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ABSTRACT: In this study, seasonal forecasts from the National Centers for Environmental Prediction (NCEP) Climate
Forecast System, version 2 (CFSv2), are compared with station observations to assess their usefulness in producing accurate
buildup index (BUTI) forecasts for the fire season in Interior Alaska. These comparisons indicate that the CFSv2 June—July—
August (JJA) climatology (1994-2017) produces negatively biased BUI forecasts because of negative temperature and
positive precipitation biases. With quantile mapping (QM) correction, the temperature and precipitation forecasts better
match the observations. The long-term JJA mean BUI improves from 12 to 42 when computed using the QM-corrected
forecasts. Further postprocessing of the QM-corrected BUI forecasts using the quartile classification method shows
anomalously high values for the 2004 fire season, which was the worst on record in terms of the area burned by wildfires.
These results suggest that the QM-corrected CFSv2 forecasts can be used to predict extreme fire events. An assessment of
the classified BUI ensemble members at the subseasonal scale shows that persistently occurring BUI forecasts exceeding
150 in the cumulative drought season can be used as an indicator that extreme fire events will occur during the upcoming
season. This study demonstrates the ability of QM-corrected CFSv2 forecasts to predict the potential fire season in advance.
This information could, therefore, assist fire managers in resource allocation and disaster response preparedness.

KEYWORDS: Ensembles; Hindcasts; Seasonal forecasting; Climate models; Model evaluation/performance;
Reanalysis data

1. Introduction and their flammability. Dollard (2020) distinguished the fire
season into four subseasons to capture the fire behavior
based on the primary fire drivers: the wind-driven season
(1 April-10 June), the duff-driven season (11 June-9 July),
the cumulative drought season (10 July-15 August), and the
diurnal effect-driven season (16 August-30 September). In each
subseason, fuel availability and weather conditions affect fire
growth differently. For example, frontal winds contribute to
fire growth during the wind-driven season, whereas in the duff-
driven season, longer days combined with warm and dry con-
ditions result in the production of fuel loads from dried tundra
and spruce vegetation, which in turn supports intense fires. The
cumulative drought season is dominated by severe and fre-
quent fires, as below-normal precipitation and high air tem-
peratures contribute to dry fuel loads. Eventually, the fire
season subsides during the diurnal effect season, when shorter,
cooler days limit the occurrence of fires.

Information about the availability of dry fuel loads on the
forest floor and the local weather conditions in each subseason is

Wildfires are a natural component of boreal forest ecological
processes (Rowe and Scotter 1973; Bond-Lamberty et al. 2007).
As Alaska continues to warm, the frequency and areal extent of
wildfires are increasing, as is the demand for firefighting re-
sources (Chapin et al. 2008). Interior Alaska is dominated by
60%-70% boreal forest coverage (Nowacki et al. 2003) and is
home to approximately 100000 inhabitants. Most of this pop-
ulation lives in remote villages where access through conven-
tional transportation options is limited. Thus, the most common
way to mitigate fires that threaten rural indigenous communities
is via expensive air tankers (Todd and Jewkes 2006).

Weather is the most important factor influencing fire behavior.
Regions with warm and dry atmospheric conditions have more
frequent and more severe fire events (Flannigan et al. 2009;
Partain et al. 2016). In Alaska, the seasonal severity of boreal
forest fires changes frequently based on the forest floor fuel loads

& Supplemental information related to this paper is available at

the Journals Online website: https://doi.org/10.1175/WAF-D-19-
0225.51. Publisher’s Note: This article was revised on 20 July 2021 to add

additional authors and update the Acknowledgments section, and
again on 3 August 2021 for an additional edit to the
Corresponding author: Akila Sampath, asampath@alaska.edu Acknowledgments section.

