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The Global Optimization Geometry of Low-Rank
Matrix Optimization

Zhihui Zhu™', Member, IEEE, Qiuwei Li

Abstract— This paper considers general rank-constrained opti-
mization problems that minimize a general objective function
f(X) over the set of rectangular » X m matrices that have rank
at most r. To tackle the rank constraint and also to reduce
the computational burden, we factorize X into UV'T where
U and V are n X r and m X r matrices, respectively, and then
optimize over the small matrices U and V. We characterize the
global optimization geometry of the nonconvex factored problem
and show that the corresponding objective function satisfies the
robust strict saddle property as long as the original objective
function f satisfies restricted strong convexity and smoothness
properties, ensuring global convergence of many local search
algorithms (such as noisy gradient descent) in polynomial time for
solving the factored problem. We also provide a comprehensive
analysis for the optimization geometry of a matrix factorization
problem where we aim to find » X r and m X r matrices U and V'
such that UV'T approximates a given matrix X*. Aside from
the robust strict saddle property, we show that the objective
function of the matrix factorization problem has no spurious
local minima and obeys the strict saddle property not only
for the exact-parameterization case where rank(X*) = r, but
also for the over-parameterization case where rank(X*) < r
and the under-parameterization case where rank(X*) > r.
These geometric properties imply that a number of iterative
optimization algorithms (such as gradient descent) converge to a
global solution with random initialization.

Index Terms— Low-rank optimization, matrix factorization,
matrix sensing, nonconvex optimization, optimization geometry.

I. INTRODUCTION

OW-RANK matrices arise in a wide variety of applica-
tions throughout science and engineering, ranging from
quantum tomography [1], signal processing [2], machine learn-
ing [3], [4], and so on; see [S5] for a comprehensive review.
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In all of these settings, we often encounter the following
rank-constrained optimization problem:

minimize f(X),

XER’ILX’HL

subject to rank(X) <, (1)

where the objective function f : R"*" — R is smooth.

Whether the objective function f is convex or nonconvex,
the rank constraint renders low-rank matrix optimizations of
the form (1) highly nonconvex and computationally NP-hard
in general [6]. Significant efforts have been devoted to trans-
forming (1) into a convex problem by replacing the rank
constraint with one involving the nuclear norm. This strat-
egy has been widely utilized in matrix inverse problems [7]
arising in signal processing [5], machine learning [8], and
control [6]. With convex analysis techniques, nuclear norm
minimization has been proved to provide optimal performance
in recovering low-rank matrices [9]. However, in spite of
the optimal performance, solving nuclear norm minimiza-
tion is very computationally expensive even with special-
ized first-order algorithms. For example, the singular value
thresholding algorithm [10] requires performing an expensive
singular value decomposition (SVD) in each iteration, making
it computationally prohibitive in large-scale settings. This
prevents nuclear norm minimization from scaling to practical
problems.

To relieve the computational bottleneck, recent studies pro-
pose to factorize the variable into X = UV ", and optimize
over the n X r and m X r matrices U and V rather than
the n x m matrix X . The rank constraint in (1) then is auto-
matically satisfied through the factorization. This strategy is
usually referred to as the Burer-Monteiro type decomposition
after the authors in [11], [12]. Plugging this parameterization
of X in (1), we can recast the program into the following
one:

(U, V) := f(UVT). )

minimize

UERM X",V eRmxr
The bilinear nature of the parameterization renders the objec-
tive function of (2) nonconvex. Hence, it can potentially
have spurious local minima (i.e., local minimizers that are
not global minimizers) or even saddle points. With technical
innovations in analyzing the landscape of nonconvex functions,
however, several recent works have shown that the factored
objective function A(U, V') in certain matrix inverse problems
has no spurious local minima [13]-[15].
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A. Summary of Results and Outline

In this paper, we provide a comprehensive geometric analy-
sis for solving general low-rank optimizations of the form (1)
using the factorization approach (2). Our work actually rests
on the recent works [16]—-[20] ensuring a number of iterative
optimization methods (such as gradient descent) converge
to a local minimum with random initialization provided the
problem satisfies the so-called strict saddle property (see
Definition 3 in Section II). If the objective function further
obeys the robust strict saddle property [16] (see Definition 4
in Section II) or belongs to the class of so-called X func-
tions [17], the recent works [16], [17] show that many local
search algorithms can converge to a local minimum in poly-
nomial time. The implications of this line of work have had
a tremendous impact on a number of nonconvex problems in
applied mathematics, signal processing, and machine learning.

We begin this paper in Section II with the notions of
strict saddle, strict saddle property, and robust strict saddle
property. Considering that many invariant functions are not
strongly convex (or even convex) in any neighborhood around
a local minimum point, we then provide a revised robust
strict saddle property! requiring a regularity condition (see
Definition 8 in Section II) rather than strong convexity near
the local minimum points (which is one of the requirements
for the strict saddle property). The stochastic gradient descent
algorithm is guaranteed to converge to a local minimum point
in polynomial time for problems satisfying the revised robust
strict saddle property [16], [20].

In Section III, we consider the geometric analysis for
solving general low-rank optimizations of the form (1) using
the factorization approach (2). Provided the objective function
f satisfies certain restricted strong convexity and smoothness
conditions, we show that the low-rank optimization problem
with the factorization (2) (with an additional regularizer—see
Section III for the details) obeys the revised robust strict saddle
property. In Section III-C, we consider a stylized application
in matrix sensing where the measurement operator satisfies
the restricted isometry property (RIP) [7]. In the case of
Gaussian measurements, as guaranteed by this robust strict
saddle property, a number of iterative optimizations can find
the unknown matrix X™* of rank r in polynomial time with
high probability when the number of measurements exceeds a
constant times (n + m)r2.

Our main approach for analyzing the optimization geometry
of (2) is based on the geometric analysis for the follow-
ing non-square low-rank matrix factorization problem: given
X* c Rnxm,’

2

vvt - x* 3)
F

minimize
UER?LX7"V7W,><T

'A similar notion of a revised robust strict saddle property has also been
utilized in [20], which shows that noisy gradient descent converges to a
local minimum in a number iterations that depends only poly-logarithmically
on the dimension. In a nutshell, [20] has a different focus than this work:
the focus in [20] is on providing convergence analysis of a noisy gradient
descent algorithm with a robust strict saddle property, while in the present
paper, we establish a robust strict saddle property for the nonsymmetric
matrix factorization and more general low-rank optimization (including matrix
sensing) problems with the factorization approach.

1309

In particular, we show the optimization geometry for the
low-rank matrix factorization problem (3) is preserved for
the general low-rank optimization (2) under certain restricted
strong convexity and smoothness conditions on f. Thus,
in Appendix A, we provide a comprehensive geometric analy-
sis for (3), which can be viewed as an important foundation
of many popular matrix factorization problems such as the
matrix sensing problem and matrix completion. We show
that the low-rank matrix factorization problem (3) (with an
additional regularizer) has no spurious local minima and obeys
the strict saddle property—that is the objective function in (3)
has a directional negative curvature at all critical points but
local minima—not only for the exact-parameterization case
where rank(X ™) = r, but also for the over-parameterization
case where rank(X™) < r and the under-parameterization
case where rank(X*) > r. The strict saddle property and
lack of spurious local minima ensure that a number of local
search algorithms applied to the matrix factorization prob-
lem (3) converge to global optima which correspond to the
best rank-r approximation to X*. Further, we completely
analyze the low-rank matrix factorization problem (3) for the
exact-parameterization case and show that it obeys the revised
robust strict saddle property.

B. Relation to Existing Work

Unlike the objective functions of convex optimizations that
have simple landscapes, such as where all local minimizers
are global ones, the objective functions of general nonconvex
programs have much more complicated landscapes. In recent
years, by exploiting the underlying optimization geometry,
a surge of progress has been made in providing theoretical jus-
tifications for matrix factorization problems such as (2) using a
number of previously heuristic algorithms (such as alternating
minimization [21], gradient descent, and the trust region
method). Typical examples include phase retrieval [22]-[24],
blind deconvolution [25], [26], dictionary learning [27]-[29],
phase synchronization [30] and matrix sensing and completion
[14], [31]-[36].

These iterative algorithms can be sorted into two categories
based on whether a good initialization is required. One set of
algorithms consist of two steps: initialization and local refine-
ment. Provided the function satisfies a regularity condition or
similar properties, a good guess lying in the attraction basin
of the global optimum can lead to global convergence of the
following iterative step. We can obtain such initializations by
spectral methods for phase retrieval [23], phase synchroniza-
tion [30] and low-rank matrix recovery problems [31], [32],
[37], [38]. As we have mentioned, a regularity condition is
also adopted in the revised robust strict saddle property.

Another category of works attempt to analyze the landscape
of the objective functions in a larger space rather than the
regions near the global optima. We can further separate these
approaches into two types based on whether they involve
the strict saddle property or the robust strict saddle property.
The strict saddle property and lack of spurious local minima
are proved for low-rank, positive semidefinite (PSD) matrix
recovery [13] and completion [14], PSD matrix optimization
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problems with generic objective functions [39], low-rank
non-square matrix estimation from linear observations [15],
low-rank nonsquare optimization problems with generic objec-
tive functions [40] and generic nuclear norm regularized
problems [39]. The strict saddle property along with the
lack of spurious local minima ensures a number of iterative
algorithms such as gradient descent [16] and the trust region
method [41] converge to the global minimum with random
initialization [16], [18], [29].

A few other works which are closely related to our work
attempt to study the global geometry by characterizing the
landscapes of the objective functions in the whole space rather
than the regions near the global optima or all the critical
points. As we discussed before, a number of local search
algorithms are guaranteed to find a local optimum (which
is also the global optimum if there are no spurious local
minima) because of this robust strict saddle property. In [16],
the authors proved that tensor decomposition problems satisfy
this robust strict saddle property. Sun er al. [22] studied the
global geometry of the phase retrieval problem. The very
recent work in [42] analyzed the global geometry for PSD
low-rank matrix factorization of the form (3) and the related
matrix sensing problem when the rank is exactly parameterized
(i.e., 7 = rank(X™)). The factorization approach for matrix
inverse problems with quadratic loss functions is considered
in [36]. We extend this line by considering general rank-
constrained optimization problems including a set of matrix
inverse problems.

Finally, we remark that our work is also closely related
to the recent works in low-rank matrix factorization of the
form (3) and its variants [13]-[15], [31]-[33], [36], [40], [42].
As we discussed before, most of these works except [36],
[42] (but including [15] which also focuses on nonsymmetric
matrix sensing) only characterize the geometry either near the
global optima or all the critical points. Instead, we characterize
the globalgeometry for general (rather than PSD) low-rank
matrix factorization and sensing. Because the analysis is differ-
ent, the proof strategy in the present paper is also very different
than that of [15], [40]. The results for PSD matrix sensing in
[42] build heavily on the concentration properties of Gaussian
measurements, while our results for matrix sensing depend on
the RIP of the measurement operator and thus can be applied to
other matrix sensing problems whose measurement operator is
not necessarily from a Gaussian measurement ensemble. Also,
[36] considers matrix inverse problems with quadratic loss
functions and its proof strategy is very different than that in the
present paper: the proof in [36] is specified to quadratic loss
functions, while we consider the rank-constrained optimization
problem with general objective functions in (1) and our
proof utilizes the fact that the gradient and Hessian of the
low-rank matrix sensing are respectively very close to those
in low-rank matrix factorization. Furthermore, in terms of the
matrix factorization, we show that the objective function in (3)
obeys the strict saddle property and has no spurious local
minima not only for exact-parameterization (r = rank(X™")),
but also for over-parameterization (r > rank(X™)) and
under-parameterization (r < rank(X™)). Local (rather
than global) geometry results for exact-parameterization and
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under-parameterization are also covered in [40]. As noted
above, the work in [36], [42] for low-rank matrix factorization
only focuses on exact-parameterization (r = rank(X *)). The
under-parameterization implies that we can find the best rank-r
approximation to X * by many efficient iterative optimization
algorithms such as gradient descent.

C. Notation

Before proceeding, we first briefly introduce some notation
used throughout the paper. The symbols I and O respectively
represent the identity and zero matrices with appropriate sizes.
Also I,, is used to denote the n x n identity matrix. For
any natural number n, we let [n] or 1 n denote the
set {1,2,...,n}. We use |2| denote the cardinality (i.e., the
number of elements) of a set (2. MATLAB notations are
adopted for matrix indexing; that is, for the n x m matrix
A, its (¢, j)-th element is denoted by A[i, j], its i-th row (or
column) is denoted by A[i, :] (or A[:,]), and A[Q21, Q5] refers
to a || X Q22| submatrix obtained by taking the elements in
rows € of columns y of matrix A. Here ; C [n] and
0y C [n]. We use a 2 b (or a < b) to represent that there is
a constant so that a > Const - b (or a < Const - b).

