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Abstract— This paper considers general rank-constrained opti-
mization problems that minimize a general objective function
f(X) over the set of rectangular n × m matrices that have rank
at most r. To tackle the rank constraint and also to reduce
the computational burden, we factorize X into UV T where
U and V are n × r and m × r matrices, respectively, and then
optimize over the small matrices U and V . We characterize the
global optimization geometry of the nonconvex factored problem
and show that the corresponding objective function satisfies the
robust strict saddle property as long as the original objective
function f satisfies restricted strong convexity and smoothness
properties, ensuring global convergence of many local search
algorithms (such as noisy gradient descent) in polynomial time for
solving the factored problem. We also provide a comprehensive
analysis for the optimization geometry of a matrix factorization
problem where we aim to find n× r and m× r matrices U and V
such that UV T approximates a given matrix X? . Aside from
the robust strict saddle property, we show that the objective
function of the matrix factorization problem has no spurious
local minima and obeys the strict saddle property not only
for the exact-parameterization case where rank(X?) = r, but
also for the over-parameterization case where rank(X?) < r
and the under-parameterization case where rank(X?) > r.
These geometric properties imply that a number of iterative
optimization algorithms (such as gradient descent) converge to a
global solution with random initialization.

Index Terms— Low-rank optimization, matrix factorization,
matrix sensing, nonconvex optimization, optimization geometry.

I. INTRODUCTION

L
OW-RANK matrices arise in a wide variety of applica-

tions throughout science and engineering, ranging from

quantum tomography [1], signal processing [2], machine learn-

ing [3], [4], and so on; see [5] for a comprehensive review.
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In all of these settings, we often encounter the following

rank-constrained optimization problem:

minimize
X∈Rn×m

f(X),

subject to rank(X) ≤ r, (1)

where the objective function f : Rn×m → R is smooth.

Whether the objective function f is convex or nonconvex,

the rank constraint renders low-rank matrix optimizations of

the form (1) highly nonconvex and computationally NP-hard

in general [6]. Significant efforts have been devoted to trans-

forming (1) into a convex problem by replacing the rank

constraint with one involving the nuclear norm. This strat-

egy has been widely utilized in matrix inverse problems [7]

arising in signal processing [5], machine learning [8], and

control [6]. With convex analysis techniques, nuclear norm

minimization has been proved to provide optimal performance

in recovering low-rank matrices [9]. However, in spite of

the optimal performance, solving nuclear norm minimiza-

tion is very computationally expensive even with special-

ized first-order algorithms. For example, the singular value

thresholding algorithm [10] requires performing an expensive

singular value decomposition (SVD) in each iteration, making

it computationally prohibitive in large-scale settings. This

prevents nuclear norm minimization from scaling to practical

problems.

To relieve the computational bottleneck, recent studies pro-

pose to factorize the variable into X = UV T, and optimize

over the n × r and m × r matrices U and V rather than

the n × m matrix X . The rank constraint in (1) then is auto-

matically satisfied through the factorization. This strategy is

usually referred to as the Burer-Monteiro type decomposition

after the authors in [11], [12]. Plugging this parameterization

of X in (1), we can recast the program into the following

one:

minimize
U∈Rn×r,V ∈Rm×r

h(U , V ) := f(UV T). (2)

The bilinear nature of the parameterization renders the objec-

tive function of (2) nonconvex. Hence, it can potentially

have spurious local minima (i.e., local minimizers that are

not global minimizers) or even saddle points. With technical

innovations in analyzing the landscape of nonconvex functions,

however, several recent works have shown that the factored

objective function h(U , V ) in certain matrix inverse problems

has no spurious local minima [13]–[15].
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A. Summary of Results and Outline

In this paper, we provide a comprehensive geometric analy-

sis for solving general low-rank optimizations of the form (1)

using the factorization approach (2). Our work actually rests

on the recent works [16]–[20] ensuring a number of iterative

optimization methods (such as gradient descent) converge

to a local minimum with random initialization provided the

problem satisfies the so-called strict saddle property (see

Definition 3 in Section II). If the objective function further

obeys the robust strict saddle property [16] (see Definition 4

in Section II) or belongs to the class of so-called X func-

tions [17], the recent works [16], [17] show that many local

search algorithms can converge to a local minimum in poly-

nomial time. The implications of this line of work have had

a tremendous impact on a number of nonconvex problems in

applied mathematics, signal processing, and machine learning.

We begin this paper in Section II with the notions of

strict saddle, strict saddle property, and robust strict saddle

property. Considering that many invariant functions are not

strongly convex (or even convex) in any neighborhood around

a local minimum point, we then provide a revised robust

strict saddle property1 requiring a regularity condition (see

Definition 8 in Section II) rather than strong convexity near

the local minimum points (which is one of the requirements

for the strict saddle property). The stochastic gradient descent

algorithm is guaranteed to converge to a local minimum point

in polynomial time for problems satisfying the revised robust

strict saddle property [16], [20].

In Section III, we consider the geometric analysis for

solving general low-rank optimizations of the form (1) using

the factorization approach (2). Provided the objective function

f satisfies certain restricted strong convexity and smoothness

conditions, we show that the low-rank optimization problem

with the factorization (2) (with an additional regularizer—see

Section III for the details) obeys the revised robust strict saddle

property. In Section III-C, we consider a stylized application

in matrix sensing where the measurement operator satisfies

the restricted isometry property (RIP) [7]. In the case of

Gaussian measurements, as guaranteed by this robust strict

saddle property, a number of iterative optimizations can find

the unknown matrix X? of rank r in polynomial time with

high probability when the number of measurements exceeds a

constant times (n + m)r2.

Our main approach for analyzing the optimization geometry

of (2) is based on the geometric analysis for the follow-

ing non-square low-rank matrix factorization problem: given

X? ∈ Rn×m,

minimize
U∈Rn×r,V m×r

∥∥∥UV T − X?
∥∥∥

2

F
. (3)

1A similar notion of a revised robust strict saddle property has also been
utilized in [20], which shows that noisy gradient descent converges to a
local minimum in a number iterations that depends only poly-logarithmically
on the dimension. In a nutshell, [20] has a different focus than this work:
the focus in [20] is on providing convergence analysis of a noisy gradient
descent algorithm with a robust strict saddle property, while in the present
paper, we establish a robust strict saddle property for the nonsymmetric
matrix factorization and more general low-rank optimization (including matrix
sensing) problems with the factorization approach.

In particular, we show the optimization geometry for the

low-rank matrix factorization problem (3) is preserved for

the general low-rank optimization (2) under certain restricted

strong convexity and smoothness conditions on f . Thus,

in Appendix A, we provide a comprehensive geometric analy-

sis for (3), which can be viewed as an important foundation

of many popular matrix factorization problems such as the

matrix sensing problem and matrix completion. We show

that the low-rank matrix factorization problem (3) (with an

additional regularizer) has no spurious local minima and obeys

the strict saddle property—that is the objective function in (3)

has a directional negative curvature at all critical points but

local minima—not only for the exact-parameterization case

where rank(X?) = r, but also for the over-parameterization

case where rank(X?) < r and the under-parameterization

case where rank(X?) > r. The strict saddle property and

lack of spurious local minima ensure that a number of local

search algorithms applied to the matrix factorization prob-

lem (3) converge to global optima which correspond to the

best rank-r approximation to X?. Further, we completely

analyze the low-rank matrix factorization problem (3) for the

exact-parameterization case and show that it obeys the revised

robust strict saddle property.

B. Relation to Existing Work

Unlike the objective functions of convex optimizations that

have simple landscapes, such as where all local minimizers

are global ones, the objective functions of general nonconvex

programs have much more complicated landscapes. In recent

years, by exploiting the underlying optimization geometry,

a surge of progress has been made in providing theoretical jus-

tifications for matrix factorization problems such as (2) using a

number of previously heuristic algorithms (such as alternating

minimization [21], gradient descent, and the trust region

method). Typical examples include phase retrieval [22]–[24],

blind deconvolution [25], [26], dictionary learning [27]–[29],

phase synchronization [30] and matrix sensing and completion

[14], [31]–[36].

These iterative algorithms can be sorted into two categories

based on whether a good initialization is required. One set of

algorithms consist of two steps: initialization and local refine-

ment. Provided the function satisfies a regularity condition or

similar properties, a good guess lying in the attraction basin

of the global optimum can lead to global convergence of the

following iterative step. We can obtain such initializations by

spectral methods for phase retrieval [23], phase synchroniza-

tion [30] and low-rank matrix recovery problems [31], [32],

[37], [38]. As we have mentioned, a regularity condition is

also adopted in the revised robust strict saddle property.

Another category of works attempt to analyze the landscape

of the objective functions in a larger space rather than the

regions near the global optima. We can further separate these

approaches into two types based on whether they involve

the strict saddle property or the robust strict saddle property.

The strict saddle property and lack of spurious local minima

are proved for low-rank, positive semidefinite (PSD) matrix

recovery [13] and completion [14], PSD matrix optimization
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problems with generic objective functions [39], low-rank

non-square matrix estimation from linear observations [15],

low-rank nonsquare optimization problems with generic objec-

tive functions [40] and generic nuclear norm regularized

problems [39]. The strict saddle property along with the

lack of spurious local minima ensures a number of iterative

algorithms such as gradient descent [16] and the trust region

method [41] converge to the global minimum with random

initialization [16], [18], [29].

A few other works which are closely related to our work

attempt to study the global geometry by characterizing the

landscapes of the objective functions in the whole space rather

than the regions near the global optima or all the critical

points. As we discussed before, a number of local search

algorithms are guaranteed to find a local optimum (which

is also the global optimum if there are no spurious local

minima) because of this robust strict saddle property. In [16],

the authors proved that tensor decomposition problems satisfy

this robust strict saddle property. Sun et al. [22] studied the

global geometry of the phase retrieval problem. The very

recent work in [42] analyzed the global geometry for PSD

low-rank matrix factorization of the form (3) and the related

matrix sensing problem when the rank is exactly parameterized

(i.e., r = rank(X?)). The factorization approach for matrix

inverse problems with quadratic loss functions is considered

in [36]. We extend this line by considering general rank-

constrained optimization problems including a set of matrix

inverse problems.

Finally, we remark that our work is also closely related

to the recent works in low-rank matrix factorization of the

form (3) and its variants [13]–[15], [31]–[33], [36], [40], [42].

As we discussed before, most of these works except [36],

[42] (but including [15] which also focuses on nonsymmetric

matrix sensing) only characterize the geometry either near the

global optima or all the critical points. Instead, we characterize

the globalgeometry for general (rather than PSD) low-rank

matrix factorization and sensing. Because the analysis is differ-

ent, the proof strategy in the present paper is also very different

than that of [15], [40]. The results for PSD matrix sensing in

[42] build heavily on the concentration properties of Gaussian

measurements, while our results for matrix sensing depend on

the RIP of the measurement operator and thus can be applied to

other matrix sensing problems whose measurement operator is

not necessarily from a Gaussian measurement ensemble. Also,

[36] considers matrix inverse problems with quadratic loss

functions and its proof strategy is very different than that in the

present paper: the proof in [36] is specified to quadratic loss

functions, while we consider the rank-constrained optimization

problem with general objective functions in (1) and our

proof utilizes the fact that the gradient and Hessian of the

low-rank matrix sensing are respectively very close to those

in low-rank matrix factorization. Furthermore, in terms of the

matrix factorization, we show that the objective function in (3)

obeys the strict saddle property and has no spurious local

minima not only for exact-parameterization (r = rank(X?)),
but also for over-parameterization (r > rank(X?)) and

under-parameterization (r < rank(X?)). Local (rather

than global) geometry results for exact-parameterization and

under-parameterization are also covered in [40]. As noted

above, the work in [36], [42] for low-rank matrix factorization

only focuses on exact-parameterization (r = rank(X?)). The

under-parameterization implies that we can find the best rank-r
approximation to X? by many efficient iterative optimization

algorithms such as gradient descent.

C. Notation

Before proceeding, we first briefly introduce some notation

used throughout the paper. The symbols I and 0 respectively

represent the identity and zero matrices with appropriate sizes.

Also In is used to denote the n × n identity matrix. For

any natural number n, we let [n] or 1 : n denote the

set {1, 2, ..., n}. We use |Ω| denote the cardinality (i.e., the

number of elements) of a set Ω. MATLAB notations are

adopted for matrix indexing; that is, for the n × m matrix

A, its (i, j)-th element is denoted by A[i, j], its i-th row (or

column) is denoted by A[i, :] (or A[:, i]), and A[Ω1, Ω2] refers

to a |Ω1| × |Ω2| submatrix obtained by taking the elements in

rows Ω1 of columns Ω2 of matrix A. Here Ω1 ⊂ [n] and

Ω2 ⊂ [n]. We use a � b (or a � b) to represent that there is

a constant so that a ≥ Const · b (or a ≤ Const · b).

We say that a (not necessarily square) matrix A ∈ Rn×r

is orthonormal if the columns of A are normalized and

orthogonal to each other, i.e., ATA = I. The set of r × r
orthonormal matrices is denoted by Or := {R ∈ Rr×r :
RTR = I}. We say that a (not necessarily square) matrix

A ∈ Rn×r is orthogonal if hA[:, i], A[:, j]i = 0 for all i 6= j;

that is the columns of A are orthogonal to each other, but are

not necessarily normalized and could even be zero.

If a function h(U , V ) has two arguments, U ∈ Rn×r

and V ∈ R
m×r, we occasionally use the notation h(W )

when we put these two arguments into a new one as

W =

[
U

V

]
. For a scalar function f(Z) with a matrix

variable Z ∈ R
n×m, its gradient is an n × m matrix

whose (i, j)-th entry is [∇f(Z)][i, j] = ∂f(Z)
∂Z[i,j] for all i ∈

{1, 2, . . . , n}, j ∈ {1, 2, . . . , m}. The Hessian of f(Z) can be

viewed as an nm × nm matrix [∇2f(Z)][i, j] = ∂2f(Z)
∂z[i]∂z[j]

for all i, j ∈ {1, . . . , nm}, where z[i] is the i-th entry of

the vectorization of Z. An alternative way to represent the

Hessian is by a bilinear form defined via [∇2f(Z)](A, B) =∑
i,j,k,l

∂2f(Z)
∂Z[i,j]∂Z[k,`]A[i, j]B[k, `] for any A, B ∈ Rn×m.

These two notations will be used interchangeably whenever

the specific form can be inferred from context.

II. PRELIMINARIES

In this section, we provide a number of important definitions

in optimization and group theory. To begin, suppose h(x) :
Rn → R is twice differentiable.

Definition 1 (Critical Points): A point x is a critical point

of h(x) if ∇h(x) = 0.

Definition 2 (Strict Saddles; or Ridable Saddles in [29]):

A critical point x is a strict saddle if the Hessian matrix

evaluated at this point has a strictly negative eigenvalue,

i.e., λmin(∇2h(x)) < 0.

Definition 3 (Strict Saddle Property [16]): A twice differ-

entiable function satisfies the strict saddle property if each
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critical point either corresponds to a local minimum or is a

strict saddle.

Intuitively, the strict saddle property requires a function to

have a directional negative curvature at all of the critical points

but local minima. This property allows a number of iterative

algorithms such as noisy gradient descent [16] and the trust

region method [41] to further decrease the function value at

all the strict saddles and thus converge to a local minimum.

In [16], the authors proposed a noisy gradient descent

algorithm for the optimization of functions satisfying the

robust strict saddle property.