DOI: 10.1175/WAF-D-19-0225.1

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright
Policy (www.ametsoc.org/PUBSReuseLicenses).
Unauthenticated | Downloaded 06/02/22 09:37 PM UTC


https://doi.org/10.1175/WAF-D-19-0225.s1
https://doi.org/10.1175/WAF-D-19-0225.s1
mailto:asampath@alaska.edu
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses

602

necessary for fire managers to evaluate the growth and severity of
fires in boreal forests. The Canadian forest fire weather index
system (FWI; Van Wagner 1987) is commonly used to connect
boreal fire behavior to local weather conditions (Horel et al.
2014). In the FWI system, the buildup index (BUI) is a unitless
quantity that estimates the total amount of dry forest fuel avail-
able for combustion and helps identify areas with increased fire
potential. Alaskan fire managers assess fire severity and develop
effective preventive action plans based on the BUI (Partain et al.
2016). According to Arpaci et al. (2013), the BUI has been
identified as the best indicator of the severity of seasonal fires and
overall flammability of boreal forest fires. Climate—fire relation-
ships are location specific (Littell et al. 2009); thus, fire managers
consider the evaluation of the BUI in predictive service areas
(PSAs) to be ideal for fire-fighting logistics because PSAs en-
compass regions with unique weather conditions.

Studies have demonstrated the applicability of NCEP’s op-
erational forecast system, the Climate Forecast System, ver-
sion 2 (CFSv2), for hydrological and soil moisture predictions
(Yuan et al. 2011; Mo et al. 2012). The present study aims to
assess the usefulness of the CFSv2 temperature, precipitation,
and specific humidity forecasts that are available in early
March for producing BUI forecasts in each PSA for the
Interior Alaska fire season. Application of CFSv2 forecasts
in BUI prediction requires a preprocessing step to minimize the
forecast biases, which hinder the better representation of local
weather. For this purpose, this study also focuses on correcting
the forecast biases using the quantile mapping (QM) method.
The QM technique is most commonly used in climate change
applications; however, this study explores its usage for seasonal
prediction purposes. The proposed correction procedures are de-
veloped based on the discussions present in Cannon et al. (2015).
The CFSv2 precipitation and temperature forecasts are important
to calculate BUI and are corrected to ensure no additional artifacts
are added to the forecasts. This step retains the original distribu-
tions of the ensemble forecasts, thus maximizing their applicability
to seasonal extreme weather prediction applications. After the
correction, the performance of the forecasts is investigated by
comparing the temperature, precipitation, and BUI forecasts with
station observations at the PSA scale. Overall, the usefulness of the
corrected CFSv2 ensemble forecasts in determining the potential
predictability of BUI forecasts is demonstrated.

This paper is organized as follows: section 2 explains how
the QM correction method is applied to the CFSv2 ensemble
forecasts, including a description of the model forecasts,
observations, and statistical analysis. Section 3 presents the
CFSv2 forecast evaluations, the corrected CFSv2 forecasts,
the skill analysis of the corrected forecasts, and a discussion
of their ability to predict the BUI. Section 4 provides con-
clusions and recommendations based on the results of the
QM-corrected forecasts.

2. Data
a. Predictive service area station observations

Fire managers use daily BUI values that are calculated
from in situ observations and are specific to each PSA
(Fig. 1) in their early preparation plans. These observations
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FI1G. 1. Fire predictive service area (PSA) divisions. The legend
labels show the 10 Interior Alaska PSA names that are analyzed in
this study. MesoWest stations are shown by the black circles. See
text for further details.

are archived and available to fire professionals in the United
States via the MesoWest web interface, and are widely used
for evaluating model forecasts in fire weather applications
(Horel et al. 2014). Data resources from the Alaska Fire and
Fuels (AKFF; https://akff.mesowest.org/) include both the
National Weather Service (NWS) station and the Remote
Automated Weather System (RAWS; Horel and Dong
2010) networks.