We say that a (not necessarily square) matrix A € R"*"
is orthonormal if the columns of A are normalized and
orthogonal to each other, i.c., ATA = 1. The set of 7 x r
orthonormal matrices is denoted by O, := {R € R"™*" :
R'R = I}. We say that a (not necessarily square) matrix
A € R"™7 is orthogonal if (A[:, 4], A[:,j]) = 0 for all i # j;
that is the columns of A are orthogonal to each other, but are
not necessarily normalized and could even be zero.

If a function h(U,V) has two arguments, U € R"*"
and V. € R™*", we occasionally use the notation h(W)
when we put these two arguments into a new one as

W = ‘Ii] For a scalar function f(Z) with a matrix

R™>™ jits gradient iS an n X m matrix

variable Z € [

whose (i, j)-th entry is [Vf(Z)][i,j] = §5=x for all i €
{1,2,...,n},7 €{1,2,...,m}. The Hessian of f(Z) can be
viewed as an nm x nm matrix [V2f(2)][i,j] = %
for all 4,5 € {1,...,nm}, where z[i] is the i-th entry of
the vectorization of Z. An alternative way to represent the
Hessian is by a bilinear form defined via [V2f(Z)](A, B) =
i #ézzl[mA[i,j]B[k,f] for any A,B € R,
These two notations will be used interchangeably whenever
the specific form can be inferred from context.

II. PRELIMINARIES

In this section, we provide a number of important definitions
in optimization and group theory. To begin, suppose h(x) :
R™ — R is twice differentiable.

Definition 1 (Critical Points): A point x is a critical point
of h(zx) if Vh(x) = 0.

Definition 2 (Strict Saddles; or Ridable Saddles in [29]):
A critical point ® is a strict saddle if the Hessian matrix
evaluated at this point has a strictly negative eigenvalue,
i.e., Amin(V2h(z)) < 0.

Definition 3 (Strict Saddle Property [16]): A twice differ-
entiable function satisfies the strict saddle property if each
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critical point either corresponds to a local minimum or is a
strict saddle.

Intuitively, the strict saddle property requires a function to
have a directional negative curvature at all of the critical points
but local minima. This property allows a number of iterative
algorithms such as noisy gradient descent [16] and the trust
region method [41] to further decrease the function value at
all the strict saddles and thus converge to a local minimum.

In [16], the authors proposed a noisy gradient descent
algorithm for the optimization of functions satisfying the
robust strict saddle property.

Definition 4 (Robust Strict Saddle Property [16]):
Given a,7v,€,0, a twice differentiable h(x) satisfies the
(at, 7, €, 0)-robust strict saddle property if for every point x
at least one of the following applies:

1) There exists a local minimum point x* such that
|[z* — x|| <4, and the function h(x') restricted to a 2
neighborhood of «* (i.e., ||* — 2’| < 20) is a-strongly
convex;

2) )\min (VQh(w)) S -

3) V()] = e

In words, the above robust strict saddle property says that
for any point whose gradient is small, then either the Hessian
matrix evaluated at this point has a strictly negative eigenvalue,
or it is close to a local minimum point. Thus the robust
strict saddle property not only requires that the function obeys
the strict saddle property, but also that it is well-behaved
(i.e., strongly convex) near the local minima and has large
gradient at the points far way to the critical points.

Intuitively, when the gradient is large, the function value
will decrease in one step by gradient descent; when the point
is close to a saddle point, the noise introduced in the noisy
gradient descent could help the algorithm escape the saddle
point and the function value will also decrease; when the point
is close to a local minimum point, the algorithm then converges
to a local minimum. Ge et al. [16] rigorously showed that
the noisy gradient descent algorithm (see [16, Algorithm
1]) outputs a local minimum in a polynomial number of
steps if the function h(x) satisfies the robust strict saddle
property.

It is proved in [16] that tensor decomposition problems
satisfy this robust strict saddle property. However, requiring
the local strong convexity prohibits the potential extension of
the analysis in [16] for the noisy gradient descent algorithm to
many other problems, for which it is not possible to be strongly
convex in any neighborhood around the local minimum points.
Typical examples include the matrix factorization problems
due to the rotational degrees of freedom for any critical
point. This motivates us to weaken the local strong convexity
assumption relying on the approach used by [23], [31] and to
provide the following revised robust strict saddle property for
such problems. To that end, we list some necessary definitions
related to groups and invariance of a function under the group
action.

Definition 5 (Definition 7.1 [43])): A (closed) binary oper-
ation, o, is a law of composition that produces an element
of a set from two elements of the same set. More precisely,
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let G be a set and a1,a2 € G be arbitrary elements. Then
(a1,a2) = a10az €4G.

Definition 6 (Definition 7.2 [43])): A group is a set G
together with a (closed) binary operation o such that for any
elements a, a1, as,as € G the following properties hold:

« Associative property: a; o (az 0 az) = (a1 0 az2) o as.

o There exists an identity element e € G such that

eoa=aoe=a.

e There is an element o' € &

ailoa:aoa*:e.

such that

With this definition, it is common to denote a group just by
G without saying the binary operation o when it is clear from
the context.

Definition 7: Given a function h(x) : R™ — R and a group
G of operators on R™, we say h is invariant under the group
action (or under an element a of the group) if

h(a(z)) = h(z)

forall x € R" and a € G.

Suppose the group action also preserves the energy of x,
ie., |la(x)| = ||x| for all a € G. Since for any x € R",
h(a(x)) = h(x) for all a € G, it is straightforward to stratify
the domain of h(x) into equivalent classes. The vectors in
each of these equivalent classes differ by a group action. One
implication is that when considering the distance of two points
x; and xo, it would be helpful to use the distance between
their corresponding classes:

dist(wl, ZCQ) L= alerg.iar;eg ||Cl1(581) — ag(wg)”
= 1 — 4
mip [|2; — a(x2)l], )

where the second equality follows because |aq(x1) —
az(@2)|| = a1 (@1 — a7 " 0 az(@2))]| = [l&1 — ay ' 0 as(ws)
and al’l o as € G. Another implication is that the function
h(x) cannot possibly be strongly convex (or even convex) in
any neighborhood around its local minimum points because
of the existence of the equivalent classes. Before presenting
the revised robust strict saddle property for invariant functions,
we list two examples to illuminate these concepts.

Example 1: As one example, consider the phase retrieval
problem of recovering an n-dimensional complex vector
{yi = b?az* i=1,... ,p}, the magnitude of
its projection onto a collection of known complex vectors
b1, by, ..., b, [22],[23]. The unknown * can be estimated by
solving the following natural least-squares formulation [22],

[23]
o\ 2
b?w‘ > ,

where we note that here the domain of x is C™. For this case,
we denote the corresponding

G=1{e:0¢]0,1)}

x* from

12
minimize h(x) = — Z <ng2 -

xeCn 2p 4 1
i=

and the group action as a(x) = e/’x, where a = €79 is an
element in G. It is clear that h(a(x)) = h(x) for all a € G.
Due to this invariance of h(x), it is impossible to recover the
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global phase factor of the unknown x* and the function h(x)
is not strongly convex in any neighborhood of x*.

Example 2: As another example, we revisit the general
factored low-rank optimization problem (2):

h(U, V)= f(UV").

minimize
UE]R"L X R VeR’nL Xr

We recast the two variables U,V into W as W =

U
|4
For this example, we denote the corresponding G = O,
UR

VR]
a = R € G. We have that h(a(W)) = h(W) for all a € G
since UR(VR)T = UV™ for any R € O,. Because of this
invariance, in general h(W) is not strongly convex in any
neighborhood around its local minimum points even though
f(X) is a strongly convex function; see [42] for the symmetric
low-rank factorization problem and Theorem 2 in Appendix A
for the nonsymmetric low-rank factorization problem.

In the examples illustrated above, due to the invariance,
the function is not strongly convex (or even convex) in any
neighborhood around its local minimum point and thus it is
prohibitive to apply the standard approach in optimization
to show the convergence in a small neighborhood around
the local minimum point. To overcome this issue, Candes
et al. [23] utilized the so-called regularity condition as a
sufficient condition for local convergence of gradient descent
applied for the phase retrieval problem. This approach has
also been applied for the matrix sensing problem [31] and
semi-definite optimization [37].

Definition 8 (Regularity Condition [23], [31]): Suppose
h(xz) : R® — R is invariant under the group action of the
given group G. Let * € R™ be a local minimum point of
h(x). Define the set B(d,x*) as

B(6,x*) := {x € R" : dist(z,x*) < d},

and the group action on W as a(W) = where

where the distance dist(x, *) is defined in (4). Then we say
the function h(x) satisfies the (v, 3, §)-regularity condition if
for all @ € B(4,x*), we have

(Vh(z),z — a(x*)) > adist(z, z*)? + 3| Vh(z)||?, (5)

where a = arg min,, ¢ ||z — o’ (x*)]|.
We remark that («, 3) in the regularity condition (8) must
satisfy aff < i since by applying Cauchy-Schwarz

(Vh(z), 2 — a(z”)) < [[Vh(z)| dist(z, z")
and the inequality of arithmetic and geometric means
adist?(z, %) + 8| Vh(x)||? > 2\/aBdist(x, =*)|| Vh(x)|>.

Lemma 1: [23], [31] If the function h(a) restricted to a §
neighborhood of x* satisfies the («, 3, §)-regularity condition,
then as long as gradient descent starts from a point xy €
B(0,x*), the gradient descent update

L1 = T — Z/Vh(wt)
with step size 0 < v < 23 obeys x; € B(d, z*) and
dist? (,, 2*) < (1 — 2wa)" dist? (xo, *)

for all ¢ > 0.
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The proof is given in [23]. To keep the paper self-contained,
we also provide the proof of Lemma 1 in Appendix B.
We remark that the decreasing rate 1 — 2va € [0, 1) since
we choose v < 2/ and af < %.

Now we establish the following revised robust strict saddle
property for invariant functions by replacing the strong con-
vexity condition in Definition 4 with the regularity condition.

Definition 9 (Revised Robust Strict Saddle Property for
Invariant Functions): Given a twice differentiable h(x)
R™ — R and a group G, suppose h(x) is invariant under the
group action and the energy of x is also preserved under the
group action, i.e., h(a(x)) = h(x) and ||a(x)||2 = ||=||2 for
all @ € G. Given «, 3,7, €, 6, h(x) satisfies the (o, 5,7, €,0)-
robust strict saddle property if for any point x at least one of
the following applies:

1) There exists a local minimum point x* such that
dist(x, *) < J, and the function h(x') restricted to 24 a
neighborhood of «* (i.e., dist(x’, *) < 20) satisfies the
(a, B, 26)-regularity condition defined in Definition 8;

2) )\min (VQh(w)) S —7;

3) |[Vh(x)|| > e

Compared with Definition 4, the revised robust strict saddle

property requires the local descent condition instead of strict
convexity in a small neighborhood around any local mini-
mum point. With the convergence guarantee in Lemma 1,
the convergence analysis of the stochastic gradient descent
algorithm in [16] for the robust strict saddle functions can
also be applied for the revised robust strict saddle functions
defined in Definition 9 with the same convergence rate.” We
omit the details here and refer the reader to [20] for more
details on this. In the rest of the paper, the robust strict saddle
property refers to the one in Definition 9.

III. LOW-RANK MATRIX OPTIMIZATION WITH THE
FACTORIZATION APPROACH

In this section, we consider the minimization of general
rank-constrained optimization problems of the form (1) using
the factorization approach (2) (which we repeat as follows):

WU, V)= fUV),

minimize
UERn X, VERm*r
where the rank constraint in (1) is automatically satisfied
by the factorization approach. With necessary assumptions
on f in Section III-A, we provide geometric analysis of the
factored problem in Section III-B. We then present a stylized
application in matrix sensing in Section III-C.

A. Assumptions and Regularizer

Before presenting our main results, we lay out the necessary
assumptions on the objective function f(X). As is known,
without any assumptions on the problem, even minimizing
traditional quadratic objective functions is challenging. For
this reason, we focus on problems satisfying the following
two assumptions.

