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A B S T R A C T

We present and discuss a variety of mathematical models that have been proposed to capture the dynamic
behavior of epidemic processes. We first present traditional group models for which no underlying graph
structures are assumed, thus implying that instantaneous mixing between all members of a population occurs.
Then we consider models driven by similar principles, but involving non-trivial networks where spreading
occurs between connected nodes. We present stability analysis results for selected models from both classes,
as well as simple least squares approaches for estimating the spreading parameters of the virus from data
for each basic networked model structure. We also provide some simulation models. The paper should serve
as a succinct, accessible guide for systems and control research efforts toward understanding and combating
COVID-19 and future pandemics.
1. Introduction

Numerous examples of natural and engineered systems can be cited
that consist of underlying networked components over which dynami-
cal processes evolve or spread. Such examples include the diffusion of
infectious disease processes over human contact networks and animal
populations, the propagation of peak traffic phenomenon over the
transportation infrastructures, the spread of viruses or worms over
communication and computer networks, and sharing and re-sharing of
posted articles or rumors over social media platforms. Engineered sys-
tems are increasingly designed to be smart devices, interconnected over
various levels of both local and large-scale networks. Understanding
at a fundamental and analytical level how these viral processes evolve
across different network structures, the rates at which they may spread,
how the occurrence of multiple viral types and multiple network layers
affect the spread process dynamics, and how these processes can be
suppressed and/or mitigated by employing deliberate control strategies
will greatly impact the health, safety and security of a vast variety of
interconnected systems around the globe.

We recognize that there is a large and growing body of work
on epidemic process dynamics over networks in various disciplines,
including but not limited to epidemiology, computer science, complex
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networks, physics, mathematical biology, applied mathematics, and
sociology (Anderson & May, 1992; Boccaletti et al., 2006; Chatterjee
& Durrett, 2009; Cherif, 2015; Draief & Massoulie’, 2010; Hota &
Sundaram, 2019; Kephart & White, 1991; Pires et al., 2018; Rogers,
2003; Rohloff & Başar, 2008; Wan et al., 2007, 2008). However under
the current unprecedented situation – a global pandemic resulting
from an essentially unknown virus that is threatening the physical
and economic well-being of people in every nation, and from which
vast amounts of data are being collected – there is an urgent need to
develop models, algorithms and analytical tools providing a deeper,
data-informed understanding of how epidemic processes spread over
networks which may be time-varying and/or consist of multiple layers,
and which allow us to design and inform effective control policies to
contain and suppress this spread as quickly as possible, and accounting
for a variety of trade-offs.

1.1. Historical development

Mathematical models of epidemics and related spread processes
have been analyzed and studied for over 200 years, with one of
the earliest treatises presented by Bernoulli (1760). The base models
vailable online 25 November 2020
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for most studies today derive from the so-called compartment mod-
els proposed by Kermack and McKendrick (1932). These models as-
sume that every subject lies in some segment or compartment of
the population at any given time, with these compartments possi-
bly including susceptible, asymptomatic, exposed, infected and/or recov-
ered population groups. These models further assume that the sub-
jects in the population are well mixed, meaning that the underly-
ing contact network between the subjects is a complete graph. The
classic epidemic models are the SIS (susceptible–infected–susceptible)
and SIR (susceptible–infected–recovered) models, with increasing in-
terest in SEIRS (susceptible–exposed–infected–recovered–susceptible)
models due to COVID-19, which may be more precisely modeled by
an SAIRS (susceptible–asymptomatic–infected–recovered–susceptible)
model (see (Rothe et al., 2020) and recent articles (Mallapaty, 2020;
Yoon & Martin, 2020)). We note that more detailed compartment
models may more accurately capture COVID-19, see for example (Gior-
dano et al., 2020); however, such models place requirements on data
available to obtain accurate parameter estimation, which may not be
generally attainable in the early stages of an outbreak of a previously
unknown pathogen, such as with COVID-19 (Silver, 2020; Vrabac, Paré
et al., 2020).

Over the past two decades, there has been an intensive and ex-
tensive study of epidemic processes over more complex and more
realistic network structures than complete graph structures. An early
study can be found in (Lajmanovich & Yorke, 1976); recent surveys
of the literature on epidemic processes over networks are provided
in (Draief & Massoulie’, 2010; Pastor-Satorras et al., 2015), and from a
controls perspective in (Nowzari et al., 2016).1 To account for network
structure among individuals or subgroups of a population, an agent-
based perspective of spread processes is taken, where each agent is
represented by a node in the network, and the edges between the nodes
represent the strength of the interaction between agents. Agents, or
nodes, may represent individuals or subgroups in the population.

Given a total of 𝑁 agents in a population model, spread processes
can be described in a somewhat precise probabilistic framework by
large Markov process models (e.g., of dimension 2𝑁 for SIS models
and dimension 3𝑁 for SIRS models), which capture the probability
of each agent transitioning from susceptible to infected, and/or to
recovered states, and back. These probabilities are determined by the
infection, healing and/or recovery rates, in addition to the network
interconnection structure, and capture the stochastic evolution of such
processes. As these models are difficult, if not intractable, to analyze
due to their size, it is often assumed that the number of agents is large
enough that mean-field approximations (MFAs) are valid. For example
for SIS models, MFA models are derived by taking expectations over
the infection transition rates of the agents and then considering the
limiting behavior of the expectation dynamics as the time interval of
interest decreases to zero (Mieghem et al., 2009). The details of this
process are supplied in Section 3.1.

For agents interconnected via a graph with a weighted adjacency
matrix, use of the aforementioned MFA models describing the evolution
of an epidemic process over such a graph or network is now largely
accepted under the assumption of large and constant agent population
size along with additional independence assumptions. Many of these
models have been analyzed in some detail and are more accurately
viewed as providing upper bounds on the probability of infection of
a given agent at any given time (e.g., see (Chatterjee & Durrett, 2009;
Mieghem et al., 2009) for discussions and perspectives). A network-
dependent ODE SIS model has been studied extensively; the derivation
(the details of the subpopulation derivation process are also supplied

1 As the literature in this area is exceedingly large, we cannot provide an
verview of all prior research efforts due to space constraints but note that
he cited surveys do provide fairly complete coverage of existing results at the
ime of their publication.
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in Section 3.1) and use of this model can be found in (Fall et al.,
2007; Mieghem et al., 2009; Nowzari et al., 2016; Paré et al., 2018),
where Paré et al. (2018) also consider time-varying networks. Addi-
tionally we note that discrete time versions of these MFA models have
also been proposed and studied (Ahn & Hassibi, 2013; Paré et al., 2019;
Wang et al., 2003).

The primary goals in most studies of spread process dynamics
have been to analyze the system equilibria and determine the con-
vergence behavior of these processes near isolated equilibria. Specifi-
cally, conditions for the existence of and convergence to ‘‘disease free’’
(healthy state) or ‘‘non-disease free’’ (endemic state) equilibria have
been sought. For the differential equation-based SIS network model,
for example, when the condition for ‘‘disease free" equilibrium (which
depends on the parameters of the model) does not hold, then there
exists another equilibrium, i.e., an endemic equilibrium, that is (almost)
globally asymptotically stable (Ahn & Hassibi, 2013; Khanafer et al.,
2014a, 2014b; Liu et al., 2019; Nowzari et al., 2014). Similar differen-
tial equation-based models for SIR processes have also been studied; an
analysis of equilibria and convergence properties for static-network SIR
models is given in (Mei et al., 2017). Further, exact Markovian process
dynamics for SIR epidemics are discussed in (Van Mieghem, 2014).

In the context of the COVID-19 pandemic, there has been an out-
burst of recent results studying disease spread. Given the magnitude
of the results, we briefly mention here some of the preliminary work
that employs networked epidemic models. Hota et al. (2020) use a
networked SIR model to capture the spread of COVID-19 in southern
Europe. The networked SEIR model (Li & Muldowney, 1995) has also
been extended to account for transportation (Vrabac, Shang et al.,
2020), quarantine (Groendyke & Combs, 2020), and asymptomatic
transmission (Arcede et al., 2020).

1.2. Preliminaries

We provide in this sub-section some mathematical preliminaries
on matrices and graphs, and also introduce notation commonly used
throughout the paper.

Given a vector function of time 𝑥(𝑡), we use 𝑥̇(𝑡) to indicate its
time-derivative. Given two vectors 𝑥1, 𝑥2 ∈ R𝑛, 𝑥1 ≥ 𝑥2 indicates each
element of 𝑥1 is greater than or equal to the corresponding element of
𝑥2, 𝑥1 > 𝑥2 indicates each element of 𝑥1 is greater than or equal to the
corresponding element of 𝑥2 and 𝑥1 ≠ 𝑥2, and 𝑥1 ≫ 𝑥2 indicates that
each element of 𝑥1 is strictly greater than the corresponding element
of 𝑥2. Given a matrix 𝑀 ∈ R𝑛×𝑛, the largest real-valued part of the
eigenvalues, or spectral abscissa, of𝑀 is denoted 𝑠(𝑀) (if the spectrum
is possibly complex) and the spectral radius of 𝑀 is 𝜌(𝑀). Also, 𝑚𝑖𝑗
indicates the 𝑖, 𝑗𝑡ℎ entry of 𝑀 . The notation diag(⋅) refers to a diagonal
matrix with the argument on the diagonal. The notation [𝑛] refers to the
set {1,… , 𝑛}. The identity matrix is denoted by 𝐼 , the all-ones vector
is denoted by 𝟏, and the all-zeros vector is denoted by 𝟎. We assume 𝐼 ,
𝟏, and 𝟎 have the appropriate dimensions whenever used. We use 𝐸[⋅]
to denote the expected value of the argument and 𝑃𝑟[⋅] to denote the
probability of the argument.

Some of the results in the paper rely on properties of Metzler and
irreducible matrices. A real square matrix 𝑋 is called Metzler if its off-
diagonal entries are nonnegative. We say that a matrix 𝑋 ∈ R𝑛×𝑛 is
reducible if there exists a permutation matrix 𝑇 such that 𝑇 −1𝑋𝑇 =
(

𝑌 𝑍
0 𝑊

)

, where 𝑌 and 𝑊 are square matrices, or if 𝑛 = 1 and

𝑋 = 0. A real square matrix is called irreducible if it is not reducible.

Graph theory
A directed graph, or digraph, is a pair  = ( , ), where  is the set

of nodes and  ⊆  ×  is the set of edges. Given , we denote an
edge from node 𝑖 ∈  to node 𝑗 ∈  by (𝑖, 𝑗). We say node 𝑖 ∈  is a
neighbor of node 𝑗 ∈  if and only if (𝑖, 𝑗) ∈  . When (𝑖, 𝑗) ∈  if and
only if (𝑗, 𝑖) ∈  , we call the graph undirected. The in-neighbor set of
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Fig. 1. SIS Model.

ode 𝑗 is defined as 𝑗 = { 𝑖 | (𝑖, 𝑗) ∈ }. For a graph with 𝑛 nodes, we
ssociate an adjacency matrix 𝑊 ∈ R𝑛×𝑛 with entries 𝑤𝑖𝑗 ∈ R≥0, where
𝑖𝑗 = 0 if and only if (𝑖, 𝑗) ∉  . For undirected graphs, the adjacency
atrix is symmetric.
In a digraph, a directed path is a collection of nodes {𝑖1,… , 𝑖𝓁} ⊆ 

uch that (𝑖𝑘, 𝑖𝑘+1) ∈  for all 𝑘 ∈ [𝓁−1]. A digraph is strongly connected
f there exists a directed path between any two nodes in  . Note that if
he digraph is strongly connected, the adjacency matrix is irreducible.
strongly connected component (SCC) of a graph is a subgraph which
tself is strongly connected. A path in an undirected graph is defined in
similar manner. We call an undirected graph connected if it contains a
ath between any two nodes in  . A digraph is called weakly connected
f when every edge in  is viewed as an undirected edge, the resulting
raph is a connected undirected graph. We call a graph, whether it is
irected or undirected, disconnected if it contains at least two isolated
ubgraphs. Throughout, when  is directed, we assume that it is either
trongly or weakly connected. When  is undirected, we assume that it
s connected.

.3. Organization of the paper

In the remainder of the paper we discuss the modeling, analysis and
stimation of epidemic dynamics for single group models as well as
ver networks. We first provide an overview of classic epidemiological
ompartment models in Section 2; we also discuss modified versions
f these models for capturing particular properties of the dynam-
cs of COVID-19 spread processes, namely the increasingly accepted
iewpoint that infection may be widely spread from asymptomatic
arriers. In Section 3, we present networked versions of the same
ompartment models, that is, we consider underlying human contact,
ransportation, and/or community interaction networks that affect the
ransmission of epidemic processes. In Section 4, we present discrete
ime versions of the networked models from Section 3 and provide
onditions under which the models are well defined. In Section 5,
e then discuss stability and convergence of the group models from
ection 2. In Section 6, we overview stability/convergence analysis
esults for the epidemic process models introduced in Sections 3 and
. Data-based estimation of the relevant parameters defining epidemic
rocess dynamics is presented in Section 7. In Section 8, we present a
et of simulations that illustrate the advantages of using the networked
odels from Section 3 over the group models from Section 2 and dis-
uss the effectiveness of the parameter estimation techniques. Summary
nd conclusion statements are then given in Section 9.

. Single group models

The simplest class of mathematical models that captures the spread
f epidemics is that which pertains to a single population. In these
odels separately identified segments of the population reside in one
f a fixed number of disease-states at each point in time. For example
e might have susceptible and infected (SIS) segments; susceptible,
nfected, and recovered (SIR and SIRS) segments; susceptible, exposed,
nfected, and recovered (SEIR and SEIRS) segments; or of more recent
nterest, susceptible, asymptomatic, infected, and recovered (SAIR and
347
Fig. 2. SIR Model.

SAIRS) segments. These models are known as group models in com-
partment form, the simplest of which is the SIS model introduced by
Kermack and McKendrick (1932), and given by (see also Fig. 1)

𝑆̇(𝑡) = −𝛽𝑆(𝑡)𝐼(𝑡) + 𝛾𝐼(𝑡),
𝐼̇(𝑡) = 𝛽𝑆(𝑡)𝐼(𝑡) − 𝛾𝐼(𝑡),

(1)

where 𝑆(𝑡) is the proportion of the population that is susceptible, 𝐼(𝑡)
is the proportion that is infected, 𝛽 represents the rate of infection, or
contact between susceptible and infected segments of the population,
and 𝛾 represents the healing or recovery rate of the population.

