
BooLigero: Improved Sublinear Zero Knowledge
Proofs for Boolean Circuits

Yaron Gvili1, Sarah Scheffler2, and Mayank Varia2

1 Cryptomnium LLC
yaron.gvili@cs.tau.ac.il

2 Boston University
{sscheff,varia}@bu.edu

Abstract. We provide a modified version of the Ligero sublinear zero
knowledge proof system for arithmetic circuits provided by Ames et.
al. (CCS ‘17). Our modification “BooLigero” tailors Ligero for use in
Boolean circuits to achieve a significant improvement in proof size. Al-
though the original Ligero system could be used for Boolean circuits,
Ligero generally requires allocating an entire field element to represent a
single bit on a wire in a Boolean circuit. In contrast, our system performs
operations over words of bits, allowing a proof size savings of between
O((log |F|)1/4) and O((log |F|)1/2) compared to Ligero, where F is the
field that leads to the optimal proof size in original Ligero. We achieve
improvements in proof size of approximately 1.1-1.6x for SHA-2 and 1.7-
2.8x for SHA-3. In addition to checking constraints of standard Boolean
operations such as AND, XOR, and NOT over words, BooLigero also
supports several other constraints such as multiplication in GF(2w), bit
masking, testing for zero bits, bit rearrangement within and across words,
and bitwise outer product. Most of these techniques batch very efficiently,
with only a constant overhead regardless of how many constraints of the
same type are tested. Like Ligero, our construction requires no trusted
setup and no computational assumptions, which is ideal for blockchain
applications. It is plausibly post-quantum secure in the standard model.
Furthermore, it is public-coin, perfect honest-verifier zero knowledge,
and can be made non-interactive in the random oracle model using the
Fiat-Shamir transform.

1 Introduction

Zero knowledge proofs and arguments have become the backbone of modern
cryptography. In addition to their uses in building other cryptographic primitives
such as signatures, multiparty computation (MPC), and identification schemes,
they play a pivotal role in the design of anonymous and privacy-preserving cryp-
tocurrencies [4, 15,27,32].

Since Kilian’s seminal work on probabilistically checkable proofs [28], their
interactive version [26], and their generalization into interactive oracle proofs [7],
many zero knowledge argument systems have been created from such proofs. In
this work, we focus on and improve Ligero [1], a protocol that achieves a balance
between proof size and prover runtime.

2 Y. Gvili et al.

1.1 Our Contributions

This paper makes three contributions.
BooLigero: Ligero for Boolean circuits. In this paper, we present BooLigero,

an improvement to Ligero tailored for Boolean circuits. Our method allows us to
utilize the “full” field element and store log |F| bits of the witness per element,
rather than storing only a single bit per (larger) field element and enforcing an
additional constraint as is required in Ligero. We can utilize the full field for
XOR and NOT operations; for AND we can use

√
log |F| bits of the field el-

ement. This buys us an improvement in the proof size between O((log |F|)1/4)
and O((log |F|)1/2) compared to original Ligero, depending on the proportion of
ANDs in the circuit. The prover and verifier runtime should not change much
compared to original Ligero. We do this while maintaining Ligero’s properties of
being public coin, perfect honest-verifier zero knowledge, amenability to the Fiat-
Shamir heuristic, being plausibly post-quantum secure in the standard model,
and requiring no trusted setup.

Efficient zero-checking and bit-pattern constraint tests. In Ligero, the
witness is encoded, and constraints are checked by ensuring that the prover’s
claims are consistent with parts of the encoded witness that were randomly
chosen by the verifier. We add the ability to reveal masked elements of the
witness directly, in such a way that the verifier may check properties on the
masked elements that will enable them to test properties of other hidden witness
elements. Tests with a certain kind of linearity are extremely efficient, requiring
only a constant overhead in the number of witness elements to test arbitrarily
many instances of the property on existing variables. This enables us to test
properties that would normally be difficult to test while representing many bits
per word, such as testing whether certain bits are zero, or testing bit “patterns”
such as masking and shifting. We can also use these to build range tests. These
tests may be helpful in frameworks outside BooLigero as well.

Concrete 1.1-2.8x improvement over Ligero. We evaluate our perfor-
mance on the hash functions SHA-3 and SHA-2, which are common benchmarks
and have particular appeal to the cryptocurrency community. We achieve a 1.7-
2.8x improvement over Ligero for Merkle trees of SHA-3 from 21 to 215 leaves.
Our circuit for SHA-3 utilizes one of our specialized tests to perform the bit-
rotation step of the SHA-3 main loop. For SHA-2, we achieve a 1.1-1.6x improve-
ment over Ligero for Merkle trees from 21 to 215 leaves. Note that this is in spite
of the fact that SHA-2 uses some addition modulo 232 operations, which Ligero
supports directly and BooLigero does not.

1.2 Related Work

In general, zero knowledge proofs are evaluated for performance on three metrics:
proof/argument size, prover runtime, and verifier runtime. There is a spectrum
of zero-knowledge proof/argument systems.

On one extreme of the spectrum, large, fast proofs construct ZK proofs from
various flavors of MPC: the garbled-circuit based approach of ZKGC [25] (with

BooLigero: Improved Sublinear Zero Knowledge Proofs for Boolean Circuits 3

improvements from [29]) or approaches that use the GMW [19] paradigm (e.g.
[24], improved in [18] and [11]). All of these are fairly quick to compute, but they
incur a linear proof size (except the very recent work of [37], which cannot be
made non-interactive, and is therefore not usable in most blockchain scenarios).

On the other extreme, we have “succinct” sublinear-size arguments. The
smallest arguments are constant size, but generally suffer from two problems
– assumptions and trusted setup. Many of these arguments use unfalsifiable
assumptions (e.g., [5,8,13,16,20,30,33]) and this is inherent at a certain level [17].
Others require a trusted setup step performed by a central authority or a trusted
committee operating a costly multiparty computation (e.g. [4, 5, 9, 12, 14, 16, 20,
21, 31, 33, 38]), both being undesirable or even unacceptable in many financial
use cases.

In the middle, there exist transparent protocols that achieve sublinear (but
not constant) size without the need for trusted setup. A number of these pro-
tocols use assumptions that render them vulnerable to quantum attacks (e.g.
[10,23,34,36]). There are three different approaches to sublinear transparent pro-
tocols without trusted setup that are plausibly post-quantum secure: Ligero [1],
Stark [3], and Aurora [6].

Compared to Ligero and BooLigero, Stark’s proof size is asymptotically
smaller (O(log2 s) instead of O(

√
s) for circuit size s), but concretely larger

for circuits smaller than approximately 106 gates, as shown in [36]. Its prover
runtime is more expensive than Ligero’s both asymptotically by a log s factor,
and is also concretely longer. For circuits with repeated sub-circuits, Stark has
significantly improved verifier runtime, but there is no asymptotic difference for
circuits without this property.

Aurora [6] also has a significantly smaller proof size than Ligero and BooLigero
(O(log2 s) instead of O(

√
s)) and the same asymptotic prover and verifier run-

time. However, its interactive version has a O(log s) round complexity compared
to Ligero and BooLigero’s O(1), and its prover runtime is concretely higher
than Ligero’s. Moreover, without a certain unproven conjecture involving Reed-
Solomon codes, it becomes much less efficient (see discussion in [34]).

2 Preliminaries

Notation. We use F to refer to a finite field, and GF(2w) to refer to a finite
field with order 2w. We also often use w to refer to the “word size” and refer to
elements of GF(2w) as “w-words” when we use their w-bit representations.

For operations, we use ⊕ for bitwise XOR and & for bitwise AND, over bits
or w-words depending on context. We use ∗ to denote Galois field multiplication,
and · for element-wise multiplication of vectors.

Bit indexing, denoted with square brackets, always begins at 1. Bitstrings
are always shown in big endian. Thus, if x = 0001, then x[1] = 1 is the least
significant bit of x.

