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Abstract: Quadrupolar NMR relaxation rates were computed for aqueous 133Cs+, 131Xe, and 127I–

via Kohn-Sham (KS) density functional theory-based ab-initio molecular dynamics (aiMD) and
KS calculations of the electric field gradient (EFG) tensors along the trajectories. The resulting
rates are within a factor of one to three of the experimental values and can be compared to avail-
able results from classical dynamics and EFGs from electrostatic models with corrections via
Sternheimer antishielding factors. Relativistic effects are shown to have an enhancing effect on
the magnitude of the EFGs. An analysis of the EFGs was carried out in terms of localized molec-
ular orbitals, to elucidate contributions from the solvent versus solute polarization and assess the
validity of the Sternheimer approximation for these systems.

1 Introduction

NMR relaxation has been studied extensively for decades both experimentally and theoretically.
NMR relaxation rates (or times) and the associated line widths in solution spectra are useful
probes of the dynamic structure around the resonant nuclei in liquids and solids. A majority of
elements in the periodic table have nuclei with spin 𝑆 ≥ 1, which is accompanied by an elec-
tric nuclear quadrupole. The nuclear quadrupole interacts with an electric field gradient (EFG),
if present. The latter is caused by a deviation of the electric charge distribution surrounding
the nucleus from high symmetries such as spherical, octahedral, or tetrahedral. While other in-
teractions, e.g. nuclear magnetic dipole-dipole coupling, chemical shift anisotropy (CSA), spin-
rotation (SR), can affect nuclei of all types, the quadrupolar mechanism is known to dominate the
relaxation when present. (We disregard nucleus-electron magnetic interactions in paramagnetic
systems, which can be very strong.)

In solution, quadrupolar relaxation is driven by fluctuations of the EFG around a quadrupolar
nucleus caused by the microscopic dynamics of surrounding solvent molecules or ions carrying
partial or full electric charges, and the corresponding distortion of the election density around the
quadrupolar nucleus. For many decades, the prevailing theoretical approaches to computing and
interpreting the quadrupole-EFG coupling—and therefore the relaxation rates in solutions—were
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electrostatic models. These models inherently neglect the microscopic details of the dynamics
which drive relaxation. Many studies1–18 have utilized molecular dynamics (MD) simulations
in an effort to explicitly treat solute-solvent interactions on the time scale of the EFG fluctu-
ations. Most of these relied on force-field based methods parameterized for a limited number
of—primarily—main group elements. With the increasing power and availability of computa-
tional resources, ab-initio MD (aiMD) methods have become increasingly feasible for simulating
spectroscopic phenomena in liquids which depend on subtle dynamic interactions on the femto-
to nanosecond time scale. Local EFG fluctuations in liquids are among these kind of phenomena.

Computations of EFGs via electrostatic models have been widespread. For solvated atoms and
ions, these methods employ empirical approximations such as Sternheimer anti-shielding factors
𝛾,19, 20 rooted in perturbation theory, to account for internal electronic polarization of the analyte
induced by the surrounding charges. This approach has met with some success for ‘hard’—i.e.,
comparatively weakly polarizable—metal ions such as Li+, K+, Mg2+ or transition metal ions.
Rotenberg et al.13 validated the approximation for such systems insofar as to show that a linear
relationship exists between the external EFG as calculated via a polarizable ion model and the
true total EFG obtained via all-electron DFT calculations. However, the Sternheimer model has
usually only been applied in a (usually lowest-order) long-range approximation, with the corre-
sponding Sternheimer factors labeled as 𝛾∞. The model generally assumes that the EFG is caused
through polarization of a previously spherical electron charge density by an external charge at a
given distance. In the long-range Sternheimer approximation, the external EFG is then simply
scaled by (1 + 𝛾∞) to account for the polarization effects. Note that 𝛾∞ is far from being a small
correction. For instance, values of −5.45, −4.12, and −18.79 were given in Reference 21 for
Na+, Mg2+, and Ca2+, respectively, including corrections for crystal embedding. The Sternheimer
model neither accounts for solute polarization due to steric effects, nor for EFGs due to partially
covalent solvent-solute interactions such as hydrogen bonds. The EFG, being a molecular prop-
erty that is very sensitive to structure and bonding, generally requires a fully quantum theoretical
approach to treat the electronic effects for all but the least polarizable solutes. Furthermore, for
heavier elements such as 127I–, 131Xe, and 133Cs+, studied in this work, relativistic effects may play
an important role.22–24