Such a model assumes a homogeneous population with no vital
dynamics, that is, birth and death processes are not included, meaning
infection and healing are assumed to occur at faster rates than vital
dynamics, and the population size is assumed to remain constant and
mix over a trivial network, that is, over a complete graph structure.
These statements imply 𝑆(𝑡) + 𝐼(𝑡) = 1, and the population size, which
we will denote by 𝑁 , is constant. Note that 𝑆̇ + 𝐼̇ = 0, and a certain
percentage of those infected will become susceptible again (following
recovery). SIS models capture the disease dynamics of recurrent bac-
terial and fungal infections, such as from Streptoccocus pyogenes or
Neisseria gonorrhoeae bacteria, and Trichophyton rubrum (one cause
of athlete’s foot) or Microsporum canis (one cause of ringworm) fungi,
to cite just a few examples.

We next discuss, in the following three subsections, extensions
to this simple compartment model accommodating ‘‘recovered’’, ‘‘ex-
posed’’, and ‘‘asymptomatic’’ segments of the population.

2.1. SIR and SIRS models

A slightly more complex model, in which we allow for a state of
complete recovery of some duration prior to returning to the suscepti-
ble state, is the SIRS model, given by

𝑆̇(𝑡) = −𝛽𝑆(𝑡)𝐼(𝑡) + 𝛿𝑅(𝑡),

𝐼̇(𝑡) = 𝛽𝑆(𝑡)𝐼(𝑡) − 𝛾𝐼(𝑡),

𝑅̇(𝑡) = 𝛾𝐼(𝑡) − 𝛿𝑅(𝑡),

(2)

where 𝛽 is the transmission rate parameter for person-to-person con-
tact, 𝛾 is the recovery rate, 𝛿 is the rate at which immunity recedes
following recovery, and 𝑅(𝑡) is the recovered proportion of the pop-
ulation. That is, an SIRS model is used when acquired immunity is
only temporary, for example, with noroviruses and rotaviruses (i.e., the
stomach flu), and some common cold viruses. Alternatively, setting
𝛿 = 0 gives us an SIR model (Fig. 2), which captures the dynamics
of diseases from which permanent acquired immunity results, such
as in the case of the Rubeola virus (measles), varicella-zoster virus
(chickenpox), or mumps virus.

To explicitly capture the incubation period from time of exposure
to the virus, to the time of expression of symptoms and viral shedding,
an SEIR (or SEIRS) model, introduced next, is used.

2.2. SEIR and SEIRS models

The more general SEIRS model, which also allows for the recovered

population to be susceptible again after a period of immunity, is
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Fig. 3. SEIR Model.

Fig. 4. SAIR Model.

escribed by the following equations:

𝑆̇(𝑡) = −𝛽𝐸𝑆(𝑡)𝐸(𝑡) − 𝛽𝐼𝑆(𝑡)𝐼(𝑡) + 𝛿𝑅(𝑡),

𝐸̇(𝑡) = 𝛽𝐸𝑆(𝑡)𝐸(𝑡) + 𝛽𝐼𝑆(𝑡)𝐼(𝑡) − 𝜎𝐸(𝑡),

𝐼̇(𝑡) = 𝜎𝐸(𝑡) − 𝛾𝐼(𝑡),

𝑅̇(𝑡) = 𝛾𝐼(𝑡) − 𝛿𝑅(𝑡),

(3)

where 𝛽𝐸 and 𝛽𝐼 are the transmission rates from person-to-person
contact between susceptible and exposed, and susceptible and infected,
respectively. Moreover, 𝜎 is the transition rate from exposed to infected,
𝛾 is the recovery rate, and 𝛿 represents the rate at which immunity
recedes. We note that the classic SEIR model (see Fig. 3) has 𝛽𝐸 =
0 (and 𝛿 = 0), thus explicitly capturing the delay between time of
exposure and when a person becomes simultaneously symptomatic and
infectious. For COVID-19, these models have been adapted to capture
the state of being both asymptomatic and infectious, leading to SAIR
and SAIRS models, described next.

2.3. SAIR and SAIRS models

One SAIRS compartment model, which accommodates asymptom-
atic states, has the form

𝑆̇(𝑡) = −𝛽𝑆(𝑡)(𝐴(𝑡) + 𝐼(𝑡)) + 𝛿𝑅(𝑡),
𝐴̇(𝑡) = 𝛽𝑞𝑆(𝑡)(𝐴(𝑡) + 𝐼(𝑡)) − 𝜎𝐴(𝑡) − 𝜅𝐴(𝑡),
𝐼̇(𝑡) = 𝛽(1 − 𝑞)𝑆(𝑡)(𝐴(𝑡) + 𝐼(𝑡)) + 𝜎𝐴(𝑡) − 𝛾𝐼(𝑡) − 𝜈𝐼(𝑡),
𝑅̇(𝑡) = 𝜅𝐴(𝑡) + 𝛾𝐼(𝑡) − 𝛿𝑅(𝑡),
𝐷̇(𝑡) = 𝜈𝐼(𝑡),

(4)

where we have further included a compartment capturing death rate
due specifically to the disease (𝐷), and again 𝛽 represents the rate of
infection or contact, now amongst susceptible, asymptomatic–infected
and infected–symptomatic individuals; 𝜎 represents the progression
rate from asymptomatic to symptomatic infected; and 𝜅 and 𝛾 represent
the recovery rates for asymptomatic and infected–symptomatic individ-
uals, respectively. That is, this model captures the case of being both
asymptomatic and infectious, and recovering without ever exhibiting
symptoms. 𝛿 represents the rate at which recovered individuals become
susceptible again, i.e., lose their immunity to the disease; and 𝜈 rep-
resents the rate at which infected individuals succumb to the disease.
The parameter 𝑞, and the (1 − 𝑞) term, represent the probabilities (or
proportions) of susceptible individuals transitioning, respectively, to 𝐴
and 𝐼 states from 𝑆. If death rate is not included in the model, then
we take in (4) 𝐷(0) = 0 and 𝜈 = 0. If further, the acquired immunity
is permanent, then we can take 𝛿 = 0 in the general SAIRS model
(4), leading to a SAIR model (see Fig. 4). The SAIRS (and as a special
case SAIR) models may be further generalized by allowing for different
𝛽 values, or infection rates, between 𝑆 and 𝐴 states, and 𝑆 and 𝐼
states. Again no general vital dynamics are included in these models.
348

Clearly, to capture an SIRS process from an SAIRS model, we simply set
𝑞 = 𝜎 = 𝜅 = 0, with 𝐴(0) = 0 (Hethcote, 2000; Mena-Lorca & Hethcote,
1992).

SAIR and SAIRS models were first proposed by Grunnill (2018) to
capture asymptomatic effects in dengue virus epidemics. With dengue
virus strains in humans, being asymptomatic one year may lead to more
serious reactions to infections from dengue virus strains in following
years. Thus, the SAIR and SAIRS models proposed by Grunnill have
different structures than that of (4), which is intended to capture
the type of asymptomatic-but-infectious state that may occur with
COVID-19.

Remark 1. We note that in all the afore-described compartment
models the disease-free state (𝐼 = 0, 𝐸 = 𝐼 = 0 in the case of SEIRS,
or 𝐴 = 𝐼 = 0 in the case of SAIRS) is an equilibrium, which is globally
asymptotically stable under some conditions on the parameters of the
underlying model (for example, for the SIS model, the necessary and
sufficient condition is 𝛽∕𝛾 ≤ 1). Since the models represent nonlinear
dynamics, there emerges the possibility of additional equilibria; this
is indeed the case, with the additional equilibria corresponding to an
endemic state, that is 𝐼 > 0 (for example, for the SIS model, the endemic
state is 𝐼 = 1 − (𝛾∕𝛽), whose positivity and global asymptotic stability
is assured when the condition of global asymptotic stability (from any
initial condition for 𝐼 , except 𝐼(0) = 0) of the disease-free equilibrium
does not hold. In Section 5 we provide a more extensive discussion of
emerging equilibria for general models and their stability properties.
Similarly, in Section 6 we present the analysis for the networked models
presented in the next two sections.

3. Networked models—continuous time

As indicated earlier, our main interest is the study of networked
models, capturing the scenario where there are numerous groups, or
agents, interconnected via a contact graph or more general intercon-
nection network. Such a network is defined by a weighted adjacency
matrix, 𝑊 = {𝑤𝑖𝑗}, where element 𝑤𝑖𝑗 quantifies the strength of the
connection from agent 𝑗 to agent 𝑖. If we assume as before large and
constant agent or group population sizes and specific independence
assumptions, then the preceding MFA models describing the evolution
of epidemic process dynamics in a single group can be extended to
describe the dynamics of epidemic processes evolving over networks of
such groups or agents. We refer to these as networked epidemic models.

3.1. SIS model

For an SIS process, denoting the proportion of the subpopulation at
node 𝑖 infected at time 𝑡 or the probability of node 𝑖 being infected at
any time 𝑡 by 𝑝𝑖(𝑡) ∈ [0, 1], we have the following differential equation
governing the evolution of the 𝑝𝑖’s, for 𝑖 ∈ [𝑛],

̇ 𝑖(𝑡) = (1 − 𝑝𝑖(𝑡))𝛽𝑖
𝑛
∑

𝑗=1
𝑤𝑖𝑗𝑝𝑗 (𝑡) − 𝛾𝑖𝑝𝑖(𝑡) , (5)

where 𝛽𝑖 > 0 is the susceptibility rate, 𝑤𝑖𝑗 are the non-negative, edge
weights between the nodes, and 𝛾𝑖 > 0 is the healing rate, for node 𝑖.

For the first interpretation of the state, the model can be derived
from a subpopulation perspective as was done by Fall et al. (2007) in
the following manner.

With some abuse of notation,2 let 𝑆𝑖(𝑡) denote the number of suscep-
tible individuals in subpopulation 𝑖 at time 𝑡 ≥ 0, and let 𝐼𝑖(𝑡) denote the
number of individuals infected in subpopulation 𝑖 at time 𝑡 ≥ 0. Assume

2 Note that in the group model for SIS, we used 𝑆 and 𝐼 to denote the
proportions of the population that are susceptible and infected, whereas in the
derivation to follow here we use the 𝑖-indexed quantities to denote the number
of individuals in each category; since the context is different, this should not
cause any confusion.
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that the total number of individuals in each subpopulation 𝑖, denoted
by 𝑁𝑖, is fixed, that is, 𝑆𝑖(𝑡) + 𝐼𝑖(𝑡) = 𝑁𝑖, for all 𝑖 ∈ [𝑛] and 𝑡 ≥ 0.
everal parameters are associated with each subpopulation 𝑖: curing
ate 𝜓𝑖, birth rate 𝜇𝑖, death rate 𝜇̄𝑖, and infection rates 𝛼𝑖𝑗 𝑖, 𝑗 ∈ [𝑛].
ince 𝑁𝑖 is constant, 𝜇̄𝑖 = 𝜇𝑖. The evolution of the number of infected
nd susceptible individuals in each subpopulation 𝑖 is as follows:

̇ 𝑖(𝑡) = 𝜇𝑖𝑁𝑖 − 𝜇̄𝑖𝑆𝑖(𝑡) + 𝜓𝑖𝐼𝑖(𝑡) −
𝑛
∑

𝑗=1
𝛼𝑖𝑗
𝑆𝑖(𝑡)
𝑁𝑖

𝐼𝑗 (𝑡),

= (𝜇𝑖 + 𝜓𝑖)𝐼𝑖(𝑡) −
𝑛
∑

𝑗=1
𝛼𝑖𝑗
𝑆𝑖(𝑡)
𝑁𝑖

𝐼𝑗 (𝑡), (6)

𝐼̇𝑖(𝑡) = −𝜓𝑖𝐼𝑖(𝑡) − 𝜇̄𝑖𝐼𝑖(𝑡) +
𝑛
∑

𝑗=1
𝛼𝑖𝑗
𝑆𝑖(𝑡)
𝑁𝑖

𝐼𝑗 (𝑡)

= (−𝜓𝑖 − 𝜇𝑖)𝐼𝑖(𝑡) +
𝑛
∑

𝑗=1
𝛼𝑖𝑗
𝑆𝑖(𝑡)
𝑁𝑖

𝐼𝑗 (𝑡). (7)

To simplify the model, define the proportion of infected individuals in
subpopulation 𝑖 by

𝑝𝑖(𝑡) =
𝐼𝑖(𝑡)
𝑁𝑖

,

nd let

𝑖𝑗 = 𝛼𝑖𝑗
𝑁𝑗

𝑁𝑖
, 𝛾𝑖 = 𝜓𝑖 + 𝜇𝑖,

rom (7), it follows that

𝑝̇𝑖(𝑡) = −𝛾𝑖𝑝𝑖(𝑡) + (1 − 𝑝𝑖(𝑡))
𝑛
∑

𝑗=1
𝛽𝑖𝑗𝑝𝑗 (𝑡), (8)

the same as (5) with 𝛽𝑖𝑗 = 𝛽𝑖𝑤𝑖𝑗 . The subpopulation derivation can be
used to derive extensions of SIS models for multi-city epidemics (Lewien
& Chapman, 2019), competing viruses (Liu et al., 2019), and other com-
partment models and extensions thereof, as we will see in Section 3.2.