Definition 4 (Robust Strict Saddle Property [16]):

Given α, γ, �, δ, a twice differentiable h(x) satisfies the

(α, γ, �, δ)-robust strict saddle property if for every point x

at least one of the following applies:

1) There exists a local minimum point x? such that

kx? −xk ≤ δ, and the function h(x0) restricted to a 2δ
neighborhood of x? (i.e., kx?−x0k ≤ 2δ) is α-strongly

convex;

2) λmin

(
∇2h(x)

)
≤ −γ;

3) k∇h(x)k ≥ �.

In words, the above robust strict saddle property says that

for any point whose gradient is small, then either the Hessian

matrix evaluated at this point has a strictly negative eigenvalue,

or it is close to a local minimum point. Thus the robust

strict saddle property not only requires that the function obeys

the strict saddle property, but also that it is well-behaved

(i.e., strongly convex) near the local minima and has large

gradient at the points far way to the critical points.

Intuitively, when the gradient is large, the function value

will decrease in one step by gradient descent; when the point

is close to a saddle point, the noise introduced in the noisy

gradient descent could help the algorithm escape the saddle

point and the function value will also decrease; when the point

is close to a local minimum point, the algorithm then converges

to a local minimum. Ge et al. [16] rigorously showed that

the noisy gradient descent algorithm (see [16, Algorithm

1]) outputs a local minimum in a polynomial number of

steps if the function h(x) satisfies the robust strict saddle

property.

It is proved in [16] that tensor decomposition problems

satisfy this robust strict saddle property. However, requiring

the local strong convexity prohibits the potential extension of

the analysis in [16] for the noisy gradient descent algorithm to

many other problems, for which it is not possible to be strongly

convex in any neighborhood around the local minimum points.

Typical examples include the matrix factorization problems

due to the rotational degrees of freedom for any critical

point. This motivates us to weaken the local strong convexity

assumption relying on the approach used by [23], [31] and to

provide the following revised robust strict saddle property for

such problems. To that end, we list some necessary definitions

related to groups and invariance of a function under the group

action.

Definition 5 (Definition 7.1 [43])): A (closed) binary oper-

ation, ◦, is a law of composition that produces an element

of a set from two elements of the same set. More precisely,

let G be a set and a1, a2 ∈ G be arbitrary elements. Then

(a1, a2) → a1 ◦ a2 ∈ G.

Definition 6 (Definition 7.2 [43])): A group is a set G
together with a (closed) binary operation ◦ such that for any

elements a, a1, a2, a3 ∈ G the following properties hold:

• Associative property: a1 ◦ (a2 ◦ a3) = (a1 ◦ a2) ◦ a3.

• There exists an identity element e ∈ G such that

e ◦ a = a ◦ e = a.

• There is an element a−1 ∈ G such that

a−1 ◦ a = a ◦ a−1 = e.

With this definition, it is common to denote a group just by

G without saying the binary operation ◦ when it is clear from

the context.

Definition 7: Given a function h(x) : Rn → R and a group

G of operators on Rn, we say h is invariant under the group

action (or under an element a of the group) if

h(a(x)) = h(x)

for all x ∈ Rn and a ∈ G.

Suppose the group action also preserves the energy of x,

i.e., ka(x)k = kxk for all a ∈ G. Since for any x ∈ Rn,

h(a(x)) = h(x) for all a ∈ G, it is straightforward to stratify

the domain of h(x) into equivalent classes. The vectors in

each of these equivalent classes differ by a group action. One

implication is that when considering the distance of two points

x1 and x2, it would be helpful to use the distance between

their corresponding classes:

dist(x1, x2) : = min
a1∈G,a2∈G

ka1(x1) − a2(x2)k

= min
a∈G

kx1 − a(x2)k, (4)

where the second equality follows because ka1(x1) −
a2(x2)k = ka1(x1 − a−1

1 ◦ a2(x2))k = kx1 − a−1
1 ◦ a2(x2)k

and a−1
1 ◦ a2 ∈ G. Another implication is that the function

h(x) cannot possibly be strongly convex (or even convex) in

any neighborhood around its local minimum points because

of the existence of the equivalent classes. Before presenting

the revised robust strict saddle property for invariant functions,

we list two examples to illuminate these concepts.

Example 1: As one example, consider the phase retrieval

problem of recovering an n-dimensional complex vector

x? from
{
yi =

∣∣∣bH
i x?
∣∣∣ , i = 1, . . . , p

}
, the magnitude of

its projection onto a collection of known complex vectors

b1, b2, . . . , bp [22], [23]. The unknown x? can be estimated by

solving the following natural least-squares formulation [22],

[23]

minimize
x∈Cn

h(x) =
1

2p

p∑

i=1

(
y2

i −
∣∣∣bH

i x

∣∣∣
2
)2

,

where we note that here the domain of x is Cn. For this case,

we denote the corresponding

G = {ejθ : θ ∈ [0, 1)}

and the group action as a(x) = ejθx, where a = ejθ is an

element in G. It is clear that h(a(x)) = h(x) for all a ∈ G.

Due to this invariance of h(x), it is impossible to recover the
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global phase factor of the unknown x? and the function h(x)
is not strongly convex in any neighborhood of x?.

Example 2: As another example, we revisit the general

factored low-rank optimization problem (2):

minimize
U∈Rn×r,V ∈Rm×r

h(U , V ) = f(UV T).

We recast the two variables U , V into W as W =

[
U

V

]
.

For this example, we denote the corresponding G = Or

and the group action on W as a(W ) =

[
UR

V R

]
where

a = R ∈ G. We have that h(a(W )) = h(W ) for all a ∈ G
since UR(V R)T = UV T for any R ∈ Or. Because of this

invariance, in general h(W ) is not strongly convex in any

neighborhood around its local minimum points even though

f(X) is a strongly convex function; see [42] for the symmetric

low-rank factorization problem and Theorem 2 in Appendix A

for the nonsymmetric low-rank factorization problem.

In the examples illustrated above, due to the invariance,

the function is not strongly convex (or even convex) in any

neighborhood around its local minimum point and thus it is

prohibitive to apply the standard approach in optimization

to show the convergence in a small neighborhood around

the local minimum point. To overcome this issue, Candès

et al. [23] utilized the so-called regularity condition as a

sufficient condition for local convergence of gradient descent

applied for the phase retrieval problem. This approach has

also been applied for the matrix sensing problem [31] and

semi-definite optimization [37].

Definition 8 (Regularity Condition [23], [31]): Suppose

h(x) : R
n → R is invariant under the group action of the

given group G. Let x? ∈ Rn be a local minimum point of

h(x). Define the set B(δ, x?) as

B(δ, x?) := {x ∈ R
n : dist(x, x?) ≤ δ} ,

where the distance dist(x, x?) is defined in (4). Then we say

the function h(x) satisfies the (α, β, δ)-regularity condition if

for all x ∈ B(δ, x?), we have

h∇h(x), x − a(x?)i ≥ α dist(x, x?)2 + βk∇h(x)k2, (5)

where a = arg mina0∈G kx− a0(x?)k.

We remark that (α, β) in the regularity condition (8) must

satisfy αβ ≤ 1
4 since by applying Cauchy-Schwarz

h∇h(x), x − a(x?)i ≤ k∇h(x)k dist(x, x?)

and the inequality of arithmetic and geometric means

α dist2(x, x?)+βk∇h(x)k2 ≥ 2
√

αβ dist(x, x?)k∇h(x)k2.

Lemma 1: [23], [31] If the function h(x) restricted to a δ
neighborhood of x? satisfies the (α, β, δ)-regularity condition,

then as long as gradient descent starts from a point x0 ∈
B(δ, x?), the gradient descent update

xt+1 = xt − ν∇h(xt)

with step size 0 < ν ≤ 2β obeys xt ∈ B(δ, x?) and

dist2(xt, x
?) ≤ (1 − 2να)

t
dist2(x0, x

?)

for all t ≥ 0.

The proof is given in [23]. To keep the paper self-contained,

we also provide the proof of Lemma 1 in Appendix B.

We remark that the decreasing rate 1 − 2να ∈ [0, 1) since

we choose ν ≤ 2β and αβ ≤ 1
4 .

Now we establish the following revised robust strict saddle

property for invariant functions by replacing the strong con-

vexity condition in Definition 4 with the regularity condition.

Definition 9 (Revised Robust Strict Saddle Property for

Invariant Functions): Given a twice differentiable h(x) :
Rn → R and a group G, suppose h(x) is invariant under the

group action and the energy of x is also preserved under the

group action, i.e., h(a(x)) = h(x) and ka(x)k2 = kxk2 for

all a ∈ G. Given α, β, γ, �, δ, h(x) satisfies the (α, β, γ, �, δ)-
robust strict saddle property if for any point x at least one of

the following applies:

1) There exists a local minimum point x? such that

dist(x, x?) ≤ δ, and the function h(x0) restricted to 2δ a

neighborhood of x? (i.e., dist(x0, x?) ≤ 2δ) satisfies the

(α, β, 2δ)-regularity condition defined in Definition 8;

2) λmin

(
∇2h(x)

)
≤ −γ;

3) k∇h(x)k ≥ �.

Compared with Definition 4, the revised robust strict saddle

property requires the local descent condition instead of strict

convexity in a small neighborhood around any local mini-

mum point. With the convergence guarantee in Lemma 1,

the convergence analysis of the stochastic gradient descent

algorithm in [16] for the robust strict saddle functions can

also be applied for the revised robust strict saddle functions

defined in Definition 9 with the same convergence rate.2 We

omit the details here and refer the reader to [20] for more

details on this. In the rest of the paper, the robust strict saddle

property refers to the one in Definition 9.

III. LOW-RANK MATRIX OPTIMIZATION WITH THE

FACTORIZATION APPROACH

In this section, we consider the minimization of general

rank-constrained optimization problems of the form (1) using

the factorization approach (2) (which we repeat as follows):

minimize
U∈Rn×r,V ∈Rm×r

h(U , V ) = f(UV T),

where the rank constraint in (1) is automatically satisfied

by the factorization approach. With necessary assumptions

on f in Section III-A, we provide geometric analysis of the

factored problem in Section III-B. We then present a stylized

application in matrix sensing in Section III-C.

A. Assumptions and Regularizer

Before presenting our main results, we lay out the necessary

assumptions on the objective function f(X). As is known,

without any assumptions on the problem, even minimizing

traditional quadratic objective functions is challenging. For

this reason, we focus on problems satisfying the following

two assumptions.

2As mentioned previously, a similar notion of a revised robust strict saddle
property has also recently been utilized in [20].
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Assumption 1: f(X) has a critical point X? ∈ Rn×m

which has rank r.

Assumption 2: f(X) is (2r, 4r)-restricted strongly con-

vex and smooth, i.e., for any n × m matrices X, D with

rank(X) ≤ 2r and rank(D) ≤ 4r, the Hessian of f(X)
satisfies

a kDk2
F ≤ [∇2f(X)](D, D) ≤ b kDk2

F (6)

for some positive a and b.

Assumption 1 is equivalent to the existence of a rank r X?

such that ∇f(X?) = 0, which is very mild and holds in many

matrix inverse problems including matrix sensing [7], matrix

completion [9] and 1-bit matrix completion [44], where the

unknown matrix to be recovered is a critical point of f .

Assumption 2 is also utilized in [32, Conditions 5.3 and 5.4]

and [40], where weighted low-rank matrix factorization and

a set of matrix inverse problems are proved to satisfy the

(2r, 4r)-restricted strong convexity and smoothness condi-

tion (6). We discuss matrix sensing as a typical example

satisfying this assumption in Section III-C.

Combining Assumption 1 and Assumption 2, we have that

X? is the unique global minimum of (1).

Proposition 1: Suppose f(X) satisfies the (2r, 4r)-
restricted strong convexity and smoothness condition (6) with

positive a and b. Assume X? is a critical point of f(X) with

rank(X?) = r. Then X? is the global minimum of (1), i.e.,

f(X?) ≤ f(X), ∀ X ∈ R
n×m, rank(X) ≤ r

and the equality holds only at X = X?.

The proof of Proposition 1 is given in Appendix C. We note

that Proposition 1 guarantees that X? is the unique global

minimum of (1) and it is expected that solving the factorized

problem (9) also gives X?. Proposition 1 differs from [40] in

that it only requires X? as a critical point, while [40] needs

X? as a global minimum of f .

Before presenting the main result, we note that if f satis-

fies (6) with positive a and b and we rescale f as f 0 = 2
a+bf ,

then f 0 satisfies

2a

a + b
kDk2

F ≤ [∇2f 0(X)](D, D) ≤ 2b

a + b
kDk2

F .

It is clear that f and f 0 have the same optimization geometry

(despite the scaling difference). Let a0 = 2a
a+b = 1 − c and

b0 = 2a
a+b = 1 + c with c = b−a

a+b . We have 0 < a0 ≤ 1 ≤ b0

and a0 + b0 = 2. Thus, throughout the paper and without the

generality, we assume

a = 1 − c, b = 1 + c, c ∈ [0, 1). (7)

Now let X? = ΦΣΨ
T =

∑r
i=1 σiφiψ

T
i be a reduced SVD

of X?, where Σ is a diagonal matrix with σ1 ≥ · · · ≥ σr along

its diagonal. Denote

U? = ΦΣ
1/2R, V ? = ΨΣ

1/2R (8)

for any R ∈ Or. We first introduce the following ways to stack

U and V together that are widely used through the paper:

W =

[
U

V

]
, Ŵ =

[
U

−V

]
,W ? =

[
U?

V ?

]
, Ŵ

?
=

[
U?

−V ?

]
.

Before moving on, we note that for any solution (U , V ) to

(2), (UR1, V R2) is also a solution to (2) for any R1, R2 ∈
Rr×r such that UR1R

T
2 V T = UV T. As an extreme exam-

ple, R1 = cI and R2 = 1
c I where c can be arbitrarily large.

In order to address this ambiguity (i.e., to reduce the search

space of W for (3)), we utilize the trick in [15], [31], [32], [40]

by introducing a regularizer ρ and turn to solve the following

problem

minimize
U∈Rn×r,V ∈Rm×r

G(W ) := h(W ) + ρ(W ), (9)

where

ρ(W ) :=
µ

4

∥∥∥UTU − V TV

∥∥∥
2

F
.

We remark that W ? is still a global minimizer of the factored

problem (29) since both the first term and ρ(W ) achieve their

global minimum at W ?. The regularizer ρ(W ) is applied to

force the difference between the Gram matrices of U and V as

small as possible. The global minimum of ρ(W ) is 0, which

is achieved when U and V have the same Gram matrices, i.e.,

when W belongs to

E :=

{
W =

[
U

V

]
: UTU − V TV = 0

}
. (10)

Informally, we can view (9) as finding a point from E that also

minimizes the first term in (9). This is rigorously established

in the following result which reveals that any critical point W

of g(W ) belongs to E (that is U and V are balanced factors

of their product UV T) for any µ > 0.

Lemma 2 ( [40, Theorem 3]): Suppose G(W ) is defined

as in (9) with µ > 0. Then any critical point W of G(W )
belongs to E , i.e.,

∇G(W ) = 0 ⇒ UTU = V TV . (11)

For completeness, we include the proof of Lemma 2 in

Appendix D.