Zero knowledge IOPs. A ZKIOP is an interactive oracle proof (IOP) [7] that
is additionally zero-knowledge. Let P and V be probabilistic polynomial-time

4 Y. Gvili et al.

interactive Turing machines. An interactive oracle protocol between P and V
occurs over several rounds. P reads messages sent by V fully, but V queries
random parts of P’s message rather than reading them entirely. At the end, V
either accepts or rejects. Let 〈P(x,w),V(x)〉 refer to the output of V(x) when
executing an interactive oracle protocol with P(x,w). Let R be a relation for
language L so that (x,w) ∈ R if w is a witness for x’s membership in L.

Definition 1 (Zero knowledge interactive oracle proof). 〈P,V〉 is a zero
knowledge interactive oracle proof system for R with soundness error δ if:

– Completeness: For any (x,w) ∈ R, 〈P(x,w),V(x)〉 = 1.
– Soundness: If x /∈ L, then for all P∗, Pr[〈P∗,V(x)〉 = 1] ≤ δ
– Perfect honest-verifier zero knowledge: Let ViewV(P,V, x, w) be the view

of V upon completion of 〈P(x,w),V(x)〉. The protocol is perfect honest-
verifier zero knowledge if there exists a probabilistic poly time simulator S
such that for all (x,w), the distribution of S(x) equals the distribution of
ViewV(P,V, x, w).

The IOPs we deal with in this paper are also public-coin, meaning that V’s
messages to P are always chosen randomly from a known distribution, and V’s
queries to P depend only on messages that have already occurred and that P
has seen. Zero knowledge IOPs can be converted to zero knowledge arguments
in a standard way using the Fiat-Shamir transform [7].

3 Ligero Background

In this section we provide relevant background from [1].

Proof size of Ligero. Ligero [1] is a zero-knowledge argument that achievesO(
√
s)

proof size, where s is the size of the verification circuit.
Ligero encodes the witness using an Interleaved Reed-Solomon code, which

can be considered an m-vector of Reed-Solomon (RS) codewords. Each RS code-
word can itself be considered a vector of n elements which encode ` unencoded
elements, for n = O(`). Thus, the overall interleaved Reed-Solomon code can be
considered an m× n matrix encoding m× ` variables.

Ligero achieves O(
√
s) proof size by being clever about how the verifier checks

constraints on this matrix. Roughly speaking, the communication will consist
of some (linear combinations of) rows and some columns of the matrix, with
simplified complexity O(n + m). Thus, one can balance m against ` and set
both3 to O(

√
s) to achieve a proof size of O(

√
s).

We let L = RSF,n,k,η be a Reed-Solomon code with minimal distance. Lm

refers to the interleaved code, which has codewords that are simply m codewords
of L. Lm is best understood as a matrix where the m rows are L-codewords. The
details of interleaved Reed-Solomon codes as they relate to Ligero are provided
in the full version [22], but they should not be necessary to understand this
paper.

3 Actually,m is set toO(
√
s/κ) and ` is set toO(

√
sκ), where κ is a security parameter.

BooLigero: Improved Sublinear Zero Knowledge Proofs for Boolean Circuits 5

Tests in Ligero. As a zero-knowledge IPCP between the prover P and verifier V,
the prover begins by encoding its witness as a Lm codeword – an m× n matrix
encoding m×` variables in the witness. Ligero creates three tests for constraints
over this matrix: Test-Interleaved ([1] §4.1), Test-Linear-Constraints-IRS
([1] §4.2), and Test-Quadratic-Constraints-IRS ([1] §4.3). Each of these
tests consists of two phases:

1. Oracle phase: P creates an oracle to the Lm-encoded witness (possibly
with some additional info).

2. Interactive testing phase: P and V interact with each other. P sends
some linear combinations of rows of the matrix. V makes queries to the oracle
to obtain columns of the Lm codeword (without receiving any L codeword
“rows” fully). After the interaction, V checks whether the linear combinations
given to it by P match the columns it queried, and either accepts or rejects.

When used as a zero-knowledge argument (instead of a ZKIPCP), the oracle
is replaced with a commitment. Before the interactive testing phase, P commits
to all columns of its encoded witness as the leaves of a Merkle tree that uses
a statistically hiding commitment scheme. To make the proof non-interactive,
the verifier’s messages can be replaced with a random oracle call on the prover’s
messages up to that point.

Boolean circuits in Ligero. Ligero is presented for arithmetic circuits over a
prime field. It is possible to use Ligero for a Boolean circuit as well, but this has
two downsides.

The first downside is that one must use an entire field element to represent
a single bit. This causes a blowup of log |F| in the number of witness elements,
which causes a blowup of O(

√
log |F|) in the proof size.

How small of a field can we use? There is a minimum requirement that |F| ≥
`+n ([1] §5.3), which is required so that there are sufficient evaluation points for
L. Furthermore, if the field gets too small, one must repeat the protocol several
times in order to achieve the desired soundness. At very small field sizes, the
costs of the commitments (log s times a constant hash output length) also start
growing in comparison to the rest of the proof. Concretely, testing out different
field sizes for Boolean circuits on the order of 106 to 109 gates tends to yield
optimal field sizes of about 14-20 bits. This suggests that there is approximately
a 3.7-4.4x gain to be had by packing the bits efficiently.

The second downside is that this costs additional constraints. First, each
extended witness element e must be proven to be 0 or 1 by adding a quadratic
constraint that e2 − e = 0. Second, XOR and AND are also both quadratic
constraints: the constraint e1 + e2 = a0 + 2 · a1, along with bit constraints on all
variables, enforce that a0 is the XOR of e1 and e2, and that a1 is the AND of e1
and e2. Computing only one or the other necessitates the creation of a dummy
variable for the other, and enforcing bit constraints on all. Hence, the number
of constraints is twice the maximum number of AND and XOR gates combined.

Unlike linear constraints, which can be evaluated using only an encoding of
the witness itself, evaluating quadratic constraints like x ∗ y = z requires pro-

6 Y. Gvili et al.

viding encodings of x, y, and z, separately from (but related to) the encoding of
the witness itself. Although the number of quadratic constraints will asymptot-
ically be O(s), this suggests that there may be concrete room for improvement
by reducing the number of quadratic constraints.

4 BooLigero Techniques

We make one minor change and two major changes to Ligero [1], which we
described in §3.

The minor change is that we use GF(2w) instead of the prime field GF(p).
Ligero’s methods work for any finite field, where addition and multiplication
now use operations in the new field. Since we are still using Interleaved Reed-
Solomon codes, we can directly reuse Ligero’s Test-Interleaved, Test-Linear-
Constraints-IRS, and Test-Quadratic-Constraints-IRS. The latter two
now test bitwise XOR/NOT constraints and GF(2w) multiplication rather than
arithmetic addition and multiplication. We lose the ability to natively check lin-
ear arithmetic constraints in mod 2w, but we gain the ability to cheaply check
XORs. We can still check linear arithmetic constraints in power-of-two moduli
by building an adder out of the constraint tests we have.

The following two larger changes to Ligero are the focus of our work:

Change 1: Additional constraint tests that reveal variables directly. We add a
number of tests for additional constraints. These new tests operate differently
than the Ligero tests, and in fact the new tests rely on the Ligero tests in order
to check linear and quadratic constraints. In the new tests, the prover modifies
and extends the witness with additional variables, some of which are based on a
“challenge” sent by the verifier. As part of the proof oracle, the prover sends some
(masked) elements of the witness to the verifier directly, and the verifier must
check to see whether the revealed elements have a certain property. These tests
can be nested inside other tests – e.g., our Test-And-Constraints procedure
involves invoking Test-Pattern-Zeros-Constraints, as described in §4.3.

