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Abstract: The industrial importance of the C=C double bond difunctionalization in vegetable oils/fatty acid
chains motivates computational studies aimed at helping to improve experimental protocols. The C=C
double bond epoxidation is studied with hydrogen peroxide, peracetic acid (CH;COsH), and performic acid
(HCOsH) oxidizing agents. The epoxide ring-opening mechanism is calculated in the presence of ZnCl,
NiCl,, and FeCl, Lewis acidic catalysts. Computations show that H,0, (AG*=39 kcal/mol, TS1kp) is not an
effective oxidizing agent compared to CHsCOsH (AG*=29.8 kcal/mol, TS1pa) and HCOsH (AG*=26.7
kcal/mol, TS1p). The FeCl, (AG*=14.7 kcal/mol, TS1kc) coordination to the epoxide oxygen facilitates the
ring-opening via lower energy barriers compared to the ZnCl, (AG*=19.5 kcal/mol, TS1zc) and NiCl,
(AG*=29.4 kcal/mol, TS1nc) coordination. ZnCl, was frequently utilized as a catalyst in laboratory-scale
procedures. The energetic span model identifies the FeCl, (FC) catalytic cycle as the best option for the

epoxide ring-opening.
1. Introduction

The C=C double bond is very important in synthetic applications because of its reactivity!. C=C bond
bearing compounds can act as building blocks for several functionalities such as amines, alcohols,
aldehydes, epoxides, or acids?*. Naturally available and low-cost C=C bond containing substances can act
as an alternative to fossil fuels: Among vegetable oils, soybean oil, in particular, contains roughly 60 wt%

linoleic acid, and a total of 80 wt% unsaturated residues, which makes it more modifiable and eventually



more applicable compared to other vegetable oils. The unsaturated fatty acids have been functionalized
to the polyols, mercapto components, epoxides, copolymers, and homopolymers>®. These substances are
utilized as fuel additives, biodiesel, and biolubricants’2. Modification of waste vegetable oil plays a crucial
role in the industry as a sustainable substitute for fossil-based resources®. The epoxy ring-opening with
amines led to the formation of nitrogen-based triglyceride formation, which was utilized as lubricant
additives'*2, These products are antiwear/antifriction additives for industrial oils and automotive
applications. Kinetic studies have been performed for aminolysis of carbonated vegetable oils to

polyurethanes!*!4,

The conversion of abundant unsaturated triglyceride to value-added components is crucial because of the
sustainability point of view. The applications mentioned above inspire us to perform mechanistic studies
on the double bond transformation to epoxides and the nucleophilic (amine) epoxide ring-opening
(Scheme 1). Due to the importance of the double bond modifications, extensive computational studies
with a related scope have been performed so far>*°, But none of these works comparatively studied
experimentally employed oxidizing agents. Computational tools were applied previously for the
understanding of reaction mechanisms?>?’. We chose a model reaction to reduce computational time for
the present mechanistic studies: Instead of macromolecular triglyceride, but-2-ene was taken as the
internal double bond carrier. Since the macromolecular triglycerides have very flexible structures, we do
not expect the reaction pathways to be influenced strongly by steric bulk. Hydrogen peroxide (H,0,, HP),
peracetic acid (CH3COsH, PA), and performic acid (HCOsH, PF) were utilized as oxidizing agents. For the
nucleophilic epoxide ring-opening, Lewis acidic catalysts (ZnCl;, NiCl,, and FeCl;) and ethylamine
(nucleophile) were examined. The free energy surface was recalculated in the presence of oleic acid (one
of the tails of soybean oil) for epoxidation and epoxide ring-opening steps to validate the simplification.
In the case of oleic acid, 1 kcal decrease in the epoxidation (TSee) energy barrier is noticed compared to
the but-2-ene incorporated PF route. For the HP and PA steps, the energy barriers decrease even smaller
than 1 kcal. Based on the theory, the model reaction (with but-2-ene) can be exploited computationally
to simplify fatty acid esters epoxidation and consequent epoxide ring-opening reactions (See SI, Figures

S4,S5; Tables S6, S7).
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Scheme 1. The unsaturated fatty acids triglyceride conversion to the lubricant precursors.
2. Computational details.

The Gaussian 16 software package®® was used for all calculations. Reactants, intermediates, and transition
state structures were fully optimized with Kohn-Sham Density Functional Theory (KS-DFT), employing the
B3LYP functional®®. Minnesota functionals (MO6L and M062X) were also applied to re-evaluate the best
catalytic cycle (FeCly) of Figure 2 because of these functionals’ demonstrated accuracy in energy barrier
evaluations®’. The B3LYP functional with D3BJ dispersion corrections was also tested for the FeCl,
catalyzed oxirane ring-opening (See Figure S1, SI). Computation shows that there are no considerable
changesin the energy barriers, and the B3LYP functional is reliable for the studied reaction. The 6-311+G*
basis set was used for H, C, O, N, and Cl atoms. The Stuttgart 1997 RSC effective core potentials (ECP) and

