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Adaptive Interference Cancellation Using Atomic
Norm Minimization and Denoising

Shuang Li
and Michael B. Wakin

Abstract—The rapid increase in the number of wireless devices
in modern communication networks has significantly increased the
number of interference sources, which severely impacts communi-
cation reliability. Adaptive interference cancellation is rapidly be-
coming a necessity for modern wireless networks. For interference
cancellation, a digital beamformer adaptively adjusts its weight
vector using an array processing algorithm. This, in turn, shapes
the radiation pattern in a manner that minimizes interference
power and maximizes the desired signal power. In this letter, we
propose two atomic-norm-minimization-based methods to design
a weight vector that can be used to cancel interference. We present
numerical and experimental studies and compare with the mini-
mum variance distortionless response beamformer, which outputs
the highest possible signal-to-interference-plus-noise ratio (SINR).
We show that our approach is robust to signal corruptions arising
from carrier frequency offsets. Uniquely, our algorithm extracts
the offset frequencies, thus enabling interference cancellation with
maximum SINR.

Index Terms—Array processing, atomic norm minimization
(ANM), beamforming, carrier frequency offset, interference
cancellation.

1. INTRODUCTION

DAPTIVE beamformers consist of an antenna array and an
A adaptive processor. In addition to high-speed beamscan-
ning, these systems can be used for adaptive interference can-
cellation and high-resolution direction finding [1]-[3]. Adaptive
arrays cancel interference by placing array nulls in the direction
of the interferers. In a digital beamforming (DBF) receiver, each
element is connected to a preamp and then to an A/D converter.
The outputs of the A/Ds are connected to a coded digital data
bus. A similar process is implemented in transmit. Having digital
data at each element of the array provides the means to measure
the covariance matrix, which is the crux of all adaptive nulling
algorithms [4]. While the high cost of these systems limited
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their widescale deployment in the past, ongoing improvements
in semiconductor technology as well as radio communications
(e.g., software defined radios) have now made DBF arrays a
practical option.

Adaptive algorithms typically rely on a known pilot signal,
which is compared to the received pilot signal and used to
form an error vector. Algorithms minimize this error vector
by optimizing the weight vector of the antenna array. Digital
signals collected at the elements of the array serve as the array
processor input, and as such these algorithms are very sensitive
to signal corruptions. Practical implementation of DBF, thus,
requires one to develop robust solutions for nonideal scenarios,
commonly known as mismatched beamformers [S]-[11]. Robust
algorithms have primarily focused on mismatches from steering
vector (SV) errors, or finite sample size of the spatial spectral
estimates. While the latter problem is outside the scope of this
work, SV mismatch has some similarities, however with subtle
differences [6]-[9]. SV errors arise from direction-of-arrival
mismatch, or perturbed arrays with errors in element location,
phase, or gain, and have shown to result in severe performance
degradation. The most widely adopted solution to these prob-
lems is diagonal loading [6], [7] and equivalent approaches.
These techniques provide robustness to SV errors by effectively
designing for a higher white noise level than is actually present,
and as such are usually practical when signal-to-interference
ratio (SIR) is more important than signal-to-interference-plus-
noise ratio (SINR). To mitigate some of these issues, variable
loading [8], [9] has been introduced; it can improve robustness
to SV errors while maintaining a desired SIR or SINR.

On the other hand, in [12], it was shown that carrier frequency
offsets between the transmitter and receiver corrupt the received
signal and prevent it from matching the pilot signal due to low
correlation between the signals. If carrier frequency offsets can
be measured and corrected before interference cancellation, this
issue can be resolved. However, in high-interference and high-
multipath environments, measuring the carrier frequency offset
is usually not possible. In this letter, we introduce a new interfer-
ence cancellation algorithm based on atomic norm minimization
(ANM) that provides robustness to this type of signal corruption.
While existing beamforming techniques can provide robustness
to certain mismatch issues such as SV errors, and usually at
the expense of a higher noise, to the best of our knowledge,
no existing approach is designed to provide robustness toward
signal corruptions arising from carrier frequency offsets. We
present numerical and experimental results and show that our
proposed approach is naturally capable of extracting the offset
frequencies that cause signal corruption. As such, robustness is
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achieved with maximum SINR and without any degradation to
other system performance characteristics.