All station observation data in each PSA (Fig. 1, black circles)
are averaged together to calculate the daily PSA data. In this
study, observational data from each PSA are used to develop
PSA-specific correction procedures over the period of 1994-2010
and to evaluate the CFSv2 from 1994 to 2017. The Fairbanks—
Tanana Valley region, which has a continental climate, is an area
of focus for fire managers in Interior Alaska (McCorkle et al.
2018). The Tanana Valley West PSA has the highest density of
observations (Fig. 1). Therefore, only the analysis for this PSA is
presented and discussed in the main body of the paper.
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FI1G. 2. Schematic view of the quantile mapping (QM) correction
method for a temperature forecast for the Tanana Valley West.
QM for precipitation looks similar.
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FIG. 3. JJA temperature (°C) for the period of 1982-2010: (a) climatology of CFSv2, (b) climatology of CFSR, (c) climatology of NARR,
(d) CFSv2 minus CFSR, and (¢) CFSv2 minus NARR.

b. Climate Forecast System Reanalysis climate model components (Saha et al. 2010). This integrates a

spectral atmospheric model (Saha et al. 2006) at a horizontal

The NCEP Climate Forecast System Reanalysis (CFSR; resolution of ~38km (T382), with 64 hybrid vertical levels. In

1982-2010) is a high-resolution reanalysis product that in- addition to a full range of observations, satellite radiances are
cludes coupled atmosphere, ocean, land surface, and sea ice  assimilated in this reanalysis.
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FIG. 4. As in Fig. 3, but for JJA precipitation (mm).

¢. North American Regional Reanalysis model with substantially improved atmospheric circulation
throughout the troposphere (Mesinger et al. 2006). This re-

The NCEP North American Regional Reanalysis (NARR; analysis is generated using the high-spatial-resolution NCEP
1979-present) is a dynamically consistent, high-resolution = Eta model with a horizontal resolution of 32 km and 45 vertical
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F1G. 5. BUISs for the Tanana Valley West (1994-2017) PSA are calculated using observations
only (black), model with observed precipitation (cyan), model with observed temperature
(purple), model with observed relative humidity (orange), and model only (green).

layers. The Regional Data Assimilation System (RDAS) is in-
tegrated with this reanalysis. The NARR includes accurately
assimilated precipitation (Becker et al. 2009) and 2-m temper-
ature fields that have been shown to be in agreement with ob-
servations (Mesinger et al. 2006). This reanalysis also includes a
full range of observations.

d. CFSv2 forecast

The NCEP CFSv2 system is a coupled operational ensemble
forecast system that consists of atmosphere, ocean, land, and
sea ice models (Saha et al. 2014). The CFSv2 spectral atmo-
spheric component model is the Global Forecast System
(GFS), which is run at a T126 (~100 km) horizontal resolution
with 64 vertical sigma-pressure hybrid levels.

CFSv2 hindcasts (1982-2010) have 24 ensemble members
and are initialized using CFSR data. CFSv2 real-time forecasts
(2011-present) have 120 ensemble members (Becker and Van
Den Dool 2016). These CFSv2 forecasts use initial conditions
from the seasonal Climate Data Assimilation System, version
2. The hindcasts and forecasts are both initialized every 5 days
at four coordinated universal time (UTC) cycles (0000, 0600,
1200, and 1800).

3. Methods
a. The buildup index

The BUI calculation uses a set of nonlinear mathematical
formulations that require data on the daily total precipitation,
2-m temperature, and relative humidity at local solar noon
(Van Wagner 1987). The relative humidity is calculated using
the forecasted CFSv2 temperature and specific humidity. Solar
noon is approximately 1400 AKST in the eastern Interior Alaska
region (i.e., close to the Canadian border) and 1500 AKST in the
western Interior Alaska region (i.e., adjacent to the Bering Sea).
Due to the wide range of local noon times, 0000 UTC (1500
AKST) CFSv2 forecast values are used in the BUI calculations.
Therefore, in this study, it is assumed that the uncertainty due to

the differences between the values at local noon in the forecast
and those in the PSA is marginal and does not contribute to any
major biases. The total daily precipitation is computed by
summing the precipitation from all four cycles (0000, 0600, 1200,
and 1800). The BUIs are then calculated for each PSA from the
daily weighted average of the CFSv2 temperature and precipi-
tation forecasts. These values are later evaluated by comparing
them with the BUI values calculated from the PSA observations
to explore the sensitivity of the BUI to weather parameters. In
this study, BUIs are calculated using the FORTRAN 95 version
of the FWI source code (Wang et al. 2015).

b. Quantile mapping

Downscaled forecasts have been created using QM, and
these forecasts are reasonably comparable to observations
(Wood et al. 2004). In this study, the nonparametric empirical
QM method (i.e., Zhao et al. 2017) is used to correct the CFSv2
seasonal forecast biases. The QM correction method is im-
plemented for temperature and precipitation variables for the
calibration period of 1994-2010 and validated for the period of
1994-2017. In the QM correction method, the cumulative
distribution function (CDF) of the forecast variables is shifted
toward those of the observations. Therefore, each quantile of
the model data is mapped to the corresponding quantile in the
observations (Zhao et al. 2017).