For the reasons outlined in the previous paragraph, this work follows a fully first-principles
approach developed and utilized in our previous work in which we computed quadrupolar NMR
relaxation rates for aqueous 23Na+ and 35Cl–, 14N in azole-type molecules, as well as for 2H and
17O in heavy water which also relax via the quadrupolar mechanism.15–18 In this approach, the
systems are simulated via Kohn-Sham (KS) density functional theory (DFT) based MD, and EFG
calculations on the MD configurations (‘snapshots’) are also performed at the KS-DFT level, in
order to get access to the EFG time autocorrelation functions (ACFs) that ultimately determine
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the relaxation rates. For the present study, these snapshots are extracted from the MD as finite
solute-solvent clusters and treated at the hybrid DFT level with an all-electron scalar relativistic
Hamiltonian. Even in such a consistent first-principles framework, however, pioneering aiMD
studies of quadrupolar relaxation (see Reference 9 and work by our group15–18) reported that de-
viations by a factor of 2 to 3 between calculated and experimental relaxation rates may be difficult
to avoid, although extensive multi-trajectory sampling appears to improve the results. Strongly
polarizable ions such as iodide continue to pose tremendous challenges in such calculations. For
instance, in a pilot study of quadrupolar relaxation from our group,15 where the sampling was ad-
mittedly limited, the calculated relaxation rate for I– exceeded the reported experimental rate by
a factor of 4. Roberts and Schnitker (RS)3 previously reported calculated quadrupolar relaxation
rates of a variety of ions, including 133Cs+, 127I–, and 131Xe, in aqueous solution that were within
roughly a factor of two of the experimental data (with the exception of Mg2+) or better. These cal-
culations used a rigid point-charge model for water in the dynamics, and 𝛾∞ Sternheimer factors
to treat the solute polarization. The results were deemed ‘a remarkable success rate considering
the crudity’ of the model. It is worth noting that RS pointed out, correctly, that there was a ‘con-
siderable uncertainty’ in the Sternheimer factor for a given ion. For iodide, for example, RS used
𝛾∞ = −162.42 from Reference 21. A systematic overestimation for the halide relaxation rates
was noted by RS, but their I– rate was closer to the experiment than subsequent aiMD-based rates,
despite the crude model used for the calculations.

The present work is motivated by the following questions: (i) Can the EFG fluctuations of the
aqueous large, polarizable solutes studied herein be calculated accurately and sampled sufficiently
from first principles, to obtain accurate quadrupolar relaxation rates? (ii) Can any features of
the EFG ACFs for these and other ions be rationalized in terms of specific solvent dynamics
in the aiMD? (iii) Do relativistic effects play a significant role in the EFGs and/or relaxation
phenomena of these nuclei? (iv) Do the first-principles calculations of the EFG provide insight
into the performance of simpler models, in particular those relying on Sternheimer factors?

2 Theoretical and Computational Details

In the limit of fast motion and isotropic conditions, the longitudinal and transverse quadrupolar
relaxation rates are equal. We refer to this value as the isotropic rate. This rate can be written as

1
𝑇iso

= 𝐶𝑄⟨𝑉(0)2⟩ 𝜏𝑐 (1)
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Here, 𝐶𝑄 is a quadrupolar prefactor containing the quadrupole moment 𝑄 and nuclear spin quan-
tum number 𝐼 of the relaxing nucleus,

𝐶𝑄 =
𝑒2𝑄2 (2𝐼 + 3)
20𝐼2 (2𝐼 − 1) ℏ2

(2)

and ⟨𝑉(0)2⟩ is the total EFG variance,

⟨𝑉(0)2⟩ =
∑

𝑚

⟨𝑅∗2,𝑚(𝑡)𝑅2,𝑚(𝑡)⟩ (3)

in terms of the rank-2 spherical EFG tensor components, 𝑅2,𝑚, as presented in the formalism of
References 25 and 26, for example. Further, 𝜏𝑐 is the characteristic correlation time for the EFG
defined here as

𝜏𝑐 =
1

⟨𝑉(0)2⟩
∑

𝑚

∫
∞

0
𝑓2,𝑚(𝜏)𝑑𝜏 (4)

The integrands 𝑓2,𝑚 are the ACFs of the EFG tensor components, defined as 𝑓2,𝑚(𝜏) =
⟨𝑅∗2,𝑚(𝑡)𝑅2,𝑚(𝑡 + 𝜏)⟩. The angle brackets indicate an ensemble average. In practice, the ACFs are
calculated numerically along the MD trajectories.

Car Parinello aiMD simulations were performed using the Quantum Espresso (QE) pack-
age.27 The simulations used a kinetic energy cutoff of 100 Ry for the plane-wave (PW) basis,
a fictitious electron mass (𝜇) of 450 au, and a time step of 6.0 au (0.145 fs). Ultrasoft pseu-
dopotentials based on scalar relativistic calculations were taken from pslibrary1.0.0.28 Initial,
randomized, cell packing consisting of a single analyte atom/ion (Xe, Cs+, I–), 64 heavy water
molecules, and an appropriate counter ion (D+/OD–) was achieved using the Tinker molecular
modeling software package.29 Deuterium was used instead of hydrogen to separate nuclear and
electronic degrees of freedom better in the CPMD. The simulation cells were cubic, with a cell
parameter of 12.84 Å chosen such that the density of the system was approximately that of pure
water at ambient conditions. Five ps of pre-equilibration were performed with Tinker, using NVT
force field dynamics. The primary results of this paper are from aiMD simulations utilizing the
revised exchange-correlation functional of Perdew, Burke, and Ernzerhof (revPBE).30–32 Previous
studies by us and others33, 34 showed that the revPBE functional, along with semi-empirical dis-
persion corrections (D2),35, 36 provides good performance in reproducing solution structure and
dynamics, including accurate diffusion coefficients, for aqueous systems, without the need for
elevated temperatures. In a previous study, such simulations were used to calculate NMR re-
laxation via the dipolar mechanism for protons in water and acetonitrile.34 The trajectories for
the current study were started from ten PBE simulations for each system at 350 K that we had
performed during the early stages of this project (5 ps of NVT equilibration with a three-chain
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Nosé-Hoover thermostat (90, 45, 15 THz), followed by NVE). The revPBE simulations were
re-equilibrated in NVT at 300 K (4.4 ps), followed by production in NVE after 1 ps of further
equilibration. Final production times were 25 ps each for Xe and Cs+, and 50 ps for I–. For
radial distribution functions (RDFs) and self-diffusion coefficients of the simulated systems com-
pared to experiment, see the supporting information (SI). Good agreement with experiment is
seen in the oxygen-oxygen RDFs, and the diffusion coefficients are quite acceptable considering
the difficulties of reproducing them from simulations.

