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Abstract—The rapid increase in the number of wireless devices
in modern communication networks has significantly increased the
number of interference sources, which severely impacts communi-
cation reliability. Adaptive interference cancellation is rapidly be-
coming a necessity for modern wireless networks. For interference
cancellation, a digital beamformer adaptively adjusts its weight
vector using an array processing algorithm. This, in turn, shapes
the radiation pattern in a manner that minimizes interference
power and maximizes the desired signal power. In this letter, we
propose two atomic-norm-minimization-based methods to design
a weight vector that can be used to cancel interference. We present
numerical and experimental studies and compare with the mini-
mum variance distortionless response beamformer, which outputs
the highest possible signal-to-interference-plus-noise ratio (SINR).
We show that our approach is robust to signal corruptions arising
from carrier frequency offsets. Uniquely, our algorithm extracts
the offset frequencies, thus enabling interference cancellation with
maximum SINR.

Index Terms—Array processing, atomic norm minimization
(ANM), beamforming, carrier frequency offset, interference
cancellation.

I. INTRODUCTION

A
DAPTIVE beamformers consist of an antenna array and an

adaptive processor. In addition to high-speed beamscan-

ning, these systems can be used for adaptive interference can-

cellation and high-resolution direction finding [1]–[3]. Adaptive

arrays cancel interference by placing array nulls in the direction

of the interferers. In a digital beamforming (DBF) receiver, each

element is connected to a preamp and then to an A/D converter.

The outputs of the A/Ds are connected to a coded digital data

bus. A similar process is implemented in transmit. Having digital

data at each element of the array provides the means to measure

the covariance matrix, which is the crux of all adaptive nulling

algorithms [4]. While the high cost of these systems limited
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their widescale deployment in the past, ongoing improvements

in semiconductor technology as well as radio communications

(e.g., software defined radios) have now made DBF arrays a

practical option.

Adaptive algorithms typically rely on a known pilot signal,

which is compared to the received pilot signal and used to

form an error vector. Algorithms minimize this error vector

by optimizing the weight vector of the antenna array. Digital

signals collected at the elements of the array serve as the array

processor input, and as such these algorithms are very sensitive

to signal corruptions. Practical implementation of DBF, thus,

requires one to develop robust solutions for nonideal scenarios,

commonly known as mismatched beamformers [5]–[11]. Robust

algorithms have primarily focused on mismatches from steering

vector (SV) errors, or finite sample size of the spatial spectral

estimates. While the latter problem is outside the scope of this

work, SV mismatch has some similarities, however with subtle

differences [6]–[9]. SV errors arise from direction-of-arrival

mismatch, or perturbed arrays with errors in element location,

phase, or gain, and have shown to result in severe performance

degradation. The most widely adopted solution to these prob-

lems is diagonal loading [6], [7] and equivalent approaches.

These techniques provide robustness to SV errors by effectively

designing for a higher white noise level than is actually present,

and as such are usually practical when signal-to-interference

ratio (SIR) is more important than signal-to-interference-plus-

noise ratio (SINR). To mitigate some of these issues, variable

loading [8], [9] has been introduced; it can improve robustness

to SV errors while maintaining a desired SIR or SINR.

On the other hand, in [12], it was shown that carrier frequency

offsets between the transmitter and receiver corrupt the received

signal and prevent it from matching the pilot signal due to low

correlation between the signals. If carrier frequency offsets can

be measured and corrected before interference cancellation, this

issue can be resolved. However, in high-interference and high-

multipath environments, measuring the carrier frequency offset

is usually not possible. In this letter, we introduce a new interfer-

ence cancellation algorithm based on atomic norm minimization

(ANM) that provides robustness to this type of signal corruption.

While existing beamforming techniques can provide robustness

to certain mismatch issues such as SV errors, and usually at

the expense of a higher noise, to the best of our knowledge,

no existing approach is designed to provide robustness toward

signal corruptions arising from carrier frequency offsets. We

present numerical and experimental results and show that our

proposed approach is naturally capable of extracting the offset

frequencies that cause signal corruption. As such, robustness is
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achieved with maximum SINR and without any degradation to

other system performance characteristics.