Most of our tests use only linear constraints and cost O(κ) (a security pa-
rameter) in the proof size, independent of the circuit size and the number of
constraints. Our Test-And-Constraints involves adding approximately 3

√
wN

hidden variables, where N is the number of AND gates. This is still an improve-
ment over the approximately wN added elements that are required to represent
wN Boolean wires in plain Ligero. We describe our constraint tests in §4.3.

Change 2: Two oracles/rounds of commitment. Unlike original Ligero, many
of the tests we add require verifier input in order to choose which constraints
we will check – generally, the verifier will pick a random linear combination of
the variables to use in constraints. However, for this to be sound, the original
variables must already have been available in an oracle (or been committed to).
This necessitates splitting the proof oracle in two: one that presents an encoding
of the “original” witness, and one that is parameterized by the verifier’s random

BooLigero: Improved Sublinear Zero Knowledge Proofs for Boolean Circuits 7

choices and returns an encoding of the added variables. We call the first oracle
the “initial oracle” and the second the “response oracle”. Thus, whereas Ligero
had two phases of procedures – the oracle phase and the interactive testing
phase – we have four: initial phase (creation of initial witness to be provided as
oracle or commitment), challenge phase (verifier sends random bits as challenge),
response phase (creation of witness extension to be provided as a second oracle
or commitment), and the interactive testing phase We describe each of these
phases in §4.1. This process is based on the circuit sampling idea of [2].

4.1 Test Procedures

In original Ligero, each test consists of an oracle and an interactive test procedure
which will ensure that the oracle is valid. In our protocol, each test consists of
two oracles, separated by a verifier challenge, and followed by an interactive test
procedure. The second oracle is the response to the challenge. We describe each
of our constraint test procedures in four phases:

1. Initial phase: P adds elements to the witness, encodes it, and provides the
encoding as the first proof oracle.

2. Challenge phase: V sends random bits to P, which will be required to
generate the second proof oracle.

3. Response phase: Based on the bits received in the challenge, P adds more
elements to the witness, and adds additional constraints. P encodes the
extensions to the witness, and provides the encoding (which can be combined
with the first oracle’s output) as well as the revealed variables.

4. Interactive testing phase: P and V run an interactive testing protocol.
At the end, V has acceptance criteria for determining whether to accept or
reject the proof. Our tests augment the original Ligero acceptance criteria
with additional checks on properties of the revealed variables.

In slightly more detail, the variables in the witness consist of:

– v0 original variables
– v1 added hidden variables in the initial phase
– v2 added hidden variables in the response phase
– v3 added revealed variables in the response phase

P and V first set `, m1, m2, and m3 so that `m1 ≥ v0 + v1, `m2 ≥ v2, and
`m3 ≥ v3. P creates the initial witness encoding Uw1 ∈ Lm1 from the v0 original
variables and v1 added hidden variables in the initial phase, and sets this as
the initial oracle. After receiving V’s challenge, it creates the response witness
encoding Uw2 ∈ Lm2 from the v2 newly added hidden variables. As in original
Ligero, it also creates encodings Ux, Uy, and Uz ∈ Lm

′
needed for testing

quadratic constraints (where m′ is set so that m′` is at least the number of
quadratic constraints). P sets the response oracle as the vertical concatenation
of Uw2 , Ux, Uy, Uz, along with all revealed variables in the clear.

When doing the interactive testing phase, P also creates Uw3 ∈ Lm3 which
contains the revealed variables added in the response phase. During this phase,

8 Y. Gvili et al.

P treats its witness encoding Uw as the vertical concatenation of Uw1 , Uw2 , and
Uw3 . The verifier will do the same with the revealed variables.

Our new BooLigero tests rely on executing the interactive testing phase of
Ligero tests on Uw. (The encodings of x, y, and z needed for Test-Quadratic-
Constraints-IRS are also built relative to the full w.) They also add additional
linear and quadratic constraints to be tested in this way. These tests may be
useful in frameworks outside BooLigero as well.

Adding linear constraints. Ligero’s Test-Linear-Constraints-IRS checks whether
an encoding of a secret vector x is a solution to linear equation Ax = b, where A
is a public matrix and b is a public vector. In the context of testing the protocol
in a full circuit, x is the witness vector, b is the all 0s vector, and A is set so
that the jth row of Ax equals in1 + in2 − out, where the jth addition gate in
the circuit computes out = in1 + in2. To add an additional linear constraint, we
simply add an additional row to A along with an additional element to b. Doing
so does not affect the proof size.

Adding quadratic constraints. Ligero’s Test-Quadratic-Constraints-IRS tests
whether encodings of vectors x, y, z meet the condition that x·y+a·z = b, where
· represents element-wise multiplication in F. When using the protocol for testing
a circuit, the x, y, z vectors are built so that their jth entries are in1, in2, out,
where the jth multiplication gate in the circuit computes out = in1 ∗ in2. These
vectors are constructed in a public way from the witness, i.e. P and V both
construct Px such that x = Pxw. Unlike the linear constraint test, separate
encodings of x, y, and z must be provided to the verifier; thus, increasing the
number of quadratic constraints increases the proof size.

4.2 Testing linear operations that yield zero over bits

We first define a useful class of tests that can be batched very efficiently.
Let `1 and `2 be positive integers, and let t1 = `1w and t2 = `2w. Let

T ∈ {0, 1}t2×t1 be a public t2 × t1 binary matrix. Then T defines a test on
x ∈ {0, 1}t1 which checks whether Tx = ~0, where ~0 is of length t2.

To incorporate this into Ligero, we observe that one can represent a vector
of Ligero variables x ∈ GF(2w)`1 as a vector in {0, 1}t1 of t1 = `1w bits. Adding
two variables in one of these representations exactly corresponds to adding the
variables in the other representation. So, we abuse notation and treat the vector
x ∈ GF(2w)`1 as vector in GF(2)t1 .

Observe that, given a ∈ {0, 1}t1 (which can also be represented by a vector in
GF(2w)`1) such that Ta = ~0, this implies that T (x+a) = ~0 if and only if Tx = ~0.
In the full protocol, rather than guaranteeing that Ta will be 0, we will write a
test that will check whether both Ta and Tx are 0 simultaneously. To achieve
privacy, we blind any Ligero variables we wish to test with T . P will generate
a random a subject to the constraint that Ta = ~0 and then open the variable
(x+ a) directly to the verifier, who can independently check that T (x+ a) = ~0.
Figure 1 shows a construction for a perfect zero-knowledge protocol between P

BooLigero: Improved Sublinear Zero Knowledge Proofs for Boolean Circuits 9

and V to test T for a batch of N variables with low soundness error. Observe
that the communication complexity for this batched test of N `1-tuples is only
the size of one tuple: `1 elements of GF(2w). Note that it is also independent of
t2; it depends only on t1 and w.

We will embed this construction into BooLigero to test properties discussed
in §4.3, such as rearranging bits in a “pattern,” checking whether certain bits
are zero, or both at the same time.

Test-T (κ,F;x1 = (x11, . . . , x1t), . . . , xN = (xN1, . . . , xNt))

Auxiliary input: Soundness parameter κ. Field GF(2w) Positive integers `1 and `2;
let t1 = w`1 and t2 = w`2. Binary matrix T ∈ {0, 1}t2×t1 .
Inputs: A batch of N secret variables in GF(2w)`1 held by P, x1 = (x11, . . . , x1`1),
. . ., xN = (xN1, . . . , xN`1) ∈ GF(2w)`1 . where P claims that (abusing notation and
treating each xi as a binary t1-vector) Txi = ~0 for all i ∈ [N].
Protocol:
1. Initial phase: For j ∈ [κ], P picks and adds hidden variable a(j) ∈ GF(2w)`1 such

that Ta(j) = ~0 to the witness.
2. Challenge phase: V sends Nκ bits: r

(j)
i for i ∈ [N] for j ∈ [κ].

3. Response phase: P adds

u(j) = a(j) ⊕
⊕
i∈[N]
s.t.

r
(j)
i =1

xi (1)

for j ∈ [κ] (a total of `1κ elements) as revealed elements to the witness. P and V
add the κ instances of Eqn. 1 to the list of linear constraints to check.