To correct the data, daily area-weighted averages of the
forecasted temperature and precipitation are first calculated
for each PSA. Then, the time series of both the forecasts and
the corresponding PSA observations are smoothed using a
31-day moving average window (e.g., Pierce et al. 2015). The
31-day moving window ensures that noise and extreme values
are removed from the observations before the data are
corrected using the QM correction method. In addition, this
smoothing process facilitates the comparison of time series
observations with time series weighted-area averages of
gridded data. The smoothing process is repeated with vari-
ous window lengths to explore the sensitivity of the obser-
vational data to smoothing processes. Overall, the 31-day
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window has been determined to best capture the seasonal
observations.

Next, lookup tables are created for each PSA, with empirical
quantiles of the forecast values and empirical quantiles of the
observations using the CDF (Fig. 2). An inverse CDF value for
the daily uncorrected forecast (or corrected forecast) is pro-
duced by looking up the quantile corresponding to the closest
forecast value in the forecast calibration set (i.e., 1994-2010).
This forecasted quantile value is then matched to the observed
quantile value to determine the associated observed value [Eq.
(1); see Fig. 2]:

ObS{ fest xtcsl(t)] } ? (1)

— xfcst (t) + F<;315 {chst [xfcst (Z)]}
2 >

xcorr-fcst (t)

@)

xcorr-temp-fcst( )

— rilecst(z) + obs{ fest [xfm(l) } (3)

Xcorr-prcc—fcst( ) -

Here, Fi. is the CDF of the uncorrected forecast x¢., and
F;,L is the inverse CDF of the observations xops at time 7. The
corrected forecast at time ¢ for the forecast that best matches
observations is defined as Xcorrfest [EQ. (1)]. The corrected
temperature and precipitation forecasts beyond the obser-
vations are defined as Xcorr-temp-fest [Eq (2)] and Xcorr-prec-fest
[Eq. (3)], respectively. The precipitation values are re-
scaled to reduce the peak values using a scaling factor r.
Here, r is the ratio of the average of all values in the cali-
bration set of observations to the average of all values in the
uncorrected forecast. Incorporating scaling processes into
correction procedures has been shown to result in better
corrected precipitation forecasts (Cannon et al. 2015). In
this study, the proposed correction methods are intended to
correct any major biases associated with the shape and
magnitude of the ensemble members at the daily time scale
but not to correct the original model physics of the forecasts
(for a discussion on correcting for model physics, see
Biirger et al. 2011).

c. Skill assessment of the CFSv2 forecast

The CFSR and NARR are used to evaluate the CFSv2
temperature and precipitation data from 1982 to 2010. The
datasets, variables, and postprocessing methods are described
in a flowchart (see the appendix).

The PSA area-weighted averages of the corrected and un-
corrected forecast temperature and precipitation are used for
the June-July—August (JJA) skill assessment for individual
ensemble members with respect to the PSA observations
spanning 1994-2017. The skill of the corrected forecast en-
semble members at the daily time scale is assessed for all 10
PSAs using root-mean-square error (RMSE) and skill score
(SS) values (Wilks 2006). The SS, defined as a percentage, is
determined for the individual forecast ensemble members

[Eq. (D]

RMSE — RMSE

uncorr

RMSE

uncorr

skill score (SS) = O X 100%.  (4)
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FIG. 6. Daily mean seasonal cycle over 1994-2017 for the Tanana
Valley West: (a) temperature, (b) precipitation, and (c) BUL

In Eq. (4), RMSE,,corr represents the RMSE of the uncor-
rected forecasts, and RMSE_,,,, is the RMSE of the corrected
forecasts. A high SS indicates high forecasting skill.