matching basis sets were used for Zn, Ni, and Fe3%32,

Because of the Ni?* and Fe?* paramagnetic nature, we monitored the NC and FC catalytic cycles Gibbs
energies for singlet and triplet spin states. The linear NiCl, molecule adopts a triplet spin state, and
consequently, the NC catalytic cycle was calculated for the spin-triplet potential energy surface (PES). A
spin state change during the reaction would constitute a spin-forbidden reaction step in an otherwise
already very fast reaction (vide infra). The molecular orbital (MO) analysis shows that one of the unpaired
orbital interacts with organic system in the TS1nc and TS2yc structures (See Figure S2 and S3, SI). DFT
calculations with different functionals for FeCl, produced a spin-triplet ground state, but with severe spin
contamination. The molecule has two electrons less than NiCl, and should therefore adopt a spin-singlet

closed-shell ground state. Indeed, optimizations with simultaneous monitoring of the wavefunction



stability eventually produced the singlet as the ground spin state of FeCl,, with a slightly bent optimized
structure. We tentatively attribute the severe spin symmetry breaking in the triplet and the slight spatial
symmetry breaking in the singlet to difficulties that the DFT calculations have in treating the electron
correlation in this molecule. The FC catalytic cycle was calculated for the spin-singlet PES. Solvent effects
were studied via a self-consistent reaction field (SCRF) with a dielectric constant for n-hexane (€=1.8819)
for the PF oxidation route and the FC catalytic cycle. Minima (no imaginary frequency), transition states
(one imaginary frequency), and free energies (including entropy contributions from rotations, vibrations,
and translation) were determined via analytic frequency calculations. Gibbs energies and related data are
given for a temperature of 298.15 K because of experimentally applied procedures®¥34. Intrinsic reaction
coordinate (IRC) searches were applied to connect the transition state (TS) and intermediate/product
structures. Total energies, Gibbs energies, and enthalpies of all structures are given in the supporting

information (Sl).

3. Results and discussion
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HP week oxidation abilities were



scrutinized in experimental studies with less solubility in organic phase®.

In comparison, the PA and PF activation energies are 9.2 kcal/mol and 12.3 kcal/mol lower, respectively.
Since PF gave the reaction with the lowest barrier (26.7 kcal/mol) the reaction was recalculated, including
the solvation model for n-hexane. Investigations show that the PF route activation energy is decreased by
4 kcal/mol compared to the gas-phase condition. We focus here on the gas-phase reaction profiles
because of experimentally employed solvent-free epoxidation conditions for the unsaturated fatty acid

esters**?

. Computation shows that the application of solvent may not be a driving force for the
epoxidation process, but it is very vital for the epoxide ring-opening. The utilization of a solvent helps to
decrease the vegetable oil viscosity and a reaction time®. Structural analysis of the TSs illustrates that
oxygen migration from HP to the double bond carrier occurs over shorter distances (TSwp, 1.68 A)
compared to the PA (TSpa, 1.82 A) and PF (TSp¢, 1.85 A). While at the same time, there is more elongation
of the double bond, leading to the comparatively high energy of TSwe. Because of the PF instability, in situ
generation of PF via using formic acid and hydrogen peroxide was applied in the past works*>*. Kinetic
studies showed that PF decomposition occurs at a high temperature**. Previous experimental works

proposed PF as a better oxidizing agent to carry out the vegetable oil epoxidation (with 97% conversion®)

and are in good agreement with our computational studies.

Epoxide ring-opening: The epoxide ring-opening was initially calculated in a catalyst-free condition (Figure
2). Concerted TScar eree is obtained for the one-step direct transformation of EtNH; and 2,3-methyloxirane
to 3-(ethylamino)butan-2-ol (PRO) via 54.2 kcal/mol energy barrier. A similar energy barrier was
calculated previously for the epoxide ring-opening in catalyst-free condition®. The calculated energy
barrier shows that utilizing a catalyst will be a cost-effective option for the process. Because of the

47,48

extensive application of Lewis acid catalysis in the aminolysis of epoxides to B-amino alcohols®*’*, we

chose ZnCl;, NiCly, and FeCl; for the calculations. In particular, aminolysis of the epoxidized unsaturated

fatty esters has been carried out with ZnCl,**?