II. ANM FOR ADAPTIVE INTERFERENCE CANCELLATION

A. Atomic Norm Minimization

In recent years, ANM has been extensively studied in both line

spectral estimation and array signal processing for localizing the

off-grid temporal or angular frequencies of sinusoidal compo-

nents [13]–[20]. Consider a sampled spectrally sparse signal

x ∈ C
M with K different active frequencies

x =

K∑

k=1

cka(fk) ∈ C
M (1)

where a(f) � [1 ej2πf · · · ej2πf(M−1)]� ∈ C
M is a vector1

containing M uniform samples of a complex exponential signal

with frequency f ∈ [0, 1), and the scalars ck denote the complex

coefficients. As in [13]–[20], one can define an atomic set

A consisting of all possible such complex exponentials: A =
{a(f) : f ∈ [0, 1)}. This atomic set induces a corresponding

atomic norm‖x‖A := inf{
∑K

k=1 |ck| : x =
∑K

k=1 cka(fk)}.

The atomic norm is analogous to the �1 norm commonly used

in compressive sensing and sparse signal recovery with finite

dictionaries, but in this case, the dictionary is the continuously

parameterized atomic set A. When solving an inverse problem

with multiple candidate solutions, minimizing �1 or atomic norm

will promote sparsity in the solution. In particular, note that any

signalx obeying (1) can be represented with onlyK atoms from

the atomic set A. When x is observed with missing or noisy

entries, then optimization problems that attempt to minimize

the atomic norm will promote spectral sparsity and can lead to

exact or approximate recovery of x [13]–[20]. Notably, this is

possible even when the frequencies fk are “off grid,” i.e., not

restricted to the Nyquist frequencies 0, 1
M
, 2
M
, . . . , M−1

M
.

B. Problem Formulation

Consider a conventional linear array with N antenna ele-

ments. By collecting M snapshots on each element, one can

formulate a data matrix

X� =

K∑

k=1

(sk � a(fk))asv(θk) ∈ C
M×N (2)

where sk denotes the desired signal (if k = 1) or interferers (if

k > 1), and � denotes elementwise vector multiplication. Here,

we assume that the desired signal and the interferers {sk}
K
k=1

are uniformly sampled complex exponential signals, namely,

sk = [1 ej2πf
o

k · · · ej2πf
o

k
(M−1)]� for k = 1, . . . ,K, where fo

k

denotes the known frequency of the desired signal (if k = 1)

or the unknown frequency of the interferers (if k > 1). The

modulation by the vector a(fk) models an unknown frequency

offset fk. Finally, asv(θk) � ej2πsin(θk)q denotes the array SV

with q ∈ R
1×N being the element positions and θk being the

angle to the desired source (if k = 1) or interferers (if k > 1).

Our goal, in this letter, is to design a weight vector w ∈ C
N

for an array such that the array output is X�
w = s1 when given

1Note that we use superscripts � and ∗ to denote transpose and conjugate
transpose, respectively.

the data matrix X� and the desired signal s1. That is, the array

output only contains the desired signal and the interferers are

completely cancelled. This problem has been heavily studied in

array signal processing. One of the most popular adaptive array

beamformers is the minimum variance distortionless response

(MVDR) beamformer, which provides noise resilience while

nulling out interferers, and outputs the highest possible SINR.

When the covariance matrix of interference and noise is replaced

by the sample matrix obtained using a set of training (secondary)

data, the adaptive version of the MVDR beamformer is referred

to as the sample matrix inversion (SMI) beamformer [5], [11].

Here, we use the SMI beamformer as the reference for com-

parison with our proposed algorithm. SMI minimizes the mean-

squared error between the beamformer output and desired signal

by directly applying the pseudoinverse matrix, i.e.,w = X�†
s1.

To remove the impact of the unknown frequency offset, we

propose to design the weight vector w as

w = X�†(s1 � a(f1)) (3)

which is inspired by the SMI method. To do this, note that we

need to estimate the signal frequency offset f1 first. As described

ahead, we obtain this estimate using ANM.