4. Interactive testing phase: P and V run Test-Linear-Constraints-IRS and Test-
Interleaved. V accepts if both tests pass and additionally (abusing notation and
treating each u(j) as a binary t1-vector) Tu(j) = ~0 for all j ∈ [κ].

Fig. 1: Test construction for any binary matrix T

Note that the test itself is not sound without the additional tests provided
by Ligero – the soundness of the main part of the test depends on the revealed
variables being well-formed. We ensure that the all variables are well-formed
by using Test-Linear-Constraints-IRS and Test-Interleaved, and ensuring
that the initial elements are provided in an oracle (or committed to) before
receiving the challenge. Note also that sometimes T itself will reveal certain
information about x – for example, that x is 0 at certain bit locations. But the
protocol will not reveal anything about x other than the fact that Tx = ~0, which
is already true if P is honest.

Lemma 1 (Security of Test-T). The protocol described in Fig. 1 is complete,
perfect zero-knowledge, and has soundness error 1/2κ + δ1 + δ2, where δ1 is the
soundness error of Test-Linear-Constraints-IRS and δ2 is the soundness
error of Test-Interleaved.

10 Y. Gvili et al.

The proof is given in the full version [22].

4.3 New constraint tests

In this section, we describe our added tests for BooLigero. Each of these calls one
of the original Ligero tests Test-Linear-Constraints-IRS or Test-Quadratic-
Constraints-IRS. The later tests additionally call on the earlier BooLigero
tests as well.

Properties tested by Test-T . We proceed to name two useful properties (and
their conjunction) that can be tested using the construction from the previous
section. As described in the previous section, they can test the property on
arbitrarily many input variables for only a constant overhead over the cost of
the variables themselves. Since we will reuse them later, we name each of these
special cases of Test-T .

– Test-Zeros-Constraints: This tests whether particular bit locations in the
input are 0. Let Z ⊆ [t2] be a set of indices to be zero-tested. Formally, let
TZ be a square matrix with 1s on the diagonal for indices in Z, and 0 for all
other elements. Observe that TZx = ~0 if and only if x is 0 at the Z indices.

– Test-Pattern-Constraints: We informally define a “pattern” as a relation-
ship between between (ti = t1 − t2) “input bits” and t2 “output bits.” The
pattern property enforces that each “output bit” is an XOR of some subset
of the input bits. In general, pattern matrices Tπ are defined as a matrix that
is a concatenation between a matrix π ∈ {0, 1}t2×ti and a t2 × t2 identity
matrix. Several useful functions can be defined as patterns:
• Masking. Suppose we wished to show in Ligero that x&µ = y for some

public mask µ, for Ligero variables x, y ∈ GF(2w)`2 and mask µ ∈
{0, 1}t2 . Let M be the t2-square matrix with µ comprising the diago-
nal and zeros elsewhere. Then we can test whether x&µ = y using the
pattern Tµ = [M | I], because:

[
M I

] [x
y

]
= ~0

which, for diagonal matrix M , implies that Mx = y.
• Even parity. Suppose we wished to show that y ∈ GF(2w) is the parity

of x ∈ GF(2w)`1−1. This can be tested by checking that
.

· · · 0 · · · I
1 · · · 1

[x
y

]
= ~0

which will check that the least significant bit of y equals a sum of all bits
of x. Even-parity can be batch-tested by using Zeros, testing the parity
of many variables simultaneously.

BooLigero: Improved Sublinear Zero Knowledge Proofs for Boolean Circuits 11

– Test-Pattern-Zeros-Constraints: Notice that a Zeros test can be per-
formed on the same revealed values as a pattern test, if the blinding variables
are chosen to meet both constraints. We will often perform these tests on
the same revealed variables to save space.

Bitwise AND test. Next, we describe our test for bitwise AND. Note that AND
cannot be tested using the method in the previous section, since it is not a
linear operation. Instead, we write a new test that calls Test-Pattern-Zeros-
Constraints.

As a first step, one way to test AND would be to fully bit-decompose our
single w-bit element into w elements each representing a single bit. This would
let us use quadratic constraints directly to show AND constraints. However,
doing so is expensive. This method would yield roughly the same proof size as
original Ligero, since it uses an entire w-bit element to represent a single bit.
Instead, we exploit the nature of Galois field arithmetic to compute the AND of
w0 = b

√
wc bits simultaneously in a w-bit element using a GF multiplication.

We then use our Pattern test to convert between the original variables and the
w1 decomposed variables, where w1 is the minimum integer such that w0w1 ≥ w.
Each of these w1 “split” variables contains w0 bits of the original element (except
the last, which may contain fewer if w0 6 |w).

Suppose we have elements x, y ∈ GF(2w), and want to find z = x&y. We start
by using a Pattern to split x into w1 variables x̂1, . . . , x̂w1 , and to split y into
w1 variables ŷ1, . . . , ŷw1 . First, consider the x variables. Each split variable x̂h
will consist of w0 chunks of w0 bits each. (Recall that by construction w2

0 ≤ w.)
The least significant bit of each chunk will be a bit of x, and all other bits will
be 0. This is illustrated in Equation 2. The y variables will be split differently:
each ŷh will consist of a single chunk of w0 bits from y, starting with the least
significant bit. This is shown in Equation 3.

We then set ẑh = x̂h∗ ŷh. The effect of multiplying x̂h by ŷh is that the chunk
of w0 bits in ŷh is “copied” to each of the w0 chunks of output for which the
corresponding chunk of x̂h was 1. Thus, in order to figure out which bits were
shared between x and y, we go to the kth bit of the kth chunk of ẑh. This will
equal the kth bit of ŷh times the LSB of the kth chunk of x̂h. This is shown in
Equation 4. Recomposing from the ẑh variables back to z by using Pattern once
again, we have exactly computed the bitwise AND of x and y.

Figure 2 shows an example of how to split (x, y, z), where z = x&y. The full
Test-And-Constraints procedure is shown in Figure 3. The patterns πx, πy,
and πz, described formally in Figure 3 step 1(d).

Lemma 2 (Security of Test-And-Constraints). The protocol described in
Fig. 3 is complete, perfect zero-knowledge, and has soundness error 3(1/2κ) +
δ1 + δ2 + δ3, where δ1 is the soundness error of Test-Quadratic-Constraints-
IRS, δ2 is the soundness error of Test-Linear-Constraints-IRS, and δ3 is
the soundness error of Test-Interleaved.

A full proof of security for the test is shown in §A. Additionally, the ẑ vari-
ables can be used to compute bitwise outer product if desired.

12 Y. Gvili et al.

x = 10110→ (x̂w1 = 000

w0

01, x̂2 = 0

w0

00

w0

01, x̂1 = 0

w0

01

w0

00) (2)

y = 11101→ (ŷw1 = 0000 1, ŷ2 = 000 1 1, ŷ1 = 000 0 1) (3)

l l l ẑh = x̂h ∗ ŷh

z = 10100← (ẑw1 = 000

w0

01, ẑ2 = 0

w0

00

w0

11, ẑ1 = 0

w0

01

w0

00) (4)

Fig. 2: Example variable splits for Test-And-Constraints for w = 5, w0 = 2,
w1 = 3. Pattern constraints enforce the relationship between x and x̂, and similar
for y and z. The ẑ variables are related to x̂ and ŷ via a quadratic constraint.

In the full version [22] we show how to do cheap range tests for power-of-two
ranges, and how to build an adder and use it to perform non-power-of-two range
tests. Our full modifications to the protocol from [1] are shown in Figure 4.