For the EFG calculations, clusters of analyte and 30 nearest neighbor solvent molecules were
extracted from evenly spaced snapshots of the production phases of the trajectories. Snapshots
were taken every 400 frames (0.058 ps), except in the case of Iodide trajectories 1 and 2 for
which a 4 times finer sampling (0.0145 ps) was used for testing. Nearest neighbor clustering
as well as calculation of RDFs for the periodic systems were done with an open source code
developed in our group (version 0.4.1).37 EFGs were computed for the clusters using the Am-
sterdam Density Functional (ADF) software package (2017 version).38 These calculations em-
ployed the hybrid functional PBE0 (25% exact exchange)39 and an all-election Slater-type basis
(STO). For the analytes, a quadruple-𝜁 basis with four sets of polarization functions (QZ4P)
was used. A valence double-zeta singly-polarized basis (DZP) was used for solvent atoms. Ad-
ditional implicit addition of the bulk solvent was included using the Conductor-like Screening
Model (COSMO).40 EFGs were computed without and with scalar relativistic effects, the latter
based on the all-electron Zeroth Order Regular Approximation (ZORA) and picture-change cor-
rections.41, 42 Natural bond orbital (NBO) analyses of the EFGs43 were also carried out for sets
of snapshots from one trajectory of each analyte, using the NBO package in ADF (version 6)44, 45

with the same parameters as above. The following values of 𝑄 (taken from reference 46) were
used in Equation (2) to generate the relaxation rates: -3.43 mb, -114.6 mb, and -688.22 mb for
133Cs+, 131Xe, and 127I– respectively.

3 Results and Discussion

Tables 1, 2, and 3 collect the relaxation rates, correlation times, and ⟨𝑉(0)2⟩ from the relativistic
calculations for all independent trajectories of each system, along with the corresponding means
and standard errors. Table 4 summarizes these results, and compares the relativistic and nonrel-
ativistic data with available experimental rates. We note that the experimental relaxation rates of
ions in solutions are concentration dependent.49–53 The experimental results used here for com-
parison are those extrapolated to infinite dilution. A first observation is that the calculated and
experimental rates are within a factor of 1 to 3 from each other, which was deemed satisfactory
in previous—related—aiMD studies of quadrupolar relaxation.9, 15–17 With multi-trajectory sam-
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pling and the fully quantum-mechanical calculations of the EFG tensors, our relaxation rate for
127I– is markedly improved over the FFMD / Sternheimer model used by RS.3 However, the dif-
ference can in large part be attributed to recent revisions of the experimentally determined nuclear
quadrupole moment 𝑄 for 127I. The most current value of 𝑄 for iodide, as reported by Pyykkö,46

and used in this study is 𝑄new = −688.2 mb, whereas RS used a value of 𝑄old = −750 mb. The

Table 1: Summary of 133Cs+ relaxation data𝑎
1

𝑇1

1

𝑇2

1

𝑇iso
𝜏𝑐 ⟨𝑉(0)2⟩

1 0.040 0.039 0.040 0.330 0.690
2 0.001 0.008 0.006 0.050 0.680
3 0.061 0.073 0.069 0.629 0.630
4 0.031 0.068 0.056 0.541 0.589
5 0.054 0.027 0.036 0.317 0.651
6 0.036 0.013 0.020 0.173 0.678
7 0.029 0.064 0.052 0.464 0.645
8 0.024 0.023 0.023 0.224 0.596
9 0.004 0.011 0.008 0.078 0.617

10 0.020 0.021 0.020 0.178 0.659
Average 0.030 0.035 0.033 0.298 0.644
St.Err 0.006 0.007 0.006 0.059 0.011

𝑎from ten 25 ps aiMD simulations and relativistic STO/PBE0 EFG calculations. ⟨𝑉(0)2⟩ in au.
Trajectories sample snapshots every 0.058 ps.

Table 2: Summary of 131Xe relaxation data𝑎
1

𝑇1

1

𝑇2

1

𝑇iso
𝜏𝑐 ⟨𝑉(0)2⟩

1 76.6 69.0 71.5 0.134 0.281
2 91.7 76.7 81.7 0.171 0.250
3 80.1 47.2 58.2 0.114 0.266
4 110.4 148.0 135.5 0.286 0.249
5 143.9 130.0 134.6 0.298 0.237
6 239.4 105.8 150.3 0.410 0.192
7 148.6 185.7 173.4 0.363 0.251
8 142.0 57.1 85.4 0.173 0.258
9 12.9 4.9 7.6 0.016 0.242

10 20.2 85.4 63.7 0.162 0.207
Average 106.6 91.0 96.2 0.213 0.243
St.Err 20.0 15.9 15.2 0.037 0.008