Another way to derive the model in (5) is to use a mean field
approximation of a 2𝑛 state Markov chain model that captures the
networked SIS dynamics. Van Mieghem et al. (2009) introduce a 2𝑛-
state Markov chain, where each state of the chain, 𝑌𝑘(𝑡), corresponds
to a binary-valued string 𝑥 of length 𝑛, where the 𝑖th agent is either
infected or susceptible indicated by 𝑥𝑖 = 1 or 𝑥𝑖 = 0, respectively, and
the state transition matrix, 𝑄̄, is defined by

̄𝑘𝑙 =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝛾, if 𝑥𝑖 = 1, 𝑘 = 𝑙 + 2𝑖−1

𝛽
𝑛
∑

𝑗=1
𝑤𝑖𝑗𝑥𝑗 , if 𝑥𝑖 = 0, 𝑘 = 𝑙 − 2𝑖−1

−
∑

𝑙≠𝑗
𝑞𝑗𝑙 , if 𝑘 = 𝑙

0, otherwise,

(9)

for 𝑖 ∈ [𝑛]. Here a virus is propagating over a network structure defined
by 𝑤𝑖𝑗 (non-negative, with 𝑤𝑗𝑗 = 0, for 𝑗 ∈ [𝑛]), with 𝑛 agents,
𝛽 is the homogeneous (same for each node) infection rate, 𝛾 is the
homogeneous healing rate, and, again, 𝑥𝑖 = 1 or 𝑥𝑖 = 0 indicates that
the 𝑖th agent is either infected or susceptible, respectively. The state
vector 𝑦(𝑡) is defined by

𝑦𝑘(𝑡) = 𝑃𝑟[𝑌𝑘(𝑡) = 𝑘], (10)

with
2𝑛
∑

𝑘=1
𝑦𝑘(𝑡) = 1. The Markov chain evolves according to

𝑑𝑦⊤(𝑡)
𝑑𝑡

= 𝑦⊤(𝑡)𝑄̄. (11)

Let 𝑣𝑖(𝑡) = 𝑃𝑟[𝑋𝑖(𝑡) = 1], where 𝑋𝑖(𝑡) is the random variable represent-
ing whether the 𝑖th agent is infected (not to be confused with 𝑥 , which
349

𝑖

is the 𝑖th entry of the binary string associated with each state of the 2𝑛

Markov chain). Then

𝑣⊤(𝑡) = 𝑦⊤(𝑡)𝑀, (12)

here𝑀 ∈ R2𝑛×𝑛 with the rows being lexicographically-ordered binary
umbers, bit reversed.3 That is, 𝑣𝑖(𝑡) reflects the summation of all
robabilities where 𝑥𝑖 = 1, therefore giving the mean, 𝐸[𝑋𝑖], of the
nfection, 𝑋𝑖, of agent 𝑖. Note that the first chain state of the chain,
hich corresponds to 𝑥 = 𝟎, the vector of zeros, or the ‘‘disease free’’
quilibrium, for 𝛾 > 0, is the absorbing, or sink, state of the chain. This
eans that the Markov chain will never escape the state once in it, and
urther, since it is the only absorbing state the system will converge to
he healthy state with probability one (Norris, 1998).
Now consider the probabilities associated with node 𝑖 being healthy

𝑋𝑖 = 0) or infected (𝑋𝑖 = 1) at time 𝑡 + 𝛥𝑡, for example,

𝑟(𝑋𝑖(𝑡 + 𝛥𝑡) = 0|𝑋𝑖(𝑡) = 1, 𝑋(𝑡)) = 𝛾𝛥𝑡 + 𝑜(𝛥𝑡),

𝑟(𝑋𝑖(𝑡 + 𝛥𝑡) = 1|𝑋𝑖(𝑡) = 0, 𝑋(𝑡)) = 𝛽
𝑛
∑

𝑗=1
𝑤𝑖𝑗𝑋𝑗𝛥𝑡 + 𝑜(𝛥𝑡),

⋮

etting 𝛥𝑡 go to zero, and taking expectations, lead to

̇ (𝑋𝑖(𝑡)) = 𝐸

(

(1 −𝑋𝑖(𝑡))𝛽
𝑛
∑

𝑗=1
𝑤𝑖𝑗𝑋𝑗 (𝑡)

)

− 𝛾𝐸(𝑋𝑖(𝑡)). (13)

Using the above equation, the identities 𝑃𝑟(𝑧) = 𝐸(1𝑧), 𝑝𝑖(𝑡) = 𝑃𝑟(𝑋𝑖(𝑡)
= 1), (1 − 𝑝𝑖(𝑡)) = 𝑃𝑟(𝑋𝑖(𝑡) = 0), and approximating 𝑃𝑟(𝑋𝑖(𝑡) = 1, 𝑋𝑗 (𝑡) =
1) ≈ 𝑝𝑖(𝑡)𝑝𝑗 (𝑡) (which again inaccurately assumes independence) gives

𝑝̇𝑖(𝑡) = (1 − 𝑝𝑖(𝑡))𝛽
𝑛
∑

𝑗=1
𝑤𝑖𝑗𝑝𝑗 (𝑡) − 𝛾𝑝𝑖(𝑡),

which is the same as (5) for the homogeneous virus case (Pare, 2018).
Note that for both interpretations of the model to be well defined,

each state 𝑝𝑖(𝑡) must remain in the domain [0, 1] for all 𝑡 ≥ 0. This is
indeed the case, as indicated in the following lemma.

Lemma 1. If 𝑝𝑖(0) ∈ [0, 1], for all 𝑖 ∈ [𝑛], then 𝑝𝑖(𝑡) ∈ [0, 1], for all 𝑡 ≥ 0,
𝑖 ∈ [𝑛].

3.2. SIR model

For an SIR process, denoting the probability of node 𝑖 being infected
and being recovered at any time 𝑡 by 𝑝𝑖(𝑡) ∈ [0, 1] and 𝑟𝑖(𝑡) ∈ [0, 1],
respectively, we obtain the following differential equations governing
the evolution of the 𝑝𝑖’s and 𝑟𝑖’s, which is an extension of the networked
SIS model (5):

̇ 𝑖 = (1 − 𝑝𝑖 − 𝑟𝑖)𝛽𝑖
𝑛
∑

𝑗=1
𝑤𝑖𝑗𝑝𝑗 − 𝛾𝑖𝑝𝑖, (14a)

𝑟̇𝑖 = 𝛾𝑖𝑝𝑖. (14b)

For the networked SIR model to be well defined, the states and their
sum must remain in [0, 1]. This is indeed the case, as indicated in the
following lemma.

Lemma 2. If 𝑝𝑖(0), 𝑟𝑖(0), 𝑝𝑖(0), 𝑟𝑖(0) + 𝑝𝑖(0) ∈ [0, 1], for all 𝑖 ∈ [𝑛], then
𝑝𝑖(𝑡), 𝑟𝑖(𝑡), 𝑝𝑖(𝑡) + 𝑟𝑖(𝑡) ∈ [0, 1], for all 𝑡 ≥ 0, 𝑖 ∈ [𝑛].

Extensions to the SIR model are possible, some of which will be
illustrated later. As one example, Pagliara and Leonard (2020) proposed
n SIRI model that allows for partial immunity. Another example, Paré
t al. (2019) add a shared resource (water), which can be contaminated,
o the SIR model to make a networked SIWR model. We include

3 Matlab code: 𝑀 = 𝑓𝑙𝑖𝑝𝑙𝑟(𝑑𝑒𝑐2𝑏𝑖𝑛(0 ∶ (2𝑛) − 1) − ‘0’).
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below the derivation of this generalized model, paralleling the SIS
subpopulation derivation in Section 3.1.

First we consider a network of 𝑛 nodes that can be interpreted as
subpopulations or agents. Specifically, each agent can be infected if
one of its neighbors is infected. The neighbor relationships among the
𝑛 agents are described by an 𝑛-vertex directed graph. A directed edge
from node 𝑗 to node 𝑖 means that agent 𝑖 can be infected by agent
𝑗, i.e., agent 𝑗 is a neighbor of agent 𝑖. Let 𝑆𝑖 denote the number
of susceptible individuals in subpopulation 𝑖, 𝐼𝑖 denote the number
of infected individuals in subpopulation 𝑖, 𝑊 denote the pathogen
concentration in the shared water source, and 𝑅𝑖 denote the removed
roportion of subpopulation 𝑖. We assume a constant subpopulation for
ach 𝑖, that is, 𝑆𝑖(𝑡) + 𝐼𝑖(𝑡) + 𝑅𝑖(𝑡) = 𝑁𝑖 ∀𝑖, 𝑡 ≥ 0. The dynamics proceed
similarly to (2):

𝑆̇𝑖(𝑡) = 𝜇𝑖𝑁𝑖 −
𝑛
∑

𝑗=1
𝛼𝑖𝑗
𝑆𝑖(𝑡)
𝑁𝑖

𝐼𝑗 (𝑡) − 𝛽𝑤,𝑖𝑆𝑖(𝑡)𝑊 (𝑡) − 𝜇𝑖𝑆𝑖(𝑡), (15a)

𝐼̇𝑖(𝑡) =
𝑛
∑

𝑗=1
𝛼𝑖𝑗
𝑆𝑖(𝑡)
𝑁𝑖

𝐼𝑗 (𝑡) + 𝛽𝑤,𝑖𝑆𝑖(𝑡)𝑊 (𝑡) − 𝜓𝑖𝐼𝑖(𝑡) − 𝜇𝑖𝐼𝑖(𝑡), (15b)

̇ (𝑡) =
𝑛
∑

𝑗=1
𝛼𝑗𝐼𝑗 (𝑡) − 𝜉𝑊 (𝑡), (15c)

𝑅̇𝑖(𝑡) = 𝜓𝑖𝐼𝑖(𝑡) − 𝜇𝑖𝑅𝑖(𝑡), (15d)

here, for each node 𝑖, 𝜇𝑖 is the birth rate and natural death rate, 𝛼𝑖𝑗
s the node-to-node infection rate (with the understanding that 𝛼𝑖𝑗 > 0
henever subpopulation 𝑗 is a neighbor of subpopulation 𝑖 and 𝛼𝑖𝑗 = 0
therwise), 𝛽𝑤,𝑖 is the water-to-node infection rate, and 𝜓𝑖 is the curing
r death (from illness, depending on whether the state variable 𝑟 is
nterpreted as recovered or removed, i.e., due to death) rate, and 𝛼𝑗 is
he node-to-water infection rate. Note that in (15) we are considering
he rates of change of the numbers of susceptible, infected and recov-
red/removed, rather than the proportions. For this reason, we require

1
𝑁𝑖

term in the 𝑆𝑖 and 𝐼𝑖 rate equations. Alternatively, let 𝑝𝑖 denote
the proportion of the infected subpopulation 𝑖 (or the probability of
infection of agent 𝑖), 𝑤 denote the pathogen concentration in the shared
water source (we first assume a single water source), and 𝑟𝑖 denote
the removed proportion of subpopulation 𝑖 (or the recovered/removed
probability of agent 𝑖), that is,

𝑝𝑖 =
𝐼𝑖(𝑡)
𝑁𝑖

, 𝑟𝑖 =
𝑅𝑖(𝑡)
𝑁𝑖

. 𝑤 = 𝑊 .

Then the dynamics in (15) can be rewritten as follows:

𝑝̇𝑖 = (1 − 𝑝𝑖 − 𝑟𝑖)

( 𝑛
∑

𝑗=1
𝛽𝑖𝑗𝑝𝑗 + 𝛽𝑤,𝑖𝑤

)

− 𝛾𝑖𝑝𝑖, (16a)

𝑟̇𝑖 = 𝜓𝑖𝑝𝑖 − 𝜇𝑖𝑟𝑖, (16b)

𝑤̇ =
𝑛
∑

𝑗=1
𝛼𝑗𝑝𝑗 − 𝜉𝑤, (16c)

here

𝑖𝑗 = 𝛼𝑖𝑗
𝑁𝑗

𝑁𝑖
, 𝛼𝑗 =

𝜙𝑗
𝑁𝑗

, 𝛾𝑖 = 𝜓𝑖 + 𝜇𝑖,

are the normalized node-to-node infection rates, normalized node-to-
water infection rates, and the total decay rates on the normalized
infection levels, respectively. Note that the following models can also
be derived in a similar manner.

3.3. SEIR model

In a similar fashion to that which was done in Sections 3.1 and 3.2,
the group SEIR model can be extended to allow for networked contact
structures, as follows:

𝑒̇𝑖 = (1 − 𝑒𝑖 − 𝑝𝑖 − 𝑟𝑖)

( 𝑛
∑

𝛽𝐸𝑖 𝑤𝑖𝑗𝑒𝑗 +
𝑛
∑

𝛽𝑖𝑤𝑖𝑗𝑝𝑗

)

− 𝜎𝑖𝑒𝑖, (17a)
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𝑗=1 𝑗=1
𝑝̇𝑖 = 𝜎𝑖𝑒𝑖 − 𝛾𝑖𝑝𝑖, (17b)

𝑟̇𝑖 = 𝛾𝑖𝑝𝑖, (17c)

where 𝑒𝑖 is the probability of exposed individuals in subpopulation 𝑖;
𝑖 and 𝑟𝑖 are as defined in the networked SIR model; 𝜎𝑖 is the rate at
which exposed individuals in subpopulation 𝑖 become infected; 𝛽𝐸𝑖 is
he infection rate associated with exposed individuals; and all other
arameters are as in the networked SIR model. Here, for simplicity, we
gnore the natural death rate. As noted earlier, in classic SEIR models
𝐸
𝑖 = 0 for all 𝑖 ∈ [𝑛], that is, exposed individuals are not contagious.

emma 3. If 𝑒𝑖(0), 𝑝𝑖(0), 𝑟𝑖(0), 𝑝𝑖(0), 𝑒𝑖(0) + 𝑟𝑖(0) + 𝑝𝑖(0) ∈ [0, 1], for all
𝑖 ∈ [𝑛], then 𝑒𝑖(𝑡), 𝑝𝑖(𝑡), 𝑟𝑖(𝑡), 𝑒𝑖(𝑡) + 𝑝𝑖(𝑡) + 𝑟𝑖(𝑡) ∈ [0, 1], for all 𝑡 ≥ 0, 𝑖 ∈ [𝑛].

3.4. SAIR model

The group SAIR model (see (4), with 𝛿 = 0) also can be extended to
the networked case, to reflect contact network structures:

𝑠̇𝑖(𝑡) = −𝛽𝑖𝑠𝑖(𝑡)

( 𝑛
∑

𝑗=1
𝑤𝑖𝑗 (𝑎𝑗 (𝑡) + 𝑝𝑗 (𝑡))

)

, (18a)

𝑎̇𝑖(𝑡) = 𝛽𝑖𝑞𝑠𝑖(𝑡)

( 𝑛
∑

𝑗=1
𝑤𝑖𝑗 (𝑎𝑗 (𝑡) + 𝑝𝑗 (𝑡))

)

− 𝜎𝑖𝑎𝑖(𝑡) − 𝜅𝑖𝑎𝑖(𝑡), (18b)

𝑝̇𝑖(𝑡) = 𝛽𝑖(1 − 𝑞)𝑠𝑖(𝑡)

( 𝑛
∑

𝑗=1
𝑤𝑖𝑗 (𝑎𝑗 (𝑡) + 𝑝𝑗 (𝑡))

)

+ 𝜎𝑖𝑎𝑖(𝑡) − 𝛾𝑖𝑝𝑖(𝑡), (18c)

𝑟̇𝑖(𝑡) = 𝜅𝑖𝑎𝑖(𝑡) + 𝛾𝑖𝑝(𝑡). (18d)

ere, 𝑠𝑖 and 𝑎𝑖 are the probabilities of an individual in subpopulation
becoming respectively susceptible or asymptomatic, and 𝑝𝑖 and 𝑟𝑖

admit the same interpretations as in the SIR model. All the parameters
are as defined earlier for the group SAIR model. Note that 𝑠𝑖(𝑡) =
1 − 𝑎𝑖(𝑡) − 𝑝𝑖(𝑡) − 𝑟𝑖(𝑡) for all 𝑖 ∈ [𝑛].