B. Global Geometry for General Low-Rank Optimization

We now characterize the global optimization geometry of

the factored problem (9). As explained in Section II that

G(W ) is invariant under the matrices R ∈ Or, we first

recall the discussions in Section II about the revised robust

strict saddle property for the invariant functions. To that end,

we follow the notion of the distance between equivalent classes

for invariant functions defined in (4) and define the distance

between W 1 and W 2 as follows

dist(W 1, W 2) : = min
R1∈Or,R2∈Or

kW 1R1 − W 2R2kF

= min
R∈Or

kW 1 − W 2RkF . (12)

For convenience, we also denote the best rotation matrix R so

that kW 1 − W 2RkF achieves its minimum by R(W 1, W 2),
i.e.,

R(W 1, W 2) := arg min
R0∈Or

∥∥W 1 − W 2R
0∥∥

F
, (13)

which is also known as the orthogonal Procrustes prob-

lem [45]. The solution to the above minimization problem is

characterized by the following lemma.
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Lemma 3 ( [45]): Let W T
2 W 1 = LSP T be an SVD of

W T
2 W 1. An optimal solution for the orthogonal Procrustes

problem (13) is given by

R(W 1, W 2) = LP T.

Moreover, we have

W T
1 W 2R(W 1, W 2) = (W 2R(W 1, W 2))

T
W 1

= PSP T � 0.

To ease the notation, we drop W 1 and W 2 in

R(W 1, W 2) and rewrite R instead of R(W 1, W 2) when

they (W 1 and W 2) are clear from the context. Now we are

well equipped to present the robust strict saddle property for

G(W ) in the following result.

Theorem 1: Define the following regions

R1 :=
{
W : dist(W , W ?) ≤ σ1/2

r (X?)
}

,

R2 :=

{
W : σr(W ) ≤

√
1

2
σ1/2

r (X?),

kWW TkF ≤ 20

19
kW ?W ?TkF

}
,

R0
3 :=

{
W : dist(W , W ?) > σ1/2

r (X?), kWk ≤ 20

19
kW ?k,

σr(W )>

√
1

2
σ1/2

r (X?), kWW TkF ≤ 20

19
kW ?W ?TkF

}
,

R00
3 :=

{
W : kW k >

20

19
kW ?k =

20

19

√
2kX?k1/2,

kWW TkF ≤ 10

9
kW ?W ?TkF

}
,

R000
3 :=

{
W : kWW TkF >

10

9
kW ?W ?TkF =

20

9
kX?kF

}
.

Let G(W ) be defined as in (9) with µ = 1
2 . Suppose f(X)

has a critical point X? ∈ Rn×m of rank r and satisfies

the (2r, 4r)-restricted strong convexity and smoothness con-

dition (6) with positive constants a = 1 − c, b = 1 + c
and

c ≤ 1

100

σ
3/2
r (X?)

kX?kF kX?k1/2
. (14)

Then G(W ) has the following robust strict saddle property:

1) For any W ∈ R1, G(W ) satisfies the local regularity

condition:

h∇G(W ), W − W ?i

≥ 1

16
σr(X

?) dist2(W , W ?)+
1

260

1

kX?kk∇G(W )k2
F .

(15)

where dist(W , W ?) and R are defined in (12) and (13),

respectively.

2) For any W ∈ R2, G(W ) has a directional negative

curvature, i.e.,

λmin

(
∇2G(W )

)
≤ −1

6
σr(X

?). (16)

3) For any W ∈ R3 = R0
3 ∪ R00

3 ∪ R000
3 , G(W ) has large

gradient:

k∇G(W )kF ≥ 1

27
σ3/2

r (X?), ∀ W ∈ R0
3; (17)

k∇G(W )kF ≥ 1

50
kWk3, ∀ W ∈ R00

3 ; (18)

k∇G(W )kF ≥ 1

45

∥∥∥WW T
∥∥∥

3/2

F
, ∀ W ∈ R000

3 .

(19)

The proof of this result is given in Appendix L. The main

proof strategy is to utilize Assumption 1 and Assumption 2

about the function f to control the deviation between the

gradient (and the Hessian) of the general low-rank opti-

mization (9) and the counterpart of the matrix factoriza-

tion problem so that the landscape of the general low-rank

optimization (9) has a similar geometry property. To that

end, in Appendix A, we provide a comprehensive geometric

analysis for the matrix factorization problem (3). The reason

for choosing µ = 1
2 is also discussed in Appendix A-F. We

note that the results in Appendix A are also of indepen-

dent interest, as we show that the objective function in (3)

obeys the strict saddle property and has no spurious local

minima not only for exact-parameterization (r = rank(X?)),
but also for over-parameterization (r > rank(X?)) and

under-parameterization (r < rank(X?)). Several remarks

follow.

Remark 1: Note that

R1 ∪R2 ∪R0
3 ⊇

{
W : kWk ≤ 20

19
kW ?kF ,

kWW TkF ≤ 10

9
kW ?W ?TkF

}
,

which further implies

R1∪R2∪R0
3∪R00

3 ⊇{W : kWW TkF ≤ 10

9
kW ?W ?TkF }.

Thus, we conclude that R1 ∪ R2 ∪ R0
3 ∪ R00

3 ∪ R000
3 =

R(n+m)×r. Now the convergence analysis of the stochastic

gradient descent algorithm in [16], [20] for the robust strict

saddle functions also holds for G(W ).
Remark 2: Theorem 1 states that the objective function for

the general low-rank optimization (9) also satisfies the robust

strict saddle property when (14) holds. The requirement for c
in (14) can be weakened to ensure the properties of g(W ) are

preserved for G(W ) in some regions. For example, the local

regularity condition (15) holds when

c ≤ 1

50

which is independent of X?. With the analysis of the global

geometric structure in G(W ), Theorem 1 ensures that many

local search algorithms can converge to X? (which is the the

global minimum of (1) as guaranteed by Proposition 1) with

random initialization. In particular, stochastic gradient descent

when applied to the matrix sensing problem (22) is guaranteed

to find the global minimum X? in polynomial time.

Remark 3: Local (rather than global) geometry results

for the general low-rank optimization (9) are also covered
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in [40], which only characterizes the geometry at all the critical

points. Instead, Theorem 1 characterizes the global geometry

for general low-rank optimization (9). Because the analysis

is different, the proof strategy for Theorem 1 is also very

different than that of [40]. Since [40] only considers local

geometry, the result in [40] requires c ≤ 0.2, which is slightly

less restrictive than the one in (14).

Remark 4: To explain the necessity of the requirement

on the constants a and b in (14), we utilize the symmetric

weighted PCA problem (so that we can visualize the landscape

of the factored problem in Figure 1) as an example where the

objective function is

f(X) =
1

2
kΩ� (X − X?)k2

F , (20)

where Ω ∈ Rn×n contains positive entries. The Hessian

quadratic form for f(X) is given by [∇2f(X)](D, D) =
kΩ� Dk2

F for any D ∈ Rn×n. Thus, we have

min
ij

|Ω[i, j]|2 ≤ [∇2f(X)](D, D)

kDk2
F

≤ max
ij

|Ω[i, j]|2.

Comparing with (6), we see that f satisfies the restricted strong

convexity and smoothness conditions with the constants a =
minij |Ω[i, j]|2 and b = maxij |Ω[i, j]|2. In this case, we also

note that if each entry Wij is nonzero (i.e., minij |Ω[i, j]|2 >
0), the function f(X) is strongly convex, rather than only

restrictively strongly convex, implying that (20) has a unique

optimal solution X?. By applying the factorization approach,

we get the factored objective function

h(U) =
1

2
kΩ� (UUT − X?)k2

F . (21)

To illustrate the necessity of the requirement on the constants

a and b as in (14) so that the factored problem (21) has

no spurious local minima and obeys the robust strict saddle

property, we set X? =

[
1 1
1 1

]
which is a rank-1 matrix

and can be factorized as X? = U?U?T with U? =

[
1
1

]
.

We then plot the landscapes of the factored objective function

h(U) with Ω =

[
1 1
1 1

]
and

[
8 1
1 8

]
in Figure 1. We observe

from Figure 1 that as long as the elements in Ω have a small

dynamic range (which corresponds to a small b/a), h(U) has

no spurious local minima, but if the elements in Ω have a large

dynamic range (which corresponds to a large b/a), spurious

local minima can appear in h(U ).
Remark 5: The global geometry of low-rank matrix recov-

ery but with analysis customized to linear measurements

and quadratic loss functions is also covered in [36], [42].

Since Theorem 1 only requires the (2r, 4r)-restricted strong

convexity and smoothness property (6), aside from low-rank

matrix recovery [46], it can also be applied to many other

low-rank matrix optimization problems [47] which do not

necessarily involve quadratic loss functions. Typical examples

include 1-bit matrix completion [44], [48] and Poisson princi-

pal component analysis (PCA) [49]. We refer to [40] for more

discussion on this issue. In next section, we consider a stylized

application of Theorem 1 in matrix sensing and compare it

with the result in [42].

Fig. 1. Landscapes of h(U) in (21) with X
� =

�
1 1
1 1

�
and (a) Ω =�

1 1
1 1

�
; (b) Ω =

�
8 1
1 8

�
.

C. Stylized Application: Matrix Sensing

In this section, we extend the previous geometric analysis

to the matrix sensing problem

minimize
U∈Rn×r,V ∈Rm×r

G(W ) :=
1

2

∥∥∥A
(
UV T − X?

)∥∥∥
2

2
+ ρ(W ),

(22)

where A : Rn×m → Rp is a known linear measurement

operator and X? is the unknown rank r matrix to be recovered.

In this case, we have

f(X) =
1

2
kA (X − X?)k2

2 .

The derivative of f(X) at X? is

∇f(X?) = A∗A(X? − X?) = 0,

which implies that f(X) satisfies Assumption 1. The Hessian

quadratic form ∇2f(X)[D, D] for any n × m matrices X

and D is given by

∇2f(X)[D, D] = kA(D)k2 .

The following matrix Restricted Isometry Property (RIP)

serves as a way to link the low-rank matrix factorization

problem (29) with the matrix sensing problem (22) and certi-

fies f(X) satisfying Assumption 2.

Definition 10 (Restricted Isometry Property (RIP) [7],

[50]): The map A : R
n×m → R

p satisfies the r-RIP with

constant δr if 3

(1 − δr) kDk2
F ≤ kA(D)k2 ≤ (1 + δr) kDk2

F (23)

holds for any n × m matrix D with rank(D) ≤ r.

If A satisfies the 4r-restricted isometry property with con-

stant δ4r, then f(X) satisfies the (2r, 4r)-restricted strong

3By abuse of notation, we adopt the conventional notation δr for the RIP
constant. The subscript r can be used to distinguish the RIP constant δr from
δ which is used as a small constant in Section II.
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convexity and smoothness condition (6) with constants a =
1 − δ4r and b = 1 − δ4r since

(1 − δ4r) kDk2
F ≤ ∇2f(X)[D, D] = kA(D)k2

≤ (1 + δ4r) kDk2
F (24)

for any rank-4r matrix D. Comparing (24) with (6), we note

that the RIP is stronger than the restricted strong convexity

and smoothness property (6) as the RIP gives that (24) holds

for all n × m matrices X , while Assumption 2 only requires

that (6) holds for all rank-2r matrices.

Now, applying Theorem 1, we obtain a similar geometric

guarantee to Theorem 1 for the matrix sensing problem (22)

when A satisfies the RIP.

Corollary 1: Let R1,R2,R0
3,R00

3 ,R000
3 be the regions as

defined in Theorem 5. Let G(W ) be defined as in (22) with

µ = 1
2 and A satisfying the 4r-RIP with

δ4r ≤ 1

100

σ
3/2
r (X?)

kX?kF kX?k1/2
. (25)

Then G(W ) has the following robust strict saddle property:

1) For any W ∈ R1, G(W ) satisfies the local regularity

condition:

h∇G(W ), W − W ?i

≥ 1

16
σr(X

?) dist2(W , W ?)+
1

260

1

kX?kk∇G(W )k2
F .

(26)

where dist(W , W ?) and R are defined in (12) and (13),

respectively.

2) For any W ∈ R2, G(W ) has a directional negative

curvature, i.e.,

λmin

(
∇2G(W )

)
≤ −1

6
σr(X

?).

3) For any W ∈ R3 = R0
3 ∪ R00

3 ∪ R000
3 , G(W ) has large

gradient:

k∇G(W )kF ≥ 1

27
σ3/2

r (X?), ∀ W ∈ R0
3;

k∇G(W )kF ≥ 1

50
kW k3, ∀ W ∈ R00

3 ;

k∇G(W )kF ≥ 1

45

∥∥∥WW T
∥∥∥

3/2

F
, ∀ W ∈ R000

3 .

Remark 6: Similar to (14), the requirement for δ4r in

(25) can be weakened to ensure the properties of g(W ) are

preserved for G(W ) in some regions. For example, the local

regularity condition (26) holds when

δ4r ≤ 1

50

which is independent of X?. Note that Tu et al. [31, Section

5.4, (5.15)] provided a similar regularity condition. However,

the result there requires δ6r ≤ 1
25 and dist(W , W ?) ≤

1
2
√

2
σr(X

?) which defines a smaller region than R1. Based

on this local regularity condition, Tu et al. [31] showed

that gradient descent with a good initialization (which is

close enough to W ?) converges to the unknown matrix W ?

(and hence X?). With the analysis of the global geometric

structure in G(W ), Theorem 1 ensures that many local search

algorithms can find the unknown matrix X? in polynomial

time.

Remark 7: A Gaussian A will have the RIP with high

probability when the number of measurements p is comparable

to the number of degrees of freedom in an n × m matrix

with rank r. By Gaussian A we mean the `-th element in

y = A(X), y`, is given by

y` = hX, A`i =

n∑

i=1

m∑

j=1

X[i, j]A`[i, j],

where the entries of each n × m matrix A` are independent

and identically distributed normal random variables with zero

mean and variance 1
p . Specifically, a Gaussian A satisfies (23)

with high probability when [5], [7], [46]

p � r(n + m)
1

δ2
r

.

Now utilizing the inequality kX?kF ≤ √
rkX?k for (14),

we conclude that in the case of Gaussian measurements, the

robust strict saddle property is preserved for the matrix sensing

problem with high probability when the number of measure-

ments exceeds a constant times (n + m)r2κ(X?)3 where

κ(X?) = σ1(X?)
σr(X?) . This further implies that, when applying

the stochastic gradient descent algorithm to the matrix sensing

problem (22) with Gaussian measurements, we are guaranteed

to find the unknown matrix X? in polynomial time with high

probability when

p � (n + m)r2κ(X?)3. (27)

When X? is an n × n PSD matrix, Li et al. [42] showed

that the corresponding matrix sensing problem with Gaussian

measurements has similar global geometry to the low-rank

PSD matrix factorization problem when the number of mea-

surements

p � nr2 σ4
1(X?)

σ2
r (X?)

. (28)

Comparing (27) with (28), we find both results for the number

of measurements needed depend similarly on the rank r, but

slightly differently on the spectrum of X?. We finally remark

that the sampling complexity in (27) is O((n+m)r2), which is

slightly larger than the information theoretically optimal bound

O((n + m)r) for matrix sensing. This is because Theorem 1

is a direct consequence of Theorem 1 in which we directly

characterize the landscapes of the objective functions in the

whole space by combining the results for matrix factorization

in Appendix A and the restricted strong convexity and smooth-

ness condition. We believe this mismatch is an artifact of our

proof strategy and could be mitigated by a different approach,

like utilizing the properties of quadratic loss functions [36].

If one desires only to characterize the geometry for critical

points, then O((n+m)r) measurements are enough to ensure

the strict saddle property and lack of spurious local minima

for matrix sensing [15], [40]. We finally note that for matrix

completion where the RIP is not satisfied, [36] proves the

robust strict saddle property for the factorization approach by

utilizing an additional regularizer which promotes incoherence

of W .
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APPENDIX A

THE OPTIMIZATION GEOMETRY OF LOW-RANK MATRIX

FACTORIZATION

In this appendix, we consider the low-rank matrix factor-

ization problem

minimize
U∈Rn×r,V ∈Rm×r

g(W ) :=
1

2

∥∥∥UV T − X?
∥∥∥

2

F
+ ρ(W ) (29)

where ρ(W ) is the regularizer used in (9) and repeated here:

ρ(W ) =
µ

4

∥∥∥UTU − V TV

∥∥∥
2

F
.