𝑎from ten 25 ps aiMD simulations and relativistic STO/PBE0 EFG calculations. ⟨𝑉(0)2⟩ in au.
Trajectories sample snapshots every 0.058 ps.
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relaxation rates scale with 𝑄2, so the effect of including the updated quadrupole moment is a de-
crease in the computed rate by a factor of 𝑄2

new∕𝑄2
old = 0.84. Our computed rates for 133Cs+ and

127Xe are comparable or worse to those of RS. Indeed, an important source of error is the qual-
ity of intermolecular potentials which can be obtained from aiMD with DFT+D2, and there are,
of course, the ubiquitous issues of incomplete sampling and the limited sizes of the simulation
cells. The finite-cluster EFG calculations approximate the embedding of the ions further. On the
positive side, it is known that DFT calculations typically perform well for EFGs in main group
atoms.43, 54–56

Table 3: Summary of calculated 127I– relaxation data𝑎
1

𝑇1

1

𝑇2

1

𝑇iso
𝜏𝑐 ⟨𝑉(0)2⟩

1 6891 11886 10221 0.490 1.263
2 8620 3562 5248 0.277 1.147
3 9156 10163 9827 0.416 1.432
4 10024 3416 5619 0.283 1.203
5 9112 16697 14169 0.556 1.542
6 984 764 837 0.046 1.104
7 3526 1919 2455 0.127 1.174
8 5560 3366 4097 0.219 1.132
9 3898 3846 3863 0.199 1.176

10 18729 19545 19273 1.006 1.160
Average 7650 7517 7561 0.362 1.233
St.Err 1464 1988 1730 0.083 0.043

𝑎 from ten 50 ps aiMD simulations and relativistic STO/PBE0 EFG calculations. ⟨𝑉(0)2⟩ in au.
Trajectories 1-2 sample snapshots every 0.0145 ps and trajectories 3-10 sample snapshots every

0.058 ps.

Table 4: Summary of mean relaxation data𝑎 from sets of ten simulations of each system

System ⟨𝑉(0)2⟩ 𝜏𝑐 (ps) 1

𝑇iso
(s−1) 1

𝑇1,exp
(s−1)𝑏

133Cs+ (nrel) 0.50(1) 0.30(6) 26(5) ⋅ 10−3 75 ⋅ 10−3
133Cs+ (rel) 0.64(1) 0.30(6) 33(6) ⋅ 10−3 -
131Xe (nrel) 0.19(1) 0.21(4) 74(11) 179
131Xe (rel) 0.24(1) 0.21(4) 96(15) -
127I– (nrel) 0.94(3) 0.36(8) 57(12) ⋅ 102 46 ⋅ 102
127I– (rel) 1.23(4) 0.36(8) 76(16) ⋅ 102 -

𝑎 Relativistic and nonrelativistic STO/PBE0 EFG calculations. Results are rounded to two
significant figures and standard errors are provided in parentheses. ⟨𝑉(0)2⟩ in au. 𝑏From

references 47 (133Cs+ and 127I–; ), and 48 (131Xe); Exptl. results are at 𝑇 = 25◦C
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As mentioned in the Introduction, RS acknowledged the crude approximations made in their
computations, in particular in the EFG calculations. The references given in RS for the Stern-
heimer factors21, 57 report large uncertainties for 𝛾∞. The values for 133Cs+ (−110.81) and 127I–

(−162.42) were computed21 using a ‘Watson sphere’ model in which the ion is surrounded by a
sphere of opposite charge at a fixed distance, to model the ion in a solid. The reference57 given for
𝛾∞ for Xe reports an experimentally derived value of −157, but notes large uncertainties. For io-
dide especially, the Watson sphere effects had a profound effect on the calculated 𝛾∞, decreasing
its magnitude from −299 to −162. Since the relaxation rate scales with (1 + 𝛾∞)2, this has a very
large effect on the computed rates. In the study of RS, this rough correction to the calculated free
ion 𝛾∞ therefore dramatically improves the relaxation rate for iodide with respect to experiment.

The relative standard errors, which are rough estimates of the true sampling errors, in the
computed relaxation rates are 18%, 15%, and 22% for 133Cs+, 131Xe, and 127I–, respectively. The
variations in the correlation times 𝜏𝑐 between different trajectories are primarily responsible for
the standard errors. In comparison, ⟨𝑉(0)2⟩ is more consistent across the trajectories, especially
for Cs+. Average EFG ACFs for the three systems are shown in Figure 1, and the running integrals
of the EFG ACFs for each trajectory are shown in Figure 2. The running integrals are of the
isotropic EFG ACF, taken here to be the mean of all second-rank spherical components, 𝑓2,𝑚(𝜏),
for a given trajectory. Although the the average EFG ACFs and those of all individual trajectories
(see supporting information) appear well converged on a sub-ten picosecond time scale, in Figure
2, it can be seen that long-time (greater than 10 ps) correlations and anti-correlations can cause
great variations influencing the spectral densities for individual trajectories. If the lower outlier
trajectory for 131Xe (trajectory 9 in Table 2) and the upper outlier for 127I– (trajectory 10 in Table
3) which can be seen in Figure 2b-c are excluded, the mean relaxation rate becomes 106 Hz
for 131Xe and 6260 Hz for 127I– in the relativistic case. These are well within a factor of 2 of
the experimental value and much improved over previously computed rates.3, 58 The long-time
contributions to the spectral density that result in such outliers may be a result of slow or rare
dynamic events that are incompletely sampled in the aiMD simulations (which, however, are
of relatively long duration for these types of simulations, especially for I–). One such type of
event could be solvent molecule escape dynamics from the hydration shell, which was shown in
aiMD studies to have time constants of up to 16 ps for aqueous iodide.59–62 These considerations
motivated the increased simulation times for aqueous iodide.