Lemma 4. If 𝑎𝑖(0), 𝑝𝑖(0), 𝑟𝑖(0), 𝑝𝑖(0), 𝑎𝑖(0) + 𝑟𝑖(0) + 𝑝𝑖(0) ∈ [0, 1], for all
∈ [𝑛], then 𝑎𝑖(𝑡), 𝑝𝑖(𝑡), 𝑟𝑖(𝑡), 𝑎𝑖(𝑡) + 𝑝𝑖(𝑡) + 𝑟𝑖(𝑡) ∈ [0, 1], for all 𝑡 ≥ 0, 𝑖 ∈ [𝑛].

. Networked models—discrete time

Disease data is often recorded in epidemiological reports that are
ompiled at set frequencies, such as weekly (World Health Organization
WHO), b) or daily (Snow, 1855; World Health Organization (WHO), a).
he sampling of the epidemics dynamics motivates the use of discrete
ime models. The following discrete time models are obtained by
pplying Euler’s method (Atkinson, 2008) to the models from Section 3.

.1. SIS model

Applying Euler’s method to (5), we have

𝑘+1
𝑖 = 𝑝𝑘𝑖 + ℎ

(

(1 − 𝑝𝑘𝑖 )𝛽𝑖
𝑛
∑

𝑗=1
𝑤𝑖𝑗𝑝

𝑘
𝑗 − 𝛾𝑖𝑝

𝑘
𝑖

)

, (19)

here 𝑘 is the time index and ℎ > 0 is the sampling parameter. In
atrix form, (19) becomes
𝑘+1 = 𝑝𝑘 + ℎ((𝐼 − 𝑃 𝑘)𝐵𝑊 − 𝛤 )𝑝𝑘, (20)

here 𝑃 𝑘 = diag(𝑝𝑘), 𝐵 = diag(𝛽𝑖), 𝑊 is the matrix of 𝑤𝑖𝑗 ’s, and
𝛤 = diag(𝛾𝑖). For this model to be well-defined we need the following
assumptions.

Assumption 1. For all 𝑖 ∈ [𝑛], we have ℎ𝛾𝑖 < 1 and ℎ∑𝑛
𝑗=1 𝛽𝑖𝑤𝑖𝑗 < 1.

emma 5 (Paré et al., 2019). Consider the model in (19) under Assump-
ion 1. Suppose 𝑝0𝑖 ∈ [0, 1] for all 𝑖 ∈ [𝑛]. Then, for all 𝑘 ≥ 0 and 𝑖 ∈ [𝑛],
𝑘 ∈ [0, 1].
𝑖
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Note that if ℎ = 1, the model becomes

𝑝𝑘+1𝑖 = 𝑝𝑘𝑖 + (1 − 𝑝𝑘𝑖 )𝛽𝑖
𝑛
∑

𝑗=1
𝑤𝑖𝑗𝑝

𝑘
𝑗 − 𝛾𝑖𝑝

𝑘
𝑖 . (21)

The model in (21) was derived by Ahn and Hassibi (2013) via trunca-
tion of the higher order terms of a probabilistic discrete-time model.
Therefore, there are three different ways to derive the model in (21)
s an approximation of the real SIS spread system: (1) using a mean
ield approximation of a 2𝑛 state continuous time Markov chain model
as explained in Section 3.1), applying Euler’s method, and setting the
ampling parameter to one, (2) deriving (5) from the subpopulation
erspective (as explained in Section 3.1), applying Euler’s method, and
etting the sampling parameter to one, and 3) through the truncation of
he higher order terms of a discrete time probabilistic model. See (Paré
t al., 2019, Figure 1) for a visualization of the relationship between
he two probabilistic approaches, namely (1) and (3).

.2. SIR model

Applying Euler’s method to (14), we have

𝑘+1
𝑖 = 𝑝𝑘𝑖 + ℎ

(

(1 − 𝑝𝑘𝑖 − 𝑟
𝑘
𝑖 )𝛽𝑖

𝑛
∑

𝑗=1
𝑤𝑖𝑗𝑝

𝑘
𝑗 − 𝛾𝑖𝑝

𝑘
𝑖

)

, (22a)

𝑟𝑘+1𝑖 = 𝑟𝑘𝑖 − ℎ𝛾𝑖𝑝
𝑘
𝑖 , (22b)

where 𝑘 is the time step and ℎ is the sampling parameter. The SIR
discrete-time model can also be expressed in matrix form as follows

𝑝𝑘+1 = 𝑝𝑘 + ℎ
(

(𝐼 − 𝑃 𝑘 − 𝑅𝑘)𝐵𝑑𝑊 − 𝛤
)

𝑝𝑘, (23a)

𝑟𝑘+1 = 𝑟𝑘 + ℎ𝛤𝑝𝑘. (23b)

For this model to be well defined, we also need Assumption 1 to hold.

Lemma 6 (Hota et al., 2020). Consider the model in (22) under Assump-
tion 1. Suppose 𝑠0𝑖 , 𝑝

0
𝑖 , 𝑟

0
𝑖 ∈ [0, 1] and 𝑠0𝑖 + 𝑝

0
𝑖 + 𝑟

0
𝑖 = 1 for all 𝑖 ∈ [𝑛]. Then,

for all 𝑘 ≥ 0 and 𝑖 ∈ [𝑛], 𝑠𝑘𝑖 , 𝑝
𝑘
𝑖 , 𝑟

𝑘
𝑖 ∈ [0, 1] and 𝑠𝑘𝑖 + 𝑝

𝑘
𝑖 + 𝑟

𝑘
𝑖 = 1.

4.3. SEIR model

The corresponding SEIR discrete-time model can be written as

𝑒𝑘+1𝑖 = 𝑒𝑘𝑖 + ℎ

(

(1 − 𝑒𝑘𝑖 − 𝑝
𝑘
𝑖 − 𝑟

𝑘
𝑖 )

( 𝑛
∑

𝑗=1
𝛽𝐸𝑖 𝑤𝑖𝑗𝑒

𝑘
𝑗 +

𝑛
∑

𝑗=1
𝛽𝑖𝑤𝑖𝑗𝑝

𝑘
𝑗

)

− 𝜎𝑖𝑒𝑘𝑖

)

,

(24a)

𝑝𝑘+1𝑖 = 𝑝𝑘𝑖 + ℎ(𝜎𝑖𝑒
𝑘
𝑖 − 𝛾𝑖𝑝

𝑘
𝑖 ), (24b)

𝑟𝑘+1𝑖 = 𝑟𝑘𝑖 + ℎ
(

𝛾𝑖𝑝
𝑘
𝑖
)

, (24c)

where 𝑘 is the time step. The SEIR discrete-time model can also be
expressed in matrix form as follows

𝑒𝑘+1 = 𝑒𝑘 + ℎ
(

(𝐼 − 𝐸𝑘 − 𝑃 𝑘 − 𝑅𝑘)(𝐵𝐸𝑊 𝑒𝑘 + 𝐵𝑊 𝑝𝑘) − 𝛴𝑒𝑘
)

, (25a)

𝑝𝑘+1 = 𝑝𝑘 + ℎ
(

𝛴𝑒𝑘 − 𝛤𝑝𝑘
)

, (25b)

𝑟𝑘+1 = 𝑟𝑘 + ℎ
(

𝛤𝑝𝑘
)

, (25c)

where 𝐵𝐸 = diag(𝛽𝐸𝑖 ) and 𝛴 = diag(𝜎𝑖).
For the discrete-time model to be well-defined we need the follow-

ing assumptions.

Assumption 2. For all 𝑖 ∈ [𝑛], we have 0 < ℎ𝛾𝑖 < 1, 0 < ℎ𝜎𝑖 ≤ 1,
0 ≤ ℎ(𝛽𝐸𝑖 + 𝛽𝑖)

∑𝑛
𝑗=1𝑤𝑖𝑗 ≤ 1, and 𝛽𝐸𝑖 , 𝛽𝑖, 𝑤𝑖𝑗 ≥ 0 for all 𝑖, 𝑗 ∈ [𝑛].

Lemma 7 (Vrabac, Shang et al., 2020). Consider the model in (24) under
Assumption 2. Suppose 𝑠0𝑖 , 𝑒

0
𝑖 , 𝑝

0
𝑖 , 𝑟

0
𝑖 ∈ [0, 1], 𝑠0𝑖 + 𝑒0𝑖 + 𝑝0𝑖 + 𝑟0𝑖 = 1 for

all 𝑖 ∈ [𝑛]. Then, for all 𝑘 ≥ 0 and 𝑖 ∈ [𝑛], 𝑠𝑘𝑖 , 𝑒
𝑘
𝑖 , 𝑝

𝑘
𝑖 , 𝑟

𝑘
𝑖 ∈ [0, 1] and

𝑠𝑘𝑖 + 𝑒
𝑘
𝑖 + 𝑝

𝑘
𝑖 + 𝑟

𝑘
𝑖 = 1.
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4.4. SAIR model

The corresponding SAIR discrete-time model can be written as

𝑎𝑘+1𝑖 = 𝑎𝑘𝑖 + ℎ

(

(1 − 𝑎𝑘𝑖 − 𝑝
𝑘
𝑖 − 𝑟

𝑘
𝑖 )𝛽𝑖𝑞

𝑛
∑

𝑗=1
𝑤𝑖𝑗 (𝑎𝑘𝑗 + 𝑝

𝑘
𝑗 ) − 𝜎𝑖𝑎

𝑘
𝑖 − 𝜅𝑖𝑎

𝑘
𝑖

)

,

(26a)

𝑝𝑘+1𝑖 = 𝑝𝑘𝑖 + ℎ

(

(1 − 𝑎𝑘𝑖 − 𝑝
𝑘
𝑖 − 𝑟

𝑘
𝑖 )𝛽𝑖(1 − 𝑞)

𝑛
∑

𝑗=1
𝑤𝑖𝑗 (𝑎𝑘𝑗 + 𝑝

𝑘
𝑗 ) + 𝜎𝑖𝑎

𝑘
𝑖 − 𝛾𝑖𝑝

𝑘
𝑖

)

,

(26b)

𝑟𝑘+1𝑖 = 𝑟𝑘𝑖 + ℎ
(

𝛾𝑖𝑝
𝑘
𝑖 + 𝜅𝑖𝑎

𝑘
𝑖
)

, (26c)

where 𝑘 is the time step. For the discrete-time model to be well defined
we need the following assumptions.

Assumption 3. For all 𝑖 ∈ [𝑛], we have 𝛽𝑖, 𝑤𝑖𝑗 ≥ 0, ℎ𝛾𝑖 ≤ 1, ℎ(𝜎𝑖+𝜅𝑖) ≤
1, ℎ(𝛾𝑖 + 𝜅𝑖) ≤ 1, ℎ𝛽𝑖

∑𝑛
𝑗=1𝑤𝑖𝑗 ≤ 1, and ℎ

(

𝛽𝑖(1 − 𝑞)
∑𝑛
𝑗=1𝑤𝑖𝑗 + 𝜎𝑖

)

≤ 1.

Lemma 8. Consider the model in (26) under Assumption 3. Suppose
𝑠0𝑖 , 𝑎

0
𝑖 , 𝑝

0
𝑖 , 𝑟

0
𝑖 ∈ [0, 1], 𝑠0𝑖 + 𝑎0𝑖 + 𝑝0𝑖 + 𝑟0𝑖 = 1 for all 𝑖 ∈ [𝑛]. Then, for all

𝑘 ≥ 0 and 𝑖 ∈ [𝑛], 𝑠𝑘𝑖 , 𝑎
𝑘
𝑖 , 𝑝

𝑘
𝑖 , 𝑟

𝑘
𝑖 ∈ [0, 1] and 𝑠𝑘𝑖 + 𝑎

𝑘
𝑖 + 𝑝

𝑘
𝑖 + 𝑟

𝑘
𝑖 = 1.

Proof. We prove this result by induction. We assume 𝑠𝑘𝑖 , 𝑎
𝑘
𝑖 , 𝑝

𝑘
𝑖 , 𝑟

𝑘
𝑖 ∈

[0, 1] and 𝑠𝑘𝑖 +𝑎
𝑘
𝑖 +𝑝

𝑘
𝑖 +𝑟

𝑘
𝑖 = 1, for the base-case 𝑘 = 0. We follow the proof

by showing the induction-step, that is, assuming 𝑠𝑘𝑖 , 𝑒
𝑘
𝑖 , 𝑝

𝑘
𝑖 , 𝑟

𝑘
𝑖 ∈ [0, 1] and

𝑠𝑘𝑖 + 𝑒
𝑘
𝑖 +𝑝

𝑘
𝑖 + 𝑟

𝑘
𝑖 = 1 for all 𝑖 ∈ [𝑛], we show that this holds also for 𝑘+1.