We provide a comprehensive geometric analysis for

the matrix factorization problem (29). In particular,

we show that the objective function in (29) obeys the

strict saddle property and has no spurious local minima

not only for exact-parameterization (r = rank(X?)),
but also for over-parameterization (r > rank(X?))
and under-parameterization (r < rank(X?)). For the

exact-parameterization case, we further show that the

objective function satisfies the robust strict saddle property,

ensuring global convergence of many local search algorithms

in polynomial time. As we believe these results are also of

independent interest and to make it easy to follow, we only

present the main results in this appendix and defer the proofs

to other appendices.

A. Relationship to PSD Low-Rank Matrix Factorization

Similar to (8), let X? = ΦΣΨ
T =

∑r
i=1 σiφiψ

T
i be a

reduced SVD of X?, where Σ is a diagonal matrix with

σ1 ≥ · · · ≥ σr along its diagonal, and denote U? =
ΦΣ

1/2R, V ? = ΨΣ
1/2R for any R ∈ Or. The following

result to some degree characterizes the relationship between

the nonsymmetric low-rank matrix factorization problem (29)

and the following PSD low-rank matrix factorization prob-

lem [42]:

minimize
U∈Rn×r

∥∥∥UUT − M

∥∥∥
2

F
, (30)

where M ∈ Rn×n is a rank-r PSD matrix.

Lemma 4: Suppose g(W ) is defined as in (29) with µ > 0.

Then we have

g(W ) ≥ min{µ

4
,
1

8
}
∥∥∥WW T − W ?W ?T

∥∥∥
2

F
.

In particular, if we choose µ = 1
2 , then we have

g(W )=
1

8

∥∥∥WW T−W ?W ?T
∥∥∥

2

F
+

1

4

∥∥∥UTU?−V TV ?
∥∥∥

2

F
.

The proof of Lemma 4 is given in Appendix E. Informally,

Lemma 4 indicates that minimizing g(W ) also results in

minimizing

∥∥∥WW T − W ?W ?T
∥∥∥

2

F
(which is the same form

as the objective function in (30)) and hence the distance

between W and W ? (though W ? is unavailable at priori).

The global geometry for the PSD low-rank matrix factorization

problem (30) is recently analyzed by Li et al. in [42].

B. Characterization of Critical Points

We first provide the gradient and Hessian expression for

g(W ). The gradient of g(W ) is given by

∇Ug(U , V ) = (UV T − X?)V + µU(UTU − V TV ),

∇V g(U , V ) = (UV T − X?)TU − µV (UTU − V TV ),

which can be rewritten as

∇g(W ) =

[
(UV T − X?)V

(UV T − X?)TU

]
+ µŴŴ

T
W .

Standard computations give the Hessian quadratic form

[∇2g(W )](∆,∆) for any ∆ =

[
∆U

∆V

]
∈ R(n+m)×r (where

∆U ∈ Rn×r and ∆V ∈ Rm×r) as

[∇2g(W )](∆,∆)

=
∥∥∥∆UV T + U∆

T
V

∥∥∥
2

F
+ 2
〈
UV T − X?,∆U∆

T
V

〉

+ [∇2ρ(W )](∆,∆), (31)

where

[∇2ρ(W )](∆,∆)

= µ
〈
Ŵ

T
W , ∆̂

T
∆

〉
+ µ
〈
Ŵ ∆̂

T
,∆W T

〉

+ µ
〈
ŴŴ

T
,∆∆

T
〉

. (32)

By Lemma 2, we can simplify the equations for critical

points as follows

∇Uρ(U , V ) = UUTU − X?V = 0, (33)

∇V ρ(U , V ) = V V TV − X?TU = 0. (34)

Now suppose W is a critical point of g(W ). We can

apply the Gram-Schmidt process to orthonormalize the

columns of U such that Ũ = UR, where R ∈ Or ={
R ∈ Rr×r, RTR = I

}
and Ũ is orthogonal.4 Also let Ṽ =

V R. Since UTU = V TV , we have Ũ
T
Ũ = Ṽ

T
Ṽ .

Thus Ṽ is also orthogonal. Noting that UV T = Ũ Ṽ
T

,

we conclude that g(W ) = g(W̃ ) and W̃ is also a critical

point of g(W ) since ∇
�U
g(W̃ ) = ∇Ug(W )R = 0 and

∇
�V
g(W̃ ) = ∇V g(W )R = 0. Also for any ∆ ∈ R(n+m)×r,

we have [∇2g(W )](∆,∆) = [∇2g(W̃ )](∆R,∆R), indicat-

ing that W and W̃ have the same Hessian information. Thus,

without loss of generality, we assume U and V are orthogonal

(including the possibility that they have zero columns). With

this, we use ui and vi to denote the i-th columns of U and

V , respectively. It follows from ∇g(W ) = 0 that

kuik2ui = X?vi,

kvik2vi = X?Tui,

4As defined in Section I-C, by orthogonal we mean that 〈�U[:, i], �U[:, j]〉 =
0 for all i �= j. The columns of �U are not required to be normalized, and could
even be zero. Also, another way to find R is via the SVD. Let U = LΣR

T

be a reduced SVD of U, where L is an n × r orthonormal matrix, Σ is
an r × r diagonal matrix with non-negative diagonals, and R ∈ Or . Then�U = UR = LΣ is orthogonal, with possible zero columns.
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which indicates that

(ui, vi)∈
{
(
√

λ1p1,
√

λ1q1), . . . , (
√

λrpr,
√

λrqr), (0,0)
}

.

Now we identify all the critical points of g(W ) in the

following lemma, which is formally proved with an algebraic

approach in Appendix F.

Lemma 5: Let X? = ΦΣΨ
T =

∑r
i=1 σiφiψ

T
i be a

reduced SVD of X? and g(W ) be defined as in (29) with

µ > 0. Any W =

[
U

V

]
is a critical point of g(W ) if and

only if W ∈ C with

C :=

{
W =

[
U

V

]
:U = ΦΛ

1/2R, V = ΨΛ
1/2R, R ∈ Or,

Λ is diagonal,Λ ≥ 0, (Σ− Λ)Σ = 0

}
.

(35)

Intuitively, (35) means that a critical point W of g(W )
is one such that UV T is a rank-` approximation to X?

with ` ≤ r and U and V are equal factors of this rank-`
approximation. Let λ1, λ2, . . . , λr denote the diagonals of Λ.

Unlike Σ, we note that these diagonals λ1, λ2, . . . , λr are not

necessarily placed in decreasing or increasing order. Actually,

this equation (Σ − Λ)Σ = 0 is equivalent to

λi ∈ {σi, 0}
for all i ∈ {1, 2, . . . , r}. Further, we introduce the set of

optimal solutions:

X :=

{
W =

[
U

V

]
: U =ΦΣ

1/2R, V = ΨΣ
1/2R, R ∈ Or

}
.

(36)

It is clear that the set X containing all the optimal solutions,

the set C containing all the critical points and the set E
containing all the points with balanced factors have the nesting

relationship: X ⊂ C ⊂ E . Before moving to the next section,

we provide one more result regarding W ∈ E . The proof of

the following result is given in Appendix G.

Lemma 6: For any ∆ =

[
∆U

∆V

]
∈ R

(n+m)×r and W ∈ E
where E is defined in (10), we have

k∆UUTk2
F + k∆V V Tk2

F = k∆UV Tk2
F + k∆V UTk2

F ,

(37)

and

∇2ρ(W ) � 0. (38)

C. Strict Saddle Property

Lemma 6 implies that the Hessian of ρ(W ) evaluated at

any critical point W is PSD, i.e., ∇2ρ(W ) � 0 for all W ∈
C. Despite this fact, the following result establishes the strict

saddle property for g(W ).
Theorem 2: Let g(W ) be defined as in (29) with µ > 0 and

rank(X?) = r. Let W =

[
U

V

]
be any critical point satisfying

∇g(W ) = 0, i.e., W ∈ C. Any W ∈ C \ X is a strict saddle

of g(W ) satisfying

λmin(∇2g(W )) ≤ −1

2

∥∥∥WW T − W ?W ?T
∥∥∥ ≤ −σr(X

?).

(39)

Furthermore, g(W ) is not strongly convex at any global

minimum point W ∈ X .

The proof of Theorem 2 is given in Appendix H.

We note that this strict saddle property is also covered

in [40, Theorem 3], but with much looser bounds (in particu-

lar, directly applying [40, Theorem 3] gives λmin(∇2g(W )) ≤
−0.1σr(X

?) rather than λmin(∇2g(W )) ≤ −σr(X
?) in

(39)). Theorem 2 actually implies that g(W ) has no spurious

local minima (since all local minima belong to X ) and obeys

the strict saddle property. With the strict saddle property

and lack of spurious local minima for g(W ), the recent

results [18], [19] ensure that gradient descent converges to

a global minimizer almost surely with random initialization.

We also note that Theorem 2 states that g(W ) is not strongly

convex at any global minimum point W ∈ X because of the

invariance property of g(W ). This is the reason we introduce

the distance in (12) and also the robust strict saddle property

in Definition 9.

D. Extension to Over-Parameterized Case: rank (X?) < r

In this section, we briefly discuss the over-parameterized

scenario where the low-rank matrix X? has rank smaller than

r. Similar to Theorem 2, the following result shows that the

strict saddle property also holds in this case.

Theorem 3: Let X? = ΦΣΨ
T =

∑r0

i=1 σiφiψ
T
i be a

reduced SVD of X? with r0 ≤ r, and let g(W ) be defined

as in (29) with µ > 0. Any W =

[
U

V

]
is a critical point of

g(W ) if and only if W ∈ C with

C :=

{
W =

[
U

V

]
:U = ΦΛ

1/2R, V =ΨΛ
1/2R, RRT = Ir0 ,

Λ is diagonal,Λ ≥ 0, (Σ− Λ)Σ = 0

}
.

Further, all the local minima (which are also global) belong

to the following set

X =

{
W =

[
U

V

]
:U = ΦΣ

1/2R, V = ΨΣ
1/2R,

RRT = Ir0

}
.

Finally, any W ∈ C \X is a strict saddle of g(W ) satisfying

λmin(∇2g(W )) ≤ −1

2

∥∥∥WW T − W ?W ?T
∥∥∥ ≤ −σr0(X?).

The proof of Theorem 3 is given in Appendix I. We note that

this strict saddle property is also covered in [40, Theorem 3],

but with much looser bounds (in particular, directly applying

[40, Theorem 3] gives λmin(∇2g(W )) ≤ −0.1σr0(X?) rather

than λmin(∇2g(W )) ≤ −σr0(X?) in Theorem 3).
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E. Extension to Under-Parameterized Case: rank (X?) > r

We further discuss the under-parameterized case where

rank(X?) > r. In this case, (3) is also known as the low-rank

approximation problem as the product UV T forms a rank-r
approximation to X?. Similar to Theorem 2, the following

result shows that the strict saddle property also holds for g(W )
in this scenario.

Theorem 4: Let X? = ΦΣΨ
T =

∑r0

i=1 σiφiψ
T
i be a

reduced SVD of X? with r0 > r and σr(X
?) > σr+1(X

?).5

Also let g(W ) be defined as in (29) with µ > 0. Any

W =

[
U

V

]
is a critical point of g(W ) if and only if W ∈ C

with

C :=

{
W =

[
U

V

]
: U = Φ[:, Ω]Λ1/2R, V = Ψ[:, Ω]Λ1/2R,

Λ=Σ[Ω, Ω], RRT =I`, Ω⊂{1, 2, . . . , r0}, |Ω| = `≤r

}

where we recall that Φ[:, Ω] is a submatrix of Φ obtained by

keeping the columns indexed by Ω and Σ[Ω, Ω] is an ` ×
` matrix obtained by taking the elements of Σ in rows and

columns indexed by Ω.

Further, all local minima belong to the following set

X =

{
W =

[
U

V

]
: Λ = Σ[1 : r, 1 : r], R ∈ Or,

U = Φ[:, 1 : r]Λ1/2R, V = Ψ[:, 1 : r]Λ1/2R

}
.

Finally, any W ∈ C \ X is a strict saddle of g(W ) satisfying

λmin(∇2g(W )) ≤ −(σr(X
?) − σr+1(X

?)).

The proof of Theorem 4 is given in Appendix J. It follows

from Eckart-Young-Mirsky theorem [51] that for any W ∈ X ,

UV T is the best rank-r approximation to X?. Thus, this

strict saddle property ensures that the local search algorithms

applied to the factored problem (29) converge to global

optimum which corresponds to the best rank-r approximation

to X?. Note that Theorems 2–4 require µ > 0. Based on these

results, it has been recently proved in [52] that the strict saddle

property also holds for g(W ) even when µ = 0, but without

an explicit bound on λmin(∇2g(W )) as in Theorems 2–4.

F. Robust Strict Saddle Property

We now consider the revised robust strict saddle property

defined in Definition 9 for the low-rank matrix factorization

problem (29). As guaranteed by Theorem 2, g(W ) satisfies

the strict saddle property for any µ > 0. However, too small

a µ would make analyzing the robust strict saddle property

difficult. To see this, we denote

f(W ) =
1

2

∥∥∥UV T − X?
∥∥∥

2

F

for convenience. Thus we can rewrite g(W ) as the sum of

f(W ) and ρ(W ). Note that for any W =

[
U

V

]
∈ C where C

5If σr1
= · · · = σr = · · · = σr2

with r1 ≤ r ≤ r2, then the optimal
rank-r approximation to X

� is not unique. For this case, the optimal solution
set X for the factorized problem needs to be changed correspondingly, but
the main arguments still hold.

is the set of critical points defined in (35), W̃ =

[
UM

V M−1

]
is

a critical point of f(W ) for any invertible M ∈ Rr×r. This

further implies that the gradient at W̃ reduces to

∇g(W̃ ) = ∇ρ(W̃ ),

which could be very small if µ is very small since ρ(W ) =
µ
4

∥∥∥UTU − V TV

∥∥∥
2

F
. On the other hand, W̃ could be far

away from any point in X for some M that is not well-

conditioned. Therefore, we choose a proper µ controlling the

importance of the regularization term such that for any W that

is not close to the critical points X , g(W ) has large gradient.

Motivated by Lemma 4, we choose µ = 1
2 .

The following result establishes the robust strict saddle

property for g(W ).
Theorem 5: Let R1,R2,R0

3,R00
3 ,R000

3 be the regions as

defined in Theorem 1. Let g(W ) be defined as in (29) with

µ = 1
2 . Then g(W ) has the following robust strict saddle

property:

1) For any W ∈ R1, g(W ) satisfies local regularity

condition:

h∇g(W ), W − W ?Ri ≥ 1

32
σr(X

?) dist2(W , W ?)

+
1

48kX?k k∇g(W )k2
F ,

(40)

where dist(W , W ?) and R are defined in (12) and (13),

respectively.

2) For any W ∈ R2, g(W ) has a directional negative

curvature:

λmin

(
∇2g(W )

)
≤ −1

4
σr(X

?). (41)

3) For any W ∈ R3 = R0
3 ∪ R00

3 ∪ R000
3 , g(W ) has large

gradient:

k∇g(W )kF ≥ 1

10
σ3/2

r (X?), ∀ W ∈ R0
3; (42)

k∇g(W )kF >
39

800
kWk3, ∀ W ∈ R00

3 ; (43)

h∇g(W ), W i >
1

20

∥∥∥WW>
∥∥∥

2

F
, ∀ W ∈ R000

3 .