II. ANM FOR ADAPTIVE INTERFERENCE CANCELLATION

A. Atomic Norm Minimization

Inrecent years, ANM has been extensively studied in both line
spectral estimation and array signal processing for localizing the
off-grid temporal or angular frequencies of sinusoidal compo-
nents [13]-[20]. Consider a sampled spectrally sparse signal
x € CM with K different active frequencies

K
=3 calfi) € C” M

k=1

where a(f) 2 [1e727/ ... 227 f(M=D]T ¢ CM i5 a vector'
containing M uniform samples of a complex exponential signal
with frequency f € [0, 1), and the scalars ¢, denote the complex
coefficients. As in [13]-[20], one can define an atomic set
A consisting of all possible such complex exponentials: A =
{a(f): f €]0,1)}. This atomic set induces a corresponding
atomic norm||x|| 4 := inf{z:kK:1 lek| : = Zszl cra(fr)}
The atomic norm is analogous to the /; norm commonly used
in compressive sensing and sparse signal recovery with finite
dictionaries, but in this case, the dictionary is the continuously
parameterized atomic set .A. When solving an inverse problem
with multiple candidate solutions, minimizing ¢ or atomic norm
will promote sparsity in the solution. In particular, note that any
signal  obeying (1) can be represented with only K atoms from
the atomic set .A. When « is observed with missing or noisy
entries, then optimization problems that attempt to minimize
the atomic norm will promote spectral sparsity and can lead to
exact or approximate recovery of @ [13]-[20]. Notably, this is
possible even when the frequencies fj are “off grid,” i.e., not

restricted to the Nyquist frequencies 0, 77, =, - - . , 257

B. Problem Formulation

Consider a conventional linear array with /N antenna ele-
ments. By collecting M snapshots on each element, one can
formulate a data matrix

K
X* = (sr 0 a(fi)asv(0;) € CMN 2)
k=1

where s, denotes the desired signal (if £ = 1) or interferers (if
k > 1), and ® denotes elementwise vector multiplication. Here,
we assume that the desired signal and the interferers {sj}5_,
are uniformly sampled complex exponential signals, namely,
sp = [1ed27F . ed2mfRM=D]T for | = 1,..., K, where f{
denotes the known frequency of the desired signal (if k = 1)
or the unknown frequency of the interferers (if k£ > 1). The
modulation by the vector a( f);) models an unknown frequency
offset fi. Finally, asv(f) £ ¢727(?x)a denotes the array SV
with ¢ € RM¥ being the element positions and 6, being the
angle to the desired source (if £ = 1) or interferers (if &£ > 1).
Our goal, in this letter, is to design a weight vector w € CV
for an array such that the array output is X*w = s; when given

'Note that we use superscripts | and * to denote transpose and conjugate
transpose, respectively.
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the data matrix X* and the desired signal s;. That is, the array
output only contains the desired signal and the interferers are
completely cancelled. This problem has been heavily studied in
array signal processing. One of the most popular adaptive array
beamformers is the minimum variance distortionless response
(MVDR) beamformer, which provides noise resilience while
nulling out interferers, and outputs the highest possible SINR.
When the covariance matrix of interference and noise is replaced
by the sample matrix obtained using a set of training (secondary)
data, the adaptive version of the MVDR beamformer is referred
to as the sample matrix inversion (SMI) beamformer [5], [11].
Here, we use the SMI beamformer as the reference for com-
parison with our proposed algorithm. SMI minimizes the mean-
squared error between the beamformer output and desired signal
by directly applying the pseudoinverse matrix, i.e., w = X*Ts;.