2 As mentioned previously, a similar notion of a revised robust strict saddle
property has also recently been utilized in [20].
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Assumption 1: f(X) has a critical point X* € R"*™
which has rank 7.

Assumption 2: f(X) is (2r,4r)-restricted strongly con-
vex and smooth, i.e., for any n x m matrices X, D with
rank(X) < 2r and rank(D) < 4r, the Hessian of f(X)
satisfies

a|D| < [V?f(X)|(D, D) < b||D||z ©)

for some positive a and b.

Assumption 1 is equivalent to the existence of a rank r X *
such that V f(X™) = 0, which is very mild and holds in many
matrix inverse problems including matrix sensing [7], matrix
completion [9] and 1-bit matrix completion [44], where the
unknown matrix to be recovered is a critical point of f.

Assumption 2 is also utilized in [32, Conditions 5.3 and 5.4]
and [40], where weighted low-rank matrix factorization and
a set of matrix inverse problems are proved to satisfy the
(2r, 4r)-restricted strong convexity and smoothness condi-
tion (6). We discuss matrix sensing as a typical example
satisfying this assumption in Section III-C.

Combining Assumption 1 and Assumption 2, we have that
X™* is the unique global minimum of (1).

Proposition 1: Suppose f(X) satisfies the (2r,4r)-
restricted strong convexity and smoothness condition (6) with
positive a and b. Assume X is a critical point of f(X) with
rank(X ™) = r. Then X~ is the global minimum of (1), i.e.,

f(X7) < f(X), VX e RV™ rank(X) <r

and the equality holds only at X = X*.

The proof of Proposition 1 is given in Appendix C. We note
that Proposition 1 guarantees that X ™ is the unique global
minimum of (1) and it is expected that solving the factorized
problem (9) also gives X ™. Proposition 1 differs from [40] in
that it only requires X * as a critical point, while [40] needs
X™ as a global minimum of f.

Before presenting the main result, we note that if f satis-
fies (6) with positive a and b and we rescale [ as f' = aLer f,
then f’ satisfies

2a 2 2 41 b
= IDI} < [VA/(X)/(D.D) < =
It is clear that f and f’ have the same optimization geometry
(despite the scaling difference). Let a’ = aQ_fb =1-—cand
b = 24 = 1+cwithe =24 Wehave 0 <o/ <1<
and a’ + 0’ = 2. Thus, throughout the paper and without the
generality, we assume

a=1—c¢, b=14¢, c€]0,1). 7

2
1Dz -

Now let X* = ®X¥" =S 5,¢,4; be areduced SVD
of X*, where X is a diagonal matrix with oy > --- > o, along
its diagonal. Denote

U*=ox'?R,V*=¥x'/’R (8)

forany R € O,. We first introduce the following ways to stack
U and V together that are widely used through the paper:

v we [ ) w1

1313

Before moving on, we note that for any solution (U, V') to
(2), (UR1,V Ry) is also a solution to (2) for any Ry, Ry €
R”*" such that UR;R; V' = UV, As an extreme exam-
ple, Ry = cl and Ry = %I where ¢ can be arbitrarily large.
In order to address this ambiguity (i.e., to reduce the search
space of W for (3)), we utilize the trick in [15], [31], [32], [40]
by introducing a regularizer p and turn to solve the following
problem

yeominimize G(W) :=h(W) + p(W), ©)

where )
p(W) = % HUTU - VTVHF.

We remark that W™ is still a global minimizer of the factored
problem (29) since both the first term and p(W) achieve their
global minimum at W*. The regularizer p(W) is applied to
force the difference between the Gram matrices of U and V' as
small as possible. The global minimum of p(W) is 0, which
is achieved when U and V' have the same Gram matrices, i.e.,
when W belongs to

e {w=|y] v -viv o).

v (10)

Informally, we can view (9) as finding a point from £ that also
minimizes the first term in (9). This is rigorously established
in the following result which reveals that any critical point W
of g(W) belongs to £ (that is U and V are balanced factors
of their product Uv™ for any p > 0.

Lemma 2 ( [40, Theorem 3]): Suppose G(W) is defined
as in (9) with g > 0. Then any critical point W of G(W)
belongs to &, i.e.,

VGW)=0 = U'U=V"V. (11)

For completeness, we include the proof of Lemma 2 in
Appendix D.

B. Global Geometry for General Low-Rank Optimization

We now characterize the global optimization geometry of
the factored problem (9). As explained in Section II that
G(W) is invariant under the matrices R € O,, we first
recall the discussions in Section II about the revised robust
strict saddle property for the invariant functions. To that end,
we follow the notion of the distance between equivalent classes
for invariant functions defined in (4) and define the distance
between W and W as follows

diSt(VVl7 WQ) L=

min
R,€0,,R2€0,

= min ||[W; - WiR| .
ReO,

[WiR: — WaRs|
(12)

For convenience, we also denote the best rotation matrix R so
that || W — WyR)||  achieves its minimum by R(W 1, W),
ie.,

13)

R(le WQ) ‘= arg ernelgy HWI - WQR/HF )

which is also known as the orthogonal Procrustes prob-
lem [45]. The solution to the above minimization problem is
characterized by the following lemma.
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Lemma 3 ([45]): Let W, W, = LSPT be an SVD of

Wng. An optimal solution for the orthogonal Procrustes
problem (13) is given by

R(W,,W,)=LP".
Moreover, we have

WIW,R(W 1, Ws) = (WoR(W1, W) W,
= PSPT - o.

To ease the notation, we drop W; and W3 in
R(W,W,) and rewrite R instead of R(W 1, W5) when
they (W and W) are clear from the context. Now we are
well equipped to present the robust strict saddle property for
G(W) in the following result.

Theorem 1: Define the following regions

Ry = {W - dist (W, W*) < Ui/Q(X*)}v
1
Ry = {W o (W) < \/;oi/Q(X*%
T 20 wvxr kT
IWW e < W W e

20
5= {W s dist(W, W*) > gl/2(X*), | W] < 1—9HW*||,

1 20 .
7 (W)Lt 20 ww < 2w e}

20 20
V=W W > S W = V2| X
= {w s Iwi > Twl = valxe
T 10 * *T
IWW e < DT
0, .. 20 .
RY o= { W (W o W W= X

Let G(W) be defined as in (9) with u = %. Suppose f(X)
has a critical point X* € R™ ™ of rank r and satisfies
the (2r,4r)-restricted strong convexity and smoothness con-
dition (6) with positive constants a = 1 —¢,b = 1 4+ ¢
and

c< ! o!*(X*)

o = 14
= 100 [ X[ A1 X7 172 (9

Then G(W) has the following robust strict saddle property:

1) For any W € Ry, G(W) satisfies the local regularity
condition:

(VG(W), W — W*)

1 . 11
> Lo (X) dist2 (W, W)+
= 1gor (X7 dist’( )F 260 X7

(15)

where dist(W, W*) and R are defined in (12) and (13),
respectively.

2) For any W € Ry, G(W) has a directional negative
curvature, i.e.,

Amin (V2G(W)) < —éar(x*). (16)

IVGW)|[%.
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3) For any W € R3 = R, URY URY, G(W) has large

gradient:

]' *

IVGW)llr > 2o ?(X7), YW eRg (17)
1 )

IVGW)|lr = WP, VW eRg;  (18)
1 T 3/2 "

IVGW)llr > HWW H . YW eRY.

F

19)

The proof of this result is given in Appendix L. The main
proof strategy is to utilize Assumption 1 and Assumption 2
about the function f to control the deviation between the
gradient (and the Hessian) of the general low-rank opti-
mization (9) and the counterpart of the matrix factoriza-
tion problem so that the landscape of the general low-rank
optimization (9) has a similar geometry property. To that
end, in Appendix A, we provide a comprehensive geometric
analysis for the matrix factorization problem (3). The reason
for choosing p = % is also discussed in Appendix A-F. We
note that the results in Appendix A are also of indepen-
dent interest, as we show that the objective function in (3)
obeys the strict saddle property and has no spurious local
minima not only for exact-parameterization (r = rank(X™)),
but also for over-parameterization (r > rank(X™)) and
under-parameterization (r < rank(X™)). Several remarks
follow.

Remark 1: Note that

20, .
RiURs URG 2 {W s [W] < TG 1W |

10,
W < FIwe W
which further implies
10
RIURURLURS D{W : |\WWT||Fg3|\W*W*T||F}.

Thus, we conclude that Ry U Ry U R U RY U RY =
R(+m)x7 Now the convergence analysis of the stochastic
gradient descent algorithm in [16], [20] for the robust strict
saddle functions also holds for G(W).

Remark 2: Theorem 1 states that the objective function for
the general low-rank optimization (9) also satisfies the robust
strict saddle property when (14) holds. The requirement for ¢
in (14) can be weakened to ensure the properties of g(W) are
preserved for G(W) in some regions. For example, the local
regularity condition (15) holds when

- 1
< —
— 50

which is independent of X *. With the analysis of the global
geometric structure in G(W'), Theorem 1 ensures that many
local search algorithms can converge to X * (which is the the
global minimum of (1) as guaranteed by Proposition 1) with
random initialization. In particular, stochastic gradient descent
when applied to the matrix sensing problem (22) is guaranteed
to find the global minimum X ™ in polynomial time.

Remark 3: Local (rather than global) geometry results
for the general low-rank optimization (9) are also covered
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in [40], which only characterizes the geometry at all the critical
points. Instead, Theorem 1 characterizes the global geometry
for general low-rank optimization (9). Because the analysis
is different, the proof strategy for Theorem 1 is also very
different than that of [40]. Since [40] only considers local
geometry, the result in [40] requires ¢ < 0.2, which is slightly
less restrictive than the one in (14).

Remark 4: To explain the necessity of the requirement
on the constants a and b in (14), we utilize the symmetric
weighted PCA problem (so that we can visualize the landscape
of the factored problem in Figure 1) as an example where the
objective function is

1
[(X) =590 (X = X)E, (20)

where 2 € R™ "™ contains positive entries. The Hessian
quadratic form for f(X) is given by [V2f(X)](D,D) =
| ® DJ2 for any D € R"*". Thus, we have
[V2f(X))(D, D)
IDII%

Comparing with (6), we see that f satisfies the restricted strong
convexity and smoothness conditions with the constants a =
min,; |2[4, j]|? and b = max;; |Qi, j]|>. In this case, we also
note that if each entry W;; is nonzero (i.e., min;; |Q[i, j]|* >
0), the function f(X) is strongly convex, rather than only
restrictively strongly convex, implying that (20) has a unique
optimal solution X*. By applying the factorization approach,
we get the factored objective function

min |Qi, 5] < < max |Qi, j]|*.
1J )

1
WU) =520 UU" = XY} 1)

To illustrate the necessity of the requirement on the constants
a and b as in (14) so that the factored problem (21) has
no spurious local minima and obeys the robust strict saddle

property, we set X* = 1 1 which is a rank-1 matrix
and can be factorized as X* = U*U*" with U* = 1 .

We then plot the landscapes of the factored objective function

. 11 8 1
h(U) with © = [1 J and L 8‘]
from Figure 1 that as long as the elements in {2 have a small
dynamic range (which corresponds to a small b/a), h(U) has
no spurious local minima, but if the elements in €2 have a large
dynamic range (which corresponds to a large b/a), spurious
local minima can appear in hA(U).

Remark 5: The global geometry of low-rank matrix recov-
ery but with analysis customized to linear measurements
and quadratic loss functions is also covered in [36], [42].
Since Theorem 1 only requires the (2r,4r)-restricted strong
convexity and smoothness property (6), aside from low-rank
matrix recovery [46], it can also be applied to many other
low-rank matrix optimization problems [47] which do not
necessarily involve quadratic loss functions. Typical examples
include 1-bit matrix completion [44], [48] and Poisson princi-
pal component analysis (PCA) [49]. We refer to [40] for more
discussion on this issue. In next section, we consider a stylized
application of Theorem 1 in matrix sensing and compare it
with the result in [42].

in Figure 1. We observe
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U*

U*
(a)

Fig. 1. Landscapes of h(U) in (21) with X* =

1 1] 8 1
HEECEE !