As far as the averaged EFG ACFs in Figure 1 are concerned, as established in the literature
for these and other systems,3, 13, 14, 16 a two-step decay process can be seen. An initial steep decay
in the first fraction of a picosecond (libration region) is followed by a slower decay that accounts
for most of the correlation time. A unique feature can be seen in the ACF for the I– simulations,
in the form of a small oscillation or ‘notch’ in the transition between the two decay regimes. In
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previous work,16 and that of others,2, 14 a similar ‘notch’ feature can be seen in the EFG ACFs
of Cl–, however, an explanation was not provided. In the dynamics literature, there are examples
of a similar feature at the same time scale in the linear velocity and rotational ACFs of pure
water7, 10, 63–65 as well as for water molecules in the first hydration sphere of small ions.2, 8 The
oscillation is generally attributed to the oscillatory nature of the vibrational and librational motion
of the water molecule in its hydrogen bond network. Figure 3 shows our calculated rotational
ACFs of the first solvent shell water molecules surrounding each of the ions. The ‘notch’ is
present for all three systems. For anions, however, the coordinated water molecules have their O-
H (O-D in this case) bond vector pointed towards the anion. Libration of these water molecules
is characterized by angular oscillations of the O-D bond vector, in which the heavier oxygen
nucleus is relatively stationary and the deuteron undergoes oscillatory motion, drawing out a
‘cone of libration’ with its range of motion. This libration, with the partial positive end of the
O-D bond dipole pointed towards the anion is more likely to induce a corresponding response in
the fluctuations of the EFG of the polarizable anion.

Compared to the correlation times, ⟨𝑉(0)2⟩ has significantly less scatter across the sets of
independent trajectories. The analogous quantity reported by RS does not contain the (1 + 𝛾∞)2

factor for the contributions of the ion polarization to the EFG. After multiplying with this factor,
the RS values for ⟨𝑉(0)2⟩ are 0.268, 0.258, and 0.966 au for Cs+, Xe, and I–, respectively. Our
relativistic Xe and nonrelativistic I– values for ⟨𝑉(0)2⟩ have comparable magnitudes. The Cs+

value of RS seems low, when compared to Xe, given that—unlike Xe—there are strong ion-
dipole interactions between Cs+ and the solvent. Despite the comparatively small ⟨𝑉(0)2⟩, the
RS relaxation rate for Cs+ is 0.042 s−1, slightly larger than ours, because RS determined a 𝜏𝑐 of
0.64 ± 0.16 ps which is about twice ours. The RS correlation times for Xe and I– are comparable
to ours.

In terms of relativistic effects on the computed EFGs, it can be seen in Table 4 that there is
a systematic increase of ⟨𝑉(0)2⟩ by a factor of about 1.3 from scalar relativistic effects in the
three systems. This means that on average the EFGs are enhanced by about 14%. Available
small-molecule benchmark data, for example in Reference 24, show that a 14% increase due to
scalar relativistic effects is quite typical for iodine EFGs. Data from the same reference also show
that relativistic effects on iodine EFGs from spin-orbit coupling (SOC) are an order of magnitude
smaller than the scalar relativistic effects. We therefore neglected the SOC in the present study,
to keep the computational cost more manageable. Figure 4 plots the comparison of the computed
relativistic and nonrelativistic 𝑉𝑧𝑧 for a large set of trajectory snapshots. While the systems span
different magnitudes of the field gradient, the slopes of the resulting correlation lines are similar,
and there is essentially no scatter. (The comparison of relativistic vs. nonrelativistic calculations
is for the EFG only, not for the underlying aiMD trajectories which were consistently carried out
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Figure 1: ACFs of the spherical EFG tensor components. Left:133Cs+, Middle:131Xe, Right:127I–.
Inset shows behavior of the ACF in the first 0.5 ps.

with relativistic pseudopotentials.) For 133Cs+ and 131Xe, the resulting increases in the relaxation
rates due to relativistic effects constitute improvements with respect to experiment, whereas for
127I– the overestimation of the rate by the calculations is worsened, thereby exposing the presence
of error cancellation in the nonrelativistic relaxation rate.