(44)

The proof is given in Appendix K.

Remark 8: Recall that all the strict saddles of g(W ) are

actually rank deficient (see Theorem 2). Thus the region

R2 attempts to characterize all the neighbors of the sad-

dle saddles by including all rank deficient points. Actually,

(41) holds not only for W ∈ R2, but for all W such

that σr(W ) ≤
√

1
2σ

1/2
r (X?). The reason we add another

constraint controlling the term kW ?W ?TkF is to ensure this

negative curvature property in the region R2 also holds for the

matrix sensing problem discussed in next section. This is the

same reason we add two more constraints kWk ≤ 20
19kW

?kF

and kWW TkF ≤ 10
9 kW ?W ?TkF for the region R0

3.
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APPENDIX B

PROOF OF LEMMA 1

Denote ax,x? = arg mina0∈G kx − a0(x?)k. Utilizing the

definition of distance in (4), the regularity condition (5) and

the assumption that µ ≤ 2β, we have

dist2(xt+1, x
?)

=
∥∥xt+1 − axt+1,x?(x?)

∥∥2

≤ kxt − ν∇h(xt) − axt,x?(x?)k2

= kxt − axt,x?(x?)k2
+ ν2 k∇h(xt)k2

− 2ν hxt − axt,x?(x?),∇h(xt)i
≤ (1 − 2να) dist2(xt, x

?) − ν(2β − ν) k∇h(xt)k2

≤ (1 − 2να) dist2(xt, x
?)

where the fourth line uses the regularity condition (5) and the

last line holds because ν ≤ 2β. Thus we conclude xt ∈ B(δ)
for all t ∈ N if x0 ∈ B(δ) by noting that 0 ≤ 1 − 2να < 1
since αβ ≤ 1

4 and ν ≤ 2β.

APPENDIX C

PROOF OF PROPOSITION 1

First note that if X? is a critical point of f , then

∇f(X?) = 0.

Now for any X ∈ Rn×m with rank(X) ≤ r, the second order

Taylor expansion gives

f(X) =f(X?) + h∇f(X?), X − X?i

+
1

2
[∇2f(X̃)](X − X?, X − X?)

= f(X?) +
1

2
[∇2f(X̃)](X − X?, X − X?)

where X̃ = tX? + (1− t)X for some t ∈ [0, 1]. This Taylor

expansion together with (6) (both X̃ and X 0 −X? have rank

at most 2r) gives

f(X) − f(X?) ≥ a

2
kX − X?k2

F .

APPENDIX D

PROOF OF LEMMA 2

Any critical point (see Definition 1) W =

[
U

V

]
satisfies

∇G(W ) = 0, i.e.,

∇f(UV T)V + µU
(
UTU − V TV

)
= 0, (45)

(∇f(UV T))TU − µV
(
UTU − V TV

)
= 0. (46)

By (46), we obtain

(∇f(UV T))TU = µ
(
UTU − V TV

)
V T.

Multiplying (45) by UT and plugging it in the expression for

UT∇f(UV T) from the above equation gives
(
UTU − V TV

)
V TV + UTU

(
UTU − V TV

)
= 0,

which further implies

UTUUTU = V TV V TV .

In order to show (11), note that UTU and V TV are the

principal square roots (i.e., PSD square roots) of UTUUTU

and V TV V TV , respectively. Utilizing the result that a PSD

matrix A has a unique PSD matrix B such that Bk = A for

any k ≥ 1 [51, Theorem 7.2.6], we obtain

UTU = V TV

for any critical point W .

APPENDIX E

PROOF OF LEMMA 4

We first rewrite the objective function g(W ):

g(W ) =
1

2

∥∥∥UV T − U?V ?T
∥∥∥

2

F
+

µ

4

∥∥∥UTU − V TV

∥∥∥
2

F

≥min{µ,
1

2
}
(∥∥∥UV T−U?V ?T

∥∥∥
2

F
+

1

4

∥∥∥UTU−V TV

∥∥∥
2

F

)

= min{µ,
1

2
}
(

1

4

∥∥∥WW T − W ?W ?T
∥∥∥

2

F
+ g0(W )

)
,

where the second line attains the equality when µ = 1
2 , and

g0(W ) in the last line is defined as

g0(W ) :=
1

2

∥∥∥UV T − U?V ?T
∥∥∥

2

F
− 1

4

∥∥∥UUT − U?U?T
∥∥∥

2

F

− 1

4

∥∥∥V V T−V ?V ?T
∥∥∥

2

F
+

1

4

∥∥∥UTU−V TV

∥∥∥
2

F
.

We further show g0(W ) is always nonnegative:

g0(W ) =
1

2

∥∥∥UV T − U?V ?T
∥∥∥

2

F
− 1

4

∥∥∥UUT − U?U?T
∥∥∥

2

F

− 1

4

∥∥∥V V T − V ?V ?T
∥∥∥

2

F
+

1

4

∥∥∥UTU − V TV

∥∥∥
2

F
.

=
1

2

∥∥∥UV T − U?V ?T
∥∥∥

2

F
+

1

2

∥∥∥UTU?
∥∥∥

2

F
+

1

2

∥∥∥V TV ?
∥∥∥

2

F

− 1

2
trace

(
UTUV TV

)
− 1

4

∥∥∥U?U?T
∥∥∥

2

F
− 1

4

∥∥∥V ?V ?T
∥∥∥

2

F

=
1

2

∥∥∥UTU? − V TV ?
∥∥∥

2

F
+

1

2

∥∥∥U?V ?T
∥∥∥

2

F

− 1

4

∥∥∥U?U?T
∥∥∥

2

F
− 1

4

∥∥∥V ?V ?T
∥∥∥

2

F

=
1

2

∥∥∥UTU? − V TV ?
∥∥∥

2

F
≥ 0,

where the last line follows because U?TU? = V ?TV ?. Thus,

we have

g(W ) ≥ min{µ

4
,
1

8
}
∥∥∥WW T − W ?W ?T

∥∥∥
2

F
,

and

g(W ) =
1

8

∥∥∥WW T−W ?W ?T
∥∥∥

2

F
+

1

4

∥∥∥UTU?−V TV ?
∥∥∥

2

F

if µ = 1
2 .
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APPENDIX F

PROOF OF LEMMA 5

We first repeat that X? = ΦΣΨ
T = is a reduced SVD

of X?. We separate U into two parts—the projections onto

the column space of Φ and its orthogonal complement—by

denoting U = ΦΛ
1/2
1 R1 +E1 with R1 ∈ Or, ET

1 Φ = 0 and

Λ1 being a r × r diagonal matrix with non-negative elements

along its diagonal. Similarly, denote V = ΨΛ
1/2
2 R2 + E2,

where R2 ∈ Or, ET
2 Ψ = 0, Λ2 is a r × r diagonal matrix

with non-negative elements along its diagonal. Recall that any

critical point W =

[
U

V

]
satisfies

∇Uρ(U , V ) = UUTU − X?V = 0,

∇V ρ(U , V ) = V V TV − X?TU = 0.

Plugging U = ΦΛ
1/2
1 R1 + E1 and V = ΨΛ

1/2
2 R2 + E2

into the above equations gives

ΦΛ
3/2
1 R1 + ΦΛ

1/2
1 R1E

T
1 E1 + E1R

T
1 Λ1R1

+ E1E
T
1 E1 − ΦΣΛ

1/2
2 R2 = 0, (47)

ΨΛ
3/2
2 R2 + ΨΛ

1/2
2 R2E

TE2 + E2R
T
2 Λ2R2

+ E2E
T
2 E2 − ΨΣΛ

1/2
1 R1 = 0. (48)

Since E1 is orthogonal to Φ, (47) further implies that

ΦΛ
3/2
1 R1 + ΦΛ

1/2
1 R1E

T
1 E1 − ΦΣΛ

1/2
2 R2 = 0, (49)

E1R
T
1 Λ1R1 + E1E

T
1 E1 = 0. (50)

From (50), we have
〈
E1R

T
1 Λ1R1 + E1E

T
1 E1, E1

〉

=
〈
RT

1 Λ1R1, E
T
1 E1

〉
+ kE1k2

F = 0,

which further implies kE1k2
F = 0 by noting that〈

RT
1 Λ1R1, E

T
1 E1

〉
≥ 0 since it is the inner product between

two PSD matrices. Thus E1 = 0. With a similar argument we

also have E2 = 0.

With E1 = E2 = 0, (49) reduces to

ΦΛ
3/2
1 R1 − ΦΣΛ

1/2
2 R2 = 0.

Since Φ is orthonormal and R1 ∈ Or, the above equation

implies that

Λ
3/2
1 = ΣΛ

1/2
2 R2R

T
1 .

Let Ω denote the set of locations of the non-zero diagonals in

Λ2, i.e., Λ2[i, i] > 0 for all i ∈ Ω. Then [RT
1 ]Ω = [RT

2 ]Ω since

otherwise ΣΛ
1/2
2 R2R

T
1 is not a diagonal matrix anymore.

Then we have

Λ
3/2
1 = ΣΛ

1/2
2 (51)

implying that the set of the locations of non-zero diagonals in

Λ1 is identical to Ω. A similar argument applied to (48) gives

Λ
3/2
2 = ΣΛ

1/2
1 . (52)

Noting that (51) implies Λ
3/2
1 [i, i] = Σ[i, i]Λ

1/2
2 [i, i] and (52)

implies Λ
3/2
2 [i, i] = Σ[i, i]Λ

1/2
1 [i, i], for all i ∈ Ω we have

Λ1[i, i] = Λ2[i, i] = Σ[i, i]. For i /∈ Ω, we have Λ1[i, i] =
Λ2[i, i] = 0. Thus Λ1 = Λ2. For convenience, denote Λ =
Λ1 = Λ2 with Λ[i, i] = λi.

Finally, we note that U = ΦΛ
1/2R1 =

∑
i∈Ω λiφiR1[i, :]

and V = ΨΛ
1/2R2 =

∑
i∈Ω λiψiR2[i, :] implying that

only [RT
1 ]Ω and [RT

2 ]Ω play a role in U and V , respec-

tively. Thus one can set R1 = R2 since we already proved

[RT
1 ]Ω = [RT

2 ]Ω.

APPENDIX G

PROOF OF LEMMA 6

Utilizing the result that any point W ∈ E satisfies

Ŵ
T
W = UTU − V TV = 0, we directly obtain

k∆UUTk2
F + k∆V V Tk2

F = k∆UV Tk2
F + k∆V UTk2

F

since k∆UUTk2
F = trace

(
∆UUTU∆U

)
=

trace
(
∆UV TV ∆U

)
= k∆UV Tk2

F (and similarly

for the other two terms).

We then rewrite the last two terms in (32) as
〈
Ŵ ∆̂

T
,∆W T

〉
+
〈
ŴŴ

T
,∆∆

T
〉

=
〈
Ŵ

T
∆,∆TŴ

〉
+
〈
Ŵ

T
∆, Ŵ

T
∆

〉

=
〈
Ŵ

T
∆, Ŵ

T
∆ + ∆

TŴ
〉

=
1

2

〈
Ŵ

T
∆ + ∆

TŴ , Ŵ
T
∆ + ∆

TŴ
〉

+
1

2

〈
Ŵ

T
∆ − ∆

TŴ , Ŵ
T
∆ + ∆

TŴ
〉

=
1

2

∥∥∥Ŵ
T
∆ + ∆

TŴ

∥∥∥
2

F
,

where the last line holds because
〈
A − AT, A + AT

〉
= 0.

Plugging these with the factor Ŵ
T
W = 0 into the Hessian

quadratic form [∇2ρ(W )](∆,∆) defined in (32) gives

[∇2ρ(W )](∆,∆) ≥ µ

2

∥∥∥Ŵ
T
∆ + ∆

TŴ

∥∥∥
2

F
≥ 0.

This implies that the Hessian of ρ evaluated at any W ∈ E is

PSD, i.e., ∇2ρ(W ) � 0.6

APPENDIX H

PROOF OF THEOREM 2 (STRICT SADDLE

PROPERTY FOR (29))

We begin the proof of Theorem 2 by characterizing any

W ∈ C \ X . For this purpose, let W =

[
U

V

]
, where

U = ΦΛ
1/2R, V = ΨΛ

1/2R, R ∈ Or,Λ is diagonal,Λ ≥
0, (Σ − Λ)Σ = 0, and rank(Λ) < r. Denote the cor-

responding optimal solution W ? =

[
U?

V ?

]
, where U? =

ΦΣ
1/2R, V ? = ΨΣ

1/2R. Let

k = arg max
i

σi − λi

6This can also be observed since any critical point W is a global minimum
of ρ(W), which directly indicates that ∇2ρ(W) � 0.
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denote the location of the first zero diagonal element in Λ.

Noting that λi ∈ {σi, 0}, we conclude that

λk = 0, φT
k U = 0, ψT

k V = 0. (53)

In words, φk and ψk are orthogonal to U and V , respectively.

Let α ∈ Rr be the eigenvector associated with the smallest

eigenvalue of W TW . Such α simultaneously lives in the null

spaces of U and V since W is rank deficient indicating

0 = αTW TWα = αTUTUα + αTV TV α,

which further implies

{
αTUTUα = 0,

αTV TV α = 0.
(54)

With this property, we construct ∆ by setting ∆U = φkαT

and ∆V = ψkαT. Now we show that W is a strict saddle by

arguing that g(W ) has a strictly negative curvature along the

constructed direction ∆, i.e., [∇2g(W )](∆,∆) < 0. To that

end, we compute the five terms in (31) as follows

∥∥∥∆UV T + U∆
T
V

∥∥∥
2

F
= 0 (since (54)),

〈
UV T − X?,∆U∆

T
V

〉
= λk − σk = −σk (since (53)),

〈
Ŵ

T
W , ∆̂

T
∆

〉
= 0 (since Ŵ

T
W = 0),

〈
Ŵ ∆̂

T
,∆W T

〉
= trace

(
∆̂

T
W∆

T Ŵ
)

= 0,
〈
ŴŴ

T
,∆∆

T
〉

= trace
(
Ŵ

T
∆∆

TŴ
)

= 0,

where Ŵ
T
W = 0 since UTU − V TV = 0, the last

two lines utilize ∆̂
T
W = 0 (or Ŵ

T
∆ = 0) because

∆̂
T
W = αφT

k U − αψT
k V = 0 (see (53)). Plugging these

terms into (31) gives

[∇2g(W )](∆,∆)

=
∥∥∥∆UV T + U∆

T
V

∥∥∥
2

F
+ 2
〈
UV T − X?,∆U∆

T
V

〉

+ µ
〈
Ŵ

T
W , ∆̂

T
∆

〉
+ µ
〈
Ŵ ∆̂

T
,∆W T

〉

+ µ
〈
ŴŴ

T
,∆∆

T
〉

= −2σk.

The proof of the strict saddle property is completed by noting

that

k∆k2
F = k∆Uk2

F + k∆V k2
F =

∥∥φkαT
∥∥2

F
+
∥∥ψkαT

∥∥2
F

= 2,

which further implies

λmin

(
∇2g(W )

)
≤ [∇2g(W )](∆,∆)

k∆k2
F

≤ −2σk

2

= −kΛ−Σk = −1

2

∥∥∥WW T−W ?W ?T
∥∥∥ ,

where the first equality holds because

kΛ− Σk = max
i

σi − λi = σk,

and the second equality follows since

WW T − W ?W ?T =
1

2
Q (Λ − Σ)QT,

Q =

[
Φ/

√
2

Ψ/
√

2

]
, QTQ = I.