H ﬂ and (a) Q =

C. Stylized Application: Matrix Sensing

In this section, we extend the previous geometric analysis
to the matrix sensing problem

1 2

GW) =5 HA (UvT-x*) \2 + p(W),

(22)

minimize
UER?L X 1'7V€R"L X

where A : R™*™ — RP is a known linear measurement
operator and X * is the unknown rank r matrix to be recovered.
In this case, we have

1 *
F(X) = 3 IIA(X = X))l
The derivative of f(X) at X™* is
VAXT) = AAXT - X7) =0,

which implies that f(X) satisfies Assumption 1. The Hessian
quadratic form V2f(X)[D, D] for any n x m matrices X
and D is given by

Vf(X)[D, D] = |AD).

The following matrix Restricted Isometry Property (RIP)
serves as a way to link the low-rank matrix factorization
problem (29) with the matrix sensing problem (22) and certi-
fies f(X) satisfying Assumption 2.

Definition 10 (Restricted Isometry Property (RIP) [7],
[50]): The map A : R™™ — RP satisfies the r-RIP with
constant §, if 3

(1=6,) ID|% < IAD)I* < (1+6,) [DIE  (23)
holds for any n x m matrix D with rank(D) < r.

If A satisfies the 4r-restricted isometry property with con-

stant 04, then f(X) satisfies the (2r,4r)-restricted strong

3By abuse of notation, we adopt the conventional notation d,- for the RIP
constant. The subscript r can be used to distinguish the RIP constant 9, from
§ which is used as a small constant in Section II.
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convexity and smoothness condition (6) with constants a =
1— 04, and b =1 — §4, since

(1—64) | D[} < V2£(X)[D, D] = | A(D)||?
< (1+64) | D%

for any rank-4r matrix D. Comparing (24) with (6), we note
that the RIP is stronger than the restricted strong convexity
and smoothness property (6) as the RIP gives that (24) holds
for all n x m matrices X, while Assumption 2 only requires
that (6) holds for all rank-2r matrices.

Now, applying Theorem 1, we obtain a similar geometric
guarantee to Theorem 1 for the matrix sensing problem (22)
when A satisfies the RIP.

Corollary 1: Let Rq1,Ra, R5, R4, R4 be the regions as
deﬁned in Theorem 5. Let G(W ) be defined as in (22) with
n=3 and A satisfying the 4r-RIP with

(24)

5 1 o) (X7)
00 [ X
Then G(W) has the following robust strict saddle property:

1) For any W € Ry, G(W
condition:

(VG(W), W — W)
> %ar(x*) dist?(W, W*)+

(25)

) satisfies the local regularity

1

GW
260 ||X I Ivew

-
(26)

where dist(W, W*) and R are defined in (12) and (13),
respectively.

2) For any W € Ry, G(W) has a directional negative
curvature, i.e.,

Amin (V2G(W)) < —%ar(x*).

3) Forany W € R3 = R{URL U

gradient:

Y, G(W) has large

IVGW)|lr > o=07/2(X7),

27 or
e > @HWH?’,

VW e Ry

IVG(W VW e

1 3/2
Wp > — WWTHF . YW eRY.

i

Remark 6: Similar to (14), the requirement for &4, in
(25) can be weakened to ensure the properties of g(W') are
preserved for G(W) in some regions. For example, the local
regularity condition (26) holds when

1
54r§%

IVG(W

which is independent of X *. Note that Tu et al. [31, Section
5.4, (5.15)] provided a similar regularity condition. However,
the result there requires dg, < % and dist(W, W) <
2\1/50',«(X *) which defines a smaller region than R;. Based
on this local regularity condition, Tu et al. [31] showed
that gradient descent with a good initialization (which is
close enough to W) converges to the unknown matrix W*

(and hence X™). With the analysis of the global geometric

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 67, NO. 2, FEBRUARY 2021

structure in G(W), Theorem 1 ensures that many local search
algorithms can find the unknown matrix X* in polynomial
time.

Remark 7: A Gaussian A will have the RIP with high
probability when the number of measurements p is comparable
to the number of degrees of freedom in an n X m matrix
with rank r. By Gaussian A we mean the ¢-th element in
y = A(X), ye, is given by

(X, Ay = Z Z X1i, j)Aeli, 4],
i=1 j=1
where the entries of each n x m matrix A, are independent
and identically distributed normal random variables with zero
mean and variance +. Specifically, a Gaussian A satisfies (23)
with high probability when [5], [7], [46]

p 2 r(n+m) 512
Now utilizing the inequality | X*||r < /7| X7*| for (14),
we conclude that in the case of Gaussian measurements, the
robust strict saddle property is preserved for the matrix sensing
problem with high probability when the number of measure-
ments exceeds a constant times (n 4+ m)r?x(X*)® where
K(X™) = ZIE X*g This further implies that, when applying
the stochastic gradient descent algorithm to the matrix sensing
problem (22) with Gaussian measurements, we are guaranteed
to find the unknown matrix X in polynomial time with high
probability when

p = (n4+m)ris(X*)3. 27)

When X is an n x n PSD matrix, Li et al. [42] showed
that the corresponding matrix sensing problem with Gaussian
measurements has similar global geometry to the low-rank
PSD matrix factorization problem when the number of mea-

surements
201(X")

o2(X*)’

T

D= nr (28)

Comparing (27) with (28), we find both results for the number
of measurements needed depend similarly on the rank r, but
slightly differently on the spectrum of X *. We finally remark
that the sampling complexity in (27) is O((n+m)r?), which is
slightly larger than the information theoretically optimal bound
O((n + m)r) for matrix sensing. This is because Theorem 1
is a direct consequence of Theorem 1 in which we directly
characterize the landscapes of the objective functions in the
whole space by combining the results for matrix factorization
in Appendix A and the restricted strong convexity and smooth-
ness condition. We believe this mismatch is an artifact of our
proof strategy and could be mitigated by a different approach,
like utilizing the properties of quadratic loss functions [36].
If one desires only to characterize the geometry for critical
points, then O((n+m)r) measurements are enough to ensure
the strict saddle property and lack of spurious local minima
for matrix sensing [15], [40]. We finally note that for matrix
completion where the RIP is not satisfied, [36] proves the
robust strict saddle property for the factorization approach by
utilizing an additional regularizer which promotes incoherence
of W.
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APPENDIX A
THE OPTIMIZATION GEOMETRY OF LOW-RANK MATRIX
FACTORIZATION

In this appendix, we consider the low-rank matrix factor-
ization problem

1 2
minimize  g(W) := = HUVT — X" +p(W) (29)
UEeR?x" VeRmX" 2 F

where p(W) is the regularizer used in (9) and repeated here:

W) = lUTU - VTVH2

4 F
We provide a comprehensive geometric analysis for
the matrix factorization problem (29). In particular,
we show that the objective function in (29) obeys the
strict saddle property and has no spurious local minima

not only for exact-parameterization (r = rank(X™)),
but also for over-parameterization (r > rank(X™))
and under-parameterization (r < rank(X™*)). For the

exact-parameterization case, we further show that the
objective function satisfies the robust strict saddle property,
ensuring global convergence of many local search algorithms
in polynomial time. As we believe these results are also of
independent interest and to make it easy to follow, we only
present the main results in this appendix and defer the proofs
to other appendices.

A. Relationship to PSD Low-Rank Matrix Factorization

Similar to (8), let X* = ®X¥T = 37 5,0, be a
reduced SVD of X*, where X is a diagonal matrix with
o, > - > o0, along its diagonal, and denote U* =
$2/2R, V* = USSR for any R € O,. The following
result to some degree characterizes the relationship between
the nonsymmetric low-rank matrix factorization problem (29)
and the following PSD low-rank matrix factorization prob-
lem [42]:

minimize
UERW Xr

2
’UUT—MHF, (30)

where M € R"*"™ is a rank-r PSD matrix.
Lemma 4: Suppose g(W) is defined as in (29) with x> 0.
Then we have

1 2
g(W) > min{%, <} HWWT —wwT ’F

In particular, if we choose 1 = %, then we have

1 2 1

W)= |[wwT-ww | o]
9W)=¢ 11
The proof of Lemma 4 is given in Appendix E. Informally,
Lemma 4 indicates that mmlmlzmg g(W) also results in
minimizing HWWT w*w*t ’
as the objective function in (30)) and hence the distance
between W and W™ (though W™ is unavailable at priori).

The global geometry for the PSD low-rank matrix factorization
problem (30) is recently analyzed by Li et al. in [42].

‘UTU*_VTV* 2
F

(which is the same form
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B. Characterization of Critical Points

We first provide the gradient and Hessian expression for
g(W). The gradient of g(W) is given by

Vug(U,V)=(UV" - X"V 4+ ,UU"U - VV),
Vvg(U, V)= UV - X")TU - uV(UTU - V'V),
which can be rewritten as
[wvT-—x"Vv =T

Standard computations give the Hessian quadratic form

[VZg(W)](A, A) for any A = [23} € R(+m)xr (where
Ay € R™™" and Ay € R™*") as
[V2g(W)](A, A)
- HAUVT +UAT, H +2 <UVT X*, ApAT >
+[V2p(W)](A, A), (31)
where
[VZp(W)](A, A)
- <vaTW, ATA> y <W3T, AWT)
tu <v/I7WT, AAT> . (32)

By Lemma 2, we can simplify the equations for critical
points as follows

UU'U - X'V =
vvTtv - x*TUu =o.

VUP(Uv V) -
VVP(Uv V) =

(33)
(34)

Now suppose W is a critical point of g(W). We can
apply the Gram-Schmidt process to orthonormalize the
columns of U such that U = UR, where R € O, =
{R eR™*" R'TR = I} and U is orthogonal.* Also let V=

VR. Since UTU = VTV, we have T}Tﬁ = VTV
Thus V is also orthogonal. Noting th@tvUVT = T}f/T,
we conclude that g(W) = g(W) and W is also a critical
point of g(W) since V5g9(W) = Vyg(W)R = 0 and
Vo g(W) = Vyg(W)R = 0. Also for any A € R(m+m)x7,
we have [V2g(W)](A, A) = [V?g(W)]|(AR, AR), indicat-
ing that W and W have the same Hessian information. Thus,
without loss of generality, we assume U and V are orthogonal
(including the possibility that they have zero columns). With
this, we use u; and v; to denote the i-th columns of U and

V, respectively. It follows from Vg(W) = 0 that
Jwi|*u; = X*v;,
[vil?0; = X T,

4As defined in Section I-C, by orthogonal we mean that (U[:, 4], U[:, j]) =
0 for all ¢ # j. The columns of U are not required to be normalized, and could
even be zero. Also, another way to find R is via the SVD. Let U = LER"Y
be a reduced SVD of U, where L is an n X r orthonormal matrix, X is
an r X r diagonal matrix with non-negative diagonals, and R € O,. Then
U = UR = LX is orthogonal, with possible zero columns.
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which indicates that
(i) € {(V NP V). (VAP VAg,). (0,0) ).

Now we identify all the critical points of g(W') in the
following lemma, which is formally proved with an algebraic
approach in Appendix F.

Lemma 5: Let X* = ®X¥" = Y7 0,4, be a
reduced SVD of X* and g(W) be defined as in (29) with

w> 0. Any W =
only if W € C with

‘U/ is a critical point of g(W) if and

C = {W = [U} U =®A'’R,V =WA'?R, R O,,

\4
A is diagonal, A > 0, (X — A)X = 0}.

(35)

Intuitively, (35) means that a critical point W of g(W)
is one such that UV'" is a rank-/ approximation to X*
with £ < r and U and V are equal factors of this rank-/
approximation. Let Aj, Aa, ..., A\, denote the diagonals of A.
Unlike 32, we note that these diagonals Aq, Ag, ..., A\, are not
necessarily placed in decreasing or increasing order. Actually,
this equation (X — A)X = 0 is equivalent to

>\i € {Jiv O}

for all i € {1,2,..
optimal solutions:

.,7}. Further, we introduce the set of

X:—{W— {‘U,] U=®%'?R,V =¥S?R R c Or} .

(36)

It is clear that the set X' containing all the optimal solutions,
the set C containing all the critical points and the set &
containing all the points with balanced factors have the nesting
relationship: X C C C £. Before moving to the next section,
we provide one more result regarding W € £. The proof of
the following result is given in Appendix G.

AU]] € ROFEMIXT and W € €

\%
where £ is defined in (10), we have

IAvUT %+ |AvVTE = AV E + [AvUT|E,
(37)

Lemma 6: For any A =

and

V2p(W) = 0. (38)

C. Strict Saddle Property

Lemma 6 implies that the Hessian of p(W') evaluated at
any critical point W is PSD, i.e., V2p(W) = 0 for all W €
C. Despite this fact, the following result establishes the strict
saddle property for g(W).