To remove the impact of the unknown frequency offset, we
propose to design the weight vector w as

w=X*""(s1 ®a(f1)) 3)

which is inspired by the SMI method. To do this, note that we
need to estimate the signal frequency offset f; first. As described
ahead, we obtain this estimate using ANM.

Define a matrix atomic set as

Ay = {A(f° + f,asv(0)) : f°
+ f€[0,1),asv(d) € C*N}

with A(f° + f,asv(0)) £ a(f° + f)asv(0). Observe that the
data matrix in (2) can be rewritten as X* = Zszl A(fp+
Jr,asv(0y)), and thus, X* can be represented with only a few
atoms from the atomic set .A;. Now, define the corresponding
matrix atomic norm of an arbitrary matrix X as

X[y = inf {Z X =) aAff
k k

+ fr,asv(6y)), x> 0}

Given X*, to recover { f¢ + fx}2_, and thus get f;, we can
solve the following ANM problem as in [16]-[18]:

m)'én 1X]| .4, st. X = X*. 4)

Problem (4) is equivalent to the following semidefinite program
(SDP):

. 1 1
i, 5 (T (W) + 5T (V)
T(u) X e
s.t. [ < V]to,xx )

where 7 (u) is a Hermitian Toeplitz matrix with w as its first
column, and Tr(-) denotes the trace of a matrix. Although the
primal problem (4) has a trivial solution (X = X*), its use-
fulness comes from the fact the dual solution Q of (4) carries
information about the unknown frequencies. (The off-the-shelf
SDP solver CVX [21] can return the dual solution Q of (4).)
In particular, using Q, one can formulate the dual polynomial
9(f) = Q*a(f) and identify the frequencies {f{ + fx}r,
by localizing the places where the dual polynomial achieves
|Q(f)ll2 = 1[16, Prop. 1]. The frequency pair f + fi closest
to the anticipated value f7 is identified as the desired frequency
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plus offset and used in (3) to construct the weight vector w. We
refer to this method as ANM+SMI since it is inspired by both
ANM and SMI.

It follows from [17, Th. 4] that X* = Zle(sk ®
a(fr))asv(0;) is the unique atomic decomposition that
achieves the atomic norm || X*|| 4,, if the minimum separa-
tion between the frequencies {f? + fx}& | is O(1/M) and
M > 257. Note that M > 257 is only a technical requirement
and is not required in practice. This guarantees that the frequen-
cies can be recovered via solving the aforementioned SDP (5)
and localizing the places where the dual polynomial achieves
122 = 1.

In the case when the data matrix X* is contaminated by
Gaussian noise, one can solve the following atomic norm denois-
ing (AND) problem: minx 1||Y — X||% + A[|X]|4,,, where
Y = X* + Eisthe observed data with E being the noise matrix,
and X is a regularization parameter that depends on the noise
variance and dimension of the problem [18]. We refer to this
method as AND+SMI. Similar to ANM+SMI, one can use
CVX? to solve the corresponding SDP of the AND problem
and obtain the dual solution Q, formulate a dual polynomial
Q(f) = Q*a(f) to identify the frequencies { f{ + f }/_, and
construct the weight vector w using the signal frequency off-
set f1. As shown in [18, Th. III.6], when the entries of E
follow CN(0,0?) and the minimum separation between the
frequencies { f + fi } 5, is O(1/M), the denoised data matrix
X obtained from solving AND with properly chosen X satis-
fies ||)1A( — X*||% = O(d2K N log(M ) with probability at least
1— 4=