A quantile classification (Freund and Perles 1987; Hyndman
and Fan 1996) is used to further postprocess the corrected BUT
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FIG. 7. Corrected and improved RMSEs (1994-2017) for (a) temperature, (b) precipitation, and (c) BUI over all 10 Interior Alaska PSAs
at the four subseasonal scales. The improved RMSE is uncorrected minus corrected.

forecasts. The corrected BUI ensemble members are grouped
into five equal-sized bins based on their statistical rank: zeroth
quantile (minimum), first quantile (Q1), second quantile (Q2),
third quantile (Q3), and fourth quantile (Q4). In this study, the
fourth quantile is used to describe the predictability of QM-
corrected BUI forecasts at the subseasonal scale for each PSA.

4. Results and discussion

a. Climatology of the temperature and precipitation
forecasts

The uncorrected JJA CFSv2 ensemble forecast data are
assessed for their prediction skill with respect to the CFSR and
NARR data over Interior Alaska (Figs. 3 and 4 ). The spatial
distributions of the long-term means show that temperatures
vary from 13° to 19°C for CFSv2 and that they capture the range
found in the CFSR and NARR data across Interior Alaska
(Figs. 3a—c). The temperature differences between CFSv2 and
CFSR range from 1° to 3°C (Fig. 3d) and from 2° to 5°C between
CFSv2 and NARR (Fig. 3e), which demonstrates a warm bias in
the CFSv2 forecasts across Interior Alaska (relative to NARR).

The CFSv2 JJA total precipitation patterns are comparable
to those of CFSR and NARR (Figs. 4a—c). In most of the low-
precipitation regions, the accumulated JJA CFSv2 precipitation
forecasts are approximately 30 mm lower than those of CFSR
and NARR (Fig. 4c). The warm and dry weather patterns in the
CFSv2 forecasts are in better agreement with CFSR than with

NARR. These findings suggest that CFSv2 forecasts are rea-
sonably comparable to the CFSR and NARR datasets and
are reliable for the Interior Alaska region. However, the
warm and dry weather patterns in the CFSv2 forecasts are in
better agreement with CFSR than with NARR.

b. Bias correction and its impacts

To explore the relationship between the calculated BUIs
and the local fire weather conditions, sensitivity tests were
performed using the daily weighted time series of observations
and CFSv2 forecasts for the Tanana Valley West PSA (Fig. 5).
The following combinations of BUI-affecting parameters are
tested: 1) forecasted temperature and relative humidity (RH)
with observed precipitation, 2) forecasted precipitation and
RH with observed temperature, and 3) forecasted temperature
and precipitation with observed RH.

The results from the sensitivity test show that precipitation
affects the BUI more than the rest of the included meteorological
variables, followed by temperature (Fig. 5). The sensitivity of
the BUI to precipitation confirms that fire weather indices are
particularly sensitive to seasonal precipitation (Horel et al.
2014). In the cumulative drought season, the combination of
observed precipitation with forecasted temperature and RH
best captures the BUI calculated from the station observation
data. Based on the results of the sensitivity tests, this study
proposes to correct the daily CFSv2 precipitation and tem-
perature fields using the QM correction method to match the
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observations at the climatological scale (Fig. 6). Although RH
isnot corrected using the QM correction method, the corrected
temperature is used to calculate RH from the CFSv2-specific
humidity to preserve the thermodynamic consistency between
RH and temperature.

Comparing the time series between the CFSv2 forecasts and
observational data shows a cold bias in the 2-m temperature
forecasts and a wet bias in the precipitation forecasts for the
Tanana Valley West PSA (Fig. 6). After the QM correction,
the cold bias in early spring is reduced and matches the ob-
servation values (approximately 7°-12°C) well (Fig. 6a). This
correction also removes the aforementioned precipitation bias,
which is two times larger than the observed values, but it does
not remove the observed precipitation biases in the wind-
driven season (Fig. 6b). Overall, this correction procedure
improves the JJA long-term mean temperature value from
15.5° to 17.5°C and improves that of precipitation from 3.4 to
1.6mmday '. The corrected temperature and precipitation
change the long-term mean JJA BUI value from 12 to 42
(Fig. 6¢), which is reasonably close to the observed BUI of 52.
The forecasts for the other nine Interior Alaska PSAs are
similarly improved after applying the QM correction method
(see Figs. S1-S3 in the online supplemental material). These
findings indicate that this correction process is key for im-
proving forecasts at the climatological scale with reference to
observations.