Define a matrix atomic set as

AM = {A(fo + f,asv(θ)) : fo

+ f ∈ [0, 1),asv(θ) ∈ C
1×N}

with A(fo + f,asv(θ)) � a(fo + f)asv(θ). Observe that the

data matrix in (2) can be rewritten as X� =
∑K

k=1 A(fo
k +

fk,asv(θk)), and thus, X� can be represented with only a few

atoms from the atomic set AM . Now, define the corresponding

matrix atomic norm of an arbitrary matrix X as

‖X‖AM
= inf

{
∑

k

ck : X =
∑

k

ckA(fo
k

+ fk,asv(θk)), ck≥ 0} .

Given X�, to recover {fo
k + fk}Kk=1 and thus get f1, we can

solve the following ANM problem as in [16]–[18]:

min
X

‖X‖AM
s.t.X = X�. (4)

Problem (4) is equivalent to the following semidefinite program

(SDP):

min
X,u,V

1

2M
Tr(T (u)) +

1

2
Tr(V)

s.t.

[
T (u) X
X∗ V

]
� 0, X = X� (5)

where T (u) is a Hermitian Toeplitz matrix with u as its first

column, and Tr(·) denotes the trace of a matrix. Although the

primal problem (4) has a trivial solution (X = X�), its use-

fulness comes from the fact the dual solution Q of (4) carries

information about the unknown frequencies. (The off-the-shelf

SDP solver CVX [21] can return the dual solution Q of (4).)

In particular, using Q, one can formulate the dual polynomial

Q(f) = Q∗
a(f) and identify the frequencies {fo

k + fk}Kk=1
by localizing the places where the dual polynomial achieves

‖Q(f)‖2 = 1 [16, Prop. 1]. The frequency pair fo
k + fk closest

to the anticipated value fo
1 is identified as the desired frequency
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plus offset and used in (3) to construct the weight vector w. We

refer to this method as ANM+SMI since it is inspired by both

ANM and SMI.

It follows from [17, Th. 4] that X� =
∑K

k=1(sk �
a(fk))asv(θk) is the unique atomic decomposition that

achieves the atomic norm ‖X�‖AM
if the minimum separa-

tion between the frequencies {fo
k + fk}

K
k=1 is O(1/M) and

M ≥ 257. Note that M ≥ 257 is only a technical requirement

and is not required in practice. This guarantees that the frequen-

cies can be recovered via solving the aforementioned SDP (5)

and localizing the places where the dual polynomial achieves

‖Q(f)‖2 = 1.

In the case when the data matrix X� is contaminated by

Gaussian noise, one can solve the following atomic norm denois-

ing (AND) problem: minX
1
2‖Y −X‖2F + λ‖X‖AM

, where

Y = X� +E is the observed data withE being the noise matrix,

and λ is a regularization parameter that depends on the noise

variance and dimension of the problem [18]. We refer to this

method as AND+SMI. Similar to ANM+SMI, one can use

CVX2 to solve the corresponding SDP of the AND problem

and obtain the dual solution Q, formulate a dual polynomial

Q(f) = Q∗
a(f) to identify the frequencies {fo

k + fk}
K
k=1, and

construct the weight vector w using the signal frequency off-

set f1. As shown in [18, Th. III.6], when the entries of E

follow CN (0, σ2) and the minimum separation between the

frequencies {fo
k + fk}

K
k=1 isO(1/M), the denoised data matrix

X̂ obtained from solving AND with properly chosen λ satis-

fies ‖X̂−X�‖2F = O(σ2KN log(M))with probability at least

1− 1
M2 .

C. Numerical Studies

Using synthetic data, we compare ANM+SMI and AND+SMI

with SMI. We use a uniform linear array with half-wavelength

element spacing and N = 4 elements, i.e., the element posi-

tion vector q = −(N − 1)d/2 : d : (N − 1)d/2 with d = 0.5.