Theorem 2: Let g(W') be defined as in (29) with ;o > 0 and

rank(X™) =r. Let W = {U be any critical point satisfying

v
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Vg(W)=0,ie, W eC. Any W € C\ X is a strict saddle
of g(W) satisfying

1
Ain(V29(W)) < =5 HWWT —wwT

’ < —0p (X7).
(39

Furthermore, g(W) is not strongly convex at any global
minimum point W € X.

The proof of Theorem 2 is given in Appendix H.
We note that this strict saddle property is also covered
in [40, Theorem 3], but with much looser bounds (in particu-
lar, directly applying [40, Theorem 3] gives Apin (V2g(W)) <
—0.10,,(X™) rather than Ayin(VZg(W)) < —0,.(X™) in
(39)). Theorem 2 actually implies that g(W') has no spurious
local minima (since all local minima belong to X)) and obeys
the strict saddle property. With the strict saddle property
and lack of spurious local minima for g(W), the recent
results [18], [19] ensure that gradient descent converges to
a global minimizer almost surely with random initialization.
We also note that Theorem 2 states that g(W) is not strongly
convex at any global minimum point W € X because of the
invariance property of g(W). This is the reason we introduce
the distance in (12) and also the robust strict saddle property
in Definition 9.

D. Extension to Over-Parameterized Case: rank (X*) < r

In this section, we briefly discuss the over-parameterized
scenario where the low-rank matrix X * has rank smaller than
r. Similar to Theorem 2, the following result shows that the
strict saddle property also holds in this case.

Theorem 3: Let X* = ®X®T = Y7 oi¢,9, be a
reduced SVD of X™* with v/ < r, and let g(W') be defined

as in (29) with © > 0. Any W =
g(W) if and only if W € C with

Ujl. . .
v is a critical point of

Ci— {W: ["ﬂ .U =®A/?R,V=UAY?R RR" =1,.,

A is diagonal, A > 0, (X — A)X = 0}.

Further, all the local minima (which are also global) belong
to the following set

X = {W = {‘U,] .U =®x?R,V = UX'/?R,

RR" =1, }
Finally, any W € C \ X is a strict saddle of g(W) satisfying

Amin (V2g(W)) < —% HWWT —WrwT

] < —op (X,

The proof of Theorem 3 is given in Appendix I. We note that
this strict saddle property is also covered in [40, Theorem 3],
but with much looser bounds (in particular, directly applying
[40, Theorem 3] gives Apmin(VZg(W)) < —0.10,+(X*) rather
than Apin(V2g(W)) < —0,(X™) in Theorem 3).
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E. Extension to Under-Parameterized Case: rank (X*) > r

We further discuss the under-parameterized case where
rank(X ™) > r. In this case, (3) is also known as the low-rank
approximation problem as the product UV'™ forms a rank-r
approximation to X *. Similar to Theorem 2, the following
result shows that the strict saddle property also holds for g(W')
in this scenario. ,

Theorem 4: Let X* = ®X¥" = Y7 o,¢,4, be a
reduced SVD of X* with ' > r and 0,.(X*) > 0, 11(X™).}
Also let g(W') be defined as in (29) with p > 0. Any

W =
with

v is a critical point of g(W) if and only if W € C

C :_{W — ["ﬂ .U =®[:,Q)AY?R,V = ¥, Q]AY?R,

A=3[Q,Q, RR"=1,,Qc{1,2,...,7'},|Q| = 129}

where we recall that ®[:, )] is a submatrix of ® obtained by
keeping the columns indexed by €2 and X[, Q] is an ¢ X
¢ matrix obtained by taking the elements of ¥ in rows and
columns indexed by €.

Further, all local minima belong to the following set

X:{W: [g} tA=3X[1:r1:7,R € O,,

U=®&[1:1A"?R,V =¥[,1: r]Al/QR}.

Finally, any W € C\ X is a strict saddle of g(W) satisfying
Amin(vgg(W)) < —(0n(X7) = o1 (X7)).

The proof of Theorem 4 is given in Appendix J. It follows
from Eckart-Young-Mirsky theorem [51] that for any W € X,
UVT is the best rank-r approximation to X*. Thus, this
strict saddle property ensures that the local search algorithms
applied to the factored problem (29) converge to global
optimum which corresponds to the best rank-r approximation
to X ™. Note that Theorems 2—4 require ;1 > 0. Based on these
results, it has been recently proved in [52] that the strict saddle
property also holds for g(W') even when p = 0, but without
an explicit bound on Apin(V2g(W)) as in Theorems 2-4.

FE. Robust Strict Saddle Property

We now consider the revised robust strict saddle property
defined in Definition 9 for the low-rank matrix factorization
problem (29). As guaranteed by Theorem 2, g(W) satisfies
the strict saddle property for any p > 0. However, too small
a p would make analyzing the robust strict saddle property
difficult. To see this, we denote

1 T 2
= — —_ X*
f(W) 2 HUV F

for convenience. Thus we can rewrite g(W) as the sum of

f(W) and p(W). Note that for any W = [U

V] € C where C

SIf Opy =+ = 0p = -+ = 0py With r; < 7 < 72, then the optimal
rank-r approximation to X * is not unique. For this case, the optimal solution
set X' for the factorized problem needs to be changed correspondingly, but
the main arguments still hold.
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UM | .
vMm "B
a critical point of f(W) for any invertible M € R"*". This
further implies that the gradient at W reduces to

is the set of critical points defined in (35), W =

Vg(W) = Vp(W),

which could be very small if x is very small since p(W) =

2 __
% ‘ U - VTVH . On the other hand, W could be far

away from any poilf;t in X for some M that is not well-
conditioned. Therefore, we choose a proper v controlling the
importance of the regularization term such that for any W that
is not close to the critical points X, g(W') has large gradient.
Motivated by Lemma 4, we choose p = %

The following result establishes the robust strict saddle
property for g(W).

Theorem 5: Let Ry, Ro, R5,RY, RY' be the regions as
defined in Theorem 1. Let g(W') be defined as in (29) with
i = 1. Then g(W) has the following robust strict saddle
property:

1) For any W € Ry, g(W) satisfies local regularity
condition:

(Vg(W),W — W*R) Zg%or(X*) dist> (W, W*)
1 2

+ e IVIW) e
(40)

where dist(W, W) and R are defined in (12) and (13),
respectively.
2) For any W € Rg, g(W) has a directional negative
curvature:
1 N
)\min (VQQ(W)) S _ZUT(X ) (4’1)

3) For any W € Ry = Ry URY URY, g(W) has large

gradient:
IVo(W)lr > So¥2(X7), YW Ry @2)
IVgW)lr > SlWIP, YW Ry @)
(Vg(W), W) > % ’WWTH; VW e RY.
(44)

The proof is given in Appendix K.

Remark 8: Recall that all the strict saddles of g(W') are
actually rank deficient (see Theorem 2). Thus the region
Ro attempts to characterize all the neighbors of the sad-
dle saddles by including all rank deficient points. Actually,
(41) holds not only for W € Ry, but for all W such

that o, (W) < \/goi/ *(X™*). The reason we add another

constraint controlling the term ||[W*W™*" || is to ensure this
negative curvature property in the region R2 also holds for the
matrix sensing problem discussed in next section. This is the
same reason we add two more constraints [|W || < 22 |W*| ¢
and |[WWT|r < %HW*W*THF for the region Rj.
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APPENDIX B
PROOF OF LEMMA 1

Denote ap o+ = arg min, g ||z — o’(x*)|. Utilizing the
definition of distance in (4), the regularity condition (5) and
the assumption that p < 23, we have
diSt2 ($t+1; a:*)
2

= Hthrl — Az y g, (w*)H
< ||@ = vVh(@t) = agy o0 ()]

*\ (12 2

™+ 22 [ Vh(z)||

—2U (X — Ag, o (), Vh(x))

< (1 —2va) dist?(zy, 2*) — v(28 — v) | Vh(z,)|?

< (1 - 2va) dist?(z, x*)

= ||zt — ag, 2+ (T

where the fourth line uses the regularity condition (5) and the
last line holds because v < 283. Thus we conclude x; € B(J)
for all t € N if &y € B(d) by noting that 0 <1 —2va < 1
since aff < % and v < 20.

APPENDIX C
PROOF OF PROPOSITION 1

First note that if X is a critical point of f, then
Vi(X™)=0.

Now for any X € R™*™ with rank(X
Taylor expansion gives

FOX) =F(X7) +
+5VENX - X7 X - X

) < r, the second order

(VA(XT), X - X7)

= FX) + IVAFRIX ~ XX - X)

where X = tX* + (1—1t)X for some t € [0, 1]. This Taylor
expansion together with (6) (both X and X' — X* have rank
at most 2r) gives

FX) = (X7) 2 511X - X7

APPENDIX D
PROOF OF LEMMA 2

Any critical point (see Definition 1) W = [g} satisfies

VG(W)=0,ie.,
VAUV + U (UTU - VTV) —o, 45)
(VAUV™)TU — uv (UTU - VTV) —0. (46

By (46), we obtain
(VAUV)TU = 1 (UTU - VTV) VT,

Multiplying (45) by U" and plugging it in the expression for
UTVf(UVT) from the above equation gives

(UTU _ VTV) Vv L UTU (UTU - VTV) -0,
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which further implies
vtvutu =vTvvly.

In order to show (11), note that UTU and VTV are the
principal square roots (i.e., PSD square roots) of UTUU U
and VTV VTV, respectively. Utilizing the result that a PSD
matrix A has a unique PSD matrix B such that B¥ = A for
any k > 1 [51, Theorem 7.2.6], we obtain

v'u=v'v

for any critical point W.

APPENDIX E
PROOF OF LEMMA 4

We first rewrite the objective function g(W):

g(W) = HUVT Uv+T

" “WﬂU v,

>m1n{u, <HUVT urvt

iyl

= mm{u, < HWWT —-wwt

).

where the second line attains the equality when p = %, and
¢ (W) in the last line is defined as

g (W) ;:% |lovT vV c i

’ HUUT _ U*U*T 2
F

’

1 > ] 2
_ = HVVT—V*V*T ‘ 4= HUTU—VTVH
4 F 4 F

We further show ¢'(W) is always nonnegative:

1 2 1 2
J(W) == HUVT _UurvT ‘ 1 HUUT _UrUT ’
2 F 4 F
2
vl v,
2
v v e
1 2
_  trace (UTUVTV) - HU*U*T ’ - HV*V*T ‘
2 F 4 F
2
_ HUTU* VTV* HU*V*T ’F
2
= U* *T ’ = Hv*v*T ‘
4 H u F 4 F
1 2
— - HUTU* vy >0,
2 F
where the last line follows because U*TU* = V*TV*, Thus,

we have

1 2
g(W) = min{4, =} HWWT —wrwT

’

Y

and

(W) = & HWWT wrw*T ]2 41 HUTU* vy
g 8 F 4 F
if p=3.

Authorized licensed use limited to: COLORADO SCHOOL OF MINES. Downloaded on June 28,2021 at 19:24:04 UTC from IEEE Xplore. Restrictions apply.



ZHU et al.: GLOBAL OPTIMIZATION GEOMETRY OF LOW-RANK MATRIX OPTIMIZATION

APPENDIX F
PROOF OF LEMMA 5

We first repeat that X* = ®X¥T = is a reduced SVD
of X™*. We separate U into two parts—the projections onto
the column space of ® and its orthogonal complement—by
denoting U = ®A}/*Ry + E; with R, € O,, E{® = 0 and
A being a r x r diagonal matrix with non-negative elements
along its diagonal. Similarly, denote V' = \I’Aé/ ’Ry + Es,
where R, € O, Eglll =0, Ay is a r X r diagonal matrix
with non-negative elements along its diagonal. Recall that any

critical point W = ‘Ii satisfies
Vup(U,V)=UU"U - X*V =0,
Vvp(U,V)=VVTVv - X*TU = 0.
Plugging U = ®AY?R, + E; and V = WAY’R, + E,
into the above equations gives

®AY’R, + ®A*R\ETE, + E\RTA\R,

+ E\ETE, - ®XAY’R, =0, (47)
WAY?R, + WAY?*RyETE, + E-RY AR,
+ E2ETE, - USAY?R, = 0. (48)
Since F; is orthogonal to ®, (47) further implies that
®AY’R, + ®A’RETE, — ®ZA)Y°R, =0, (49)
E\R{A\R, + E\ETE, =0. (50)

From (50), we have
<E1R1TA1R1 + E1E1FE17E1>
= (R ARy, ETE ) + B} =0,

which further implies [E;[|% = 0 by noting that

R{AR,,ETE,) > 0since it is the inner product between
two PSD matrices. Thus E; = 0. With a similar argument we
also have FE> = 0.

