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Spectral Embedding Norm: Looking Deep into the Spectrum of the Graph
Laplacian⇤

Xiuyuan Cheng† and Gal Mishne‡

Abstract. The extraction of clusters from a dataset which includes multiple clusters and a significant back-
ground component is a nontrivial task of practical importance. In image analysis this manifests for
example in anomaly detection and target detection. The traditional spectral clustering algorithm,
which relies on the leading K eigenvectors to detect K clusters, fails in such cases. In this paper
we propose the spectral embedding norm which sums the squared values of the first I normalized
eigenvectors, where I can be significantly larger than K. We prove that this quantity can be used to
separate clusters from the background in unbalanced settings, including extreme cases such as outlier
detection. The performance of the algorithm is not sensitive to the choice of I, and we demonstrate
its application on synthetic and real-world remote sensing and neuroimaging datasets.
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1. Introduction. In unsupervised learning and data analysis, one of the most common
goals is to group the data points into clusters. A variant task is to extract interesting clusters
from the data when, in practice, data points do not perfectly fall intoK clusters. We consider a
nontrivial setting in which data consist of not only interesting subgroups, namely, “clusters”,
but also a large component containing points which are less structured or of less interest,
which we call “background.” Important examples in imaging data analysis include image
segmentation and saliency detection where the clusters are regions of interest in the image,
and the background consists of the rest of the image [4, 28]. Another example is the task of
anomaly (or outlier) detection where anomalous samples (small clusters) in the dataset di↵er
from the normal ones (background) and indicate that something important has happened or
a problem has occurred. By the very nature of the problem, most data points belong to the
background and only a small fraction of data points are anomalies. Anomaly detection in
images is an important task in a variety of applications such as target detection in remote
sensing imagery, detecting abnormalities such as tumors in biomedical imagery, and for quality
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inspection in production lines. An automated solution highlighting only suspicious regions to
be reviewed by an expert would save greatly on time.

In theory, one may view the background component as an extra cluster; however the un-
balanced size of the clusters versus background components poses challenges for traditional
clustering methods. The popular spectral clustering algorithm [25, 33, 41] reduces the di-
mensionality of the data using a spectral embedding, and then performs clustering in the
low-dimensional space. The method originally proposed to cluster data into K clusters by
applying k-means to the leadingK eigenvectors (the low-lying eigenvectors of the graph Lapla-
cian) computed from an a�nity matrix built from the data [24, 25, 41, 45]. A question is then
how to set the parameter K, and this is especially important for exploratory data analysis
when the number of clusters underlying the data is not known a priori. The traditional solu-
tion is to use the spectral gap of the eigenvalues to determine K [39], yet in practical settings,
such a gap may not exist. In particular, when the cluster sizes are unbalanced, or a large back-
ground component is present, there is no spectral gap after the Kth eigenvalue and the leading
eigenvectors do not localize on K given clusters, but rather tend to be supported mostly on
the large component due to the slow mixing time of the di↵usion process restricted to it. The
unbalanced case of outlier detection is a classical scenario where traditional spectral clustering
fails to identify the existing clusters [23, 43, 46]. As has been shown in [7, 18, 26, 42] and will
be demonstrated, the eigenvectors which indicate clusters or outliers may lie deep within the
spectrum of the a�nity matrix. This gives rise to the notion of abandoning the guideline of fo-
cusing onK eigenvectors and rather choosing to look deeper into the spectrum in such settings.

In this paper we consider a cluster-background splitting model of the graph, including
anomaly detection as a special case. The model is motivated by applications and will be tested
on real-world datasets. We propose a quantity called the spectral embedding norm, which
maps each node in the graph to a positive number, and separates clusters from background
with a theoretical guarantee. The idea is closely related to the “localization” pattern of
the eigenvectors, namely, what they are supported on—either mainly on the cluster block or
on the background block—and this pattern maintains even when the spectral gap vanishes.
Viewing the a�nity matrix as a perturbed one from a baseline a�nity where the background
and clusters are completely disconnected, one can analyze the consequent deformation of the
spectrum of the graph Laplacian matrix. However, the instability of eigenvectors under the
deformation poses di�culty to the use of individual eigenvectors in this environment. The
spectral embedding norm, on the other hand, improves the stability by using a summation over
multiple eigenmodes and provides guaranteed detection of the clusters by simple thresholding.
The algorithm involves a parameter which is the number of eigenvectors summed over, and
the performance is not sensitive to the parameter choice.