We consider a desired signal ej2πf
o

1
t with fo

1 = 1/8 and two

interferers 2ej2πf
o

2
t and 3ej2πf

o

3
t with [fo

2 fo
3 ] = [1/40 1/50].

The frequency offsets are set as [f1 f2 f3] = [1/40 1/50 1/100].
We set the angles to the desired signal and two interferers as

θ1 = 10◦, θ2 = −20◦, and θ3 = 50◦. We takeM = 100 uniform

time samples at each element and formulate the data matrix X�

in the noiseless case. The dual polynomial from the proposed

ANM+SMI method is shown in Fig. 1(a). With this dual polyno-

mial, we can exactly identify the frequency offset f1 and use it

to design the weight vector. The radiation pattern (array factor)

and the outputs of the digital beamformer with our ANM+SMI

weight and the SMI weight are shown in Figs. 1(b) and (c). It

can be seen that our weight vector can correctly separate the

desired signal from the two interferers. To illustrate the effect

of the minimum separation between the frequencies, we repeat

the previous experiment with different separation between the

frequency offsets. To simplify the experiment, we only use one

interferer here. We set the desired signal and interferer frequen-

cies as 0.1 and 0.101, respectively. The number of time samples

taken at each element is set as M = 20. We fix f1 = 1/40 and

set f2 = f1 + FreqSep with FreqSep = 0.01:0.001:0.025. We

2Solving an SDP via CVX can be slow when dealing with high-dimensional
signals. We leave the development of fast alternatives for future work.

Fig. 1. Interference cancellation with ANM+SMI in the noiseless case. (a)
Dual polynomial. (b) Radiation pattern (array factor). (c) Real part of the digital
beamformer outputs. (d) Relative recovery error.

Fig. 2. Interference cancellation with AND+SMI in the noisy case. (a) Dual
polynomial. (b) Radiation pattern (array factor). (c) Real part of the digital
beamformer outputs. (d) Relative recovery error.

present the relative error between the desired signal and the

output of the digital beamformer in Fig. 1(d). It can be seen that

the relative error decreases to zero when the frequency offset

separation is sufficiently large. Next, we add complex Gaussian

noise with variance σ2 = 0.05 to the data matrix X� and repeat

the previous experiments. The results are presented in Fig. 2. (All

parameters are the same except that in Fig. 2(d); we increase the

interferer frequency to 0.11, set FreqSep = 0.005:0.005:0.05,

and average over 20 trials.) It can be seen that our proposed

AND+SMI method still significantly outperforms SMI.

III. EXPERIMENTAL RESULTS ON INTERFERENCE

CANCELLATION USING A DIGITAL BEAMFORMER

We also test the performance of our proposed algorithm using

an in-house developed digital beamformer. This beamformer is

a software defined radio (SDR) array described in [12] and [21].

The hardware setup includes four National Instruments 2922

USRPs, an OctoClock-G CDA-2990 clock distribution acces-

sory, and N = 4 monopole antennas. The antenna elements in

the four-element linear array are spaced half-wavelengths apart

and the system operates at 2.45 GHz. The OctoClock provides

a trigger, which is used to synchronize all the SDRs in the array

for coherent operation. In our experiments, the sample rate (after

downconversion) was 500 kS/s.

In this experiment, we use two transmitters, each sending out

a continuous wave (CW) signal. One signal can be viewed as
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Fig. 3. Experimental interference cancellation with DBF. (a) Real part of the
received signal at the first element. (b) Dual polynomial used to estimate the
frequency offsets. (c) Output signals when the two transmitters send out two
CW signals. (d) Output signals when one transmitter sends out a CW signal and
the other sends out a square wave.

the desired signal and the other one as the interference. The

digital beamformer is used as a receiver. We note that the

transmitter is not synchronized with the receiver, meaning a

carrier frequency offset exists in this setup. An example of the

received signal at the first element is shown in Fig. 3(a). The

received signals from all four elements can be formulated as a

data matrix Y. We can, then, apply the AND+SMI method to Y

to estimate the frequency offsets and array weights. Note that we

only use M = 200 time samples to compute the array weights.