A detailed analysis (vide infra) shows that the EFGs, and the substantial relativistic effects
thereupon, are generated predominantly in the valence and outer core shells of the solute. This
is expected, because the EFG operator has an inverse cubic dependence on the distance from the
solute nucleus, and the relativistic effects generated by the solvent nuclear charges are negligible
compared to those generated by the high solute nuclear charges. In this context, it is interesting
that the relativistic effects on the correlation times 𝜏𝑐 are negligible (Table 4). From Equation (4)
it is clear that there must be a near-complete cancellation of the relativistic effects in the numera-
tor and the ⟨𝑉(0)2⟩ denominator, indicating that the relativistic effects can be factored out of the
integrals over 𝑓2,𝑚, approximately, such that they hardly influence the EFG autocorrelation. This
is consistent with Figure 4 which makes clear that relativistic effects have a simple linear scaling
effect on the total EFG, with virtually no scatter among the different configurations. Relativistic
effects scale the magnitude of the EFG induced by polarization of the solute orbitals, but have
no effect on its ‘memory’ of previous values as the solvent environment evolves in time. This
need not hold true generally, however. If a greater degree of scatter, or some nonlinear relation-
ship in Figure 4 were observed, it would be possible for the relativistic and nonrelativistic 𝜏𝑐 to
disagree. In Equation (1), the full ⟨𝑉(0)2⟩ must be used, which is massively amplified over the
corresponding value determined from the external partial charges only, due to solute polarization
and close-contact interactions with the solvent. The lack of relativistic effects on 𝜏𝑐 is therefore
an indicator for why a crude approximation such as scaling the external EFG with a constant to
obtain the full ⟨𝑉(0)2⟩ does not fail completely in relaxation rate calculations, as long as (1+𝛾∞)
is chosen judiciously.

To gain further insight into the EFGs entering ⟨𝑉(0)2⟩ and the correlation times, we performed
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Figure 2: Running integrals (denoted 𝑔iso(𝜔, 𝑡)) of the isotropic EFG ACFs for each independent
trajectory. Left:133Cs+, Middle:131Xe, Right:127I–
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Figure 4: Comparison of 𝑉𝑧𝑧 EFG component (in au) calculated with (rel) and without scalar
relativistic corrections (nonrel). Scattered points each represent a different configuration along
the trajectories. 𝑦 = 𝑥 is plotted for comparison. Left:133Cs+, Middle:131Xe, Right:127I–

an analysis in terms of localized orbitals. The procedure is detailed in Reference 43. Specifically,
we used the natural bond orbitals (NBOs) and natural localized molecular orbitals (NLMOs)
generated by the NBO algorithms.45 The EFG tensor component 𝑉𝑢𝑣, with 𝑢, 𝑣 ∈ {𝑥, 𝑦, 𝑧} chosen
to coincide with the EFG principal axis system, at a nucleus located at 𝑹𝐴 is given in atomic units
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by

𝑉𝑢𝑣 = ∫ 𝜌(𝒓)
[
𝑉̂𝑢𝑣(𝒓, 𝑹𝐴) −

1
𝑁

Nuclei∑

𝐵≠𝐴

𝑍𝐵𝑉̂𝑢𝑣(𝑹𝐵, 𝑹𝐴)
]
𝑑𝑉 (5)

Here, 𝑉̂𝑢𝑣(𝒑, 𝒒) = 𝛿𝑢𝑣|𝒑 − 𝒒|−3 − 3(𝑝𝑢 − 𝑞𝑢)(𝑝𝑣 − 𝑞𝑣)|𝒑 − 𝒒|−5 is the traceless quadrupole
operator, 𝑁 is the number of electrons, and 𝑍𝐵 the charge of another nucleus. In the analysis,

Table 5: NLMO/NBO contributions to most positive EFG tensor principal component 𝑉+, aver-
aged over one trajectory per system𝑎

Cs Xe I

NLMO rel.
core𝑏 0.1344 0.0285 0.0620
Σ 5s,5p 0.2539 0.3050 0.6641
other𝑐 0.1907 0.0097 -0.0110
total𝑑 0.5790 0.3432 0.7152

NLMO nrel.
core𝑏 0.1199 0.0239 0.0553
Σ 5s,5p 0.2237 0.2692 0.5754
other𝑐 0.1681 0.0076 -0.0093
total𝑑 0.5117 0.3007 0.6214

NBO rel.
core𝑏 0.0658 0.0143 0.0329
Σ 5s,5p 0.1257 0.2755 0.3219
diffuse𝑓 0.1197 0.0047 0.0262
other𝑐 0.2677 0.0487 0.3342
total𝑑 0.5790 0.3432 0.7152

NBO nrel.
core𝑏 0.0588 0.0114 0.0296
Σ 5s,5p 0.1120 0.1709 0.2377
diffuse𝑓 0.1505 0.0138 0.0121
other𝑐 0.1904 0.1045 0.3421
total𝑑 0.5117 0.3007 0.6214

𝑎Averages of the most positive principal component of the EFG (in atomic units) in each
trajectory snapshot, as opposed to the principal component 𝑉33, defined as the largest-magnitude

component. One trajectory is sampled for each system (Cs+: traj. 1, Xe: traj. 1, and I–: traj. 2,
with respect to the trajectory numbering in Tables 1-3). Numbers of snapshots averaged for each

system are Cs+: 433, Xe: 432, and I–: 479. 𝑏Sum of contributions from core orbitals (𝑛 < 5)
centered on the solute. 𝑐Sum of contributions from NLMOs/NBOs centered on solvent atoms.

𝑓Sum of contributions from solute-centered diffuse (‘Rydberg’) NBOs. 𝑑Sum of all
NLMO/NBO contributions in a given set of calculations, equivalent to the total calculated 𝑉+

average.