Our result thus provides a way to go beyond dominating eigenvectors of the graph Lapla-
cian to unbalanced data clustering tasks with theoretical verification. It suggests that, in the
presence of cluttered background samples, it is beneficial to look deep into the spectrum to
identify important and subtle structures. By providing a simple measure by which to sep-
arate clusters from background, the method allows the application of signal processing and
machine learning methods to the cluster samples only without contamination from the back-
ground. Our analysis spans a setting of multiple clusters against background to the extremely
unbalanced case of outlier detection.
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In the rest of the paper, we review more related literature before ending the current section.
The spectral embedding norm is introduced in section 2, with an illustrative example to show
the main idea. The theoretical result is presented in section 3, experiments on synthetic and
real-world image datasets are presented in section 4, proofs given in section 5, and further
remarks made in the final section.

Notations. | · | stands for the cardinal number of a set. Ac means the complement of a
set A.

1.1. Related works. As spectral clustering and variants have been intensively studied in
literature, we list the most relevant works to our problem.

The spectral embedding for clustered data has been previously analyzed in many places.
While Schiebinger, Wainwright, and Yu [32] analyzed a nonparametric mixture model to show
that under certain conditions the embedded points lie in an orthogonal cone structure and
k-means succeeds in clustering the data, Nadler and Galun [23] showed that even for well-
separated Gaussians the top K eigenvectors do not necessarily localize on K clusters, based
on the analysis of a di↵usion process in a multiwell potential [24, 34]. Di↵erent approaches,
e.g., [10, 45], attempted to align the eigenvectors axes with the di↵erent clusters and improve
the robustness of cluster identification. Zelnik-Manor and Perona [45] proposed to estimate
the number of clusters from the eigenvectors instead of from the spectral gap, and empirically
demonstrated improved performance when a background cluster is present. Damle, Minden,
and Ying [10] considered the case of a balanced blocklike a�nity matrix. The embedding
norm studied in the current work di↵ers from the above approaches, and it involves a simple
algorithm with a theoretical guarantee under the specified settings.

Spectral embeddings have been used for anomaly detection in several modified ways: based
on the first nontrivial eigenvector of an a�nity matrix [16, 26], eigenvector selection [18, 42],
out-of-sample extension [1, 19, 20, 22], the algebraic structure of the weighted magnitude sum
of Laplacian eigenfunctions [6], and multiscale constructions of spectral embeddings [19, 29],
and usually requiring tuning of multiple parameters. For a general review of anomaly detec-
tion methods, the interested reader is referred to [2, 5, 13, 14]. In particular, “eigenvector
selection” has been proposed to determine eigenvectors that localize on clusters or specifi-
cally on anomalies, using unsupervised spectral ranking [26], kurtosis [42], relevance learn-
ing [43], entropy [11, 46], the L1 norm [18], tensor product [9], and local linear regression [12].
Both [43, 46] proposed calculating Km eigenvectors, where m > 1, and then select informative
eigenvectors. Wu et al. [42] analyzed the adjacency matrix of a graph, while Miller, Bliss, and
Wolfe [18] considered the modularity matrix of a graph. In the current paper, we analyze
the spectrum of the (normalized) random-walk Laplacian matrix which has a more stable
spectrum with finite samples [40].

The proposed notion of embedding norm formally resembles the probability amplitude in
quantum mechanics, which sums the squared modulus of the low-energy wave functions. It is
also similar to the leverage score in statistics, defined to be the squared sum of principal com-
ponents, which has been used as an indicator of outlier samples in linear regression and other
statistical applications [15]. The generalized form of the embedding norm with exponentially
decaying weights has been previously suggested as a tool to identify salient features in shape
analysis, called the heat kernel signature [37]. However, the settings in the previous statistical
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and computer graphical studies are di↵erent from our consideration of the cluster-background
separation and, particularly, the equal weights on the truncated sum over eigenvectors which
more closely resembles probability amplitude has its own motivation; see more in the last
section.