By Assumption 3 and (26), we have,

𝑠𝑘+1𝑖 = 𝑠𝑘𝑖 − ℎ𝑠
𝑘
𝑖 𝛽𝑖

( 𝑛
∑

𝑗=1
𝑤𝑖𝑗 (𝑎𝑘𝑗 + 𝑝

𝑘
𝑗 )

)

≥ 𝑠𝑘𝑖 + ℎ

[

−𝑠𝑘𝑖 𝛽𝑖
𝑛
∑

𝑗=1
𝑤𝑖𝑗

]

(27)

= 𝑠𝑘𝑖

[

1 − ℎ𝛽𝑖
𝑛
∑

𝑗=1
𝑤𝑖𝑗

]

≥ 0. (28)

Since, −ℎ𝑠𝑘𝑖 𝛽𝑖
(

∑𝑛
𝑗=1𝑤𝑖𝑗 (𝑎

𝑘
𝑗 + 𝑝

𝑘
𝑗 )
)

≤ 0, 𝑠𝑘+1 ≤ 𝑠𝑘 ≤ 1. By Assumption 3
and (26a), 𝑎𝑘+1𝑖 ≥ (1 − ℎ(𝜎𝑖 + 𝜅𝑖))𝑎𝑘𝑖 ≥ 0. Moreover, by the assumption
𝑎𝑘𝑗 , 𝑝

𝑘
𝑗 ≤ 1 for all 𝑗 ∈ [𝑛], 𝑞 ∈ [0, 1], Assumption 3, and (26a),

𝑎𝑘+1𝑖 ≤ 𝑎𝑘𝑖 + 𝑠
𝑘
𝑖 ℎ𝛽𝑖𝑞

𝑛
∑

𝑗=1
𝑤𝑖𝑗 ≤ 𝑎𝑘𝑖 + 𝑠

𝑘
𝑖 ≤ 1.

By Assumption 3 and (26b), 𝑝𝑘+1𝑖 ≥
(

1 − ℎ𝛾𝑖
)

𝑝𝑘𝑖 ≥ 0. Further, by the
assumption 𝑎𝑘𝑗 , 𝑝

𝑘
𝑗 ≤ 1 for all 𝑗 ∈ [𝑛], 𝑞 ∈ [0, 1], Assumption 3, and

(22a),

𝑝𝑘+1𝑖 ≤ 𝑝𝑘𝑖 + 𝑠
𝑘
𝑖 ℎ

(

𝛽𝑖(1 − 𝑞)
𝑛
∑

𝑗=1
𝑤𝑖𝑗 + 𝜎𝑖

)

≤ 𝑝𝑘𝑖 + 𝑠
𝑘
𝑖 ≤ 1.

By Assumption 2 and (26c), 𝑟𝑘+1𝑖 ≥ 𝑟𝑘𝑖 ≥ 0, and 𝑟𝑘+1𝑖 ≤ 𝑟𝑘𝑖 + 𝑝
𝑘
𝑖 + 𝑎

𝑘
𝑖 .

Thus, by the principle of mathematical induction we have that, if
𝑠0𝑖 , 𝑎

0
𝑖 , 𝑝

0
𝑖 , 𝑟

0
𝑖 ∈ [0, 1] and 𝑠0𝑖 + 𝑎0𝑖 + 𝑝0𝑖 + 𝑟0𝑖 = 1 for all 𝑖 ∈ [𝑛] then

𝑠𝑘𝑖 , 𝑎
𝑘
𝑖 , 𝑝

𝑘
𝑖 , 𝑟

𝑘
𝑖 ∈ [0, 1] and 𝑠𝑘𝑖 + 𝑎

𝑘
𝑖 + 𝑝

𝑘
𝑖 + 𝑟

𝑘
𝑖 = 1 for all 𝑘 ∈ N. □

5. Stability analysis—group models

For the single group models of Section 2, or epidemic models that
do not entail a network structure, the basic reproduction number (or
equivalently basic reproductive number) (BRN), 0, serves as a metric
that captures the ‘‘seriousness" of viral spread; this is considered a
fundamental threshold value in epidemiology. The BRN is the expected
number of secondary infections arising from one individual throughout
their entire infectious period. Thus, for models without network struc-
ture, 0 can be used to evaluate the effectiveness of an action aimed
at mitigating the disease spread. To stop the spreading, intuitively one

should hold 0 < 1. As we will see below, because of the nonlinear
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nature of spread dynamics we can also allow 0 = 1. In the sequel we
evaluate BRNs and the related property of dynamic stability for the SIS,
SIRS, SEIRS and SAIRS group model structures.

5.1. SIS model

For the SIS model of Section 2 it is straightforward to show that the
BRN is given by

0 = 𝛽 × 1∕𝛾,

which is the ratio of the infection to healing rates. The fact that the
healthy state (that is, 𝐼 = 0) is globally asymptotically stable if, and
only if, 0 ≤ 1 (as also stated in Remark 1) readily follows from
rewriting the second equation of (1), under the assumption 𝑆(𝑡) =
1 − 𝐼(𝑡), as

𝐼̇(𝑡) = 𝛽(1 − 𝐼(𝑡))𝐼(𝑡) − 𝛾𝐼(𝑡) = 𝛾
(

𝛽
𝛾
− 1

)

𝐼(𝑡) − 𝛽𝐼2(𝑡). (29)

Note that the right-hand side of this differential equation is bounded
above by the linear part; further with the linear part zero (that is, when
0 = 1) the nonlinear part alone leads to global asymptotic stability,
and thus we have that 0 ≤ 1 provides a sufficient condition for global
asymptotic stability.4 Necessity of this condition follows from the fact
that when 0 > 1 the linear part is unstable.

Specifically, what happens if 0 > 1? In this case, the SIS model has
a second equilibrium, the endemic state,

𝐼𝑒 = 1 −
𝛾
𝛽
,

hich is clearly positive when 0 > 1. Defining the equilibrium shifted
variable 𝐼 ∶= 𝐼 − 𝐼𝑒, we arrive at the differential equation (for 𝐼):
̇̃ = −𝛽𝐼𝑒𝐼 − 𝛽𝐼2,

nd from a similar argument as above, it follows that 𝐼 = 0 is globally
symptotically stable, which when translated to the original variable 𝐼
ays that 𝐼𝑒 is the globally asymptotically stable endemic equilibrium
f the dynamics of the SIS model whenever 0 > 1 and 𝐼(0) > 0.

5.2. SIR model

For the SIRS model (2) we continue as in (29) for the SIS model, and
set 𝑆(𝑡) = 1− 𝐼(𝑡) −𝑅(𝑡), leading to two coupled differential equations:

𝐼̇ = −(𝛾 − 𝛽)𝐼 − 𝛽𝑅𝐼 − 𝛽𝐼2,
𝑅̇ = 𝛾𝐼 − 𝛿𝑅.

(30)

When 𝛿 > 0, the disease-free equilibrium state can be characterized
by 𝐼𝑒 = 𝑅𝑒 = 0, 𝑆𝑒 = 1 (that is, eventually all recovered become
susceptible again, and now remain susceptible since 𝐼𝑒 = 0). This DFE
justifies evaluating stability by linearizing around 𝐼𝑒 = 𝑅𝑒 = 0.

Linearization leads to the 2 × 2 matrix
[

𝛽 − 𝛾 0
𝛾 −𝛿

]

.

This matrix is Hurwitz if and only if 𝛽 − 𝛾 < 0 and 𝛿 > 0. This
condition also leads to GAS of the DFE since the two nonlinear terms in
the differential equation for 𝐼 are negative, driving 𝐼 to zero globally,
which also drives 𝑅 to zero because of the −𝛿𝑅 term.

If 𝛿 = 0 (which gives us the SIR model), note that we cannot make
he same argument as above for linearization around 𝐼 = 𝑅 = 0,
ince there is now no positive feedback term from the 𝑅 group to 𝑆
roup. However, for comparison, let us assume for the moment that
inearization around 𝐼 = 𝑅 = 0 makes sense; of course when 𝛿 is very

4 Even though this sufficiency holds from all initial conditions for 𝐼 , what
is relevant for the SIS model is the behavior of the system for initial conditions
𝐼(0) ∈ [0, 1].
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t

small and positive it does, and hence one can consider SIR stability
as a limiting case of SIRS stability. Then again we satisfy the Hurwitz
condition if and only if 𝛽 − 𝛾 < 0, which is equivalent to 0 < 1, where

0 is the BRN defined in the SIS case. This condition also leads to GAS
y the argument used in the SIRS case. It is not difficult to see that in
his case we can let 0 = 1 and establish GAS of the disease-free state,
ince in this case

̇ = −𝛽𝑅𝐼 − 𝛽𝐼2;

ith 𝑅 being nonnegative, we have GAS.
Now note as a further result of linearization, if the preceding

onditions do not hold, that is if 0 > 1, then for each respective model
he disease-free equilibrium is unstable.
Returning to the disease-free equilibrium state for the SIR model

that is, with 𝛿 = 0 in SIRS), we have the coupled ODEs:

𝐼̇ = −(𝛾 − 𝛽)𝐼 − 𝛽𝑅𝐼 − 𝛽𝐼2,
̇ = 𝛾𝐼.

(31)

he equilibrium state in this case is 𝐼𝑒 = 0, 𝑅𝑒 = 1,5 with 𝑅 being
ositive throughout, except at 𝐼(0) = 0, and the right-hand-side of
he ODE for 𝐼 being negative whenever 𝐼(0) ≠ 0, and 0 ≤ 1; this
mmediately leads to the conclusion above, that is the DFE is GAS if
nd only if 0 ≤ 1.
For SIR, what happens when 0 > 1? There is no endemic equilib-

ium, because if the right hand side of the (31) for 𝐼 is set to zero, for
≠ 0 it leads to 𝐼 = 1−𝑅−(𝛾∕𝛽), which is positive only if 𝑅+(𝛾∕𝛽) < 1,
ut there is no such limiting 𝑅 value since 𝑅 increases with positive 𝐼 .
For SIRS, a quick calculation shows that with the right-hand-sides

f the coupled ODEs in (30) for 𝐼 and 𝑅 set equal to zero, we have a
nique solution (for 𝐼 ≠ 0):

∗ =
𝛾(𝛽 − 𝛾)
𝛽(𝛾 + 𝛿)

,

𝐼∗ =
𝛿(𝛽 − 𝛾)
𝛽(𝛾 + 𝛿)

,

which are both positive whenever the BRN is larger than 1. Note that
𝐼∗+𝑅∗ = 1−(𝛾∕𝛽), and hence this gives an endemic equilibrium state of
𝑆 independent of 𝛿. See (Hethcote, 2000) and the references therein for
further treatment and discussions on stability and endemic equilibria of
SIS and SIR group models.

5.3. SEIR model

For the SEIRS model (3) we continue as in the SIS and SIRS models,
nd set 𝑆(𝑡) = 1−𝐸(𝑡)− 𝐼(𝑡)−𝑅(𝑡), leading to three coupled differential
quations:

̇ = −(𝜎 − 𝛽𝐸 )𝐸 + 𝛽𝐼𝐼 − 𝛽𝐼𝑅𝐸 − 𝛽𝐼𝑅𝐼 − (𝛽𝐸 + 𝛽𝐼 )𝐼𝐸 − 𝛽𝐸𝐸2 − 𝛽𝐼𝐼2,
𝐼̇ = 𝜎𝐸 − 𝛾𝐼,
𝑅̇ = 𝛾𝐼 − 𝛿𝑅.

(32)

When 𝛾, 𝛿 > 0, the disease-free equilibrium state can be characterized
by 𝐸𝑒 = 𝐼𝑒 = 𝑅𝑒 = 0, 𝑆𝑒 = 1 (that is, eventually all recovered become
susceptible again, and now remain susceptible since 𝐸𝑒 = 𝐼𝑒 = 0). This
DFE justifies evaluating stability by linearizing around 𝐸𝑒 = 𝐼𝑒 = 𝑅𝑒 =
0.

Linearization leads to the 3 × 3 matrix

⎡

⎢

⎢

⎣

𝛽𝐸 − 𝜎 𝛽𝐼 0
𝜎 −𝛾 0
0 𝛾 −𝛿

⎤

⎥

⎥

⎦

.

5 This not an equilibrium state in the true sense of the notion, since once
= 1 it stays there, which is not captured by the smooth right-hand-side of

he differential equation above.
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With 𝛾, 𝛿 > 0, this matrix is Hurwitz if and only if 𝛽𝐸 − 𝜎 < −𝜎𝛽𝐼∕𝛾.
herefore, for the SEIRS model we have

0 ∶=
−𝜎𝛽𝐼

𝛾(𝛽𝐸 − 𝜎)
< 1.

This condition leads to GAS of the DFE since the five nonlinear terms in
the differential equation for 𝐸 are negative, driving 𝐸 to zero globally,
hich also drives 𝐼 to zero because of the −𝛾𝐼 term; this in turn drives
to zero because of the −𝛿𝑅 term.
If 𝛿 = 0 (which gives us the SEIR model), note that we cannot
ake the same argument as in the SEIRS case for linearization around
= 𝐼 = 𝑅 = 0, since there is now no positive feedback term from the
group to 𝑆 group. However, for comparison, let us assume for the
oment that linearization around 𝐸 = 𝐼 = 𝑅 = 0makes sense; of course
hen 𝛿 is very small and positive it does, and hence one can consider
EIR stability as a limiting case of SEIRS stability. Then again, with
> 0, we satisfy the Hurwitz condition if and only if 𝛽𝐸 − 𝜎 < −𝜎𝛽𝐼∕𝛾.
his condition also leads to GAS by the argument used in the SEIRS
ase.
We note that stability conditions of the endemic equilibrium for

he classic SEIR model were established by Li and Muldowney (1995),
hich also includes an analysis of the DFE for the classic model.

.4. SAIR model

We now consider stability of the SAIRS model given by (4) with
(0) = 0 and 𝜈 = 0; that is we essentially ignore the death rate
ynamics in this analysis. As this is a newly proposed model,6 there
s not a previously established BRN analysis. Proceeding as in the SIRS
nd SEIRS cases we set 𝑆(𝑡) = 1 − 𝐴(𝑡) − 𝐼(𝑡) − 𝑅(𝑡), leading to three
oupled differential equations:

𝐴̇ = −(𝜎 + 𝜅 − 𝛽𝑞)𝐴 − 𝛽𝑞𝐴2 − 2𝛽𝑞𝐴𝐼 − 𝛽𝑞𝐴𝑅 + 𝛽𝑞𝐼 − 𝛽𝑞𝐼2 − 𝛽𝑞𝐼𝑅,
𝐼̇ = (𝜎 + 𝛽(1 − 𝑞))𝐴 − 𝛽(1 − 𝑞)𝐴2 − 2𝛽(1 − 𝑞)𝐴𝐼 − 𝛽(1 − 𝑞)𝐴𝑅

− (𝛾 − 𝛽(1 − 𝑞))𝐼 − 𝛽(1 − 𝑞)𝐼2 − 𝛽(1 − 𝑞)𝐼𝑅,
̇ = 𝜅𝐴 + 𝛾𝐼 − 𝛿𝑅.