We finish the proof of (39) by noting that

σk = σk(X?) ≥ σr(X
?).

Now suppose W ? ∈ X . Applying (38), which states that

the Hessian of ρ evaluated at any critical point W is PSD,

we have

[∇2g(W ?)][∆,∆]

=
∥∥∥∆UV ?T + U?

∆
T
V

∥∥∥
2

F
+ 2
〈
U?V ?T − X?,∆U∆

T
V

〉

+ [∇2ρ(W ?)][∆,∆]

≥
∥∥∥∆UV ?T + U?

∆
T
V

∥∥∥
2

F
+ 2
〈
U?V ?T − X?,∆U∆

T
V

〉

≥ 0

since U?V ?T−X? = 0. We show g is not strongly convex at

W ? by arguing that λmin(∇2g(W ?)) = 0. For this purpose,

we first recall that U? = ΦΣ
1/2, V ? = ΨΣ

1/2, where we

assume R = I without loss of generality. Let {e1, e2, . . . ,er}
be the standard orthobasis for Rr, i.e., e` is the `-th column of

the r× r identity matrix. Construct ∆(i,j) =

[
∆

(i,j)
U

∆
(i,j)
V

]
, where

∆
(i,j)
U

= U?eje
T
i −U?eie

T
j , ∆

(i,j)
V

= V ?eje
T
i −U?eie

T
j ,

for any 1 ≤ i < j ≤ r. That is, the `-th columns of the

matrices ∆
(i,j)
U

and ∆
(i,j)
V

are respectively given by

∆
(i,j)
U

[:, `] =

⎧
⎪⎨
⎪⎩

σ
1/2
j φj , ` = i,

−σ
1/2
i φi, ` = j,

0, otherwise,

,

∆
(i,j)
V

[:, `] =

⎧
⎪⎨
⎪⎩

σ
1/2
j ψj , ` = i,

−σ
1/2
i ψi, ` = j,

0, otherwise,

for any 1 ≤ i < j ≤ r. We then compute the five terms in (31)

as follows
∥∥∥∆(i,j)

U
V ?T + U?(∆

(i,j)
V

)T
∥∥∥

2

F

=
∥∥∥σ1/2

i σ
1/2
j

(
φjψ

T
i − φiψ

T
j + φiψ

T
j − φjψ

T
i

)∥∥∥
2

F
= 0,

hU?V ?T−X?,∆
(i,j)
U

(∆
(i,j)
V

)Ti = 0 (as U?V ?T−X? =0),

hŴ
?T

W ?, ∆̂
T

(i,j)∆(i,j)i = 0 (as Ŵ
?T

W ? = 0),

〈�W
�
�∆

T

(i,j),∆(i,j)W
�T〉 = trace(�W

�T
∆(i,j)W

�T
�∆(i,j)) = 0,

〈�W
�
�W

�T
,∆(i,j)∆

T
(i,j)〉 = trace(�W

�T
∆(i,j)∆

T
(i,j)

�W
�

) = 0,

where the last two lines hold because

Ŵ
?T

∆(i,j) =U?TU?(eje
T
i −eie

T
j )−V ?TV ?(eje

T
i −eie

T
j )

= 0

since U?TU? = V ?TV ?.
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Thus, we obtain the Hessian evaluated at the optimal

solution point W ? along the direction ∆
(i,j):

[
∇2g(W ?)

] (
∆

(i,j),∆(i,j)
)

= 0

for all 1 ≤ i < j ≤ r. This proves that g(W ) is not strongly

convex at a global minimum point W ? ∈ X .

APPENDIX I

PROOF OF THEOREM 3 (STRICT SADDLE PROPERTY OF

g(W ) WHEN OVER-PARAMETERIZED)

Let X? = ΦΣΨ
T =

∑r0

i=1 σiφiψ
T
i be a reduced SVD

of X? with r0 ≤ r. Using an approach similar to that in

Appendix F for proving Lemma 5, we can show that any W =[
U

V

]
is a critical point of g(W ) if and only if W ∈ C with

C=

{
W =

[
U

V

]
: U = ΦΛ

1/2R, V = ΨΛ
1/2R, RRT = Ir0 ,

Λ is diagonal,Λ ≥ 0, (Σ− Λ)Σ = 0

}
.

Recall that

X =

{
W =

[
U

V

]
:U = ΦΣ

1/2R, V = ΨΣ
1/2R,

RRT = Ir0

}
.

It is clear that X is the set of optimal solutions since for any

W ∈ X , g(W ) achieves its global minimum, i.e., g(W ) = 0.

Using an approach similar to that in Appendix H for proving

Theorem 2, we can show that any W ∈ C\X is a strict saddle

satisfying

λmin

(
∇2g(W )

)
≤ −σr0(X?).

APPENDIX J

PROOF OF THEOREM 4 (STRICT SADDLE PROPERTY OF

g(W ) WHEN UNDER-PARAMETERIZED)

Let X? = ΦΣΨ
T =

∑r0

i=1 σiφiψ
T
i be a reduced SVD of

X? with r0 > r and σr(X
?) > σr+1(X

?). Using an approach

similar to that in Appendix F for proving Lemma 5, we can

show that any W =

[
U

V

]
is a critical point of g(W ) if and

only if W ∈ C with

C =

{
W =

[
U

V

]
: U = Φ[:, Ω]Λ1/2R, V = Ψ[:, Ω]Λ1/2R,

Λ = Σ[Ω, Ω], RRT = I`, Ω ⊂ {1, . . . , r0}, |Ω| = ` ≤ r

}
.

Intuitively, a critical point is one such that UV T is a rank-`
approximation to X? with ` ≤ r and U and V are equal

factors of their product UV T.

It follows from the Eckart-Young-Mirsky theorem [51] that

the set of optimal solutions is given by

X =

{
W =

[
U

V

]
: U = Φ[:, 1 : r]Λ1/2R,

V = Ψ[:, 1 : r]Λ1/2R,Λ = Σ[1 : r, 1 : r], R ∈ Or

}
.

Now we characterize any W ∈ C \ X by letting W =

[
U

V

]
,

where

U = Φ[:, Ω]Λ1/2R, V = Ψ[:, Ω]Λ1/2R,

Λ = Σ[Ω, Ω], R ∈ R
`×r, RRT = I`,

Ω ⊂ {1, 2, . . . , r0}, |Ω| = ` ≤ r, Ω 6= {1, 2, . . . , r}.

Let α ∈ Rr be the eigenvector associated with the smallest

eigenvalue of UTU (or V TV ). By the typical structures in

U and V (see the above equation), we have

kV αk2
F = kUαk2

F = σ2
r(U )

=

{
σj(X

?), |Ω| = r and j = maxΩ
0, |Ω| < r,

(55)

where j > r because Ω 6= {1, 2, . . . , r}. Note that there always

exists an index

i ∈ {1, 2, . . . , r}, i 6= Ω

since Ω 6= {1, 2, . . . , r} and |Ω| ≤ r. We construct ∆ by

setting

∆U = φiα
T, ∆V = ψiα

T.

Since i /∈ Ω, we have

UT
∆U = UTφiα

T = 0,

V T
∆V = V Tψiα

T = 0. (56)

We compute the five terms in (31) as follows

∥∥∥∆UV T + U∆
T
V

∥∥∥
2

F

=
∥∥∥∆UV T

∥∥∥
2

F
+
∥∥∥U∆

T
V

∥∥∥
2

F
+ 2 trace

(
UT

∆UV T
∆V

)

= 2σ2
r(U),〈

UV T − X?,∆U∆
T
V

〉
=
〈
UV T − X?, φiψ

T
i

〉

= −
〈
X?, φiψ

T
i

〉
= −σi(X

?),
〈
Ŵ

T
W , ∆̂

T
∆

〉
= 0 (since Ŵ

T
W = 0),

〈
Ŵ ∆̂

T
,∆W T

〉
= trace

(
Ŵ

T
∆W T

∆̂

)
= 0,

〈
ŴŴ

T
,∆∆

T
〉

= trace
(
Ŵ

T
∆∆

TŴ
)

= 0,

where the last equality in the first line holds because

UT
∆U = 0 (see (56)) and

∥∥∥∆UV T
∥∥∥

2

F
=
∥∥∥U∆

T
V

∥∥∥
2

F
=

σ2
r(U ) (see (55)), Ŵ

T
W = 0 in the third line holds since

UTU − V TV = 0, and Ŵ
T
∆ = 0 in the fourth and last

lines holds because

Ŵ
T
∆ = UT

∆U − V T
∆V = 0.

Now plugging these terms into (31) yields

[∇2g(W )](∆,∆)

= k∆UV T + U∆
T
V
k2

F + 2hUV T − X?,∆U∆
T
V
i

+ µ(hŴ T
W , ∆̂

T
∆i+hŴ ∆̂

T
,∆W Ti+hŴŴ

T
,∆∆

Ti)
= −2(σi(X

?) − σ2
r (U)).
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The proof of the strict saddle property is completed by noting

that

k∆k2
F = k∆Uk2

F + k∆V k2
F = 2,

which further implies

λmin

(
∇2g(W )

)
≤ −2

σi(X
?) − σ2

r (U)

k∆k2
F

≤ − (σr(X
?) − σr+1(X

?)) ,

where the last inequality holds because of (55) and

because i ≤ r.

APPENDIX K

PROOF OF THEOREM 5 (ROBUST STRICT

SADDLE FOR g(W ))

We first establish the following useful results.

Lemma 7: For any two PSD matrices A, B ∈ Rn×n,

we have

σn(A) trace(B) ≤ trace (AB) ≤ kAk trace(B).

Proof of Lemma 7: Let A = Φ1Λ1Φ
T
1 and B =

Φ2Λ2Φ
T
2 be the eigendecompositions of A and B, respec-

tively. Here Λ1 (Λ2) is a diagonal matrix with the eigenvalues

of A (B) along its diagonal. We first rewrite trace (AB) as

trace (AB) = trace
(
Λ1Φ

T
1 Φ2Λ2Φ

T
2 Φ1

)
.

Noting that Λ1 is a diagonal matrix, we have

trace
(
Λ1Φ

T
1 Φ2Λ2Φ

T
2 Φ1

)

≥ min
i

Λ1[i, i] · trace
(
Φ

T
1 Φ2Λ2Φ

T
2 Φ1

)

= σn(A) trace(B).

The other direction follows similarly.

Corollary 2: For any two matrices A ∈ Rn×r and B ∈
Rr×r, we have

σr(B)kAkF ≤ kABkF ≤ kBkkAkF .

We provide one more result before proceeding to prove the

main theorem.

Lemma 8: Suppose A, B ∈ Rn×r such that ATB =

BTA � 0 is PSD. If kA − Bk ≤
√

2
2 σr(B), we have

〈(
AAT − BBT

)
A, A − B

〉

︸ ︷︷ ︸
(ℵ1)

≥ 1

16
(trace((A−B)T(A−B)BTB)︸ ︷︷ ︸

(ℵ2)

+ kAAT−BBTk2
F︸ ︷︷ ︸

(ℵ3)

).

(57)

Proof: Denote E = A − B. We first rewrite the terms

(ℵ1), (ℵ2) and (ℵ3) as follows

(ℵ1) = trace

((
ETE

)2

+ 3ETEETB +
(
ETB

)2

+ ETEBTB

)
,

(ℵ2) = trace
(
ETEBTB

)
,

(ℵ3) = trace

((
ETE

)2

+ 4ETEETB + 2
(
ETB

)2

+ 2ETEBTB

)
,

where ETB = ATB − BTB = BTE. Now we have

(ℵ1) −
1

16
(ℵ2) −

1

16
(ℵ3)

= trace

(
15

16

(
ETE

)2

+
11

4
ETEETB +

7

8

(
ETB

)2

+
13

16
ETEBTB

)

=

∥∥∥∥∥

√
121

56
ETE +

√
7

8
ETB

∥∥∥∥∥

2

F

+ trace

(
13

16
ETEBTB − 137

112
ETEETE

)

≥ trace

(
13

16
ETEσ2

r (B) − 137

112
ETEkEk2

)

≥ trace

((
13

16
− 137

112

1

2

)
σ2

r (B)ETE

)

≥ 0,

where the third line follows from Lemma 7 and the fourth line

holds because by assumption kEk ≤
√

2
2 σr(B).

Now we turn to prove the main results. Recall that µ = 1
2

throughout the proof.

A. Regularity Condition for the Region R1

It follows from Lemma 3 that W TW ?R = RTW ?TW

is PSD, where R = arg minR0∈Or
kW − W ?R0k2

F . We first

perform the change of variable W ?R → W ? to avoid R

in the following equations. With this change of variable we

have instead W TW ? = W ?TW is PSD. We now rewrite the

gradient ∇g(W ) as follows:

∇g(W ) =

[
0 UV T − U?V ?T

V UT − V ?U?T
0

]
W

+ µŴ (Ŵ
T
W )

=
1

2

(
WW T − W ?W ?T

)
W +

1

2
Ŵ

?
Ŵ

?T
W

+ (µ − 1

2
)ŴŴ

T
W

=
1

2

(
WW T − W ?W ?T

)
W +

1

2
Ŵ

?
Ŵ

?T
W .

(58)

Plugging this into the left hand side of (40) gives

h∇g(W ), W − W ?i

=
1

2

〈(
WW T − W ?W ?T

)
W , W − W ?

〉

+
1

2

〈
Ŵ

?
Ŵ

?T
W , W − W ?

〉

=
1

2

〈(
WW T − W ?W ?T

)
W , W − W ?

〉

+
1

2

〈
Ŵ

?
Ŵ

?T
, WW T

〉
(59)
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where the last line follows from the fact that W ?TŴ
?

= 0.

We first show the first term in the right hand side of the above

equation is sufficiently large
〈(

WW T − W ?W ?T
)

W , W − W ?
〉

≥ 1

16
trace

(
(W − W ?)T(W − W ?)W ?TW ?

)

+
1

16

∥∥∥WW T − W ?W ?T
∥∥∥

2

F

≥ 1

16
σr(W

?TW ?) kW − W ?k2
F

+
1

16

∥∥∥WW T − W ?W ?T
∥∥∥

2

F

=
1

8
σr(X

?) kW − W ?k2
F +

1

16

∥∥∥WW T − W ?W ?T
∥∥∥

2

F
,

(60)

where the first inequality follows from Lemma 8 since

W TW ? = W ?TW is PSD and kW − W ?k ≤
σ

1/2
r (X?) =

√
2

2 σr(W
?), the second inequality follows from

Lemma 7, and the last line holds because σr

(
Ŵ

?T
Ŵ

?)
=

σr

(
Û

?T
Û

?
+ V̂

?T
V̂

?
)

= 2σr (Σ) = 2σr (X?). We then

show the second term in the right hand side of (59) is lower

bounded by
〈
Ŵ

?
Ŵ

?T
, WW T

〉

=
1

2 kX?k
∥∥∥Ŵ

?T
Ŵ

?
∥∥∥ trace

(
Ŵ

?T
WW TŴ

?
)

≥ 1

2 kX?k trace
(
Ŵ

?T
Ŵ

?
Ŵ

?T
WW TŴ

?)

=
1

2 kX?k
∥∥∥Ŵ

?
Ŵ

?T
W

∥∥∥
2

F
(61)

where the first line holds because

∥∥∥Ŵ
?T

Ŵ
?
∥∥∥ =∥∥∥Û

?T
Û

?
+ V̂

?T
V̂

?
∥∥∥ = 2 kΣk = 2 kX?k, and the inequality

follows from Lemma 7.