The RMSEs of the corrected temperature forecasts range
from 3° to 6°C for all PSAs in all but the diurnal effect season,
when the individual PSA RMSEs range from 1° to 2°C (left
panel of Fig. 7a). This means that the applied QM correction
method reduces the temperature RMSE by approximately
half. The corrected precipitation forecast RMSEs range from 0
to 2.5mmday ", and the improvements range from —0.25 to
2mm day ! for all subseasons (Fig. 7b). Overall, the corrected
precipitation error is reduced by approximately 25%. The
corrected temperature and precipitation forecasts improve the
RMSE values of the BUI forecasts for all PSAs (Fig. 7c). The
corrected BUI RMSEs range from 7 to 45. Improvements in
the BUI range in magnitude from —8 to 27. The proposed
correction methods do have limitations with regard to cor-
recting extreme conditions in precipitation and temperature
forecasts, which introduces forecast errors. The skill of the
temperature forecasts also decreases with the addition of a
“new extreme’’ whenever the actual forecast values are close
to the observed values (e.g., Wilks and Hamill 2007).
Therefore, the correction methods cannot mitigate the
prediction errors associated with extreme conditions of
several ensemble members.

The SS assesses the degree to which the corrected ensemble
forecasts are more skillful than the uncorrected forecasts
(Fig. 8). A corrected forecast with a skill equal to that of the
uncorrected forecast would have an SS of 0%, and a corrected
forecast that is more skillful than the uncorrected forecast
would have a positive SS value. The SSs of the corrected BUI
forecasts for most of the PSAs show an approximately 30%
improvement (Fig. 8). The skill analysis also suggests that en-
semble forecasts can be useful in identifying rare events, as
shown for the 2004, 2005, and 2015 fire seasons, which resulted
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FIG. 8. Skill score of JJA corrected forecasts BUI over the 10 PSAs.
The 100% percentage indicates perfect forecasts, and 0% percentage
indicates random forecasts.

in SS values greater than or equal to 40%. During these years,
the calculated burn areas for some of the PSAs are larger than
those in other years. These findings suggest that the corrected
CFSv2 forecasts have the ability to predict the observed large
fire years.

c. Case studies: The record fire years 2004, 2005, and 2015

The 2004, 2005, and 2015 fire seasons are considered to be
the worst in Alaska’s 56-yr record in terms of area/acres burned
(4 million acres or more) (Partain et al. 2016). Further analyses
and discussions regarding these fire seasons are based on their
impacts in the Tanana Valley West PSA, which is the PSA
that is the most representative of the Interior Alaska climate.
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FIG. 9. Standardized anomaly patterns of JJA (left) temperature and (right) precipitation for the high
fire activity seasons of 2004, 2005, and 2015. The 10 Interior Alaska PSAs, numbered from 1 to 10, are
Tanana Valley West, Tanana zone South, Koyukuk and Upper Kobuk, Lower Yukon, Middle Yukon,
Upper Yukon Valley, Tanana zone North, Seward Peninsula, Tanana Valley East, and Kuskokwim Valley,

respectively.