C. Numerical Studies

Using synthetic data, we compare ANM+SMI and AND+SMI
with SMI. We use a uniform linear array with half-wavelength
element spacing and N = 4 elements, i.e., the element posi-
tion vector ¢ = —(N — 1)d/2 : d : (N — 1)d/2 with d = 0.5.
We consider a desired signal e/27/T* with f¢ = 1/8 and two
interferers 2¢727/2 and 3e/27/5t with [fg £9] = [1/40 1/50].
The frequency offsets are set as [f1 fo f3] = [1/40 1/50 1/100].
We set the angles to the desired signal and two interferers as
0, = 10°,60, = —20°, and 05 = 50°. We take M = 100 uniform
time samples at each element and formulate the data matrix X*
in the noiseless case. The dual polynomial from the proposed
ANM+SMI method is shown in Fig. 1(a). With this dual polyno-
mial, we can exactly identify the frequency offset f; and use it
to design the weight vector. The radiation pattern (array factor)
and the outputs of the digital beamformer with our ANM+SMI
weight and the SMI weight are shown in Figs. 1(b) and (c). It
can be seen that our weight vector can correctly separate the
desired signal from the two interferers. To illustrate the effect
of the minimum separation between the frequencies, we repeat
the previous experiment with different separation between the
frequency offsets. To simplify the experiment, we only use one
interferer here. We set the desired signal and interferer frequen-
cies as 0.1 and 0.101, respectively. The number of time samples
taken at each element is set as M = 20. We fix f; = 1/40 and
set fo = f1 + FreqSep with FreqSep = 0.01:0.001:0.025. We

2Solving an SDP via CVX can be slow when dealing with high-dimensional
signals. We leave the development of fast alternatives for future work.
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Fig. 1. Interference cancellation with ANM+SMI in the noiseless case. (a)
Dual polynomial. (b) Radiation pattern (array factor). (c) Real part of the digital
beamformer outputs. (d) Relative recovery error.
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Fig. 2. Interference cancellation with AND+SMI in the noisy case. (a) Dual
polynomial. (b) Radiation pattern (array factor). (c) Real part of the digital
beamformer outputs. (d) Relative recovery error.

present the relative error between the desired signal and the
output of the digital beamformer in Fig. 1(d). It can be seen that
the relative error decreases to zero when the frequency offset
separation is sufficiently large. Next, we add complex Gaussian
noise with variance o2 = 0.05 to the data matrix X* and repeat
the previous experiments. The results are presented in Fig. 2. (All
parameters are the same except that in Fig. 2(d); we increase the
interferer frequency to 0.11, set FreqSep = 0.005:0.005:0.05,
and average over 20 trials.) It can be seen that our proposed
AND+SMI method still significantly outperforms SMI.

III. EXPERIMENTAL RESULTS ON INTERFERENCE
CANCELLATION USING A DIGITAL BEAMFORMER

We also test the performance of our proposed algorithm using
an in-house developed digital beamformer. This beamformer is
a software defined radio (SDR) array described in [12] and [21].
The hardware setup includes four National Instruments 2922
USRPs, an OctoClock-G CDA-2990 clock distribution acces-
sory, and N = 4 monopole antennas. The antenna elements in
the four-element linear array are spaced half-wavelengths apart
and the system operates at 2.45 GHz. The OctoClock provides
a trigger, which is used to synchronize all the SDRs in the array
for coherent operation. In our experiments, the sample rate (after
downconversion) was 500 kS/s.

In this experiment, we use two transmitters, each sending out
a continuous wave (CW) signal. One signal can be viewed as
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Fig. 3. Experimental interference cancellation with DBF. (a) Real part of the
received signal at the first element. (b) Dual polynomial used to estimate the
frequency offsets. (c) Output signals when the two transmitters send out two
CW signals. (d) Output signals when one transmitter sends out a CW signal and
the other sends out a square wave.