With E; = E5 = 0, (49) reduces to
®AY°R, — ®SAYPR, = 0.
Since @ is orthonormal and R; € O,, the above equation
implies that [
AY? = $AY’RyRT.
Let 2 denote the set of locations of the non-zero diagonals in
Ay, ie., Agli,i] > Oforalli € Q. Then [R]]q = [R; ]q since

otherwise ZAé/ 2RgerF is not a diagonal matrix anymore.

Then we have
A3? = mA)? (51)

implying that the set of the locations of non-zero diagonals in

A1 is identical to €. A similar argument applied to (48) gives
AY? = mA72 (52)

Noting that (51) implies A¥/?[i,i] = %[, {]AY/?[i, 1] and (52)
implies Ag/Q[i,i] = Z[z’,z’]Ai/Q[i,i], for all ¢ € Q2 we have
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Aqfiyi] = Agliyi] = X[i,i]. For i ¢ Q, we have A4[i,i] =
Asli,i] = 0. Thus Ay = As. For convenience, denote A =
A1 = Ay with A[Z,Z] =\

Finally, we note that U = ®A'/?R; = Y ico Mg Rali, ]
and V = WAY’R, = > ico Nt Rali,:] implying that
only [R]]q and [R]]q play a role in U and V, respec-
tively. Thus one can set R; = Ry since we already proved
[Ri]o = [Ry]o.

APPENDIX G
PROOF OF LEMMA 6

Utilizing the result that any point W € & satisfies
T
W WwW=U"U-Vv'Vv = 0, we directly obtain

lAuU 5 + [AvVHE = [AvVTIE + |AvU |7
since  |AgU' |2 =

trace AUVTVAU) =
for the other two terms).
We then rewrite the last two terms in (32) as

trace (AUUTUAU) =
|AuVT|%2 (and similarly

<VAVAT, AWT> + <VT/VT/T, AAT>
= (W A, A"W) +(W AW A)
W AW A+ ATW)

Il
N | =

—~T TS —~T TS
<W A+A"W. W A+A W>
1 /=T —~ —~T —~
5 (W A-ATW. W A+ATW)
1|—=T — |12
:—HW A+ATWH :
2 F
where the last line holds because (A — AT A + AT> =0.

Plugging these with the factor W W = 0 into the Hessian
quadratic form [VZp(W)](A, A) defined in (32) gives

T —~ |2
V2p(W))(A,A) = & HW A+ ATWHF > 0.

This implies that the Hessian of p evaluated at any W € & is
PSD, ie., VZp(W) = 0.5

APPENDIX H
PROOF OF THEOREM 2 (STRICT SADDLE
PROPERTY FOR (29))

We begin the proof of Theorem 2 by characterizing any
W € C\ X. For this purpose, let W = v

U=®AY?R,V = WAY?R, R € O,, A is diagonal, A >
0,(¥ — A)X = 0, and rank(A) < 7. Denote the cor-

responding optimal solution W* = {g*}, where U* =
®>/2R, V* = UX'/?R. Let

where

k = arg maxo; — \;
i

SThis can also be observed since any critical point W is a global minimum
of p(W), which directly indicates that VZp(W) > 0.
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denote the location of the first zero diagonal element in A.
Noting that \; € {0;,0}, we conclude that
M =0, ¢pU=0, ¥,V =0. (53)

In words, ¢,, and 1, are orthogonal to U and V/, respectively.
Let a € R” be the eigenvector associated with the smallest
eigenvalue of W' W . Such e simultaneously lives in the null
spaces of U and V since W is rank deficient indicating

0=a"W'Wa =a"U"Ua+a"V'Va,

which further implies

T77T
aUUa=0
’ 54
{aTVTVa =0. (>4
With this property, we construct A by setting Ay = ¢l

and Ay = 1,.a’. Now we show that W is a strict saddle by
arguing that g(W) has a strictly negative curvature along the
constructed direction A, i.e., [VZg(W)](A, A) < 0. To that
end, we compute the five terms in (31) as follows

HAUVT—f—UA H (since (54)),
<UVT X AUAV> Mo — 0p = —0y, (since (53)),
<W W,ATA) =0 (since W'Ww=o0),
<WA AWT> trace (A WATW) -0,

<ﬁ\/ﬁ\/ ,AAT> = trace (WTAAT‘//‘\/) =

where ﬁ\/TW = since U'U — V'V =
t/v\vg lines utilize W = 0 (or WTA
AW =aplU—ap,V =0 (see (53)).
terms into (31) gives

0, the last

0
~T
A = 0) because

Plugging these

[Vig(W
—HAUVT+UA H +2<UVT X+ AUAT>

(A, A)

+u<ﬁ7 W, A A>+u<WA ,AWT>
+u<ﬁ\/ﬁ7T,AAT>
= —20%.

The proof of the strict saddle property is completed by noting
that

2 2

A7 = [Aulz+ Av] = [[éra” |7 + [’ ||m =2,
which further implies

(V2g(W)I(A.A) _ 20,

2 i
1Ay 2
1
= —||lA-3) = -3 HWWT—W*W*T

>\min (V2Q(W)) S

where the first equality holds because

IA — 2| = maxo; — \; = oy,
1
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and the second equality follows since

WWT o W* W*T

_[®/v2 T —
Q- [\P/ﬁ] Q"Q -1
We finish the proof of (39) by noting that
o = O'k(X*) > UT(X*).

Now suppose W* € X. Applying (38), which states that
the Hessian of p evaluated at any critical point W is PSD,
we have

[V2g(W)]A, A

- HAUV*T n U*A"{,Hi 42 <U*V*T - X" AUA$,>
+[V2p(WH)[A, A

> AV T+ UAY H +2(U'VT - X", AuAy)

>0

since U*V*T — X* = 0. We show g¢ is not strongly convex at
W™ by arguing that A\, (V2g(W™)) = 0. For this purpose,
we first recall that U* = ®XY2 V* = Y2 where we
assume R = I without loss of generality. Let {e1, ez, ..., e}
be the standard orthobasis for R", i.e., e, is the /-th column of

(i,9)
the r x r identity matrix. Construct A, ;) = AU -~ |, where
(4.5) A(m)
\%
A(m) U*e] —Ue; ejT, A(”) V*e] —Ue; e

for any 1 <i<j<r. That is, the ¢-th columns of the
matrices Ag’j ) and Aiﬁ’] ) are respectively given by

J;/Q(pjv e = Z'a
Agd)[:ve] = _0—1'1/2¢ia ez]v 9
0, otherwise,
2
. 0']1-/ Y, =1,
i, 1/2 .
AV] [:76] = _Ji/ ¢i7 f:],
0, otherwise,

for any 1 <7 < j < r. We then compute the five terms in (31)
as follows

. . 2
“Agvj)v*T + U*(A(‘ij))THF
2
o)
F
=0 (as U*V*' - X*=0),

020} (o8] — ] + ]
U V*T X* A(i,j)( J)) >

<W T A(”)A(” V=0 (as W W*=0),
(W

(

—~*T ™~
) = trace(W A(i,j)W*TA(’iJ)) =0,

(
—~xT T et 1

W W A(z J)A(Z ])> = trace(W A(i’j)A(i’j)W ) = 0,

where the last two lines hold because

—*T
W Auy= UTU*(ejef zeJT) ~V*Tv*(e;el —eiejT)
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Thus, we obtain the Hessian evaluated at the optimal
solution point W* along the direction A*7):

[V2g(WH)] (A(i,j), A(m‘)) -0

for all 1 < ¢ < j <. This proves that g(W) is not strongly
convex at a global minimum point W* € X,

APPENDIX |
PROOF OF THEOREM 3 (STRICT SADDLE PROPERTY OF
g(W') WHEN OVER-PARAMETERIZED)
Let X* = #X0T = Z:;l oi,b; be a reduced SVD
of X™* with 7/ < r. Using an approach similar to that in
Appendix F for proving Lemma 5, we can show that any W =

is a critical point of g(W) if and only if W € C with

C—{W— Fﬂ . U=®A/?R, V= WAY’R,RR" = 1,.,

A is diagonal, A > 0, (X — A)X = O}.

Recall that

X = {W = {g] .U =®2'?R,V = UX'/?R,

RR" = 1}

It is clear that X is the set of optimal solutions since for any
W e X, g(W) achieves its global minimum, i.e., (W) = 0.

Using an approach similar to that in Appendix H for proving
Theorem 2, we can show that any W € C\ X’ is a strict saddle
satisfying

Amin (V2g(W)) < =0 (X7).

APPENDIX J
PROOF OF THEOREM 4 (STRICT SADDLE PROPERTY OF
g(W') WHEN UNDER-PARAMETERIZED)
Let X* = X" = E:,:l oipb; be a reduced SVD of
X* with 7’ > rand o,.(X™) > 0,41(X™). Using an approach
similar to that in Appendix F for proving Lemma 5, we can
show that any W =

only if W € C with

v is a critical point of g(W) if and

c —{W = {g] (U =&, QAY?’R,V = ¥[;,Q]AY?R,

A=3[Q,Q,RR" =1,,Qc {1,...,7},|9Q| —€§r}.

Intuitively, a critical point is one such that UV'T is a rank-/
approximation to X* with ¢ < r and U and V are equal
factors of their product UV'".

It follows from the Eckart-Young-Mirsky theorem [51] that
the set of optimal solutions is given by

X = {W = [‘U/] U = ®[;,1:7]AY?R,

V=0[1:7AY?RA=X%[1:r,1:7],Re€ (’)r}.
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Now we characterize any W € C \ X by letting W = [‘U/] ,

where
U=%a[,QA?R V = ¥[;,Q]A'?R,
A=3[Q,0,RcR>*" RR" =1,,
Qc{L,2,....7"L1Q|=0<rQ#{1,2,...,r}.

Let o € R" be the eigenvector associated with the smallest
eigenvalue of U U (or V'V). By the typical structures in
U and V (see the above equation), we have

IValf = lUalf = 07 (U)

_ {aj(X*), || = r and j = max Q)

0, 0] <, (55)

where j > r because  # {1,2,..
exists an index

., 7}. Note that there always

ie{l,2,....r},i#Q

since Q # {1,2,...,r} and || < r. We construct A by
setting
Ay = (biaTa Ay = ’/’iaT~
Since i ¢ ), we have
UTAy =U"¢,a™ =0,
VIAy =VvTy.a™ =0. (56)

We compute the five terms in (31) as follows
2
HAUVT + UA‘T,HF
T2 T ||? T T
- HAUV HF + HUAVHF + 2trace (U AyV AV)
=207(U),
<UVT ~ X AUA?,> - <UVT — X ¢i¢3>
=~ (X" 09T ) = —au(X"),
—~T ~T ~T
<W w,A A> =0 (sice W W =0),
o~ o~ —~T ~
<WAT7 AWT> = trace (W AWTA) =0,
T —~T —~
<WW ,AAT> = trace (W AATW) =0,
where the last equality in the first 12ine holds becQause
UTAy = 0 (see (56)) and HAUVTHF - HUAEHF —

~T
o2(U) (see (55)), W W = 0 in the third line holds since

T
U'U - V'V =0, and W A = 0 in the fourth and last
lines holds because

—~T
W A=U"Ay-V"TAy =0.