This study assesses the corrected forecast skill for large fire
years in Interior Alaska using normalized anomaly indices. The
anomalies are normalized by dividing the anomaly by the
standard deviation. Temperature and precipitation anomalies
are determined for the years 2004, 2005, and 2015 for both the
corrected forecasts and the observations, taking the 1994-2017
JJA forecast means as the climate normal. The above-normal
temperature anomalies (+0.015 or higher) and below-normal
precipitation anomalies (—1.5 or higher) suggest that the
forecasts show larger variability for 2004, the year during which
the largest area was burned, than for other years (Fig. 9). The
forecast anomalies from 2015 have a much lower variability
than those in other years because of the larger number of en-
semble members, i.e., 120; in 2004 and 2005, there were only
24 ensemble members. The temperature and precipitation
anomalies from 2015 suggest that forecasts with more ensemble
members have better prediction skills, as they were predicted
better than those from 2004 to 2005 (Fig. 9; Becker et al. 2013).
Notably, the forecasts could better capture anomalies and ex-
tremes than the observational network. This is attributed to the
fact that the forecast anomalies are calculated for every grid

cell, while the PSA observation anomalies are based on rela-
tively few, sparse point measurements.

The comparison of the JJA ensemble means to the obser-
vations for the large fire seasons suggests that the ensemble
means of both the temperature and precipitation forecasts
roughly capture the variable observations for the duff-driven
season and cumulative drought seasons (Fig. 10). Consistent
with the 2015 anomaly results (Fig. 9), the 2015 ensemble mean
forecasts predict observations better than the 2004 and 2005
forecasts. However, the ensemble mean forecasts for temper-
ature, precipitation, and BUI fail to capture the observed JJA
peak conditions and underestimate the observed BUI. This
suggests that the BUI ensemble mean values may not be useful
in predicting the BUI values that correspond to extreme fire
weather conditions. The ensemble spread of the BUI is large
enough to capture the extremes of the observed BUI on any
given day. These findings suggest that the classification of the
BUI ensemble members can preserve the fire seasonality cor-
responding to the observed BUI values and can be useful in
predicting severe fire events. Furthermore, considering indi-
vidual ensemble members and their uncertainties could be
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FIG. 10. Daily mean seasonal cycle of Tanana Valley West temperature, precipitation, and BUI for 2004, 2005, and 2015, respectively.

useful for determining the predictability of the CFSv2 forecast.
The observed BUI analysis (Fig. 10; dark line) shows that
forecasts of high temperatures precede peak BUIs by ap-
proximately two weeks. This indicates that peak temperatures
and high-BUI events within a two-week window should be si-
multaneously considered for fire action planning in Interior
Alaska PSAs. Furthermore, a study by Arpaci et al. (2013)
reported better performance of both the daily temperature and
the BUI in predicting extreme fire years.

d. Discussion of BUI predictability

Based on the work presented above, it would be useful to
ensure the practicability of the QM-corrected BUI forecasts in
predicting extreme fire events in the duff-driven and cumula-
tive drought seasons. For this purpose, the ensemble members
are ranked based on their corresponding quantiles (Fig. 11).
The forecasted BUI values in the Q4 set closely match the
observed peak BUI values in the duff-driven and cumulative
drought seasons (Fig. 11). For 2004, the anomalous maximum

BUI value is forecasted in the cumulative drought season, in
which the Q4 BUI increases as the observation value de-
creases. The skill of the temperature and precipitation forecasts
may contribute to these anomalous Q4 BUI values that contradict
the observed BUI in the cumulative drought season. This ob-
served minimum Q4 BUI forecast may arise due to terrain
elevation differences between the forecast model, which uses
grid-averaged elevations, and point-based observations. Therefore,
Q4 BUI forecasts have the potential to predict the dry fuel loads
and weather conditions associated with extreme fire seasons.
Moreover, the anomalous Q4 BUI forecasts can be used as an
indicator of extreme fire events in the upcoming season.

The source of forecast predictability can be determined
using a so-called persistence measurement. Typically, in a
persistence measurement, future forecasts are assumed to
maintain the current observed anomaly conditions (Spillman
and Alves 2009). In this case, minimum-skill BUT forecast values
of 150 or higher in the cumulative drought season would be re-
peated in the future forecast for the same season. If such
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FIG. 11. Tanana Valley West quantile-based BUI for (a) 2004,
(b) 2005, and (c) 2015. Results are similar for other PSAs.

persistence is identified in the forecast, the fire season is labeled
an extreme fire year in which extreme fire events are likely to
occur. These anomalous forecast conditions are observed in the
duff-driven and cumulative drought seasons in the worst
fire years.