2. Spectral embedding norm. Given n data points in the feature space, an undirected
weighted graph can be constructed which has n nodes, denoted by V, and the weight on edge
(x, y) is the a�nity between nodes x and y denoted byW (x, y). W is an n-by-n real-symmetric
matrix of nonnegative entries W (x, y) = W (y, x) � 0, called the graph a�nity matrix. In
applications, W is built as a pairwise a�nity between data points in a feature space, e.g.,
W (x, y) = k(x, y), where k is a symmetric kernel function applied to the feature vectors of
data points x and y. In our analysis we assume that W has been constructed.

2.1. Cluster-background splitting in the graph. Suppose that V can be divided into two
disjoint subsets, background and clusters, denoted by B and C, respectively. The typical
scenario which we consider is when data points in C are concentrated in the feature space
and well-clustered into K subclusters, whereas those in B can be “manifold-like” and spread
over the space. The precise assumptions will be formulated in terms of the graph-Laplacian
spectra constrained to the subgraphs of C and B (see Assumption 1). We also assume the
connections between C and B are weak. As a result, the submatrix of W constrained to C is
close to having K blocks, and is almost separated from the submatrix of B. Define matrix W0

by removing all the connections between B and C from W , i.e., W0 is a block-diagonal matrix
consisting of two blocks of C and B, respectively, and E is the matrix consisting of the B-C
connections. We introduce a pseudodynamic parametrized by time t as

(2.1) W (t) = W0 + tE, t 2 [0, 1],

so that W (0) = W0 and W (1) = W . To simplify the analysis, we assume that the K
subclusters are of equal size, that is,

|C| = �|V|, |B| = (1� �)|V|,

and each of the K clusters in C has �|V|
K nodes. The result extends to the unequal-size case.

2.2. Graph Laplacian and embedding norm. Consider the normalized random-walk graph
Laplacian of W ,

L = I �D�1W := I � P,

where D is a diagonal matrix defined by Dii =
P

j Wij and P is a Markov matrix. We shall

see that D is always invertible. P is similar to D�1/2WD�1/2 which is real-symmetric, thus
P is diagonalizable and has n real eigenvalues. Let

(2.2) P k = �k k, k = 1, . . . , n,  T
k D j = �kj ,

where {�k}k are the eigenvalues of P , { k}k are the corresponding right eigenvectors, and
�kj = 1 when k = j and 0 otherwise. Given that |�k|  1 (Perron–Frobenius theorem), and
when W is a positive-definite kernel matrix then all the eigenvalues are between 0 and 1. The
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largest eigenvalue of P is 1 and the associated eigenvectors are the constant vector. Note that
time dependence is omitted in the above notations: as we introduced the deformation of W
in (2.1), D, P , and, consequently,  k and �k also depend on t. We assume that at t = 1 the
eigenvalues are sorted to be decreasing, and for other t, the indexing k is arranged so that  k

and �k are di↵erentiable with respect to t [17].
The spectral embedding norm of every node x 2 V is defined to be

(2.3) S(x) =
X

k2I
 k(x)

2,

where I is a subset of the eigenvalue indices {1, . . . , n}. S(x) is the (squared) Euclidean norm
of the embedded vector of x in the spectral embedding space using eigenvectors of indices in
I. When needed, we include the time dependence in the notation written as S(x, t), t 2 [0, 1].
A typical choice of I is I = {1, . . . , |I|}, when the eigenvalues are sorted to be descending.
The cardinal number |I| is a parameter of the method and in the scenario of outlier detection
it is typically larger than K. In practice, estimates of K can be used if K is not known. We
will show that the result is not sensitive to the choice of |I|, in analysis and experiments.

The embedding norm S is able to separate C from B by a provable margin under certain
assumptions (Theorem 3.5). A general weighted form of S can be introduced and the result
extends directly. This is naturally related to the di↵usion distance [8], and we will explain
more on this in the last section.

2.3. A prototypical toy example. The prototypical scenario which motivates the proposed
method is illustrated in the toy example in Figure 1. (a) shows data points in R2 consisting
of two groups: a large group, denoted by B, which lie close to the unit circle (blue) and
a small one, denoted by C, which form a small cluster lying close to the circle (red), and
|C|
|V| = � = 0.01. Traditional spectral clustering and k-means will fail to separate the cluster

(C component) from the circle (B component), as shown in Figure A.4(a)–(c). Variations of
this model involve multiple subclusters in C (see Figure 3 and the applications on real-world
data), and the qualitative picture is the same.