12



Cs Xe I

0.0

0.2

0.4

0.6

0.8

V
+

(a
u

)

core
rn

Σ5s,5p

rn

other

rn

NLMO total

rn

core
rn

Σ5s,5p
rn

other

rn

NLMO total

rn

core
rn

Σ5s,5p
rn

other

rn

NLMO total
rn

Figure 5: Mean NLMO contributions to the most positive principal component of the EFG, 𝑉+.
Relativistic (r) versus nonrelativistic (n) EFG calculations. Error bars represent the standard error
in the mean. Labels are defined in the caption of Table 5.

the electron density 𝜌(𝒓) is partitioned into orbital densities, thus providing a contribution to the
EFG from each individual localized orbital. The contributions to the EFG from other nuclear
charges are weighted by the electron density, as shown above, and thereby absorbed into the
analysis. It is worthwhile pointing out that a breakdown of a quantum mechanical observable into
contributions from individual orbitals is not unique. However, the NBO/NLMO analysis, in terms
of ‘chemist’s’ orbitals, is particularly intuitive.43 Namely, the NBOs represent ideally localized
lone pairs, bonds, or core shells, with associated integer or non-integer electron populations. Each
NLMO is doubly occupied (for closed-shell systems) and has a closely related ‘parent’ NBO. The
NLMOs may be delocalized, relative to their parent NBOs, to reflect the electron delocalization
in the system. In this context, it is important to note that donation bonding is a form of electron
delocalization that may be represented by a lone pair NBO with a pronounced ‘delocalization
tail’ in the corresponding NLMO.
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Figure 6: Difference isosurfaces (red/gray isovalues = ±1×10−4) of NLMO minus NBO densities
for (a) 5s and (b-d) 5p orbitals from a representative iodide trajectory snapshot with𝑉+ = 1.44 au.

Table 5 provides a summary of the analysis. A visual breakdown of the NLMO analysis, with
error bars, is provided in Figure 5. For each system, between 400 and 500 configurations from one
of the trajectories were subjected to the analysis. Because the sign of 𝑉33 fluctuates, the data in
Table 5 represent the trajectory averages of the most positive EFG principal component, denoted
here as 𝑉+. The orbital contributions are grouped into those from the [Kr]4d10 cores, the 5sp
shells, diffuse NBOs that are centered on the solute, and the sum of all other contributions. The
solute valence shell and core shell polarization are associated with the 5sp and core contributions.
The ‘diffuse’ category appears only in the analysis by NBOs. Here, we sought to distinguish,
qualitatively, between solute-centered atomic contributions versus solvent-centered contributions
due to the NLMO delocalization. The direct contributions of solvent partial charges to the solute
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EFG, constituting the external EFG, show up in Table 5 mainly in the ‘other’ category. It should
be noted, however, that—in particular in the NBO partitioning—the ‘other’ category also includes
the aforementioned delocalization tails that may appear, for instance, due to steric and partially
covalent interactions between the solute and solvent.

By taking the ratio of the total 𝑉+ over the ‘other’ contributions for a given system, we obtain
a scaling factor for the external EFG analogous to the Sternheimer antishielding factor used in
models where the solute polarization contributions are not treated explicitly. For Xe, the NLMO
analyses yield a ratio 35 and 40 in the relativistic and nonrelativistic calculations, respectively.
These values are far below the magnitude of 1 + 𝛾∞ for Xe and have the opposite sign, given
that the aforementioned 𝛾∞ = −157 is negative (although this does not matter in the relaxation
rate calculation when |𝛾∞| ≫ 1). Table S4 in the supporting information shows that 5s and 5p
contributions to the averaged 𝑉+ are of opposite sign; and for an external EFG (‘other’) that is on
average positive, the contributions from 5p is negative on average. However, the breakdown of
the contributions into 5s vs. 5p is not clean, and therefore absent from Table 5, because for many
of the MD configurations the 5sp NBOs are strongly hybridized. Moreover, the 5s orbital must
acquire considerable 5p character through polarization or hybridization to produce a significant
EFG on it own. For I–, the external (‘other’) EFG is negative, on average, for the most positive
EFG component along the trajectory, and here the ratio of the total and external EFG is −65. For
Cs+, the ratio is +3.

In the NLMO analysis, the relativistic effects on 𝑉+ are almost entirely associated directly
with the 5sp shell and the concomitant polarization of the (outer) core shells. In the NBO anal-
ysis, a strong increase in the 5sp contributions due to relativistic effects is accompanied by a
decrease in the ‘other’ contributions for Xe, and an increase for Cs+, which gives a strong hint
that most of the ‘other’ contributions in the NBO analysis should indeed be associated with the
5sp shell and the delocalization tails of solvent-centered NLMOs, rather than the surrounding wa-
ter molecules. For Cs+, the ‘other’ contribution in the NLMO analysis, and the relativistic effects
thereupon, are particularly large in absolute terms. This means the oxygen lone pair orbitals of
the coordinating water molecules must be hybridized with empty Cs valence orbitals, in partic-
ular 6sp. Indeed, the calculations show a non-negligible sum occupation of the 6sp NBOs for
Cs+, with an average of ca. 0.05 electrons along the probed trajectory, which is roughly five times
larger than the average sum of 6s and 6p NBO occupations of Xe and I–. (3s NBO occupations
between 0.1 and 0.2 were recently reported by us for Na+ encapsulated in a cryptand.18) The
Cs+ 6s shell undergoes a relativistic contraction, and it hybridizes/polarizes in the presence of an
asymmetric solvent coordination motif, which rationalizes the relativistic effects in the ‘other’
NLMO contributions in the EFG. There is evidently a degree of oxygen–cesium donation bond-
ing present, which influences the EFG and is subject to relativistic effects. The water molecules
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are therefore hardly to be considered ‘external’ when it comes to the EFG, which explains the
smallest other/total ratio of three mentioned in the previous paragraph. Nonetheless, as already
mentioned, the water dynamics determines 𝜏𝑐, with the relativistic effects on the EFG, in part
from the O–Cs interactions, mainly leading to a very similar increase of the numerator and the
denominator in Equation (4).