5 Performance

We primarily evaluate our proof on its size compared to original Ligero, since
our asymptotic prover and verifier runtime should be the same as Ligero. Recall
that a proof for a Boolean circuit in original Ligero requires using an entire
field element to represent a single bit value on a wire. Like original Ligero, the
parameters for BooLigero can be set so that the proof size is O(

√
s) elements,

where s is the circuit size. If the field size in Ligero is b = dlogFe bits, then
we would expect BooLigero to save a factor of O(

√
b) in the proof size. For

example, if a Ligero proof used a field with 18 bits, we would expect a
√

18 ≈ 4.2x
improvement in the BooLigero proof size. For AND gates we require w1 ≈

√
w

variables to compute the AND of a single w-bit variable. If the Ligero and
BooLigero field sizes require the same number of bits to represent, BooLigero will
use only

√
b fewer variables, a proof size improvement of O(b1/4) for AND-heavy

circuits. We also add a small constant up-front cost for the revealed variables.

Determining the size of the extended witness and proof. If the verification circuit
C consists of only XOR gates, NOT gates, and Galois field multiplications,
then the size of the witness w is simply the number of wires in C, which we
call v0 as described in §4.1. If C contains ANDs, or uses any other BooLigero
test (e.g. using Test-Pattern-Constraints to perform a bit shift), then w is
augmented with the (v1 +v2 hidden and v3 revealed) variables described in §4.3.
The combined proof oracle becomes an Lm encoding of the v0 + v1 + v2 hidden
variables in the witness, plus the v3 revealed variables in the clear. Once the
extended witness is created, the process of choosing the parameters proceeds in
the same way as original Ligero: the number of rows m is balanced against the
number of variables per row ` to achieve sublinear proof size. For more details,
see [1] §5. In the non-interactive version of BooLigero, the Merkle path part

BooLigero: Improved Sublinear Zero Knowledge Proofs for Boolean Circuits 13

Test-And-Constraints(F = GF(2w), κ;x1, . . . , xN , y1, . . . , yN , z1, . . . , zN)

Inputs: Soundness parameter κ. Secret variables x1, . . ., xN , y1, . . ., yN , z1, . . ., zN ∈ F
where P claims that xi&yi = zi for all i ∈ [N].
Constraint enforced: xi&yi = zi for all i ∈ [N].
Procedure:

1. Initial phase:
(a) Let w0 = b

√
wc. Let w1 be the minimum integer such that w0w1 ≥ w. (Note

that w1 ≤ w0 + 2.)
(b) Add 3Nw1 new variables to the witness as described below.

i. For i ∈ [N], for h ∈ [w1], add new variable x̂i,h where x̂i,h[(k−1)w0 +1] =
xi[((h− 1)w0) + k] for k ∈ [w0] (if the index is defined), and all other bits
are 0. An example is shown in Equation 2.

ii. For i ∈ [N], for h ∈ [w1], add new variable ŷi,h where ŷi,h[k] = xi[((h −
1)w0) + k] for k ∈ [w0] (if the index is defined), and all other bits are 0.
An example is shown in Equation 3.

iii. For i ∈ [N], for h ∈ [w1], add new variable ẑi,h = x̂i,h ∗ ŷi,h, where ∗
denotes multiplication in GF(2w). Observe that within ẑi,h, each of w0

“chunks” of w0 bits, the kth bit of the kth chunk is 1 if and only if the
corresponding bits in xi and yi are 1. An example is shown in Equation 4.

(c) For all i ∈ [N], h ∈ [w1], add a quadratic constraint that x̂i,h ∗ ŷi,h = ẑi,h.
(d) We define patterns πx, πy, πz which describe the relationship between the vari-

ables and their “hatted” versions described in 1(b) and with examples in Equa-
tions 2, 3, and 4.

i. Tπx enforces the following on column-vector [xi, x̂i,1, . . . , x̂i,w1]:
A. For all h ∈ [w1], x̂i,h is 0 everywhere except at indices (1+kw0) for all

valid k. Additionally, x̂i,w1 is also 0 at indices where k+1 > w mod w0.
B. For k ∈ [w], xi[k] = x̂

i,b k+1
w0
c[1 + w0((k − 1) mod w0)]

ii. Tπy enforces the following on column-vector [yi, ŷi,1, . . . , ŷi,w1]:
A. For all h ∈ [w1], ŷi,h is 0 everywhere except at indices 1, . . . , w0.

Additionally, ŷi,w1 is also 0 at indices greater than w mod w0.
B. For k ∈ [w], yi[k] = ŷ

i,b k+1
w0
c[k mod w0]

iii. Tπz enforces the following on column-vector [zi, ẑi,1, . . . , ẑi,w1]:
A. For all h ∈ [w1], ẑi,h is 0 at all indices greater than w2

0. Additionally,
ẑi,w1 is also 0 at indices greater than w0(w mod w0).

B. For k ∈ [w], zi[k] = ẑ
i,b k+1

w0
c[1+((k−1) mod w0)+w0((k−1) mod w0)]

Run the initial phase of 3 Test-Pattern-Zeros-Constraints tests, one for
each of these predicates, using all of the corresponding variables from 1(b) as
input. That is, do a batch test for Tπx , Tπy , and Tπz for all i ∈ [N]. Each test’s
initial phase adds hidden (w1 + 1)κ elements, for a total of 3(w1 + 1)κ.

2. Challenge phase: Run the challenge phase of each of the three Test-Pattern-
Zeros-Constraints, which involves picking Nκ bits for each test.

3. Response phase: Run the response phase of each of the three Test-Pattern-Zeros-
Constraints, which will add (w1+1) revealed variables and some linear constraints
on them.

4. Interactive testing phase: Run Test-Quadratic-Constraints-IRS on the con-
straints described in 1(c), and run the interactive testing phase of Test-Pattern-
Zeros-Constraints, which involves running Test-Linear-Constraints-IRS and
ensuring that Test-Pattern-Zeros-Constraints passes using the revealed vari-
ables.

Fig. 3: Witness modification procedure and costs for Test-And-Constraints

14 Y. Gvili et al.

Protocol ZKIOP(C,F = GF(2w))

– Input: The prover P and the verifier V share a common input circuit C : GF(2w)ni →
GF(2w) and input statement x. P additionally has input α = (α1, . . . , αni) such that

C(α) = 1.
– Initial oracle: Let v1 be the total number of variables added by P in the initial phase all

BooLigero tests. Let v2 and v3 be the number of hidden and revealed variables added by

P in the response phase all BooLigero tests. The variables themselves cannot be known
until the challenge, but the number is fixed. Let m1,m2,m3, ` be integers such that

m1 · ` > ni + s + v1, m2 · ` > v2, and m3 · ` > v3, where s is the number of gates in

the circuit. P generates an extended witness w1 ∈ Fm1` where the first ni + s entries
of w are (α1, . . . , αni , β1, . . . , βs) where βi is the output of the ith gate when evaluating

C(α). The next v1 variables are those for the initial phase section of all BooLigero

tests. Let L = RSGF(2w),n,k,η , and let ζ = (ζ1, . . . , ζ`) be a sequence of distinct elements
disjoint from η1, . . . , ηn. The prover samples random codeword Uw1 ∈ Lm1 subject to

w1 = Decζ(Uw1).

– Challenge: V chooses and sends random bits as described in the challenge phase section
of all BooLigero tests.