The prediction skill of the JJA Q4 BUI is assessed by
comparing the observed total acres burned and the observed
BUI from 1994 to 2017 for all PSAs (Fig. 12). Extreme changes
in the BUI are found in both 2004 and 2009. Similarly, the Q4
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BUI exceed the threshold value of 150 in the cumulative
drought season. These findings support the usefulness of per-
sistence forecasts for identifying seasons with severe fire events
(Fig. 11). Overall, these results are consistent across all PSAs,
indicating that CFSv2 forecasts can provide decision-makers
with valuable information on the maximum probable value of
the BUI corresponding to an extreme fire season.

5. Summary and conclusions

Seasonal fire forecasting is a challenging problem for climate
scientists. This study investigates the seasonal predictions of
1-3-month leads using the CFSv2 March forecasts for JJA
using all available ensembles for 1994-2017. The spatial com-
parison of JJA CFSv2 climatology forecasts (Figs. 3 and 4) with
the CFSR and NARR data shows a positive 2-m temperature
bias of approximately 2°C and a negative precipitation bias of
approximately 30 mm in CFSv2 over Interior Alaska.

Given the lack of gridded observational data for Interior
Alaska, correction procedures are developed using observational
time series data for temperature, precipitation, and relative hu-
midity, all of which are commonly used by fire managers in
decision-making procedures. The nonparametric QM correction
method is applied to correct the time series of the CFSv2
temperature and precipitation forecasts because it 1) sim-
plifies the correction procedure and 2) keeps the distribu-
tion of the actual ensemble forecasts without introducing
uncertainty into the forecast physics. In this method, the
shape and spread of the ensemble forecasts are kept similar
to that of the original forecast, which makes them useful for
predicting extreme weather events.

Evaluations of seasonal QM-corrected forecasts of tem-
perature, precipitation, and BUIs are performed for all
PSAs. This evaluation shows that the QM correction
method removes a portion of the temperature and precip-
itation biases associated with forecast errors. Furthermore,
these corrections show an improvement in the BUI forecasts,
which is reflected in the calculated JJA mean BUI increasing
from 12 to 42 based on the corrected JJA mean temperature and
precipitation forecasts of 17.5°C and 1.6 mm day ', respectively.
Thus, these findings demonstrate that QM-corrected CFSv2 en-
semble forecasts are able to capture the seasonal-scale features of
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FI1G. 12. Tanana Valley West observed JJA total acreage burned (blue dashed line),
forecasted Q4 BUI (purple dotted line), and observed BUI (black line). Plots for other PSAs

look similar.
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FIG. Al. The schematic view of the datasets analyzed in this study.

the observed BUI climatology over the PSAs. These results also
suggest that additional postprocessing might shift the limits of
predictability even further in detecting severe fire seasons.

The classification of corrected BUI ensemble members using
quartiles reflects their usefulness for identifying severe fire
events. The Q4 BUI forecasts tend to perform the best in pre-
dicting the observed BUI in the duff-driven season, while over-
estimating the BUI in the cumulative drought season. Moreover,
the overestimates coincide with the severe fire events of 2004 and
2009 in the Tanana Valley West PSA (Fig. 12). This finding
suggests that the usefulness of the CFSv2 ensemble forecasts with
uncertainties can be tailored to user-specific needs by considering
the observed patterns of boreal fires at the subseasonal to sea-
sonal scale. Overall, this work demonstrates that the BUI values
determined from the nonparametric QM-corrected forecasts can
add value to firefighting preparation plans developed by fire
managers when evaluating weather and fuel states in PSAs.

Furthermore, these findings illustrate the usefulness of CFSv2
seasonal forecasts from March for fire managers developing re-
source allocation plans for Interior Alaska. Therefore, to better
serve the firefighting community, this study recommends a
combination of gridded CFSv2 operational forecasts and the BUI
system to produce operational BUI ensemble forecasts. The
potential utility of the CFSv2 gridded forecasts for fire weather
prediction in Interior Alaska is highlighted.
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APPENDIX

Data Analysis Overview

Figure A1 outlines the data processing steps carried out in
this study.
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