The changes in the ‘other’ contributions between the NLMO and NBO analyses are partic-
ularly large for I–. Figure 6 shows the differences in the electron density contributions from
the 5s and 5p NLMOs versus NBOs. The density difference is clearly in the diffuse region
around iodide, with contributions on the nearest water molecules likely to be attributable mainly
to the orthogonality of the NLMOs on the water orbitals, i.e., steric effects. Given that this an-
ion is particularly strongly polarizable, it makes sense that the 5sp NBOs are not sufficient to
describe the EFG induced by electrostatic polarization and other effects from the surrounding
solvent molecules. When the diffuse region around I– is absorbed into the ion contribution, in
the NLMO description, this results in an ‘other’ contribution versus total EFG in the analysis that
most closely resembles the Sternheimer correction used by RS.

4 Summary, Conclusions, and Outlook

NMR relaxation rates for the heavy, quadrupolar species 127I–, 131Xe, and 133Cs+ in water were
computed via aiMD simulations and subsequent cluster calculations of the EFG tensor at the KS
hybrid DFT level. In keeping with previous work, sets of ten independent trajectories were de-
veloped for each system, providing improved sampling over single-trajectory MD and access to
statistical errors in the computed rates. We have also investigated the effects of scalar relativistic
corrections on the EFGs at these heavy nuclei, and the concomitant effects on the relaxation rates.
The DFT framework used for the EFGs also allowed for a deeper analysis of their origins, and
for an assessment of the validity of the Sternheimer approximation for these large, polarizable,
atomic species. An analysis of contributions to the EFG at each analyte nuclei in terms of lo-
calized orbitals was performed to give a first principles perspective on the external versus core
polarization contributions to the EFG.

In light of our results, we now address the motivating questions posed in the Introduction. (i)
Our methods result in relaxation rates within a factor of one to three of the experiments and high-
light the challenge of performing consistently better in a fully first-principles approach. For 127I–,
the result is much improved over our previous aiMD-based approach, which had poor sampling.15

Compared to previous strong over-estimations of the iodide quadrupolar relaxation rates, there is
also a significant improvement from recent updates46 to the measured nuclear quadrupole mo-
ment for 127I. Between the quality of the forces obtained in the dynamics, the degree of sampling
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achieved, accuracy of experimentally determined constants (i.e. 𝑄), and validity of Sternheimer
factors in the formalism of RS, clearly there are many variables which enter into the computation
of the relaxation rates between the two studies. This makes the overall agreement between our
results and those of RS all-the-more surprising. However some significant differences with RS
are nonetheless obtained. For example, for 133Cs+, our computed ⟨𝑉(0)2⟩ is significantly greater
than that of RS, being counterbalanced by 𝜏𝑐 which is lower than that of RS by a similar factor,
leading to a comparable relaxation rate. (ii) A dynamic mechanism explains the ‘notch’ feature
of the EFG ACF of halides in water. Rotational ACFs of water in the first solvation shell suggest
that large-amplitude hydrogen libration causes a characteristic oscillation in the EFG ACF of neg-
atively charged ions. (iii) Relativistic effects are shown to increase ⟨𝑉(0)2⟩ considerably, but they
have virtually no effect on 𝜏𝑐. The relativistic increase in ⟨𝑉(0)2⟩ leads to a proportional increase
in the relaxation rates. This effect is corrective with respect to the agreement between calcula-
tions and experiments for 133Cs+ and 131Xe, but it causes a greater overestimation of the 127I– rate.
(iv) An analogue to the Sternheimer polarization factor was estimated based on the NLMO de-
composition of the EFG. Only the value for iodide resembles the corresponding 𝛾∞ qualitatively,
and all of them are much lower in magnitude than the 𝛾∞ values used by RS. From a first princi-
ples perspective, the line is blurred between ‘internal’ and ‘external’ contributions to the electron
density and the associated EFG. Diffuse solute-centered contributions in the NLMO picture, are
associated with the solvent in the NBO picture. For the most polarizable of the solutes, in iodide,
this results in a significant difference in the effective external EFG contribution in the two analy-
ses (NBO vs. NLMO). On the other hand, Cs+ displays a large external EFG contribution in the
NLMOs and evidence was found for electron donation of solvent into the cesium 6sp orbitals. To
our knowledge, this is the first fully ab-initio NMR relaxation study of these polarizable ‘rela-
tivistic’ solutes. We believe this investigation opens the door to more widespread applications of
first-principles approaches to interpret and predict condensed-phase NMR relaxation rates.
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Density difference isosurfaces of NLMO minus NBO densities for 5s and 5p iodide orbitals.
The iodide-centered NLMOs are distorted and delocalized onto surrounding solvent. Polarization
of the iodide density and charge density on surrounding waters contribute to an EFG which drives
iodide NMR relaxation.
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