– Response oracle: P generates witness extension w2 ∈ Fm2` where the first v1 vari-
ables in w2 are the hidden variables for the response phase section of all BooLigero

tests. P also generates witness extension w3 ∈ Fm3`, where the first variables in w3

are the revealed variables for the response phase section of all BooLigero tests. Let
m = m1 + m2 and let m′ = m1 + m2 + m3. Let w ∈ F` be the vertical concatenation

of w1 and w2. Let w′ ∈ F(m1+m2+m3)` be the vertical concatenation of w and all re-

vealed variables. P deterministically chooses codeword Uw3 ∈ Lm3 . P samples random
codeword Uw2 ∈ Lm2 subject to w2 = Decζ(Uw2) and sets Uw ∈ Lm to be the vertical

concatenation of Uw1 and Uw2 . Let m′′ be an integer such that m′′` is greater than
the number of multiplication gates plus additional quadratic constraints in BooLigero

tests. P constructs vectors x, y, z ∈ Fm′′` where the jth entry of x, y, z contains the values

βa, βb, βc corresponding to the jth multiplication gate in w. The following entries of x, y, z
contain the values for additional constraints added in BooLigero tests. P and V construct

matrices Px, Py , Pz ∈ Fm′′`×m′′` such that x = Pxw′, y = Pxw′, z = Pzw′. P constructs

matrix Padd ∈ Fm′′`×m′′` such that the jth row of Paddw equals βa + βb − βc where

βa, βb, and βc correspond to the jth addition gate of the circuit in w, and the subse-

quent rows correspond to additional linear constraints added in BooLigero tests. It also
samples Ux, Uy , Uz ∈ Lm′′

subject to x = Decζ(Ux), y = Decζ(Uy), and z = Decζ(Uz).

Let u′h, u
x
h, u

y
h, u

z
h, u

0
h, u

add
h be auxiliary rows sampled randomly from L for every h ∈ [σ]

where each of uxh, u
y
h, u

z
h, u

add
h encodes an independently sampled random ` messages

(γ1, . . . , γ`) subject to
∑
c∈[`] γc = 0 and u0h encodes 0`. P sets the combined oracle as

(U ∈ Lm+3m′′
, R) where U is set as the vertical juxtaposition of the matrices Uw ∈ Lm,

Ux, Uy , Uz ∈ Lm′′
, and R is the set of all v3 revealed variables. When the combined oracle

is queried on Q ⊂ [n], the response will be the columns of U that are in Q, as well as R

sent in the clear.
– The interactive protocol:

1. For every h ∈ [σ], V sends the first verifier message of the testing process for Test-

Interleaved, Test-Linear-Constraints-IRS applied to A = Padd, b = ~0 on Uw,

and Test-Quadratic-Constraints-IRS applied to Ux, Uy , Uz .
2. For every h ∈ [σ], P responds with the appropriate next step of the testing pro-

cess for Test-Interleaved, Test-Linear-Constraints-IRS, and Test-Quadratic-
Constraints-IRS.

3. V picks a random set Q ⊂ [n] of size t, and queries U [j] that is the vertical juxta-

position of Uxh [j], Uyh [j], Uzh [j], Uw
h [j], uxh[j], uyh[j], uzh[j], uadd

h [j], u′h[j], j ∈ Q. It also

receives R, the list of revealed variables. It uses the same deterministic process as P
to generate Uw3 and appends this to the bottom of the queried columns for testing. It
accepts if all acceptance criteria for Test-Interleaved, Test-Linear-Constraints-
IRS, Test-Quadratic-Constraints-IRS, Test-Pattern-Zeros-Constraints and

Test-And-Constraints are met.

Fig. 4: ZKIOP of [1] with our modifications shown in blue.

BooLigero: Improved Sublinear Zero Knowledge Proofs for Boolean Circuits 15

of the proof is doubled since the initial and response variables were committed
to separately. We computed the parameters using our own optimizer written in
SciPy and validated them with an optimizer obtained from [35].

5.1 Concrete results

For both SHA-2 and SHA-3, we evaluate our proof sizes compared to Ligero
on proving membership in the list captured by a Merkle tree. For a Merkle
tree with M leaves, (2M − 1) hash computations are done. This has become a
common benchmark for evaluating the scalability of zero-knowledge proofs to
larger predicates.

SHA-3 SHA-3 only uses bit operations, so there is no special benefit from
using an arithmetic system. Both BooLigero and Ligero may do the wordwise
rotations for free; they can be achieved by re-indexing constraints for the next
step. Ligero can do the bitwise rotations for free (since each variable represents
only a single bit), but in BooLigero we must write the additional variable and
use Test-Pattern-Constraints to enforce the constraint. Using SHA-3 as the
hash function in a Merkle tree, each invocation of the hash function consists of
a single call to the f-function.

Fig. 5: BooLigero and Ligero absolute and relative proof sizes for SHA-3 Merkle trees

SHA-2 SHA-2 contains a mixture of Boolean operations and mod-232 addition.
Although the SHA-2 circuit used in [1] was not provided, we reconstruct a similar
circuit using the same techniques. As described in [1], Ligero computes modular
addition by using a dummy variable. Our SHA-2 circuit for original Ligero tracks
16 32-bit variables (11 main variables plus 5 dummy variables) throughout 64
iterations of the SHA-2 loop.

BooLigero prefers a different strategy. Although we can compute mod-232

addition in BooLigero by implementing an adder, it turns out that a standard
135840-wire Boolean circuit for SHA-2 leads to a smaller proof size since it uses
far fewer ANDs.

16 Y. Gvili et al.

Fig. 6: BooLigero and Ligero absolute and relative proof sizes for SHA-2 Merkle trees

Acknowledgments

The authors graciously thank Muthu Venkitasubramaniam for providing us with
a parameter optimizer [35], and the anonymous reviewers for their insightful
comments. The second author is supported by a Google PhD Fellowship. The
third author is supported by the DARPA SIEVE program under Agreement No.
HR00112020021 and the National Science Foundation under Grants No. 1414119,
1718135, 1801564, and 1931714.

References

1. Ames, S., Hazay, C., Ishai, Y., Venkitasubramaniam, M.: Ligero: Lightweight sub-
linear arguments without a trusted setup. In: Thuraisingham, B.M., Evans, D.,
Malkin, T., Xu, D. (eds.) ACM CCS 2017. pp. 2087–2104. ACM Press, Dallas,
TX, USA (Oct 31 – Nov 2, 2017). https://doi.org/10.1145/3133956.3134104

2. Baum, C., Nof, A.: Concretely-efficient zero-knowledge arguments for arithmetic
circuits and their application to lattice-based cryptography. In: Kiayias, A.,
Kohlweiss, M., Wallden, P., Zikas, V. (eds.) PKC 2020, Part I. LNCS, vol. 12110,
pp. 495–526. Springer, Heidelberg, Germany, Edinburgh, UK (May 4–7, 2020).
https://doi.org/10.1007/978-3-030-45374-9 17

3. Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Scalable, transparent, and
post-quantum secure computational integrity. Cryptology ePrint Archive, Report
2018/046 (2018), https://eprint.iacr.org/2018/046

4. Ben-Sasson, E., Chiesa, A., Garman, C., Green, M., Miers, I., Tromer, E., Virza,
M.: Zerocash: Decentralized anonymous payments from bitcoin. In: 2014 IEEE
Symposium on Security and Privacy. pp. 459–474. IEEE Computer Society Press,
Berkeley, CA, USA (May 18–21, 2014). https://doi.org/10.1109/SP.2014.36

5. Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E., Virza, M.: SNARKs for
C: Verifying program executions succinctly and in zero knowledge. In: Canetti,
R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 90–108.
Springer, Heidelberg, Germany, Santa Barbara, CA, USA (Aug 18–22, 2013).
https://doi.org/10.1007/978-3-642-40084-1 6

6. Ben-Sasson, E., Chiesa, A., Riabzev, M., Spooner, N., Virza, M., Ward, N.P.:
Aurora: Transparent succinct arguments for R1CS. In: Ishai, Y., Rijmen, V. (eds.)
EUROCRYPT 2019, Part I. LNCS, vol. 11476, pp. 103–128. Springer, Heidelberg,

BooLigero: Improved Sublinear Zero Knowledge Proofs for Boolean Circuits 17

Germany, Darmstadt, Germany (May 19–23, 2019). https://doi.org/10.1007/978-
3-030-17653-2 4

7. Ben-Sasson, E., Chiesa, A., Spooner, N.: Interactive oracle proofs. In: Hirt,
M., Smith, A.D. (eds.) TCC 2016-B, Part II. LNCS, vol. 9986, pp. 31–
60. Springer, Heidelberg, Germany, Beijing, China (Oct 31 – Nov 3, 2016).
https://doi.org/10.1007/978-3-662-53644-5 2