We also set the regularization parameter λ = 1. As shown in

Fig. 3(b), one can identify the frequency offsets by localizing

the peaks of ‖Q(f)‖2. In particular, the two frequency offsets

are identified as f1 = 0.795 and f2 = 0.99, corresponding to

CW signals 102.5 kHz and 5 kHz below the receiver carrier

frequency, respectively. Two weight vectors3
w1 = Y†

a(f1)
and w2 = Y†

a(f2) can, then, be used to separate the two

transmitted signals, or equivalently, cancel the interference. We

present the outputs (Yw1 and Yw2) of the digital beamformer

in Fig. 3(c). With both weighting vectors, the beamformer output

is a steady amplitude, as is consistent with a single CW signal.

If both signals were present, the output would show a periodic

amplitude variation resulting from the superposition of the two

CW signals with different frequencies. The SINRs of the two

signals are 73.14 dB and 64.00 dB for the signals at 102.5 kHz

and 5 kHz below the receiver carrier frequency, respectively.

SINRs were computed by removing the frequency offset from

the beamformer output and projecting the result onto a constant

signal to find the signal contribution to the beamformer output

and, hence, the signal power. The signal was subtracted from

the beamformer output to find the interference-plus-noise power.

These power values were used in SINR calculations. To provide a

clearer demonstration of the effectiveness of AND+SMI, we test

them on another two transmitted signals, which are a CW signal

and a 1 kHz square wave. (We use the same two weight vectors

previously computed.) Since at 500 kS/s the square wave period

is 500 samples, we kept 2000 samples at each element. Fig. 3(d)

3Note that amplitude variations in the data matrix may cause amplitude
variations in the weight vectors. To address this problem, we normalized the
weight vectors before performing interference cancellation.

Fig. 4. Multibeam interference cancellation with DBF. (a) SMI. (b) Proposed
AND+SMI method.

shows the outputs of the digital beamformer. It can be seen that

AND+SMI again separates the two signals successfully, with

one weighting vector closely recovering the CW signal and the

other recovering the square wave.

IV. APPLICATION TO MULTIBEAM ARRAYS

Multibeam antenna arrays can be used to transmit or receive

signals in multiple directions. Multibeam devices can be used

to communicate with separate devices simultaneously, isolating

communication to each device based on direction. In the case of

multiple-input multiple-output systems, multibeam capability is

the most effective way to increase channel capacity [22]. Gen-

erally, the choice is between analog (phased arrays) or DBF [2],

[3], where the former offers the advantage of lower cost, whereas

the latter offers several advantages such as wideband signal

reception and transmission, large number of beams, fast beam

steering, and flexibility.

In multibeam communication, each beam essentially acts

as an interference source for the other beams. If for each

beam, the array nulls all other channels (or beams), beam

isolation can be significantly improved, which maximizes

the signal-to-noise-ratio. In the following synthetic experi-

ment, we compare AND+SMI with SMI. We consider a uni-

form linear array with half-wavelength element spacing and

N = 4 elements. We consider three sources with anticipated

frequencies fo = [1/50 1/50 1/50], unknown frequency offsets

f = [1/200 1/100 1/20], and unknown directions of arrival θ =
[−25◦ 0◦ 60◦]. We take M = 100 snapshots from each sensor

and add complex Gaussian noise with variance 0.05 to the clean

data matrix. The resulting radiation patterns are shown in Fig. 4.

It can be seen that AND+SMI outperforms SMI in its ability

to isolate each source while suppressing the interference from

other sources when the source frequency offsets are unknown.

We note that since SMI computes the weight vector based on the

anticipated frequency, which is identical for the three signals in

this study, it cannot identify three separate beams and, therefore,

computes a single weight vector for the array.

V. CONCLUSION

We propose a new adaptive interference cancellation algo-

rithm that is robust to signal corruptions, such as carrier fre-

quency offsets between the transmitter and receiver. Compared

to other techniques, our method directly extracts the carrier

frequency offsets that cause signal corruption and cancels the

interference with maximum SINR. The proposed method also

finds application in multibeam arrays.
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