condition with
∼10% relative humidity at ∼45 °C, while the CsSnI3 devices
retained only 4.1% of their initial PCE after 42 h under the
identical condition, as illustrated in Figure 4c. This strong
evidence suggests that the incorporation of MBAA in the
CsSnI3 not only improves the performance of the device but
also enhances the stability of the devices.
Figure 4d shows the evolution of color change for the as-

prepared CsSnI3 and CsSnI3-MBAA solutions under an
ambient atmosphere at RT. Obviously, the color of the plain
CsSnI3 solution gradually turns to light red and changes to
muddy with time. This implies an increasing oxidation of Sn2+

to Sn4+ in the solution,66 while the CsSnI3-MBAA solution
remains clear and maintains its original color. The real images
in Figure S40 reflect the color/transparency evolution of the
CsSnI3 and CsSnI3-MBAA films. The CsSnI3-MBAA film kept
its original dense black nature after 20 d of ambient-air
exposure, while the CsSnI3 film began to degrade. Figure S41
shows the water contact angle results of the CsSnI3 and
CsSnI3-MBAA films, which suggests that the MBAA addition
increases the water contact angle from 35.2° of the CsSnI3 film
to 70.4° of the CsSnI3-MBAA film. The optical absorption
spectra and PL spectra of the perovskite films with different
ambient-air exposure periods are shown in Figures S42 and
S43. The typical B-γ CsSnI3 optical absorption feature can still
be observed within the CsSnI3-MBAA film after 20 d of
ambient-air exposure (Figure S42b); however, the B-γ CsSnI3
optical absorption feature is negligible in the CsSnI3 sample
after the same storage period (Figure S42a). The CsSnI3
sample loses 83% of its original PL peak intensity after only
5 d of ambient-air exposure (Figure S43a), while the PL peak
intensity of the CsSnI3-MBAA sample gradually reduces to
87% and further down to 69% of its original intensity after 5
and 20 d of ambient-air exposure, respectively (Figure S43b).
These results clearly show that the MBAA incorporation is able
to effectively reduce the oxidization of Sn2+ to Sn4+ and
improve the ambient-air stability of the B-γ CsSnI3 film and
device.
The structural stability of B-γ CsSnI3 was measured through

the XRD method, as shown in Figure 4e. After 20 d of
exposure in ambient air, B-γ CsSnI3 crystal features of the plain
CsSnI3 film were not noticeable; rather, the structural
characteristics represented Cs2SnI6, CsI, and SnO2.

41−43 On
the contrary, despite the reduction in intensity of the B-γ
CsSnI3 characteristic peaks, this phase still existed in the
CsSnI3-MBAA film and can be recognized from the XRD
patterns. The intermediate XRD patterns of the two samples
can be found in Figures S44 and S45. The B-γ CsSnI3
characteristic peaks of the CsSnI3 sample were much reduced
after just 5 d of ambient-air exposure, while the CsSnI3-MBAA
sample retained B-γ CsSnI3 characteristic features with a
slightly reduced peak intensity at the same exposure stage.
The intermediates of the CsSnI3 degradation were

documented by HRTEM measurements, as shown in Figure
4f,g. The degradation was found to start form the edge areas of
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the CsSnI3 grain (reflected by the green rectangles) after an
exposure to ambient air for 2 d (Figure 4f and Figure S46).
These edge areas continued losing their crystalline features in
the following days when the sample was placed in air, as shown
in Figure 4g (Figure S47). In contrast, the clear B-γ CsSnI3
lattice fringes in Figure 4h (Figure S48) indicate that the
CsSnI3-MBAA sample maintained its crystal structure after 5 d
of exposure under an identical ambient-air condition. It is
believed that the thin layer of MBAA molecules coated over
the B-γ CsSnI3 grains contributed to protect them from
degradation when coming in contact with an external stimulus
(oxygen, moisture, and heat stress), leading to ambient-air
stable devices.

■ CONCLUSION
MBAA is incorporated in the precursor solution for fabricating
environmentally sustainable and ambient-air stable lead-free B-
γ CsSnI3 PSCs. Through comprehensive experimental
measurements, we found that the lone electron pairs of
−NH and −CO functional groups in the MBAA can enhance
the electron density around the Sn2+ within the B-γ CsSnI3 and
protect it from oxidation to Sn4+, resulting in a better film
morphology, higher optical absorption, lower defect density,
and better stability under multiple conditions for perovskite
films. After modification, the highest PCE of 7.50% was
documented for the CsSnI3-MBAA PSC, while the plain
CsSnI3 PSC only exhibited a PCE of 1.73%. Furthermore, the
degradation processes of CsSnI3 were found to start from the
edge area of the CsSnI3 grains. The strong coordination
bonding between MBAA and CsSnI3 stabilized the B-γ CsSnI3
structure by covering the CsSnI3 grains and reducing the
pinholes. With the utilization of P3HT as an HTM, the
MBAA-modified devices sustained 60.2%, 76.5%, and 58.4% of
their initial PCEs after 1440 h of storage in an inert RT
condition, after 120 h of storage in an ambient-air RT
condition with an ∼10% relative humidity, and after 120 h of 1
Sun continuous illumination in an ambient-air condition with
∼10% relative humidity at ∼45 °C, respectively. The proposed
strategy provides an elegant and highly reproducible solution
for the realization of environmentally sustainable and ambient-
air stable B-γ CsSnI3 PSCs.
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