(33)

ssuming 𝛿 > 0 we consider linearization about the DFE point at
𝑒 = 𝐼𝑒 = 𝑅𝑒 = 0, 𝑆𝑒 = 1, which implies that all recovered become
usceptible again and remain susceptible since 𝐼𝑒 = 0; this gives us the
× 3 matrix

𝛽𝑞 − 𝜎 − 𝜅 𝛽𝑞 0
𝛽(1 − 𝑞) + 𝜎 𝛽(1 − 𝑞) − 𝛾 0

𝜅 𝛾 −𝛿

⎤

⎥

⎥

⎦

.

Applying Theorem 4.7 from (Khalil, 2002), straightforward eigenvalue
analysis and the Routh–Hurwitz criterion, it can then be seen that the
SAIRS model is GAS at the DFE when

0 ∶= max
(

𝛽
𝛾 + 𝜎 + 𝜅

,
𝛽(𝑞𝛾 + (1 − 𝑞)𝜅 + 𝜎)

𝛾(𝜎 + 𝜅)

)

< 1.

nalysis of endemic equilibria is noticeably more complex for this
odel, and to the best of the authors’ knowledge has not been com-
leted at this time.

6 This model was first introduced by the C.L. Beck in the NSF-NeTs
OVID-19 Call-to-Arms Workshop sponsored by Ohio State University in
pril, 2020: see https://sites.google.com/tamu.edu/nets-covid/first-call-to-
rms-workshop. The authors have since become aware of a similar model
ecently proposed by Liu, Wu et al. (2020).
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6. Stability analysis—networked models

For networked models, as those in Sections 3 and 4, with an
underlying graph structure with nodes and edges, BRN also plays an
important role in characterization of the behavior (such as asymptotic
stability) of the spread dynamics toward an equilibrium. For such
networked models, BRN admits the interpretation of being the expected
number of healthy nodes in a susceptible population that become infected
due to the state of infection at neighboring nodes. We now present results
on stability, with connection to the corresponding BRN, for the majority
of the networked models presented above, for both continuous-time and
discrete-time models.

6.1. SIS models

We first recall in the subsection below the general network struc-
ture, also known as the intertwined Markov model.

6.1.1. The 𝑛-intertwined Markov model
Following (Khanafer et al., 2016), we describe the networked SIS

infection model over a directed graph (digraph)  = ( , ) with 𝑛
nodes, where  is the set of nodes, and  is the set of edges. Each
node in the network has two states: infected or cured. The curing and
infection of a given node 𝑖 ∈  are described by two independent
oisson processes with rates 𝛾𝑖 and 𝛽𝑖, respectively. Throughout, we
ssume that 𝛾𝑖 > 0 and 𝛽𝑖 > 0. The transition rates between the healthy
and infected states of a given node’s Markov chain depend on its curing
rate as well as the infection probabilities among its neighbors. A mean-
field approximation is introduced to ‘‘average’’ the effect of infection
probabilities of the neighbors on the infection probability of a given
node. This approximation yields a dynamical system that describes the
evolution of the probability of infection of node 𝑖 ∈  , as described
next.

Let 𝑝𝑖(𝑡) ∈ [0, 1] be the infection probability of node 𝑖 ∈  at time
≥ 0, and let 𝑝(𝑡) = [𝑝1(𝑡),… , 𝑝𝑛(𝑡)]𝑇 . Also, let 𝛤 = diag(𝛾1,… , 𝛾𝑛),
(𝑡) = diag(𝑝(𝑡)), and 𝐵 = diag(𝛽1,… , 𝛽𝑛). The 𝑛-intertwined Markov
odel is prescribed by the mapping 𝛷 ∶ R𝑛 → R𝑛, where

𝑝̇(𝑡) = 𝛷(𝑝(𝑡)) ∶= (𝑊 𝑇𝐵 − 𝛤 )𝑝(𝑡) − 𝑃 (𝑡)𝑊 𝑇𝐵𝑝(𝑡). (34)

t is not difficult to see that when 𝑝(0) ∈ [0, 1]𝑛, 𝑝(𝑡) ∈ [0, 1]𝑛, for all
> 0.

.1.2. Equilibrium states of the 𝑛-intertwined Markov model
We next focus on characterizing the set of equilibria of the dy-

amical system (34). The characterization is given in terms of the
asic reproduction number (BRN), denoted by 0, introduced earlier
n the context of the group SIS model, whose counterpart in the case
f networked SIS as above is the expected number of infected nodes
roduced in a completely susceptible population due to the infection
f a neighboring node. For the 𝑛-intertwined Markov model, BRN was
ound in (Mieghem & Omic, 2014) to be equal to 0 = 𝜌(𝛤−1𝑊 𝑇𝐵).
or connected undirected graphs, it is shown in (Van Mieghem et al.,
009) that the disease free equilibrium is the unique equilibrium for the
-intertwined Markov model when 0 ≤ 1. When 0 > 1, in addition to
he disease-free equilibrium, an endemic equilibrium, denoted by 𝑝⋆,
emerges. In fact, it is shown that 𝑝⋆ ≫ 0. We call a strictly positive
endemic state strong. When 𝑝⋆ ≻ 0, we call it a weak endemic state. A
recursive expression for the endemic state 𝑝⋆ is provided in (Mieghem
& Omic, 2014), which is shown to depend on the problem parameters
only: 𝑊 , 𝛾𝑖, 𝛽𝑖, 𝑖 ∈  . The steady-state equation evaluated at 𝑝⋆ will
become handy in the derivations to follow and is given by

𝑊 𝑇𝐵𝑝⋆ = (𝐼 − 𝑃⋆)−1𝛤𝑝⋆, (35)

where 𝑃⋆ = diag(𝑝⋆). Note that, since we assumed that 𝛾𝑖 > 0, we have
⋆ ⋆ −1
𝑝𝑖 < 1, for all 𝑖 ∈  , and (𝐼 − 𝑃 ) exists.

https://sites.google.com/tamu.edu/nets-covid/first-call-to-arms-workshop
https://sites.google.com/tamu.edu/nets-covid/first-call-to-arms-workshop
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6.1.3. Stability of the disease free equilibrium
A necessary and sufficient condition for the stability of the disease-

free equilibrium is given in the following proposition.

Proposition 1. (Fall et al., 2007; Lajmanovich & Yorke, 1976) Suppose
 = ( , ) is a strongly connected digraph. The disease free equilibrium of
(5) is asymptotically stable with domain of attraction [0, 1]𝑛 if and only if
0 ≤ 1.

Note that 0 provides a sharp threshold for the stability of the
disease-free equilibrium, as in the group SIS model we discussed earlier.

A similar result holds for the discrete time networked SIS model.

Theorem 1. (Gracy et al., 2020; Paré et al., 2019) Suppose that As-
sumption 1 holds and 𝐵𝑊 is irreducible. The healthy state is the unique
equilibrium of (19) if and only if 𝜌 (𝐼 − ℎ𝛤 + ℎ𝐵𝑊 ) ≤ 1. Further, if
𝜌 (𝐼 − ℎ𝛤 + ℎ𝐵𝑊 ) ≤ 1 then the healthy state is asymptotically stable with
domain of attraction [0, 1]𝑛. Finally, if 𝜌 (𝐼 − ℎ𝛤 + ℎ𝐵𝑊 ) < 1 then the
healthy state is exponentially stable with domain of attraction [0, 1]𝑛.

6.1.4. Existence and stability of an endemic state
In this sub-section, we provide concrete results on local and global

asymptotic stability of an endemic state over strongly connected di-
graphs. We first note, in the proposition below, the existence of a
unique endemic state for (34) over strongly connected digraphs.

Proposition 2 (Fall et al., 2007). Let  = ( , ) be a strongly connected
digraph. Then, a unique strong endemic state 𝑝⋆ ≫ 0 exists if and only if
0 > 1.

Now the following result on stability of the endemic state is from
(Khanafer et al., 2016), which is proven by using positive systems
theory and properties of Metzler matrices.

Theorem 2 (Khanafer et al., 2016). Let  = ( , ) be a strongly connected
digraph, and assume that 𝑝(0) ≠ 0. If 0 > 1, then the strong endemic
state 𝑝⋆ is globally asymptotically stable, with convergence being exponential
locally.

Existence of an endemic equilibrium has been proven for the dis-
crete time networked SIS model given in (19).

Proposition 3. (Paré et al., 2019) Suppose that Assumption 1 holds and
𝐵𝑊 is irreducible. If 𝜌 (𝐼 − ℎ𝛤 + ℎ𝐵𝑊 ) > 1 then (19) has two equilibria,
𝟎 and 𝑝∗, and 𝑝∗ ≫ 𝟎.

Global stability of the endemic equilibrium was recently shown
under slightly stronger assumptions by Liu, Cui et al. (2020).

6.1.5. Stability of epidemic dynamics over weakly connected directional
graphs

In this section, we discuss results from (Khanafer et al., 2016)
on the nature and stability properties of equilibrium states in net-
worked SIS models with a digraph topology. Such a network topology
arises in scenarios where there exist connected components that col-
lectively serve as an infection source, but are not affected by the rest
of the nodes—scenarios that cannot be captured by strongly connected
topologies.

We first introduce some required notation. When the underlying
graph  is weakly connected, its adjacency matrix can be transformed
into an upper triangular form using an appropriate re-labeling of the
nodes. Assuming that  = ( , ) contains 𝑁 strongly connected compo-
nents (SCCs), we have

𝑊 =

⎡

⎢

⎢

⎢

⎢

𝑊11 𝑊12 … 𝑊1𝑁
0 𝑊22 𝑊23 …
⋮ ⋱ ⋱ ⋱

⎤

⎥

⎥

⎥

⎥

,
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⎣

0 … 0 𝑊𝑁𝑁 ⎦
where 𝑊𝑖𝑖 are irreducible for all 𝑖 ∈ [𝑁], and, hence, correspond to
SCCs in  in Berman and Plemmons (1994); the matrices 𝑊𝑖𝑗 , 𝑗 ≠ 𝑖,
however, are not necessarily irreducible. We denote an SCC of  by
𝑖 = (𝑖, 𝑖), 𝑖 ∈ [𝑁], where ∪𝑁𝑖=1𝑖 =  and ∪𝑁𝑖=1𝑖 =  . For each
𝑖 ∈ [𝑁], we introduce the positive diagonal matrices 𝛾𝑖, 𝐵𝑖 which
contain, respectively, the curing and infection rates of the nodes in 𝑖.
We introduce the partial order ‘≺’ among SCCs, and write 𝑖 ≺ 𝑗 , for
some 𝑖, 𝑗 ∈ [𝑁], if there is a directed path from 𝑖 to 𝑗 but not vice
versa.

For a given 𝑖 ∈ [𝑁], we denote the state of the nodes in 𝑖 by
𝑞𝑖 ∈ R|𝑖| and the state of the 𝑘th node in 𝑖 by 𝑞𝑖,𝑘 ∈ R. The state, 𝑝, of
the entire network is given by 𝑝 = [𝑞𝑇1 ,… , 𝑞𝑇𝑁 ]. Let 𝑐𝑖 =

∑

𝑗≠𝑖𝑊
𝑇
𝑗𝑖 𝐵𝑗𝑞𝑗 ∈

R|𝑖|, 𝑖 ∈ [𝑁], be the input infection from the nodes in ∖𝑖. We can
now write the dynamics of the nodes in 𝑖, 𝑖 ∈ [𝑁], given by the
mapping 𝛷̃𝑖 ∶ R|𝑖| × R|𝑖| → R|𝑖|, as

𝑞̇𝑖 = 𝛷̃𝑖(𝑞𝑖, 𝑐𝑖) ∶= (𝑊 𝑇
𝑖 𝐵𝑖 − 𝛾𝑖)𝑞𝑖 −𝑄𝑖𝑊

𝑇
𝑖 𝐵𝑖𝑞𝑖 + (𝐼 −𝑄𝑖)𝑐𝑖, (36)

where 𝑄𝑖 = diag(𝑞𝑖). When an SCC comprises a single node, 𝑊 𝑇
𝑖 𝐵𝑖 − 𝛾𝑖

is equal to −𝛾𝑖. In what follows, we say 𝑖 is stable to mean that the
dynamics (36) are stable. When an endemic state 𝑝⋆ emerges over the
graph , we call the steady-state of 𝑞𝑖 an endemic state of 𝑖, and we
denote it by 𝑞⋆𝑖 . Hence, the endemic state emerging over the entire
network is given by 𝑝⋆ = [𝑞⋆𝑇1 ,… , 𝑞⋆𝑇𝑁 ]𝑇 .

The following result from (Khanafer et al., 2016) now provides a
complete description of the stability properties of the networked SIS
model with weakly connected digraph topology. Here again the BRN,
this time defined for each subgraph, plays an important role in global
asymptotic stability (GAS) of disease-free and endemic equilibria.

Theorem 3 (Khanafer et al., 2016). Let  = ( , ) be a weakly connected
digraph consisting of 𝑁 SCCs ordered as 1 ≺ … ≺ 𝑁 . Let 𝑖

0 ∶=
𝜌(𝛾−1𝑖 𝑊 𝑇

𝑖 𝐵𝑖) be the BRN corresponding to 𝑖. Assume that 𝑞𝑖(0) ≠ 0 for
all 𝑖 ∈ [𝑛]. :

1. If 𝑖
0 ≤ 1 for all 𝑖 ∈ [𝑁], then the disease-free equilibrium is GAS.

2. If 𝑘
0 > 1 for some 𝑘 ∈ [𝑁], and 𝑖

0 ≤ 1 for 𝑖 ∈ [𝑘 − 1], then the
endemic state 𝑝⋆ = [0,… , 0, 𝑞⋆𝑇𝑘 ,… , 𝑞⋆𝑇𝑁 ]𝑇 is GAS.

6.2. SIR models

We first consider the continuous time model in (14). We appeal to a
result by Mei et al. (2017) which assumes homogeneous virus spread.
Recall that 𝑠𝑖(𝑡) = 1 − 𝑝𝑖(𝑡) − 𝑟𝑖(𝑡) for all 𝑖 ∈ [𝑛].