On the other hand, we attempt to control the gradient of

g(W ). To that end, it follows from (58) that

k∇g(W )k2
F

=
1

4

∥∥∥
(
WW T − W ?W ?T

)
W + Ŵ

?
Ŵ

?T
W

∥∥∥
2

F

≤ 12

47

∥∥∥
(
WW T − W ?W ?T

)
W

∥∥∥
2

F
+ 12

∥∥∥Ŵ
?
Ŵ

?T
W

∥∥∥
2

F

≤ 12

47
kW k2

∥∥∥WW T − W ?W ?T
∥∥∥

2

F
+12

∥∥∥Ŵ
?
Ŵ

?T
W

∥∥∥
2

F
,

(62)

where the first inequality holds since (a + b)2 ≤ 1+�
� a2 +

(1 + �)b2 for any � > 0.

Combining (59)-(62), we can conclude the proof of (40) as

long as we can show the following inequality:

1

8

∥∥∥WW T − W ?W ?T
∥∥∥

2

F

≥ 1

47

kW k2

kX?k
∥∥∥WW T − W ?W ?T

∥∥∥
2

F
.

To that end, we upper bound kW k as follows:

kW k ≤ kW ?k + kW − W ?k
≤

√
2σ

1/2
1 (X?) + kW − W ?kF

≤ (
√

2 + 1)σ
1/2
1 (X?)

since kW ?k =
√

2σ
(1/2)
1 (X?) and dist(W , W ?) ≤

σ
(1/2)
r (X?). This completes the proof of (40).

B. Negative Curvature for the Region R2

To show (41), we utilize a strategy similar to that used in

Appendix H for proving the strict saddle property of g(W )
by constructing a direction ∆ such that the Hessian evaluated

at W along this direction is negative. For this purpose, denote

Q =

[
Φ/

√
2

Ψ/
√

2

]
, (63)

where we recall that Φ and Ψ consist of the left and right

singular vectors of X?, respectively. The optimal solution W ?

has a compact SVD W ? = Q(
√

2Σ1/2)R. For notational

convenience, we denote Σ = 2Σ, where Σ is a diagonal

matrix whose diagonal entries in the upper left corner are

σ1, . . . , σr.

For any W , we can always divide it into two parts, the

projections onto the column spaces of Q and its orthogonal

complement, respectively. Equivalently, we can write

W = QΛ
1/2

R + E, (64)

where QΛ
1/2

R is a compact SVD form representing the

projection of W onto the column space of Q, and ETQ = 0

(i.e., E is orthogonal to Q). Here R ∈ Or and Λ is a

diagonal matrix whose diagonal entries in the upper left corner

are λ1, . . . , λr, but the diagonal entries are not necessarily

placed either in decreasing or increasing order. In order to

characterize the neighborhood near all strict saddles C \ X ,

we consider W such that σr(W ) ≤
√

3
8σ

1/2
r (X?). Let

k := arg mini λi denote the location of the smallest diagonal

entry in Λ. It is clear that

λk ≤ σ2
r (W ) ≤ 3

8
σr(X

?). (65)

Let α ∈ R
r be the eigenvector associated with the smallest

eigenvalue of W TW .

Recall that µ = 1
2 . We show that the function g(W ) at W

has directional negative curvature along the direction

∆ = qkαT. (66)

We repeat the Hessian evaluated at W for ∆ as follows

[∇2g(W )](∆,∆)

=
∥∥∥∆UV T + U∆

T
V

∥∥∥
2

F︸ ︷︷ ︸
Π1

+2
〈
UV T − X?,∆U∆

T
V

〉

︸ ︷︷ ︸
Π2

+
1

2

〈
∆̂Ŵ

T
,∆W T

〉

︸ ︷︷ ︸
Π3

+
1

2

〈
Ŵ ∆̂

T
,∆W T

〉

︸ ︷︷ ︸
Π4

+
1

2

〈
ŴŴ

T
,∆∆

T
〉

︸ ︷︷ ︸
Π5

.

The remaining part is to bound the five terms.
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Bounding terms Π1, Π3 and Π4: We first rewrite these three

terms:

Π1 = k∆UV Tk2
F + kU∆

T
V
k2

F + 2
〈
U∆

T
V

,∆UV T
〉

,

Π3 =
〈
∆̂Ŵ

T
,∆W T

〉
= k∆UUTk2

F + k∆V V Tk2
F

− k∆UV Tk2
F − k∆V UTk2

F ,

Π4 =
〈
U∆

T
U ,∆UUT

〉
+
〈
V ∆

T
V ,∆V V T

〉

− 2
〈
U∆

T
V

,∆UV T
〉

≤ k∆UUTk2
F + k∆V V Tk2

F − 2
〈
U∆

T
V ,∆UV T

〉
,

which implies

Π1 +
1

2
Π3 +

1

2
Π4

≤ k∆UV Tk2
F + kU∆

T
V
k2

F + k∆UUTk2
F + k∆V V Tk2

F

− 1

2
k∆UV Tk2

F − 1

2
k∆V UTk2

F +
〈
U∆

T
V

,∆UV T
〉

= kW∆
Tk2

F − 1

2

∥∥∥∆UV T − U∆
T
V

∥∥∥
2

F

≤ kW∆
Tk2

F . (67)

Noting that ∆
T
∆ = αqT

k qkαT = ααT, we now compute

kW∆
Tk2

F as

kW∆
Tk2

F = trace
(
W TW∆

T
∆

)
= trace

(
W TWααT

)

= σ2
r(W ).

Plugging this into (67) gives

Π1 +
1

2
Π3 +

1

2
Π4 ≤ σ2

r (W ). (68)

Bounding terms Π2 and Π5: To obtain an upper bound for

the term Π2, we first rewrite it as follows

Π2 =
〈
UV T − X?,∆U∆

T
V

〉

=
1

2

〈[
0 UV T − U?V ?T

V UT − V ?U?T
0

]
,∆∆

T

〉

=
1

4

〈
WW T − W ?W ?T,∆∆

T
〉
− 1

4

〈
ŴŴ

T
∆∆

T
〉

+
1

4

〈
Ŵ

?
Ŵ

?T
,∆∆

T
〉

.

We then have

2Π2 +
1

2
Π5 =

1

2

〈
WW T − W ?W ?T,∆∆

T
〉

+
1

2

〈
Ŵ

?
Ŵ

?T
,∆∆

T
〉

. (69)

To bound these two terms in the above equation, we note that

∆∆
T =

r∑

i=1

α2
i qkqT

k = qkqT
k =

1

2

[
φkφ

T
k φkψ

T
k

ψkφT
k ψkψT

k

]
.

Then we have
〈
Ŵ

?
Ŵ

?T
,∆∆

T
〉

=
1

2

〈[
ΦΣΦ

T −ΦΣΨ
T

−ΨΣΦ
T

ΨΣΨ
T

]
,

[
φkφT

k φkψT
k

ψkφT
k ψkψT

k

]〉
= 0,

and〈
WW T − W ?W ?T,∆∆

T
〉

=
〈
QΛQT − 2QΛ

1/2
RET + EET − QΣQT, qkqT

k

〉

= λk − σk

where the last utilizes the fact that ETqk = 0 since E is

orthogonal to Q.

Plugging these into (69) gives

2Π2 +
1

2
Π5 =

1

2
(λk − σk). (70)

Merging together: Putting (68) and (70) together yields

[∇2g(W )](∆,∆) = Π1 +
1

2
Π3 +

1

2
Π4 + 2Π2 +

1

2
Π5

≤ σ2
r(W ) +

1

2
(λk − σk)

≤ 1

2
σr(X

?) +
1

2
(
1

2
σr(X

?) − 2σr(X
?))

≤ −1

4
σr(X

?),

where the third line follows because by assumption σr(W ) ≤√
1
2σ

1/2
r (X?), by construction λk ≤ 1

2σr(X
?) (see (65)), and

σk ≥ σr = 2σr(X
?). This completes the proof of (41).

C. Large Gradient for the Region R0
3 ∪R00

3 ∪R000
3

In order to show that g(W ) has a large gradient in the three

regions R0
3 ∪ R00

3 ∪ R000
3 , we first provide a lower bound for

the gradient. By (58), we have

k∇g(W )k2
F

=
1

4

∥∥∥
(
WW T − W ?W ?T

)
W + Ŵ

?
Ŵ

?T
W

∥∥∥
2

F

=
1

4

(∥∥∥
(
WW T − W ?W ?T

)
W

∥∥∥
2

F
+
∥∥∥Ŵ

?
Ŵ

?T
W

∥∥∥
2

F

)

+
1

2

〈(
WW T − W ?W ?T

)
W , Ŵ

?
Ŵ

?T
W
〉

=
1

4

(∥∥∥
(
WW T − W ?W ?T

)
W

∥∥∥
2

F
+
∥∥∥Ŵ

?
Ŵ

?T
W

∥∥∥
2

F

)

+
1

2

〈
WW TWW T, Ŵ

?
Ŵ

?T〉

≥ 1

4

∥∥∥
(
WW T − W ?W ?T

)
W

∥∥∥
2

F
, (71)

where the third equality follows because W ?TŴ
?

=
U?TU? − V ?TV ? = 0 and the last line utilizes the fact that

the inner product between two PSD matrices is nonnegative.

1) Large Gradient for the Region R0
3: To show k∇g(W )k2

F

is large for any W ∈ R0
3, again, for any W ∈ R(n+m)×r,

we utilize (64) to write W = QΛ
1/2

R + E, where Q is

defined in (63), QΛ
1/2

R is a compact SVD form representing

the projection of W onto the column space of Q, and ETQ =
0 (i.e., E is orthogonal to Q). Plugging this form of W into

the last term of (71) gives
∥∥∥
(
WW T − W ?W ?T

)
W

∥∥∥
2

F
=

∥∥∥QΛ
1/2

(Λ−Σ)R+QΛ
1/2

REET+ERT
ΛR+EETE

∥∥∥
2

F
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=
∥∥∥QΛ

1/2
(Λ− Σ)R + QΛ

1/2
REET

∥∥∥
2

F

+
∥∥∥ERT

ΛR + EETE

∥∥∥
2

F
(72)

since Q is orthogonal to E. The remaining part is to show

at least one of the two terms is large for any W ∈ R0
3 by

considering the following two cases.

Case I: kEk2
F ≥ 4

25σr(X
?). As E is large, we bound the

second term in (72):
∥∥∥ERT

ΛR + EETE

∥∥∥
2

F
≥ σ2

r

(
RT

ΛR + ETE
)
kEk2

F

= σ4
r (W ) kEk2

F

≥ (
1

2
)2

4

25
σ3

r (X?) =
1

25
σ3

r(X?),

(73)

where the first inequality follows from Corollary 2, the first

equality follows from the fact W TW = RT
ΛR+ETE, and

the last inequality holds because by assumption that σ2
r (W ) ≥

1
2σr(X

?) and kEk2
F ≥ 4

25σr(X
?).

Case II: kEk2
F ≤ 4

25σr(X
?). In this case, we start by

bounding the diagonal entries in Λ. First, utilizing Weyl’s

inequality for perturbation of singular values [51, Theorem

3.3.16] gives ∣∣∣σr(W ) − min
i

λ
1/2

i

∣∣∣ ≤ kEk2,

which implies

min
i

λ
1/2

i ≥ σr(W ) − kEk2 ≥
√

1

2
σ1/2

r (X?) − 2

5
σ1/2

r (X?),

(74)

where we utilize kEk2 ≤ kEkF ≤ 2
5σ

1/2
r (X?). On the other

hand,

dist(W , W ?) ≤
∥∥∥Q(Λ

1/2 − Σ
1/2

)R + E

∥∥∥
F

≤
∥∥∥Q(Λ

1/2 − Σ
1/2

)R
∥∥∥

F
+ kEkF ,

which together with the assumption that dist(W , W ?) ≥
σ

1/2
r (X?) gives
∥∥∥Λ1/2 − Σ

1/2
∥∥∥

F
≥ σ1/2

r (X?) − 2

5
σ1/2

r (X?) =
3

5
σ1/2

r (X?).

We now bound the first term in (72):∥∥∥QΛ
1/2

(Λ− Σ)R + QΛ
1/2

REET
∥∥∥

F

≥ min
i

λ
1/2

i

∥∥∥(Λ − Σ)R + REET
∥∥∥

F

≥ min
i

λ
1/2

i

(∥∥(Λ− Σ)R
∥∥

F
−
∥∥∥REET

∥∥∥
F

)

≥ (

√
1

2
− 2

5
)

((
√

2 +

√
1

2
− 2

5

)
3

5
− 4

25

)
σ3/2

r (X?)

(75)

where the third line holds because kEETkF ≤ kEk2
F ≤

4
25σr(X

?), mini λ
1/2

i ≥
(√

1
2 − 2

5

)
σ

1/2
r (X?) by (74), and

∥∥Λ− Σ
∥∥

F
=

√√√√
r∑

i=1

(
σi − λi

)2

=

√√√√
r∑

i=1

(
σ

1/2
i − λ

1/2

i

)2 (
σ

1/2
i + λ

1/2

i

)2

≥
(
σ1/2

r + min
i

λ
1/2

i

)
√√√√

r∑

i=1

(
σ

1/2
i − λ

1/2

i

)2

=
(
σ1/2

r + min
i

λ
1/2

i

)∥∥∥Λ1/2 − Σ
1/2
∥∥∥

F

≥
(
√

2 +

√
1

2
− 2

5

)
3

5
σr(X

?).

Combining (71) with (72), (73) and (75) gives

k∇g(W )kF ≥ 1

10
σ3/2

r (X?).

This completes the proof of (42).

2) Large Gradient for the Region R00
3 : By (71), we have

k∇g(W )kF ≥ 1

2

∥∥∥
(
WW T − W ?W ?T

)
W

∥∥∥
2

F
.

Now (43) follows directly from the fact kWk > 20
19kW

?k and

the following result.

Lemma 9: For any A, B ∈ Rn×r with kAk ≥ αkBk and

α > 1, we have
∥∥∥
(
AAT − BBT

)
A

∥∥∥
F
≥ (1 − 1

α2
)kAk3.

Proof: Let A = Φ1Λ1R
T
1 and B = Φ2Λ2R

T
2 be the

SVDs of A and B, respectively. Then
∥∥∥
(
AAT − BBT

)
A

∥∥∥
F

=
∥∥∥Φ1Λ

3
1 − Φ2Λ

2
2Φ

T
2 Φ1Λ1

∥∥∥
F

≥
∥∥∥Λ3

1 − Φ
T
1 Φ2Λ

2
2Φ

T
2 Φ1Λ1

∥∥∥
F

≥
∥∥Λ3

1 − Λ
2
2Λ1

∥∥
F

≥ (1 − 1

α2
)kAk3.

3) Large Gradient for the Region R000
3 : By (58), we have

h∇g(W ), W i

=

〈
1

2

(
WW T − W ?W ?T

)
W +

1

2
Ŵ

?
Ŵ

?T
W , W

〉

≥ 1

2

〈(
WW T − W ?W ?T

)
W , W

〉

≥ 1

2

(∥∥∥WW T
∥∥∥

2

F
−
∥∥∥WW T

∥∥∥
F

∥∥∥W ?W ?T
∥∥∥

F

)

>
1

20

∥∥∥WW T
∥∥∥

2

F
(76)

where the last line holds because kW ?W ?TkF <
9
10kWW TkF .