. As seen from Figure 2, the Lewis acid coordination and
Et,NH; nucleophilic attack go through a concerted TS (TS1). It can be considered the rate-limiting step for
all three reaction routes (ZC, NC, FC). In the case of the ZnCl; catalyzed cycle, the ring-opening energy
barrier is calculated to be 19.5 kcal/mol (relative to IM1zc). The analogous barrier is found to be 29.4
kcal/mol and 14.7 kcal/mol for the NiCl, and FeCl, routes, respectively. We recalculated FC including
solvent effects (solvent: n-Hexane) and observed only small changes (less than 3 kcal) in the energy

barriers. Calculations show a little difference in bond distances when comparing the n-hexane included

TS2¢c with the solvent-free version (see Figure 3). The solvent incorporation causes the N-H bond to



elongate from 1.28 A to 1.31 A, and the H-O bond becomes shorter (from 1.25 A to 1.21 A). The fact
implies that the addition of solvent facilitates proton transfer from the amine group to the epoxide
oxygen. Since activation energies alone are insufficient to assess catalytic cycles, we employed an
energetic span (§G) model for computational TOF (turnover frequency) calculations®. As seen from the
Gibbs energy profiles, the lowest energy TOF determining intermediate (IM2, TDI) appears after TS1 (the
highest energetic TOF determining TS, TDTS), which

directed us to use Eq. [2]**:

Catalytic Cycles 6G (kcal/mol)
ZC (blue, ZnCl,) 7.9
-8G NC (orange, NiCl 14.5
TOF = "L;lTeﬁ Eq. [1] (orang 2
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8G = Grprs — Grp; + Gy Eq. [2] Table 1. Calculated &G values for the

catalytic cycles.
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are calculated based on the Eyring equation (See Eq. [1] and Table S5). FeCl, emerges as a better suitable



TOFFC

catalyst for the epoxide ring-opening compared to the other two candidates. = 1026 demonstrates

that 20.8 kcal decrease in the 6G value (from ZC to FC) leads to a huge rise in the theoretical catalytic
efficiency (TOF). In fact, the calculated TOFs for ZC, and in particular for FC, should not be considered as
physical TOFs. They are simply large enough to indicate that the reaction rate in the catalyzed process is
likely not limited by features of the Gibbs energy profile intrinsic to the reaction, but rather by the
dynamics of the reaction system under the experimental conditions. Nonetheless, the calculations
provide strong indications that FeCl, will be a superior catalyst for the epoxide ring-opening reaction.
Experimental utilization of magnetite (Fes0.) for the regioselective epoxide ring-opening and FeCls
catalyzed Friedel-Crafts reaction accompanied ring-opening of 1,4-epoxy moieties were previously

reported>*%°,
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Figure 3. Optimized TS structures for the epoxide ring-opening (TS1kc) and the amine proton
transfer to the epoxide oxygen (hydroxylation, TS2¢c). Some hydrogen atoms are omitted for the
sake of clarity.

The optimized structures of the TS1gc and TS2¢c are shown in Figure 3. As seen from the Figure, the EtNH,
nucleophilic attack occurs via 2.31 A separation between N and C1 in the transition state, while the C1-0
bond elongates up to 1.91 A in the concerted TS1¢c structure. The amine moiety proton transfers to the
epoxide oxygen via 1.27 A (N-H) and 1.25 A (H-0) bond lengths (Figure 3, TS2¢c). Since the reaction rate
depends on the first TS, we conducted a natural bond orbital (NBO) analysis to determine natural charges
of all atoms in the TS1gcstructure. Heterolytic C1-O bond cleavage results in the accumulation of electron
density on the O atom. The accumulated density is delocalized well in the case of FeCl, coordination: In
the original epoxide ring, the oxygen charge is -0.57 e; upon coordination with Fe it becomes -0.66 e in
the TS1kc structure. The epoxide oxygen atom is expected to be more electronegative because of C1->0

electron shift. The small change in the epoxide oxygen natural charge indicates the electron follows



toward the catalyst (FeCly). Natural charge decreases in Fe (0.69 e to 0.65 e) and Cl (-0.33 e to -0.49 e)
(relative to sole FeCl, molecule®® natural charges) shows electron shift toward FeCl,. NBO analysis is
applied to the same TS from the high energy catalytic cycle (ZC): In the case of ZnCl, coordination, high
electron density (less delocalization) is observed on the epoxide oxygen (-0.85 e, which is -0.66 in the FeCl,
case, TS1gc). ZnCl; is not capable of withdrawing electron density as well as FeCl; to facilitate the ring-
opening. FeCl, superior catalytic activities for the epoxide ring-opening can be rationalized with better

electron delocalization upon coordinating to the epoxide ring oxygen.
4. Conclusions

The carbon-carbon double bond difunctionalization through epoxidation and the subsequent epoxide ring
aminolysis was studied computationally. The H3COsH (PF) energy barrier was found to be smaller
(AG*=26.7 kcal/mol, TS1p) than the other two oxidation routes (Figure 1). The epoxide ring-opening was
studied with three Lewis acid catalysts (ZnCly, NiClz, and FeCl,). The rate-limiting energy barrier for the FC
cycle was found to be 3.4 kcal less than in the ZC cycle. Despite the regular utilization of ZnCl, in practice,
our computations suggest that FeCl, would be a better catalyst, based on the applied energetic span
model. Since iron is an inexpensive metal, we hope that the present calculations will motivate
experimental verification of this prediction. We believe this work will contribute to the waste vegetable

oils cost-effective industrial utilization.
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