Theorem 4 (Mei et al., 2017). Consider the model in (14) with homoge-
neous spread and 𝛽 > 0 and 𝛾 > 0, W irreducible, 𝑝𝑖(0) > 0 for some 𝑖, and
𝑠𝑖(0) > 0 for all 𝑖 ∈ [𝑛]. For 𝑡 ≥ 0, let 𝜆max(𝑡) and 𝑣max(𝑡) be the dominant
eigenvalue of the non-negative matrix diag(𝑠(𝑡))𝑊 and the corresponding
normalized left eigenvector, respectively. Then, for all 𝑖 ∈ [𝑛],

(1) 𝑡 → 𝑠𝑖(𝑡) is monotonically decreasing, for all 𝑡 ≥ 0,
(2) the set of equilibrium points is the set of pairs (𝑠∗, 𝟎), for any 𝑠∗ ∈

[0, 1]𝑛,
(3) lim𝑡→∞ 𝑝𝑖(𝑡) = 0,
(4) there exists 𝑡 such that 𝛽𝜆max(𝑡) < 𝛾 for all 𝑡 ≥ 𝑡, and the

weighted average 𝑡 → 𝑣max(𝑡)⊤𝑥(𝑡), for 𝑡 ≥ 𝑡, is monotonically and
exponentially decreasing to zero.

To facilitate the discrete time SIR result we write/reiterate the
dynamics in (22) as

𝑠𝑘+1𝑖 = 𝑠𝑘𝑖 + ℎ
[

−𝑠𝑘𝑖
𝑛
∑

𝑗=1
𝛽𝑖𝑤𝑖𝑗𝑝

𝑘
𝑗
]

, (37a)

𝑝𝑘+1𝑖 = 𝑝𝑘𝑖 + ℎ
[

𝑠𝑘𝑖

𝑛
∑

𝑗=1
𝛽𝑖𝑤𝑖𝑗𝑝

𝑘
𝑗 − 𝛾𝑖𝑝

𝑘
𝑖
]

, (37b)

𝑟𝑘+1𝑖 = 𝑟𝑘𝑖 + ℎ𝛾𝑖𝑝
𝑘
𝑖 . (37c)
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Theorem 5 (Hota et al., 2020). Consider the model in (22) with As-
umption 1, ℎ𝛾𝑖 > 0 for all 𝑖 ∈ [𝑛], and 𝑝0𝑖 > 0 for some 𝑖. Then, for
all 𝑖 ∈ [𝑛],

(1) 𝑠𝑘+1𝑖 ≤ 𝑠𝑘𝑖 , for all 𝑘 ≥ 0,
(2) lim𝑘→∞ 𝑝𝑘𝑖 = 0,
(3) 𝜌(𝐼 + ℎdiag(𝑠𝑘)𝐵𝑊 − ℎ𝛤 ) is monotonically decreasing as a function

of 𝑘, 𝑘 ≥ 0,
(4) there exists 𝑘̄ such that 𝜌(𝐼 + ℎdiag(𝑠𝑘)𝐵𝑊 − ℎ𝛤 ) < 1 for all 𝑘 ≥ 𝑘̄,

and
(5) there exists 𝑘̄, such that 𝑝𝑘𝑖 converges linearly to 0 for all 𝑘 ≥ 𝑘̄.

.3. SEIR models

To facilitate the following result we write/reiterate the dynamics in
24a)–(24c) as

𝑠𝑘+1𝑖 = 𝑠𝑘𝑖 + ℎ

[

−𝑠𝑘𝑖

( 𝑛
∑

𝑗=1
𝛽𝐸𝑖 𝑤𝑖𝑗𝑒

𝑘
𝑗 +

𝑛
∑

𝑗=1
𝛽𝑖𝑤𝑖𝑗𝑝

𝑘
𝑗

)]

, (38a)

𝑒𝑘+1𝑖 = 𝑒𝑘𝑖 + ℎ

[

𝑠𝑘𝑖

( 𝑛
∑

𝑗=1
𝛽𝐸𝑖 𝑤𝑖𝑗𝑒

𝑘
𝑗 +

𝑛
∑

𝑗=1
𝛽𝑖𝑤𝑖𝑗𝑝

𝑘
𝑗

)

− 𝜎𝑖𝑒𝑘𝑖

]

, (38b)

𝑘+1
𝑖 = 𝑝𝑘𝑖 + ℎ[𝜎𝑖𝑒

𝑘
𝑖 − 𝛾𝑖𝑝

𝑘
𝑖 ], (38c)

𝑟𝑘+1𝑖 = 𝑟𝑘𝑖 + ℎ𝛾𝑖𝑝
𝑘
𝑖 , (38d)

Let 𝜆𝑀𝑘
𝑚𝑎𝑥 be the dominant eigenvalue of 𝑀𝑘, where𝑀𝑘 is defined as

𝑘 =
[

(𝐼 + ℎdiag(𝑠𝑘)𝐵𝐸𝑊 − ℎ𝛴) ℎdiag(𝑠𝑘)𝐵𝑊
ℎ𝛴 (𝐼 − ℎ𝛤 )

]

,

appealing to the notation from (25).

Theorem 6 (Vrabac, Shang et al., 2020). Consider the model in (24) under
Assumption 2. Suppose 𝑠0𝑖 , 𝑒

0
𝑖 , 𝑝

0
𝑖 , 𝑟

0
𝑖 ∈ [0, 1], 𝑠0𝑖 + 𝑒

0
𝑖 + 𝑝

0
𝑖 + 𝑟

0
𝑖 = 1 for all

𝑖 ∈ [𝑛] and 𝑝0𝑖 > 0 for some 𝑖. Then, for all 𝑘 ≥ 0 and 𝑖 ∈ [𝑛],

(1) 𝑠𝑘+1𝑖 ≤ 𝑠𝑘𝑖 ,
(2) lim𝑘→∞ 𝑒𝑘𝑖 = 0 and lim𝑘→∞ 𝑝𝑘𝑖 = 0,
(3) 𝜆𝑀𝑘

max is monotonically decreasing as a function of k,
(4) there exist a 𝑘̄ such that 𝜆𝑀𝑘

max < 1 for all 𝑘 ≥ 𝑘̄,
(5) there exists 𝑘̄, such that 𝑝𝑘𝑖 converges linearly to 0 for all 𝑘 ≥ 𝑘̄ and

𝑖 ∈ [𝑛].

7. Estimation of epidemic parameters

In this section we discuss estimating the parameters of the net-
worked models introduced in Section 4 from data. There have been nu-
merous studies focused on estimating parameters for epidemic process
models (see for example (Roosa & Chowell, 2019) and the references
therein; note also (Cheynet, 2020)), with recent work focused on con-
structing COVID-19 models from data (for example, a recent but very
short list includes (Anastassopoulou et al., 2020; Bertozzi et al., 2020;
Giordano et al., 2020). Much of the prior work provides estimated
parameters for group models or considers large probabilistic models,
and does not directly address estimation of parameters for epidemic
processes over networks. To the best of the authors’ knowledge, the first
work to consider estimation of networked epidemic models is presented
in (Paré et al., 2019).

7.1. SIS model

Following the approach taken by Paré et al. (2019) and Vrabac, Paré
et al. (2020), we can rewrite the networked SIS dynamics in (20) as
a linear relationship between observed data and unknown parameters
𝛽𝑖, 𝛿𝑖 in the form

⎡

⎢

⎢

𝑝1𝑖 − 𝑝
0
𝑖

⋮
𝑇 𝑇−1

⎤

⎥

⎥

= 𝛷𝑖

[

𝛽𝑖
𝛾𝑖

]

, (39)
355

⎣𝑝𝑖 − 𝑝𝑖 ⎦
where the matrix 𝛷 is defined as

𝛷𝑖 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

ℎ𝑠0𝑖
∑

𝑗∈𝑖

𝑤𝑖𝑗𝑝
0
𝑗 −ℎ𝑝0𝑖

⋮ ⋮
ℎ𝑠𝑇+1𝑖

∑

𝑗∈𝑖

𝑤𝑖𝑗𝑝
𝑇−1
𝑗 −ℎ𝑝𝑇−1𝑖

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, (40)

and 𝑠𝑘𝑖 = (1−𝑝𝑘𝑖 ) for the SIS model. The least squares estimates 𝛽𝑖 and 𝛾̂𝑖
can be computed directly using the pseudoinverse of 𝛷𝑖 for all 𝑖 ∈ [𝑛].
If 𝛷𝑖 is full column rank, 𝛽𝑖 and 𝛾̂𝑖 are unique. We state the following
result introduced in preliminary form in (Paré et al., 2019); a proof can
be found in (Vrabac, Paré et al., 2020).

Theorem 7 (Vrabac, Paré et al., 2020). Consider the model in (19).
ssume that 𝑝𝑘𝑗 , for all 𝑗 ∈ 𝑖 ∪ {𝑖}, 𝑘 ∈ [𝑇 − 1] ∪ {0}, 𝑝𝑇𝑖 , 𝑊 , and ℎ
are known. Then, the parameters of the spreading process for node 𝑖 can be
identified uniquely if and only if 𝑇 > 1, and there exist 𝑘1, 𝑘2 ∈ [𝑇 −1]∪{0}
such that

𝑝𝑘1𝑖 (1 − 𝑝𝑘2𝑖 )
𝑛
∑

𝑗=1
𝑤𝑖𝑗𝑝

𝑘2
𝑗 ≠ 𝑝𝑘2𝑖 (1 − 𝑝𝑘1𝑖 )

𝑛
∑

𝑗=1
𝑤𝑖𝑗𝑝

𝑘1
𝑗 . (41)

Similarly for homogeneous spread parameters, that is, where 𝛽𝑖 = 𝛽
and 𝛾𝑖 = 𝛾 for all 𝑖 ∈ [𝑛], by rewriting the SIS dynamics as

⎡

⎢

⎢

⎣

𝑝1 − 𝑝0

⋮
𝑝𝑇 − 𝑝𝑇−1

⎤

⎥

⎥

⎦

= ℎ𝛷
[

𝛽
𝛾

]

, (42)

where the matrix 𝛷 is defined as

𝛷 ∶=
⎡

⎢

⎢

⎣

(𝐼 − 𝑃 0)𝑊 𝑝0 −𝑝0

⋮ ⋮
(𝐼 − 𝑃 𝑇−1)𝑊 𝑝𝑇−1 −𝑝𝑇−1

⎤

⎥

⎥

⎦

, (43)

f 𝛷 is full column rank, we can uniquely recover 𝛽 and 𝛾. This leads
s to the following result.

heorem 8 (Vrabac, Paré et al., 2020). Consider the model in (20) with
omogeneous spread, that is, 𝛽𝑖 = 𝛽 and 𝛾𝑖 = 𝛾 for all 𝑖 ∈ [𝑛]. Assume
hat 𝑊 , 𝑝𝑘, for all 𝑘 ∈ [𝑇 ] ∪ {0}, and ℎ are known. Then, 𝛽 and 𝛾 can
e identified uniquely if and only if 𝑇 > 0, and there exist 𝑖, 𝑗 ∈ [𝑛] and
1, 𝑘2 ∈ [𝑇 − 1] ∪ {0} such that
𝑘1
𝑖 𝑔𝑗 (𝑝

𝑘2 ) ≠ 𝑝𝑘2𝑗 𝑔𝑖(𝑝
𝑘1 ), (44)

here 𝑔(𝑝𝑘) ∶= (𝐼 − 𝑃 𝑘)𝑊 𝑝𝑘.

.2. SIR model

The straightforward least squares estimation approach described
or the networked SIS model in the preceding section can be easily
xtended to the networked SIR, SEIR and SAIR models. To estimate the
preading parameters for the discrete time, heterogeneous SIR model
iscussed in Section 4.2 we can rewrite the dynamics given by (22) as

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑝1𝑖 − 𝑝
0
𝑖

⋮
𝑝𝑇𝑖 − 𝑝𝑇−1𝑖
𝑟1𝑖 − 𝑟

0
𝑖

⋮
𝑟𝑇𝑖 − 𝑟𝑇−1𝑖

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

= 𝑃𝑖

[

𝛽𝑖
𝛾𝑖

]

, where 𝑃𝑖 =
[

𝛷𝑖
𝛤𝑖

]

, (45)

ith 𝛷𝑖 defined as in (40), recalling that 𝑠𝑘𝑖 = 1 − 𝑝𝑘𝑖 − 𝑟𝑘𝑖 for the SIR
model, and with

𝛤𝑖 =
⎡

⎢

⎢

⎣

0 ℎ𝑝0𝑖
⋮ ⋮
0 ℎ𝑝𝑇−1𝑖

⎤

⎥

⎥

⎦

. (46)

The least squares estimates 𝛽𝑖 and 𝛾̂𝑖 can again be computed using the
pseudoinverse of 𝑃𝑖 for all 𝑖 ∈ [𝑛]; if 𝑃𝑖 is full column rank we have
unique solutions.
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Theorem 9 (Vrabac, Shang et al., 2020). Consider the model in (22).
Assume that 𝑠𝑘𝑖 , 𝑝

𝑘
𝑗 , 𝑟

𝑘
𝑖 , for all 𝑗 ∈ 𝑖 ∪ {𝑖}, 𝑘 ∈ [𝑇 − 1] ∪ {0}, 𝑝𝑇𝑖 , 𝑟

𝑇
𝑖 , and ℎ

are known. Then, the parameters of the spreading process for node 𝑖 can be
identified uniquely if and only if 𝑇 > 0, and there exist 𝑘1, 𝑘2 ∈ [𝑇 −1]∪{0}
such that

𝑝𝑘1𝑖 ≠ 0 and 𝑠𝑘2𝑖
∑

𝑗∈𝑖

𝑎𝑖𝑗𝑝
𝑘2
𝑗 ≠ 0. (47a)

7.3. SEIR model

To estimate the spreading parameters for the discrete time SEIR
model from Section 4.3 we continue to extend the least squares ap-
proach and rewrite the dynamics in (24) as

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑒1𝑖 − 𝑒
0
𝑖

⋮
𝑒𝑇𝑖 − 𝑒𝑇−1𝑖
𝑝1𝑖 − 𝑝

0
𝑖

⋮
𝑝𝑇𝑖 − 𝑝𝑇−1𝑖
𝑟1𝑖 − 𝑟

0
𝑖

⋮
𝑟𝑇𝑖 − 𝑟𝑇−1𝑖

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

= 𝑃𝐸𝑖

⎡

⎢

⎢

⎢

⎢

⎣

𝛽𝐸𝑖
𝛽𝑖
𝜎𝑖
𝛾𝑖

⎤

⎥

⎥

⎥

⎥

⎦

, where 𝑃𝐸𝑖 =
⎡

⎢

⎢

⎣

𝛷𝐸
𝑖

𝛴𝐸
𝑖

𝛤𝐸𝑖

⎤

⎥

⎥

⎦

, (48)

with

𝛷𝐸
𝑖 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

ℎ𝑠0𝑖
∑

𝑗∈𝑖

𝑤𝑖𝑗𝑒
0
𝑗 ℎ𝑠0𝑖

∑

𝑗∈𝑖

𝑤𝑖𝑗𝑝
0
𝑗 −ℎ𝑒0𝑖 0

⋮ ⋮ ⋮ ⋮
ℎ𝑠𝑇−1𝑖

∑

𝑗∈𝑖

𝑤𝑖𝑗𝑒
𝑇−1
𝑗 ℎ𝑠𝑇−1𝑖

∑

𝑗∈𝑖

𝑤𝑖𝑗𝑝
𝑇−1
𝑗 −ℎ𝑒𝑇−1𝑖 0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, (49)

𝛴𝐸
𝑖 =

⎡

⎢

⎢

⎣

0 0 ℎ𝑒0𝑖 −ℎ𝑝0𝑖
⋮ ⋮ ⋮ ⋮
0 0 ℎ𝑒𝑇−1𝑖 −ℎ𝑝𝑇−1𝑖

⎤

⎥

⎥

⎦

, and (50)

𝛤𝐸𝑖 =
⎡

⎢

⎢

⎣

0 0 0 ℎ𝑝0𝑖
⋮ ⋮ ⋮ ⋮
0 0 0 ℎ𝑝𝑇−1𝑖

⎤

⎥

⎥

⎦

, (51)

recalling that 𝑠𝑘𝑖 = 1 − 𝑒𝑘𝑖 − 𝑝
𝑘
𝑖 − 𝑟

𝑘
𝑖 for the SEIR model.