8. Ben-Sasson, E., Chiesa, A., Tromer, E., Virza, M.: Succinct non-interactive zero
knowledge for a von neumann architecture. In: Fu, K., Jung, J. (eds.) USENIX
Security 2014. pp. 781–796. USENIX Association, San Diego, CA, USA (Aug 20–
22, 2014)

9. Bitansky, N., Chiesa, A., Ishai, Y., Ostrovsky, R., Paneth, O.: Succinct non-
interactive arguments via linear interactive proofs. In: Sahai, A. (ed.) TCC 2013.
LNCS, vol. 7785, pp. 315–333. Springer, Heidelberg, Germany, Tokyo, Japan
(Mar 3–6, 2013). https://doi.org/10.1007/978-3-642-36594-2 18

10. Bootle, J., Cerulli, A., Chaidos, P., Groth, J., Petit, C.: Efficient zero-knowledge
arguments for arithmetic circuits in the discrete log setting. In: Fischlin,
M., Coron, J.S. (eds.) EUROCRYPT 2016, Part II. LNCS, vol. 9666, pp.
327–357. Springer, Heidelberg, Germany, Vienna, Austria (May 8–12, 2016).
https://doi.org/10.1007/978-3-662-49896-5 12

11. Chase, M., Derler, D., Goldfeder, S., Orlandi, C., Ramacher, S., Rechberger, C.,
Slamanig, D., Zaverucha, G.: Post-quantum zero-knowledge and signatures from
symmetric-key primitives. In: Thuraisingham, B.M., Evans, D., Malkin, T., Xu, D.
(eds.) ACM CCS 2017. pp. 1825–1842. ACM Press, Dallas, TX, USA (Oct 31 –
Nov 2, 2017). https://doi.org/10.1145/3133956.3133997

12. Chiesa, A., Hu, Y., Maller, M., Mishra, P., Vesely, N., Ward, N.P.: Marlin: Prepro-
cessing zkSNARKs with universal and updatable SRS. In: Canteaut, A., Ishai, Y.
(eds.) EUROCRYPT 2020, Part I. LNCS, vol. 12105, pp. 738–768. Springer, Heidel-
berg, Germany, Zagreb, Croatia (May 10–14, 2020). https://doi.org/10.1007/978-
3-030-45721-1 26

13. Costello, C., Fournet, C., Howell, J., Kohlweiss, M., Kreuter, B., Naehrig, M.,
Parno, B., Zahur, S.: Geppetto: Versatile verifiable computation. In: 2015 IEEE
Symposium on Security and Privacy. pp. 253–270. IEEE Computer Society Press,
San Jose, CA, USA (May 17–21, 2015). https://doi.org/10.1109/SP.2015.23

14. Gabizon, A., Williamson, Z.J., Ciobotaru, O.: PLONK: Permutations over
lagrange-bases for oecumenical noninteractive arguments of knowledge. Cryptology
ePrint Archive, Report 2019/953 (2019), https://eprint.iacr.org/2019/953

15. Ganesh, C., Orlandi, C., Tschudi, D.: Proof-of-stake protocols for privacy-aware
blockchains. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019, Part I. LNCS,
vol. 11476, pp. 690–719. Springer, Heidelberg, Germany, Darmstadt, Germany
(May 19–23, 2019). https://doi.org/10.1007/978-3-030-17653-2 23

16. Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and
succinct NIZKs without PCPs. In: Johansson, T., Nguyen, P.Q. (eds.) EURO-
CRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer, Heidelberg, Germany,
Athens, Greece (May 26–30, 2013). https://doi.org/10.1007/978-3-642-38348-9 37

17. Gentry, C., Wichs, D.: Separating succinct non-interactive arguments from
all falsifiable assumptions. In: Fortnow, L., Vadhan, S.P. (eds.) 43rd ACM
STOC. pp. 99–108. ACM Press, San Jose, CA, USA (Jun 6–8, 2011).
https://doi.org/10.1145/1993636.1993651

18. Giacomelli, I., Madsen, J., Orlandi, C.: ZKBoo: Faster zero-knowledge for Boolean
circuits. In: Holz, T., Savage, S. (eds.) USENIX Security 2016. pp. 1069–1083.
USENIX Association, Austin, TX, USA (Aug 10–12, 2016)

18 Y. Gvili et al.

19. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or A
completeness theorem for protocols with honest majority. In: Aho, A. (ed.) 19th
ACM STOC. pp. 218–229. ACM Press, New York City, NY, USA (May 25–27,
1987). https://doi.org/10.1145/28395.28420

20. Groth, J.: On the size of pairing-based non-interactive arguments. In: Fis-
chlin, M., Coron, J.S. (eds.) EUROCRYPT 2016, Part II. LNCS, vol. 9666,
pp. 305–326. Springer, Heidelberg, Germany, Vienna, Austria (May 8–12, 2016).
https://doi.org/10.1007/978-3-662-49896-5 11

21. Groth, J., Kohlweiss, M., Maller, M., Meiklejohn, S., Miers, I.: Updatable and
universal common reference strings with applications to zk-SNARKs. In: Shacham,
H., Boldyreva, A. (eds.) CRYPTO 2018, Part III. LNCS, vol. 10993, pp. 698–
728. Springer, Heidelberg, Germany, Santa Barbara, CA, USA (Aug 19–23, 2018).
https://doi.org/10.1007/978-3-319-96878-0 24

22. Gvili, Y., Scheffler, S., Varia, M.: Booligero: Improved sublinear zero knowledge
proofs for boolean circuits. Cryptology ePrint Archive, Report 2021/121 (2021),
https://eprint.iacr.org/2021/121

23. Hoffmann, M., Klooß, M., Rupp, A.: Efficient zero-knowledge arguments in the
discrete log setting, revisited. In: Cavallaro, L., Kinder, J., Wang, X., Katz,
J. (eds.) ACM CCS 2019. pp. 2093–2110. ACM Press (Nov 11–15, 2019).
https://doi.org/10.1145/3319535.3354251

24. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge from se-
cure multiparty computation. In: Johnson, D.S., Feige, U. (eds.) 39th ACM
STOC. pp. 21–30. ACM Press, San Diego, CA, USA (Jun 11–13, 2007).
https://doi.org/10.1145/1250790.1250794

25. Jawurek, M., Kerschbaum, F., Orlandi, C.: Zero-knowledge using garbled circuits:
how to prove non-algebraic statements efficiently. In: Sadeghi, A.R., Gligor, V.D.,
Yung, M. (eds.) ACM CCS 2013. pp. 955–966. ACM Press, Berlin, Germany
(Nov 4–8, 2013). https://doi.org/10.1145/2508859.2516662

26. Kalai, Y.T., Raz, R.: Interactive PCP. In: Aceto, L., Damg̊ard, I., Goldberg, L.A.,
Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II.
LNCS, vol. 5126, pp. 536–547. Springer, Heidelberg, Germany, Reykjavik, Iceland
(Jul 7–11, 2008). https://doi.org/10.1007/978-3-540-70583-3 44

27. Kerber, T., Kohlweiss, M., Kiayias, A., Zikas, V.: Ouroboros crypsinous: Privacy-
preserving proof-of-stake. Cryptology ePrint Archive, Report 2018/1132 (2018),
https://eprint.iacr.org/2018/1132

28. Kilian, J.: A note on efficient zero-knowledge proofs and arguments (extended
abstract). In: 24th ACM STOC. pp. 723–732. ACM Press, Victoria, BC, Canada
(May 4–6, 1992). https://doi.org/10.1145/129712.129782

29. Kondi, Y., Patra, A.: Privacy-free garbled circuits for formulas: Size zero and
information-theoretic. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part I.
LNCS, vol. 10401, pp. 188–222. Springer, Heidelberg, Germany, Santa Barbara,
CA, USA (Aug 20–24, 2017). https://doi.org/10.1007/978-3-319-63688-7 7