Now plugging these terms into (31) yields
[VZg(W))(A, A)
=|[Av VT +UAy (% +2UV" - X*, AuAy)

—~T ~T —~ T T emesT T
+ (W W, A A (WA AW H-(WW | AAT))
= —2(03(X") = o7 (U)).
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The proof of the strict saddle property is completed by noting (R3) = trace ( ( ET E) 2 L AETEE"B + 2 ( ET B)2
that

|AlE = lAulE + lAv]E =2, +2ETEBTB>7
which further implies
T T T T
(X*) —o2(U where E-B=A"B - B B =B E. Now we have
i (V2g(W) < —27E ool | :
Al () = 25 (0%) = (%)
<~ (@(X") = o (X)), . . . 2
T T T T
where the last inequality holds because of (55) and = trace (1_6 (E E ) + IE EE' B + 3 (E B)
because 7 < r. 13
+ 1—6ETEBTB)
APPENDIX K )
PROOF OF THEOREM 5 (ROBUST STRICT - 121 T T
SADDLE FOR g(W)) - H \ EE E+ \/;E B
We first establish the following useful results. 13 1157
Lemma 7: For any two PSD matrices A, B € R"*", + trace (EETEBTB - mETEETE>
we have 13 137
T 2 T 2
on(A)trace(B) < trace (AB) < || Al trace(B). = trace (1_6E Eo,(B) - mE E|E| )
. _ T — 1 1371
Procg‘ofLemm'a 7: Let A = P A P; and B = > trace ((_3 — ﬁ_> Uf(B)ETE)
Py AP, be the eigendecompositions of A and B, respec- 16 1122
tively. Here A (A2) is a diagonal matrix with the eigenvalues >0,

of A (B) along its diagonal. We first rewrite trace (AB) as where the third line follows from Lemma 7 and the fourth line

trace (AB) = trace (A1<I>1T<I>2A2¢f2f<1>1) i holds because by assumption || E| < QUT(B). O
Now we turn to prove the main results. Recall that = %
Noting that A is a diagonal matrix, we have throughout the proof.

trace (A1<I>F1F<I>2A2‘I>r2r<1’1) . . .
A. Regularity Condition for the Region R;

2 miin Aq[i, 1] - trace (¢1T¢’2A2‘I>;F‘I>l) It follows from Lemma 3 that W W*R = R"W*Tw
= o0 (A) trace(B). is PSD, where R = arg mipR,e@T W - W*R||%. We. first
perform the change of variable W*R — W™ to avoid R
The other direction follows similarly. L in the following equations. With this change of variable we
Corollary 2: For any two matrices A € R™"*" and B € have instead WW* = W*TW is PSD. We now rewrite the
R™", we have gradient Vg(W) as follows:
or(B)|[Allr < [|AB||p < || BI|[| Al - B 0 vv' —uvTt
We provide one more result before proceeding to prove the
main theorem. + Mﬁ\/(ﬁ\/Tw)
Lemma 8: Suppose A,B € R"*" such that A"B = 1 T o 1 % ~T
BTA = 0is PSD. If |A — B|| < ¥20,(B), we have =3 (WW -W'w* ) W+ww w
1~ —~T
<(AAT—BBT) A,A—B> =) WW W
1 1 —~x —~*T
(1) s (Ww-ww ) w oW w
1
> 1—6(trace((A—B)T(A—B)BTB) +|AAT-BBY|%). (58)
(R2) (R3) &7 Plugging this into the left hand side of (40) gives

Vg(W), W —W*
Proof: Denote E = A — B. We first rewrite the terms (Vo(W) )

(R1). (Rz) and () as follows = {((wwT—wrw ww W)
() = trace < (ETE)2 +3E"EE"B + (ETB)2 + % (Ww ww-w)
+ETEBTB>’ :%<<WWT—W*W*T) W,W—W*>
(%) = trace (ETEB"B), + % (Ww" wwr) (59)
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where the last line follows from the fact that W*TW = 0.
We first show the first term in the right hand side of the above
equation is sufficiently large

<(WWT _ W*W*T) W, W — W*>
> 1—16 trace ((W ~WHT(W — W*)W*TW*)

i ’WWT _ W*W*T ‘2
6 F

]‘ * * * 2
> 1_60T(W W |w - w I

2
- ’WWT _ W*W*T ‘
6 F

)

1 2 1 T T|?
= o (X*) W - W* —HWW —WW* ’
Lo (X I3+ 5 )

(60)

where the first inequality follows from Lemma 8 since
wiw* W*TW is PSD and |[W —W*| <
o/ X™) = @O’T(W*), the second inequality follows from
o~ kT~

Lemma 7, and the last line holds because o, (W W*) =

~*T ~* ~*T ~ %

U0 +vV ) = 20, (%) = 20, (X*). We then
show the second term in the right hand side of (59) is lower
bounded by

<W*VT/*T wwT)

HA*T ¢ (W*TWWT‘//‘\/*)
= race
2||X |
~*% —~*T
> trace (W wWw WWTW)
2||X |
/\*/\*T 2
- WH 61
2||X I H F 61)
/\*TA*
where the ﬁrst line holds because H =

UU o vV H — 2| = 2| X, and the inequality
ollows from Lemma 7.

On the other hand, we attempt to control the gradient of
g(W). To that end, it follows from (58) that

2
IVg(W)ll
=Wt —ww ) W W

*A*TW ‘
i |

12 T * *T 2 2
—H(WW _WrW )WH +12HWW WH
7 F F

12 2 T N T 2
2w HWW —WW ’ +12HW w WH
47 F F

(62)

1+e 2+

where the first inequality holds since (a + b)? <
(14 €)b? for any € > 0.

Combining (59)-(62), we can conclude the proof of (40) as
long as we can show the following inequality:

l waT _ W*W*T 2
8

’
1w
— AT X

2
’WWT o W*W*T ‘F
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To that end, we upper bound ||[W || as follows:
W] < W7 + [[W — W7
<V201H(X) + [W - W
< (V24 1)0A(X7)

since ||W*| V2ol'P(X*) and dist(W, W) <
ol 2)(X *). This completes the proof of (40).

B. Negative Curvature for the Region R;

To show (41), we utilize a strategy similar to that used in
Appendix H for proving the strict saddle property of g(W')
by constructing a direction A such that the Hessian evaluated
at W along this direction is negative. For this purpose, denote

_[®/v2
2= [a/va]
where we recall that & and W consist of the left and right
singular vectors of X, respectively. The optimal solution W*
has a compact SVD W* = Q(\/§El/ 2)R. For notational
convenience, we denote X = 2X, where X is a diagonal
matrix whose diagonal entries in the upper left corner are
Ti1,..., 00
For any W, we can always divide it into two parts, the
projections onto the column spaces of @ and its orthogonal
complement, respectively. Equivalently, we can write

W =QA"’R+E,

(63)

(64)

where Qxl/ 2R is a compact SVD form representing the
projection of W onto the column space of Q, and ETQ =0
(i.e., E is orthogonal to Q). Here R € O, and A is a
diagonal matrix whose diagonal entries in the upper left corner
are \p,...,\,, but the diagonal entries are not necessarily
placed either in decreasing or increasing order. In order to

characterize the neighborhood near all strict saddles C \ X,
we consider W such that o,.(W) < \/gai/Q(X*). Let
k := arg min; \; denote the location of the smallest diagonal

entry in A. It is clear that

A < o2(W) < gar(X*). (65)

Let a € R" be the eigenvector associated with the smallest
eigenvalue of WTW.

Recall that ;o = £. We show that the function g(W) at W
has directional negative curvature along the direction

A =q,a’. (66)
We repeat the Hessian evaluated at W for A as follows
[V2g(W)(A, A)
- HAUVT L UAT H 42 <UVT X AUAT>

I, II2
% <AW AWT> +% <ﬁ73T,AWT>
Il 114
% <WW AAT>
—

The remaining part is to bound the five terms.
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Bounding terms 11, II5 and II,: We first rewrite these three

terms:
I = | AV} + [UAY[E +2 (UAY, AuVT),
= (AW, AWT) = |AgUT |3 + |Av VT
~lAuVT|E - |AvUTE,
I, = <UA5, AUUT> ¥ <VA$,, AVVT>
- 2<UA€,,AUVT>
< |AvUT 5+ [avVTE -2 (UAY. AgVT).
which implies
11 + 1H + 1H
1 2 3 2 4
<180Vl + UATIE + 0T+ AV VT

1AV~ LIAVUT I + (DAY, AuVT)

1 2
— IWAT|} - 5 |aoVT -UAY|
< |waATE. (67)
Noting that ATA = aq;quaT = aa’
IWAT|F as

, W€ now compute

[WAT|% = trace (WTWATA) = trace (WTWaaT)
= o3(W).
Plugging this into (67) gives
1 1
T+ 5T + ST < o2 (W). (68)

Bounding terms II> and II5: To obtain an upper bound for
the term Ils, we first rewrite it as follows

- <UVT X AUA?,>

1 0 vvt —urv*Tt T
2 <[VUT —-vuT 0 ] AA >

i <WWT —WrwT AAT> . i <VT/VT/TAAT>

—~x —~*T T
+ <W W, AA >
We then have
1 1
210, + 5115 = 3 <WWT —wwT, AAT>
1 /—~%—~xT T
+§<WW JAA > (69)

To bound these two terms in the above equation, we note that

r T
aa =3 ot~ =3[0 S0
Then we have
<W*VT/*T AAT>
_1<[<I’2<I>T —<I>2\I'T] [cﬁmk meD_Q
2\ [-Uxe" wRU" ||y )
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and
<WWT —wwT, AAT>
_ —1/2 —
= (QRQ" - 2QA'"RE" + EE" - Q5Q",q,q} )
= Xk — Ok

where the last utilizes the fact that E'q, = 0 since E is
orthogonal to Q.
Plugging these into (69) gives

1 1 —
211, + §H5 = §(>\k — Ek). (70)
Merging together: Putting (68) and (70) together yields
1 1 1
1 —
<ol (W) + §(>\k —Ok)
< 20, (X*) + 2(50,(X7) — 20,(X"))
27" 249" ar
1
< _ZO—T’(X*)a

where the third line follows because by assumption o, (W) <

Lo}/?(X™), by construction X < Lo,(X*) (see (65)), and

Ok > 0 = 20,(X ™). This completes the proof of (41).

C. Large Gradient for the Region R U RY URY

In order to show that (W) has a large gradient in the three
regions R5 U RY U RY', we first provide a lower bound for
the gradient. By (58), we have

IVg(W)|%
- ‘(WWT W*W*T)W+WW W‘

i
i
(

~% ~xT

2
L Jwwwewryw )

41 <(WWT — W*W*T) 1% va*va*TW>

2
*A*T 2
H( o)
F
—~* —~xT

<WWTWWT ww >

wwT _ W*W*T) W‘

1
4

2 7 |(wwr-wrwT)w b
where the third equality follows because wTw =
U*'U* — V*'V* = 0 and the last line utilizes the fact that
the inner product between two PSD matrices is nonnegative.

1) Large Gradient for the Region R’: To show ||Vg(W)||%
is large for any W € R}, again, for any W € R(»+m)xr
we utilize (64) to write W = QKUQR + E, where Q is
defined in (63), QKUQR is a compact SVD form representing
the projection of W onto the column space of Q, and ETQ =
0 (i.e., F is orthogonal to Q). Plugging this form of W into
the last term of (71) gives

[(wwr—wwT)wl, -

o . o o 2
HQAI/Q(A—E)R+QAI/QREET+ERTAR+EETEHF
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o _ _ o 2
- ||@A"*(A = S)R + QA'*REET
F

_ 2
n HERTAR n EETEHF (72)

since @ is orthogonal to E. The remaining part is to show
at least one of the two terms is large for any W € Rj by
considering the followmg two cases.

Case I: ||E||F > 25UT(X*). As FE is large, we bound the
second term in (72):

_ 2 _
HERTAR+ EETEHF > o2 (RTAR+ ETE) 1E|

= ot (W) |E|%
1,4 1
> 2 3 * I — 3 *
(5)° 500 (X7) = 5ol (X7),
(73)

where the first inequality follows from Corollary 2, the first
equality follows from the fact W W = RTAR+ETE, and
the last inequality holds because by assumption that o2 (W) >
bo(X°) and Bl > 07 (X°)

Case II: ||EHF < #0.(X™). In this case, we start by
bounding the diagonal entries in A. First, utilizing Weyl’s
inequality for perturbation of singular values [51, Theorem

3.3.16] gives
. ~1/2
or(W) —minX,*| < | Bz,
which implies
— 1 2
minX;”* > 0, (W) ~ [ E|l2 > J;o—i/%xw - sol2(X%),
(74)

where we utilize ||E||; < ||E||r < %ai/Q(X*). On the other
hand,
dist(W, W*) < HQ(K”2 SR+ EHF
—1/2 1/2
< e® )R| +El;,

which together with the assumption that dist(W,W™) >
1/2) ey
o' 7(X7™) gives

H—1/2 1/2HF > o1/2(X*) - : i/Q(X ) = ggi/Q(X*)
We now bound the first term in (72):

HQKI/Q(X TR+ QK”QREETHF

> miinxj/g H(X )R+ REETHF

> m_inxz/z (H(K - E)RHF B HREETHF)

1 2 1 2)\3 4 3/9 <%
Z(V;‘S)((ﬂ*@‘g)g‘%)”/ ()

(75)
where the third line holds because |[EE"||r < ||E|% <
%UT(X*), min; Xz/Q > (\/g— 5) U%/Q( X™) by (74), and

HX - EHF =

1327

1/2 XI/Q)Q (01/2+X1/2)

> (E 24 miinxzm) ; (53/2 B X;/Q)Q
(

- ) [R5,

Combining (71) with (72), (73) and (75) gives

V(

This completes the proof of (42).
2) Large Gradient for the Region RY: By (71), we have

1
Wlle > 1o/ 2(X7)

IV g(W)||r > = H (WWT B W*W*T) WHQ

Now (43) follows directly from the fact ||[W| > %5
the following result.