The least squares estimates 𝛽𝐸𝑖 , 𝛽𝑖, 𝜎̂𝑖, and 𝛾̂𝑖 are again computed
using the pseudoinverse of 𝑃𝐸𝑖 for all 𝑖.

Theorem 10 (Vrabac, Shang et al., 2020). Consider the model in (24).
Assume that 𝑠𝑘𝑖 , 𝑒

𝑘
𝑗 , 𝑝

𝑘
𝑗 , 𝑟

𝑘
𝑖 , for all 𝑗 ∈ 𝑖 ∪ {𝑖}, 𝑘 ∈ [𝑇 − 1] ∪ {0},

𝑒𝑇𝑖 , 𝑝
𝑇
𝑖 , 𝑟

𝑇
𝑖 , and ℎ are known. Then, the parameters of the spreading process

for node 𝑖 can be identified uniquely if and only if 𝑇 > 1, and there exist
𝑘1, 𝑘2, 𝑘3, 𝑘4 ∈ [𝑇 − 1] ∪ {0} such that

𝑝𝑘1𝑖 ≠ 0, 𝑒𝑘2𝑖 ≠ 0, (52a)

𝑔𝑘3𝑖 (𝑒𝑘3 )𝑔𝑘4𝑖 (𝑝𝑘4 ) ≠ 𝑔𝑘4𝑖 (𝑒𝑘4 )𝑔𝑘3𝑖 (𝑝𝑘3 ), (52b)

where 𝑔𝑘𝑖 (𝑥) = 𝑠𝑘𝑖
∑

𝑗∈𝑖
𝑎𝑖𝑗𝑥𝑗 which only uses the entries 𝑥𝑗 which 𝑗 ∈ 𝑖.

7.4. SAIR model

Finally, to estimate the spreading parameters (𝛽𝑖, 𝜎𝑖, 𝛾𝑖, 𝜅𝑖) for the
discrete time SAIR model from Section 4.4 we first assume 𝑞 is known,
and then rewrite (26) as
⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

𝑎1𝑖 − 𝑎
0
𝑖

⋮
𝑎𝑇𝑖 − 𝑎𝑇−1𝑖
𝑝1𝑖 − 𝑝

0
𝑖

⋮
𝑝𝑇𝑖 − 𝑝𝑇−1𝑖
𝑟1𝑖 − 𝑟

0
𝑖

⋮
𝑇 𝑇−1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

= 𝑃𝐴𝑖

⎡

⎢

⎢

⎢

⎢

⎣

𝛽𝑖
𝜎𝑖
𝛾𝑖
𝜅𝑖

⎤

⎥

⎥

⎥

⎥

⎦

, where 𝑃𝐴𝑖 =
⎡

⎢

⎢

⎣

𝛷𝐴
𝑖

𝛴𝐴
𝑖

𝛤𝐴𝑖

⎤

⎥

⎥

⎦

, (53)
356
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Fig. 5. Health regions from the Restore Illinois Plan (Illinois Department of Public
Health, 2020).

with

𝛷𝐴
𝑖 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

ℎ𝑞

(

𝑠0𝑖

𝑛
∑

𝑗=1
𝑤𝑖𝑗𝑎

0
𝑗 + 𝑠

0
𝑖

𝑛
∑

𝑗=1
𝑤𝑖𝑗𝑝

0
𝑗

)

−ℎ𝑎0𝑖 0 −ℎ𝑎0𝑖

⋮ ⋮ ⋮ ⋮

ℎ𝑞

(

𝑠𝑇−1𝑖

𝑛
∑

𝑗=1
𝑤𝑖𝑗𝑎

𝑇−1
𝑗 + 𝑠𝑇−1𝑖

𝑛
∑

𝑗=1
𝑤𝑖𝑗𝑝

𝑇−1
𝑗

)

−ℎ𝑎𝑇−1𝑖 0 −ℎ𝑎𝑇−1𝑖

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

(54)

𝐴
𝑖 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

ℎ(1 − 𝑞)

(

𝑠0𝑖

𝑛
∑

𝑗=1
𝑤𝑖𝑗𝑎

0
𝑗 + 𝑠

0
𝑖

𝑛
∑

𝑗=1
𝑤𝑖𝑗𝑝

0
𝑗

)

ℎ𝑎0𝑖 −ℎ𝑝0𝑖 0

⋮ ⋮ ⋮ ⋮

ℎ(1 − 𝑞)

(

𝑠𝑇−1𝑖

𝑛
∑

𝑗=1
𝑤𝑖𝑗𝑎

𝑇−1
𝑗 + 𝑠𝑇−1𝑖

𝑛
∑

𝑗=1
𝑤𝑖𝑗𝑝

𝑇−1
𝑗

)

ℎ𝑎𝑇−1𝑖 −ℎ𝑝𝑇−1𝑖 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

and (55)

𝛤𝐴
𝑖 =

⎡

⎢

⎢

⎢

⎣

0 0 ℎ𝑝0𝑖 ℎ𝑎0𝑖
⋮ ⋮ ⋮
0 0 ℎ𝑝𝑇−1𝑖 ℎ𝑎𝑇−1𝑖

⎤

⎥

⎥

⎥

⎦

, (56)

ecalling that 𝑠𝑘𝑖 = 1 − 𝑎𝑘𝑖 − 𝑝
𝑘
𝑖 − 𝑟

𝑘
𝑖 for the SAIR model.

In this case, we compute the least squares estimates 𝛽𝑖, 𝜎̂𝑖, 𝛾̂𝑖 and 𝜅̂𝑖
sing the pseudoinverse of 𝑃𝐴𝑖 for all 𝑖. If we do not know 𝑞 and relax
he assumption that this is known, we no longer have a straightforward
inear dependency on the unknown parameters (including 𝑞). The
etails of this case are not provided herein.

. Simulations

For the simulations, we draw from the Restore Illinois Plan (Illinois
epartment of Public Health, 2020). However, note that we only
mploy simulated data to illustrate the value of the models. Applying
he estimation techniques from Section 7 to real data is ongoing work.
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Fig. 6. SIS simulation results. Blue and red represent susceptible and infected,
respectively. The solid lines are the states of the group model in (1) and the dashed
lines indicate the average states of the networked model in (5). Note that the group
model over-predicts the outbreak.

Fig. 7. SIR simulation results. Blue, red, and green represent susceptible, infected, and
recovered (or removed), respectively. The solid lines are the states of the group model
in (2) and the dashed lines represent the average states of the networked model in (14).

It is easy to aggregate the state of Illinois into one large group, but
doing so ignores the nuances of the political and economical structures
as well as the non-uniform population distribution across the state.
Relying on this setting, we compare the models from Sections 2 and 3,
hat is, treating the state as one group versus splitting it into different
egions. For the more-refined, networked model we use the eleven
ealth regions from the Restore Illinois Plan; see Fig. 5. The adjacency
atrix used is a nearest-neighbor relationship between the eleven
egions, that is, if two regions share a border, they are connected.
urther, we include a connection between regions 3 and 11, given
he strong connections between Springfield, which is the capital of the
tate, and Chicago, the largest city in the state. We also include self
oops for each region. Each nonzero entry of the adjacency matrix 𝑊
is set to 1

𝑛 , where 𝑛 is the number of regions, taken to be equal to 11.

The group model ignores the network structure and assumes a
ull connected underlying graph between the nodes. That is, when

= 1
𝑛 𝟏𝟏

⊤ and 𝟏⊤𝑝(0) = 𝑛 ∗ 𝐼(0), the average infection levels of the
two models are identical. However, when the non-trivial network is
employed, the results are quite different.
357
Fig. 8. SEIR simulation results. Blue, red, green, and yellow represent susceptible,
infected, recovered (or removed), and exposed, respectively. The solid lines are the
states of the group model in (3) and the dashed lines represent the average states of
the networked model in (17).

For simplicity, we assume homogeneous spread for all of the models.
We set 𝛽 = 1, 𝛾 = 0.1, 𝜎 = 0.2, 𝜅 = 0.143, 𝛽𝐸 = 0.25, and 𝑞 = 0.3. The
initial condition for the SIS and SIR models are

𝐼(0) = 10−7 and 𝑝(0)⊤ =
[

0 ⋯ 0 10−7
]

, (57)

which, for the networked model, assumes that the initial infected por-
tion of the state comes from the downtown Chicago area, instead of be-
ing evenly distributed across the state. Similarly, the initial conditions
for the SEIR and SAIR models are

𝐸(0) = 10−7 and 𝑒(0)⊤ =
[

0 ⋯ 0 10−7
]

(58)

and

𝐴(0) = 10−7 and 𝑎(0)⊤ =
[

0 ⋯ 0 10−7
]

, (59)

respectively. When not specified, the rest of the population is suscepti-
ble.

To illustrate the results we follow the color conventions from
Figs. 1–4. That is, blue, red, green, yellow, and magenta represent sus-
ceptible, infected, recovered (or removed), exposed, and asymptomatic,
respectively. We plot the proportions from the models in Section 2
and plot the averages of the states of the models in Section 3, all over
time. The solid lines are for the group models from Section 2 and the
dashed lines represent the average states of the networked models from
Section 3. See Fig. 6 for the simulations of the SIS models. See Fig. 7
for the simulations of the SIR models. See Fig. 8 for the simulations
of the SEIR models. Finally, see Fig. 9 for the simulations of the SAIR
models.

Note that the simulation results are very different between the group
models in Section 2 and the networked models in Section 3. The fully
connected assumption of the group models leads to more drastic rates
of increase and overall worse equilibria. Therefore, it is important
to understand how subpopulations interact, that is, the underlying
network, in order to be able to understand the spread of epidemics and
to be able to design algorithms to mitigate their spread.

The parameter estimation techniques from Section 7 perform iden-
tically to (Paré et al., 2019; Vrabac, Paré et al., 2020) for the SIS model
and in a similar manner for the rest of the models. When there is no
noise, the parameters are recovered exactly. When noise is introduced,
the estimation of the parameters is less accurate. See (Vrabac, Paré
et al., 2020) for a more detailed exploration of the noisy cases.
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Fig. 9. SAIR simulation results. Blue, red, green, and magenta represent susceptible,
infected, recovered (or removed), and asymptomatic, respectively. The solid lines are
the states of the group model in (4) and the dashed lines indicate the average states
f the networked model in (18).

As we stated before, leveraging these results on real data is a subject
f ongoing work; see (Vrabac, Shang et al., 2020). We hope that other
esearchers can use this manuscript as a manual to help implement the
deas on their own datasets. In the context of the COVID-19 pandemic,
t is important to have accurate models that do not overestimate the
pread of the virus. Therefore, the networked models are quite impor-
ant. However, on the other hand, obtaining clean data is a challenge,
nd, as the results in Section 7 show, estimating more model parameters
equires more data and apriori information. Further, at certain levels
f granularity, it may not be reasonable to assume that the network
tructure is known, and recovering network structure from time series
s a difficult problem (Paré et al., 2013; Prasse & Van Mieghem, 2020).
herefore, researchers must balance these different challenges when
hoosing between group and networked epidemic models, depending
n their data, apriori knowledge of the situation, and objectives.

. Conclusion

In this paper we have presented various mathematical models of epi-
emic processes: SIS, SIR(S), SEIR(S), and SAIR(S). We first presented
raditional group models for which no underlying graph structures
re assumed, or the graph is trivial, that is, fully, and equally, con-
ected. Then we presented continuous-time and discrete-time versions
f the models with non-trivial networks. We presented stability analysis
esults for selected models from all three sets of models. We also
resented least squares approaches for estimating the viral spreading
arameters from data for each of the discrete-time networked models.
e have also presented a set of simulations that illustrate how ignoring
raph structure can lead to poor prediction of the growth and end result
f outbreaks, supporting the need for networked models.
For future work we hope, and encourage others, to apply these ideas

o different data sets to be able to understand outbreaks in different
egions of the world. Exploring the case of parameter estimation in the
resence of noise, with provable bounds, is an open problem, to the
est of our knowledge, that should be worked on.
One class of problems in this context that our Overview has not

ddressed is active control of the spread of epidemics by directly ma-
ipulating the parameters that define the models, including weighting
erms in the networked models. Several papers in the literature have
ddressed such issues, with some representative ones being (Enns et al.,
012; Khanafer & Başar, 2014a, 2014b; Mai et al., 2018; Preciado
t al., 2014; Wan et al., 2008). Despite these existing works, developing
358
rovably optimal, distributed data-driven mitigation strategies is still
mostly open problem area. Additionally, some efforts are being ex-
lored to develop complete, closed-loop frameworks from testing data
ll the way through control implementation (Hota et al., 2020), but
here is still much work to be done in this direction.
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