30. Lipmaa, H.: Succinct non-interactive zero knowledge arguments from span pro-
grams and linear error-correcting codes. In: Sako, K., Sarkar, P. (eds.) ASI-
ACRYPT 2013, Part I. LNCS, vol. 8269, pp. 41–60. Springer, Heidelberg, Germany,
Bengalore, India (Dec 1–5, 2013). https://doi.org/10.1007/978-3-642-42033-7 3

31. Maller, M., Bowe, S., Kohlweiss, M., Meiklejohn, S.: Sonic: Zero-knowledge
SNARKs from linear-size universal and updatable structured reference strings. In:
Cavallaro, L., Kinder, J., Wang, X., Katz, J. (eds.) ACM CCS 2019. pp. 2111–2128.
ACM Press (Nov 11–15, 2019). https://doi.org/10.1145/3319535.3339817

BooLigero: Improved Sublinear Zero Knowledge Proofs for Boolean Circuits 19

32. Miers, I., Garman, C., Green, M., Rubin, A.D.: Zerocoin: Anonymous distributed
E-cash from Bitcoin. In: 2013 IEEE Symposium on Security and Privacy. pp.
397–411. IEEE Computer Society Press, Berkeley, CA, USA (May 19–22, 2013).
https://doi.org/10.1109/SP.2013.34

33. Parno, B., Howell, J., Gentry, C., Raykova, M.: Pinocchio: Nearly practical ver-
ifiable computation. In: 2013 IEEE Symposium on Security and Privacy. pp.
238–252. IEEE Computer Society Press, Berkeley, CA, USA (May 19–22, 2013).
https://doi.org/10.1109/SP.2013.47

34. Setty, S.: Spartan: Efficient and general-purpose zkSNARKs without trusted setup.
In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020, Part III. LNCS, vol. 12172,
pp. 704–737. Springer, Heidelberg, Germany, Santa Barbara, CA, USA (Aug 17–21,
2020). https://doi.org/10.1007/978-3-030-56877-1 25

35. Venkitasubramaniam, M.: personal communication (Sep 2020)

36. Wahby, R.S., Tzialla, I., shelat, a., Thaler, J., Walfish, M.: Doubly-efficient zk-
SNARKs without trusted setup. In: 2018 IEEE Symposium on Security and
Privacy. pp. 926–943. IEEE Computer Society Press, San Francisco, CA, USA
(May 21–23, 2018). https://doi.org/10.1109/SP.2018.00060

37. Weng, C., Yang, K., Katz, J., Wang, X.: Wolverine: Fast, scalable, and
communication-efficient zero-knowledge proofs for boolean and arith-
metic circuits. Cryptology ePrint Archive, Report 2020/925 (2020),
https://eprint.iacr.org/2020/925

38. Xie, T., Zhang, J., Zhang, Y., Papamanthou, C., Song, D.: Libra: Succinct
zero-knowledge proofs with optimal prover computation. In: Boldyreva, A., Mic-
ciancio, D. (eds.) CRYPTO 2019, Part III. LNCS, vol. 11694, pp. 733–764.
Springer, Heidelberg, Germany, Santa Barbara, CA, USA (Aug 18–22, 2019).
https://doi.org/10.1007/978-3-030-26954-8 24

A Proofs of Lemmas

Proof (Security of Test-And-Constraints). We must show that Test-And-
Constraints is complete, zero-knowledge, and sound up to error 3(1/2κ) +
δ1 + δ2 + δ3, where δ1 is the soundness error of Test-Quadratic-Constraints-
IRS, δ2 is the soundness error of Test-Linear-Constraints-IRS, and δ3 is the
soundness error of Test-Interleaved.

Completeness: If P is honest, then all variables are well-formed. We must
show that following the process described in step 1(b) of Fig. 3 will lead to
computing bitwise AND. Elements in GF(2w) are polynomials over GF(2) of
degree at most (w−1), and multiplication in GF(2w) is polynomial multiplication
modulo an irreversible polynomial. As in step 1(a), let w0 = b

√
wc. Fix i ∈ [N].

By construction, the polynomial representations of all ŷi,h variables (for h ∈
[w1]) have degree at most w0 − 1. They can be written as

∑w0−1
k=0 ckv

k, where v
is the polynomial variable and c is the coefficient (either 0 or 1).

20 Y. Gvili et al.

The x̂i,h variables are of the form
∑w0−1
k=0 dkv

kw0 (using d as the coefficient).
Thus, if we multiply x̂i,h ∗ ŷi,h, the result can be written as:

ẑi,h = x̂i,h ∗ ŷi,h =

(
w0−1∑
k=0

dkv
kw0

)(
w0−1∑
k=0

ckv
k

)

= d0

(
w0−1∑
k=0

ckv
k

)
+ d1

(
w0−1∑
k=0

ckv
w0+k

)
+ . . .+ dw0−1

(
w0−1∑
k=0

ckv
(w0−1)w0+k

)
=
(
d0c0v

0 + . . .+ d0cw0−1v
w0−1)

+
(
d1c0v

w0 + . . .+ d1cw0−1v
2w0−1)

+ . . .+
(
dw0−1c0v

(w0−1)w0 + . . .+ dw0−1cw0−1v
w2

0−1
)

=

w2
0−1∑
k=0

dbk/w0cc(k mod w0)v
k

First, notice that the degree of this polynomial is at most w2
0 − 1, so by

construction, this polynomial will not need to be reduced modulo the irre-
ducible polynomial. Next, notice that the coefficient ek of vk can be written
as ek = dbk/w0cc(k mod w0). But the c and d coefficients correspond to the bits of
x̂i,h and ŷi,h, which in turn correspond to the bits of xi and yi. So if we wish
to know the AND of ck′ and dk′ , we can look at the coefficient of vk, for the k
for which k′ = bk/w0c = (k mod w0), This will occur at k = k′w0 + k′. Thus,
each ẑi,h can be used to find the AND of w0 bits. For k′ ∈ {0, . . . , w0 − 1}, bit
ẑi,h[1 + k′ + k′w0] is the AND of x̂i,h[1 + w0k

′] and ŷi,h[1 + k′].
Zooming back out to zi, we find that each bit of zi can be found as zi[k] =

ẑi,b k+1
w0
c[1+((k−1) mod w0)+w0((k−1) mod w0)]. Since the ẑi,h variables were

formed correctly from the x̂i,h and ŷi,h variables, which were formed correctly
from xi and yi, zi will be the AND of xi and yi for all i ∈ [N], as desired.

Zero-knowledge: Deferred to full version [22].
Soundness: Suppose P is cheating, that is, there is at least one (xi, yi, zi)

triple for which zi 6= xi&yi. Without loss of generality, let i = 1 be an index on
which the prover cheats.

If the Ligero matrix is not well-formed, Test-Interleaved will fail with prob-
ability at least 1− δ3; we assume this is not the case for the rest of the proof.

If z1 6= x1&y1, then one of the following must be true:

1. There exists an h ∈ [w1] for which ẑ1,h 6= x̂1,h ∗ ŷ1,h.
2. The x̂1,h variables were not properly formed from x1. That is, Tπx [x1, x̂1,1, . . . , x̂1,w1 , x1]⊥ 6=
~0. The same may be true for Tπy

on the y variables, or Tπz
on the z variables.

If the former is true, then Test-Quadratic-Constraints-IRS will fail with
probability at least 1−δ1. If the latter is true, then either Test-Linear-Constraints-
IRS will fail with probability at least 1 − δ2, or the pattern-checking part of
Test-Pattern-Zeros-Constraints for Rx will fail with probability at most
1/2κ. Similarly for Ry and Rz. Thus, by a Union bound, the overall protocol has
soundness error 3(1/2κ) + δ1 + δ2 + δ3 over the verifier’s coins.