Lemma 9: For any A, B € R™*" with ||A| > «||B]| and
« > 1, we have

||W*H and

H (AAT BBT) AH (1- —)||A||3

Proof: Let A = ‘I’lAlRl and B = <I>2A2R2 be the
SVDs of A and B, respectively. Then

H (AAT _ BBT) AHF - H@lAi _ <I>2A§q>;fq>1A1HF
> |l - eT@a30 @A |
> [|AY = AJAL][,

1 3
> (1- Al

]
3) Large Gradient for the Region RY': By (58), we have

(Vg(W), W)

Q

(WWT _ W*W*T) W+ %W*W*TW, W>

)
=]

where the last line holds because [[W*W*'|r <
ol WW? e

o~ N =

Y

(WWT _ W*W*T) w, W>

Y

I
—_ N =N

(Iww ], = [ww] fw-w=

V

ww[;

APPENDIX L
PROOF OF THEOREM 1 (ROBUST STRICT SADDLE FOR
G(W))

Throughout the proofs, we always utilize X = UV'" unless
stated otherwise. To give a sense that the geometric result in
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Theorem 5 for g(W) is also possibly preserved for G(W),
we first compute the derivative of G(W) as

- viUvhHv T
V(W) = [(Vf(UVT))TU LUWW WL, (77)
For any A = [ﬁU € R+ X7 algebraic calculation gives
v

the Hessian quadratic form [V2G(W)](A, A) as
[V2ZG(W)](A, A)
= [V2FUVH)(Ap VT +UAT, Ay VT + UAY)
+2AVIUVT), AvAy) + [Vp(W)I(A,A) - (78)

where [VZp(W)](A,A) is defined in (32). Thus, it is
expected that G(W), VG(W), and V2G(W) are close
to their counterparts (i.e., g(W), Vg(W) and VZg(W))
for the matrix factorization problem when f(X) satis-
fies the (2r,4r)-restricted strong convexity and smoothness
condition (6).

Before moving to the main proofs, we provide several useful
results regarding the deviations of the gradient and Hessian.
We start with a useful characterization of the restricted strong
convexity and smoothness condition.

Lemma 10: Suppose f satisfies the (2r, 4r)-restricted strong
convexity and smoothness condition (6) with positive constants
a=1—cand b=1+¢,c€[0,1). Then any n X m matrices
C,D, H with rank(C),rank(D) < r and rank(H) < 2r,
we have

(VF(C)=Vf(D)-(C-D),H)| <c||C—-Dlg|Hl-

Proof of Lemma 10: We first invoke [40, Proposition 2]
which states that under Assumption 2 for any n X m matrices

Z.,D, H of rank at most 27, we have
V?f(Z2)|(D,H) — (D, H)| <c|D| |H|p. (79

Now using integral form of the mean value theorem for V f,
we have

(Vf(C)-Vf(D)-(C-D),H)

/1 [V2f(tC+(1-t)D)] (C—D,H)—(C—D,H>dt‘
0

< /1 |[V?f(tC+(1-t)D)] (C—D, H)—(C—D, H)| dt
0

1
< / ¢||C = Dy ||H| pdt = ¢|C - D, | HI|-.

where the second inequality follows from (79) since
tC+ (1 —-t)D, C — D, and H all are rank at most 2r. [J

The following result controls the deviation of the gradient
between the general low-rank optimization (9) and the matrix
factorization problem by utilizing the (21, 4r)-restricted strong
convexity and smoothness condition (6).

Lemma 11: Suppose f(X) has a critical point X * € R™*™
of rank r and satisfies the (2r, 4r)-restricted strong convexity
and smoothness condition (6) with positive constants a = 1—c¢
and b=1+c¢,c € [0,1). Then, we have

IVG(W) — Vg(W)||p < waT —wrwT

| Iw]l.
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Proof of Lemma 11: We bound the deviation directly:

IVGW) = Vg(W)lp = A (VG(W) — Vg(W

<Vf(X)7AuVT> — <X - X*, AUVT>

): A)

= max
=
+(VH(X),UAY) - (X - X", UAT)

= max
JAlret

+(VI(X) - VA(X") = (X - X*),UAT)

(VHX) - V(XY — (X = X). ApVT)

< max c¢|X - X% (HAUVTH —l—HUA‘T,H )
lAallF=1 F P

<Vt - X*r(IVII+UI)
< WWE - WWH W

where the last equality follows from Assumption 1 that
Vf(X*) = 0 and and the first inequality utilizes
Lemma 10. OJ

Similarly, the next result controls the deviation of the
Hessian between the matrix sensing problem and the matrix
factorization problem.

Lemma 12: Suppose f(X) has a critical point X * € R™*™
of rank r and satisfies the (2r, 4r)-restricted strong convexity
and smoothness condition (6) with positive constants a = 1 —c¢

and b = 1+ ¢,c¢ € [0,1). Then, for any A = [iu] €
\%

R(*+m)X7 the following holds:

[V2G(W)[A, A] - V2g(W)[A, A]|

2
§2cHUVT—X* FHAUA?,HFHHAUVTJrUA?,HF.

Proof of Lemma 12: First note that
—2 <Vf(X), AUA€> —2 <X e AUA$>

2
+ VXN AUVT +UAY) - AV +UAY|
Now utilizing Lemma 10 and (6), we have

‘VQG(W)[Aa A] - VQQ(W)[Av AH
< 2[(VI(X)-VI(X") AuAY )~ (X X", ApAY)

i ‘sz(XH(AUVT +UAY) - ||auVT + UA@H?‘

<2 HUVT 'S

A ATH
L Javab],

2
te HAUVT n UA‘T,HF.

O
We provide one more result before proceeding to prove the
main theorem.
Lemma 13 ([13, Lemma E.1]): Let A and B be two n X r
matrices such that AT B = BT A is PSD. Then

H(A—B)ATHi <3 .

AT |aa- BB .
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A. Local Descent Condition for the Region R,

Similar to what used in Appendix K-A, we perform the
change of variable W*R — W™ to avoid R in the following
equations. With this change of variable we have instead

WIw* = W*tW is PSD.

We first control [(VG(W)—Vg(W),W — W™)| as
follows:
(VG(W) - Vg(W), W — W¥)]|

< \<Vf<x> U-UHVT) (X - X", (U -U"VT)

+(VAX), UV -VHT) (X - X" UV - VHT)|
<clx - X*nF (I =TV le+ UV = V)|r)
< cHWWT ~WW* g [W(W - W1

< ————[WW' - WW |3

TOCEEL I#
where the second inequality utilizes Vf(X*) = 0 and
Lemma 10, and the last inequality follows from Lemma 13.
The above result along with (59)-(60) gives

(VGW), W —W7)
> (Vg(W),W-W~) — |<VG( ) = Vg(W),W —W7)|
> (Vg(W), W —W*)— HWWT W w*T ’F

2(\/5 - 1
1
> 20 (X7 dist* (W, W) + HWWT —wwT

"

1 /\*/\*T 2
* 4|\X*|\ [ww
ST wwT ’
> %JT(X*)dist (W W) + — HWWT W w*T ‘F
1 /\*/\*T 2
X [ww (80)

where we utilize ¢ < %.

On the other hand, we control ||[VG(W)||p with Lemma 11
controlling the deviation between VG(W) and Vg(W) as
follows:

VG5 = Vg(W
20
< 35 IV9W)Ilz +20 [Vg(W) —

Vo(W)I%
|2

20
2 IV WI + 200w [ww ™ — wew|

)+ VG(W) —
VG(W

IA

T * *T Sx =T
EH(WW _WW )W+WW WH

2
+2062| W |2 HWWT —ww*T

’F
5 100
< (2= +20c
(19 99 "

) (ww - wewr)w,

—~ % —~%xT 2
+25HW W WHF
5 100
< (EEMO H(V2+ 1) X |WwwT —

— T
+o5|WW W,

ww

81)
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where the first inequality holds since (a+b)? < <a?+ (1+
€)b? for any € > 0, and the fourth line follows from (58).

Now combining (80)-(81) and assuming ¢ <=z glves
(VG(W), W - W7)

1
> — 0, (X*) dist> (W, W*) + ———— | VG(W)|?

This completes the proof of (15).
B. Negative Curvature for the Region R;
Let A = qkaT be defined as in (66). First note that
2
[aov® vuab], <2 favvr| +2|vat]
F
<2 HWATHF = 202(W) < 0,(X"),

because o, (W) <

where the last

1/2/ v+
ﬁar/ (X¥).
yields

equality holds

Also utilizing the particular structure in

1
auab], =slewl], =5
H v 3 [, = 3
Due to the assumption Z|W*W*'|r > |WW'|F
we have
2
OV - X < L Ww - W
\/_ 20 * * * * 39\/_ *
—(—||W W g+ [WWT | p) = —||X (8

Now combining the above results with Lemma 12, we have

V2G(W)[A, A]

< V(WA A+ |[V2G(W)[A, A] - V(W

A ATH
o |avat],

)[A, Al
1
< —70r(X") + 2 HUVT _ X

te HAUVT L UAT H

1

< - o (XN + 1—9\/§c|\X*||F + con (X)
1

< _EO—T’(X*)v

where the last line holds when ¢ <
the proof of (16).

ﬁ This completes

C. Large Gradient for the Region R U RY URY

To show that G(W) has large gradient in these three
regions, we mainly utilize Lemma 11 to guarantee that

VG(W) is close to Vg(W).
1) Large Gradient for the Region R: Utilizing Lemma 11,
we have
IVGW)l
> [Vg(W)ll- — [VGW) - Vg(W)]

> V(W) —c||Www" —wwT

Wlr

| Iw]

10 * * *
> [[Vy( — g liw'w e+ W W) (W]
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I \/

3/2 X* _
Lo
1 o5/
> — X~
> Lovx

where the fourth line follows because HW*W*TH =
F

2|| X*||» and ||WH < 20/2|| X*||'/2, and the last line holds
if ¢ < 25 W This completes the proof of (17).

2) Large Gradient for the Region RY: Utilizing Lemma 11
again, we have

IVGW)| ¢

—2HX*||F \fIIX*H”2

?

> - R e
_||Vg<w>|\p o(|wwr|| +[wrwr| )iwi
10

> 2w e (5 [wrwt|| s [wewer| ) w
800 9 F r

> LW — e 2| X7 (W]

*800 F

> X*| W

_800|| I? - 450” 1w

>—W3

> WP,

where the fourth line holds if ¢ <
last follows from the fact that

/Z(X*)
100 TR T e and the

HWH> IIW* V2 X2,

IL19

This completes the proof of (18).
3) Large Gradient for the Region RY': To show (19), we
first control |(VG(W') — Vg(W'), W)| as follows:

(VG(W) — Vg(W), W)]|
—9 ‘<Vf(UVT), UVT> _ <UVT - X", UVT>‘
<92 HUVT _Xx*

v
F F

19 1 19
< 205 V2WW e [WW e = o v2el|[ WWHIE,

where the first inequality utilizes the fact Vf(X*) = 0 and

Lemma 10, and the last inequality holds because

2
Jov -, < 2w - wew|,
2
<2 (S Iwwr] s ww
2 10 F F
=52 fww|
F
and

WW L = [UUTE+VVTE+2AUVTE > 4| UV
by noting that
IUUT|F+|VVTF=2|UVT |7 = [UTU-VTV | > 0.
Now utilizing (76) to
(Vg(W), W), we have
(VG(W), W)
> (Vg(W), W) — (VG(W) —

provide a lower bound for

Vg(W), W)
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1 T2 19 T2
— — V2
> S IWWTE - S VE W W
1
—HWWTII%,
where the last line holds when ¢ < x5- Thus,
1 3 2
IVGW )= g7 (TEW).W)| > W

1/2
where we utilize |[W|| < (||WWTHF) . This completes

the proof of (19).
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