the desired signal and the other one as the interference. The
digital beamformer is used as a receiver. We note that the
transmitter is not synchronized with the receiver, meaning a
carrier frequency offset exists in this setup. An example of the
received signal at the first element is shown in Fig. 3(a). The
received signals from all four elements can be formulated as a
data matrix Y. We can, then, apply the AND+SMI method to Y
to estimate the frequency offsets and array weights. Note that we
only use M = 200 time samples to compute the array weights.
We also set the regularization parameter A = 1. As shown in
Fig. 3(b), one can identify the frequency offsets by localizing
the peaks of ||Q(f)||2- In particular, the two frequency offsets
are identified as f; = 0.795 and fo = 0.99, corresponding to
CW signals 102.5 kHz and 5 kHz below the receiver carrier
frequency, respectively. Two weight vectors® w; = Y'a(f;)
and wy = YTa( f2) can, then, be used to separate the two
transmitted signals, or equivalently, cancel the interference. We
present the outputs (Yw; and Yws) of the digital beamformer
in Fig. 3(c). With both weighting vectors, the beamformer output
is a steady amplitude, as is consistent with a single CW signal.
If both signals were present, the output would show a periodic
amplitude variation resulting from the superposition of the two
CW signals with different frequencies. The SINRs of the two
signals are 73.14 dB and 64.00 dB for the signals at 102.5 kHz
and 5 kHz below the receiver carrier frequency, respectively.
SINRs were computed by removing the frequency offset from
the beamformer output and projecting the result onto a constant
signal to find the signal contribution to the beamformer output
and, hence, the signal power. The signal was subtracted from
the beamformer output to find the interference-plus-noise power.
These power values were used in SINR calculations. To provide a
clearer demonstration of the effectiveness of AND+SMI, we test
them on another two transmitted signals, which are a CW signal
and a 1 kHz square wave. (We use the same two weight vectors
previously computed.) Since at 500 kS/s the square wave period
is 500 samples, we kept 2000 samples at each element. Fig. 3(d)

3Note that amplitude variations in the data matrix may cause amplitude
variations in the weight vectors. To address this problem, we normalized the
weight vectors before performing interference cancellation.
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Fig. 4. Multibeam interference cancellation with DBF. (a) SMI. (b) Proposed
AND+SMI method.

shows the outputs of the digital beamformer. It can be seen that
AND+SMI again separates the two signals successfully, with
one weighting vector closely recovering the CW signal and the
other recovering the square wave.

IV. APPLICATION TO MULTIBEAM ARRAYS

Multibeam antenna arrays can be used to transmit or receive
signals in multiple directions. Multibeam devices can be used
to communicate with separate devices simultaneously, isolating
communication to each device based on direction. In the case of
multiple-input multiple-output systems, multibeam capability is
the most effective way to increase channel capacity [22]. Gen-
erally, the choice is between analog (phased arrays) or DBF [2],
[3], where the former offers the advantage of lower cost, whereas
the latter offers several advantages such as wideband signal
reception and transmission, large number of beams, fast beam
steering, and flexibility.

In multibeam communication, each beam essentially acts
as an interference source for the other beams. If for each
beam, the array nulls all other channels (or beams), beam
isolation can be significantly improved, which maximizes
the signal-to-noise-ratio. In the following synthetic experi-
ment, we compare AND+SMI with SMI. We consider a uni-
form linear array with half-wavelength element spacing and
N =4 elements. We consider three sources with anticipated
frequencies f° = [1/50 1/50 1/50], unknown frequency offsets
f = [1/200 1/100 1/20], and unknown directions of arrival § =
[—25°0° 60°]. We take M = 100 snapshots from each sensor
and add complex Gaussian noise with variance 0.05 to the clean
data matrix. The resulting radiation patterns are shown in Fig. 4.
It can be seen that AND+SMI outperforms SMI in its ability
to isolate each source while suppressing the interference from
other sources when the source frequency offsets are unknown.
We note that since SMI computes the weight vector based on the
anticipated frequency, which is identical for the three signals in
this study, it cannot identify three separate beams and, therefore,
computes a single weight vector for the array.

V. CONCLUSION

We propose a new adaptive interference cancellation algo-
rithm that is robust to signal corruptions, such as carrier fre-
quency offsets between the transmitter and receiver. Compared
to other techniques, our method directly extracts the carrier
frequency offsets that cause signal corruption and cancels the
interference with maximum SINR. The proposed method also
finds application in multibeam arrays.
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