APPENDIX L

PROOF OF THEOREM 1 (ROBUST STRICT SADDLE FOR

G(W ))

Throughout the proofs, we always utilize X = UV T unless

stated otherwise. To give a sense that the geometric result in
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Theorem 5 for g(W ) is also possibly preserved for G(W ),
we first compute the derivative of G(W ) as

∇G(W ) =

[
∇f(UV T)V

(∇f(UV T))TU

]
+ µŴŴ

T
W . (77)

For any ∆ =

[
∆U

∆V

]
∈ R(n+m)×r, algebraic calculation gives

the Hessian quadratic form [∇2G(W )](∆,∆) as

[∇2G(W )](∆,∆)

= [∇2f(UV T)](∆UV T + U∆
T
V

,∆UV T + U∆
T
V

)

+ 2h∇f(UV T),∆U∆
T
V
i + [∇2ρ(W )](∆,∆) (78)

where [∇2ρ(W )](∆,∆) is defined in (32). Thus, it is

expected that G(W ), ∇G(W ), and ∇2G(W ) are close

to their counterparts (i.e., g(W ), ∇g(W ) and ∇2g(W ))
for the matrix factorization problem when f(X) satis-

fies the (2r, 4r)-restricted strong convexity and smoothness

condition (6).

Before moving to the main proofs, we provide several useful

results regarding the deviations of the gradient and Hessian.

We start with a useful characterization of the restricted strong

convexity and smoothness condition.

Lemma 10: Suppose f satisfies the (2r, 4r)-restricted strong

convexity and smoothness condition (6) with positive constants

a = 1− c and b = 1 + c, c ∈ [0, 1). Then any n×m matrices

C, D, H with rank(C), rank(D) ≤ r and rank(H) ≤ 2r,

we have

|h∇f (C)−∇f (D) − (C−D), Hi| ≤ c kC − DkF kHkF .

Proof of Lemma 10: We first invoke [40, Proposition 2]

which states that under Assumption 2 for any n×m matrices

Z, D, H of rank at most 2r, we have
∣∣[∇2f(Z)](D, H) − hD, Hi

∣∣ ≤ c kDkF kHkF . (79)

Now using integral form of the mean value theorem for ∇f ,

we have

|h∇f (C) −∇f (D) − (C − D), Hi|

=

∣∣∣∣
∫ 1

0

[
∇2f(tC+(1−t)D)

]
(C−D, H)−hC−D, Hidt

∣∣∣∣

≤
∫ 1

0

∣∣[∇2f(tC+(1−t)D)
]
(C−D, H)−hC−D, Hi

∣∣ dt

≤
∫ 1

0

c kC − DkF kHkF dt = c kC − DkF kHkF .

where the second inequality follows from (79) since

tC + (1 − t)D, C − D, and H all are rank at most 2r.

The following result controls the deviation of the gradient

between the general low-rank optimization (9) and the matrix

factorization problem by utilizing the (2r, 4r)-restricted strong

convexity and smoothness condition (6).

Lemma 11: Suppose f(X) has a critical point X? ∈ Rn×m

of rank r and satisfies the (2r, 4r)-restricted strong convexity

and smoothness condition (6) with positive constants a = 1−c
and b = 1 + c, c ∈ [0, 1). Then, we have

k∇G(W ) −∇g(W )kF ≤ c
∥∥∥WW T − W ?W ?T

∥∥∥
F
kW k .

Proof of Lemma 11: We bound the deviation directly:

k∇G(W ) −∇g(W )kF = max
k∆kF =1

h∇G(W ) −∇g(W ),∆i

= max
k∆kF =1

〈
∇f(X),∆UV T

〉
−
〈
X − X?,∆UV T

〉

+
〈
∇f(X), U∆

T
V

〉
−
〈
X − X?, U∆

T
V

〉

= max
k∆kF =1

〈
∇f(X) −∇f(X?) − (X − X?),∆UV T

〉

+
〈
∇f(X) −∇f(X?) − (X − X?), U∆

T
V

〉

≤ max
k∆kF =1

c kX − X?kF

(∥∥∥∆UV T
∥∥∥

F
+
∥∥∥U∆

T
V

∥∥∥
F

)

≤ ckUV T − X?kF (kV k + kUk)
≤ ckWW T − W ?W ?TkF kW k ,

where the last equality follows from Assumption 1 that

∇f(X?) = 0 and and the first inequality utilizes

Lemma 10.

Similarly, the next result controls the deviation of the

Hessian between the matrix sensing problem and the matrix

factorization problem.

Lemma 12: Suppose f(X) has a critical point X? ∈ Rn×m

of rank r and satisfies the (2r, 4r)-restricted strong convexity

and smoothness condition (6) with positive constants a = 1−c

and b = 1 + c, c ∈ [0, 1). Then, for any ∆ =

[
∆U

∆V

]
∈

R(n+m)×r the following holds:
∣∣∇2G(W )[∆,∆] −∇2g(W )[∆,∆]

∣∣

≤ 2c
∥∥∥UV T−X?

∥∥∥
F

∥∥∥∆U∆
T
V

∥∥∥
F

+c
∥∥∥∆UV T+U∆

T
V

∥∥∥
2

F
.

Proof of Lemma 12: First note that

∇2G(W )[∆,∆] −∇2g(W )[∆,∆]

= 2
〈
∇f(X),∆U∆

T
V

〉
− 2
〈
X − X?,∆U∆

T
V

〉

+ [∇2f(X)](∆UV T + U∆
T
V ) −

∥∥∥∆UV T + U∆
T
V

∥∥∥
2

F
.

Now utilizing Lemma 10 and (6), we have

∣∣∇2G(W )[∆,∆] −∇2g(W )[∆,∆]
∣∣

≤ 2
∣∣∣
〈
∇f(X)−∇f(X?),∆U∆

T
V

〉
−hX−X?,∆U∆

T
V
i
∣∣∣

+

∣∣∣∣[∇
2f(X)](∆UV T + U∆

T
V

) −
∥∥∥∆UV T + U∆

T
V

∥∥∥
2

F

∣∣∣∣

≤ 2c
∥∥∥UV T − X?

∥∥∥
F

∥∥∥∆U∆
T
V

∥∥∥
F

+ c
∥∥∥∆UV T + U∆

T
V

∥∥∥
2

F
.

We provide one more result before proceeding to prove the

main theorem.

Lemma 13 ([13, Lemma E.1]): Let A and B be two n× r
matrices such that ATB = BTA is PSD. Then

∥∥∥(A − B)AT
∥∥∥

2

F
≤ 1

2(
√

2 − 1)

∥∥∥AAT − BBT
∥∥∥

2

F
.
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A. Local Descent Condition for the Region R1

Similar to what used in Appendix K-A, we perform the

change of variable W ?R → W ? to avoid R in the following

equations. With this change of variable we have instead

W TW ? = W ?TW is PSD.

We first control |h∇G(W ) −∇g(W ), W − W ?i| as

follows:

|h∇G(W ) −∇g(W ), W − W ?i|
≤
∣∣∣h∇f(X), (U − U?)V Ti − hX − X?, (U − U?)V Ti

∣∣∣
+
∣∣h∇f(X), U(V − V ?)Ti − hX − X?, U(V − V ?)Ti

∣∣

≤ c kX − X?kF

(
k(U − U?)V TkF + kU(V − V ?)TkF

)

≤ ckWW T − W ?W ?TkF

∥∥W (W − W ?)T
∥∥

F

≤ c

2(
√

2 − 1)
kWW T − W ?W ?Tk2

F

where the second inequality utilizes ∇f(X?) = 0 and

Lemma 10, and the last inequality follows from Lemma 13.

The above result along with (59)-(60) gives

h∇G(W ), W − W ?i
≥ h∇g(W ), W −W ?i − |h∇G(W ) −∇g(W ), W − W ?i|

≥h∇g(W ), W −W ?i− c

2(
√

2 − 1)

∥∥∥WW T−W ?W ?T
∥∥∥

2

F

≥ 1

16
σr(X

?) dist2(W , W ?) +
1

32

∥∥∥WW T − W ?W ?T
∥∥∥

2

F

+
1

4kX?k
∥∥∥Ŵ

?
Ŵ

?T
W

∥∥∥
2

F

− c

2(
√

2 − 1)

∥∥∥WW T − W ?W ?T
∥∥∥

2

F

≥ 1

16
σr(X

?) dist2(W , W ?) +
1

160

∥∥∥WW T−W ?W ?T
∥∥∥

2

F

+
1

4kX?k
∥∥∥Ŵ

?
Ŵ

?T
W

∥∥∥
2

F
(80)

where we utilize c ≤ 1
50 .

On the other hand, we control k∇G(W )kF with Lemma 11

controlling the deviation between ∇G(W ) and ∇g(W ) as

follows:

k∇G(W )k2
F = k∇g(W ) + ∇G(W ) −∇g(W )k2

F

≤ 20

19
k∇g(W )k2

F + 20 k∇g(W ) −∇G(W )k2
F

≤ 20

19
k∇g(W )k2

F + 20c2kW k2
∥∥∥WW T − W ?W ?T

∥∥∥
2

F

=
5

19

∥∥∥
(
WW T − W ?W ?T

)
W + Ŵ

?
Ŵ

?T
W

∥∥∥
2

F

+ 20c2kWk2
∥∥∥WW T − W ?W ?T

∥∥∥
2

F

≤
(

5

19

100

99
+ 20c2

)∥∥∥
(
WW T − W ?W ?T

)
W

∥∥∥
2

F

+ 25
∥∥∥Ŵ

?
Ŵ

?T
W

∥∥∥
2

F

≤ (
5

19

100

99
+ 50c2)(

√
2 + 1)2kX?kkWW T − W ?W ?Tk2

F

+ 25kŴ
?
Ŵ

?T
W k2

F , (81)

where the first inequality holds since (a+ b)2 ≤ 1+�
� a2 +(1+

�)b2 for any � > 0, and the fourth line follows from (58).

Now combining (80)-(81) and assuming c ≤ 1
50 gives

h∇G(W ), W − W ?i

≥ 1

16
σr(X

?) dist2(W , W ?) +
1

260kX?kk∇G(W )k2
F .

This completes the proof of (15).

B. Negative Curvature for the Region R2

Let ∆ = qkαT be defined as in (66). First note that

∥∥∥∆UV T + U∆
T
V

∥∥∥
2

F
≤ 2
∥∥∥∆UV T

∥∥∥
2

F
+ 2
∥∥∥U∆

T
V

∥∥∥
2

F

≤ 2
∥∥∥W∆

T
∥∥∥

2

F
= 2σ2

r(W ) ≤ σr(X
?),

where the last equality holds because σr(W ) ≤√
1
2σ

1/2
r (X?). Also utilizing the particular structure in

∆ yields ∥∥∥∆U∆
T
V

∥∥∥
F

=
1

2

∥∥∥φkψT
k

∥∥∥
F

=
1

2
.

Due to the assumption 20
19kW

?W ?TkF ≥ kWW TkF ,

we have

kUV T − X?kF ≤
√

2

2
kWW T − W ?W ?TkF

≤
√

2

2
(
20

19
kW ?W ?TkF + kW ?W ?TkF ) =

39
√

2

19
kX?kF .

Now combining the above results with Lemma 12, we have

∇2G(W )[∆,∆]

≤ ∇2g(W )[∆,∆] +
∣∣∇2G(W )[∆,∆] −∇2g(W )[∆,∆]

∣∣

≤ −1

4
σr(X

?) + 2c
∥∥∥UV T − X?

∥∥∥
F

∥∥∥∆U∆
T
V

∥∥∥
F

+ c
∥∥∥∆UV T + U∆

T
V

∥∥∥
2

F

≤ −1

4
σr(X

?) +
39

19

√
2ckX?kF + cσr(X

?)

≤ −1

6
σr(X

?),

where the last line holds when c ≤ σr(X?)
50kX?kF

. This completes

the proof of (16).

C. Large Gradient for the Region R0
3 ∪R00

3 ∪R000
3

To show that G(W ) has large gradient in these three

regions, we mainly utilize Lemma 11 to guarantee that

∇G(W ) is close to ∇g(W ).
1) Large Gradient for the Region R0

3: Utilizing Lemma 11,

we have

k∇G(W )kF

≥ k∇g(W )kF − k∇G(W ) −∇g(W )kF

≥ k∇g(W )kF − c
∥∥∥WW T − W ?W ?T

∥∥∥
F
kW k

≥ k∇g(W )kF − c(
10

9
kW ?W ?TkF + kW ?W ?TkF ) kW k
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≥ 1

10
σ3/2

r (X?) − c
19

9
2kX?kF

20

19

√
2kX?k1/2

≥ 1

27
σ3/2

r (X?),

where the fourth line follows because

∥∥∥W ?W ?T
∥∥∥

F
=

2kX?kF and kW k ≤ 20
19

√
2kX?k1/2, and the last line holds

if c ≤ 1
100

σ3/2
r (X?)

kX?kF kX?k1/2 . This completes the proof of (17).

2) Large Gradient for the Region R00
3 : Utilizing Lemma 11

again, we have

k∇G(W )kF

≥ k∇g(W )kF − c
(∥∥∥WW T

∥∥∥
F

+
∥∥∥W ?W ?T

∥∥∥
F

)
kW k

≥ 39

800
kW k3 − c

(
10

9

∥∥∥W ?W ?T
∥∥∥

F
+
∥∥∥W ?W ?T

∥∥∥
F

)
kW k

≥ 39

800
kW k3 − c

19

9
2 kX?kF kW k

≥ 39

800
kW k3 − 19

450
kX?k kW k

≥ 1

50
kWk3,

where the fourth line holds if c ≤ 1
100

σ3/2
r (X?)

kX?kF kX?k1/2 and the

last follows from the fact that

kW k >
20

19
kW ?k ≥ 20

19

√
2kX?k1/2.

This completes the proof of (18).

3) Large Gradient for the Region R000
3 : To show (19), we

first control |h∇G(W ) −∇g(W ), W i| as follows:

|h∇G(W ) −∇g(W ), W i|
= 2
∣∣∣
〈
∇f(UV T), UV T

〉
−
〈
UV T − X?, UV T

〉∣∣∣

≤ 2c
∥∥∥UV T − X?

∥∥∥
F

∥∥∥UV T
∥∥∥

F

≤ 2c
19

20

√
2kWW TkF

1

2
kWW TkF =

19

20

√
2ckWW Tk2

F ,

where the first inequality utilizes the fact ∇f(X?) = 0 and

Lemma 10, and the last inequality holds because

∥∥∥UV T − X?
∥∥∥

F
≤

√
2

2

∥∥∥WW T − W ?W ?T
∥∥∥

F

≤
√

2

2

(
9

10

∥∥∥WW T
∥∥∥

F
+
∥∥∥WW T

∥∥∥
F

)

=
19

√
2

20

∥∥∥WW T
∥∥∥

F

and

‖W W
T‖2

F = ‖UU
T‖2

F +‖V V
T‖2

F +2‖UV
T‖2

F ≥ 4‖UV
T‖2

F

by noting that

kUUTk2
F +kV V Tk2

F−2kUV Tk2
F = kUTU−V TV k2

F ≥ 0.

Now utilizing (76) to provide a lower bound for

h∇g(W ), W i, we have

|h∇G(W ), W i|
≥ h∇g(W ), W i − |h∇G(W ) −∇g(W ), W i|

>
1

20
kWW Tk2

F − 19

20

√
2ckWW Tk2

F

≥ 1

45
kWW Tk2

F ,

where the last line holds when c ≤ 1
50 . Thus,

k∇G(W )kF ≥ 1

kW k |h∇G(W ), W i| >
1

45
kWW Tk3/2

F ,

where we utilize kW k ≤
(
kWW TkF

)1/2

. This completes

the proof of (19).
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