The a�nity matrix W built from the data is shown in (b). The first few eigenvalues,
evolving over time t, are shown in (c), and the associated eigenvectors evaluated on two
nodes, one in C and one in B, are plotted in (d) and (e). We sort the eigenvalues of P from
large to small, and the first eigenvalue is always 1. The embedding norm S(x) takes the
squared sum of the first 40 eigenvectors on each node (cf., (2.3)) and is plotted in (f) over
time. The figure demonstrates that

1. though two blocks C and B exist in the graph, there is no clear eigengap between the
second and third eigenvalues. Actually, the leading eigenvalues are all very close to 1
throughout time 5 (the eighth eigenvalue is greater than 0.998);

2. while the second eigenvector  2 distinguishes C at short time t, once t is greater than
0.01  2 fails to indicate the cluster C. (d) shows the value on one node and it is
typical for the value of  k’s on C. The transition actually happens when the initial
gap between �2 and �3 almost vanishes. However, the high-index eigenvectors may
take a large value on C (the eighth eigenvector starts to take a large magnitude on C
around t = 0.1, and the trend of high-indexed eigenvectors localizing on C continues,
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(a) (b) (c)

(d) (e) (f)

Figure 1. Plots of eigenvalue and eigenvectors of P = D�1W over time. (a) n = 5000 data points in R2

sampled on B[C, where points in B lie close to a circle (blue) and points in C form the small cluster lying close
to the circle (red). In this case, K = 1, � = 0.01. (b) The a�nity matrix W (t) at t = 1, cf., (2.1). (c) Plot of
the first 8 eigenvalues as t increases from 0 to 1 (excluding �1 = 1). (d) The absolute values of the associated
first 8 eigenvectors at x1 2 C over time. (e) Same plot at x2 2 B. (f) The values of the embedding norm S(x)
defined in (2.3) at x1 and x2 over time, where |I| = 40.

which is not shown). This is evident by S(x) consistently distinguishing C from B over
time, as shown in (f).

This suggests that when the leading eigenvectors fail to identify the cluster C, the infor-
mation of the location of C may be contained in higher-indexed eigenvectors, and looking deep
into the spectrum may be helpful. However, the selection of informative eigenvectors is gener-
ally a challenging problem. In particular, as shown in (d), (e), the deformation of eigenvectors
is not stable when eigenvalues get close, which makes it di�cult to study them individually.
Instead, the embedding norm we proposed varies smoothly over time and preserves a gap
between C and B. As a result, one can detect C from B by thresholding the value of S at
t = 1. Note that 40 eigenvectors are used in the summation, which is much larger than 2. We
will justify this improved stability in the analysis.

3. Theoretical analysis of cluster detection. At t = 0 in (2.1), the matrix W0 has a two-
block structure, and the spectrum of the graph Laplacian ofW0 also splits into two groups, one
residing on C and the other on B, respectively. However, as t increases, interactions among the
eigenvectors develop and the perfect splitting pattern is no longer preserved. The embedding
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Figure 2. Diagram showing the evolution of eigenvalues of the Markov matrix as W (t) changes over time
as in (2.1). The trivial eigenvalue � = 1 is omitted. At t = 0, circles indicate B eigenvalues, and crosses
indicate C ones. In this example, K = 3 and |I| = 10. Eigenvalues of the B-submatrix are shown in circles,
and those of the C-submatrix in crosses. Note that B can have eigenvalues close to 1 even at t = 0. As t
increases, at most times the eigenvalues are all of multiplicity one. Eigencrossings may happen within I and
Ic but not in-between, and the I-spectral gap denoted by �(t) is preserved (Proposition 3.3). The di↵erential
equation (3.15) is obtained by the contour integral �, which exists for all t due to positive �(t) .

norm varies more stably than individual eigenvectors over time, and serves as a measure by
which to separate C from B up to time t = 1.

3.1. Initial separation by S and assumptions. Since we will use S to separate B and C,
we need it to do so at least at t = 0 when the two blocks B and C are perfectly separated by
removing all the edges connecting them. Note that this does not necessarily happen unless
certain assumptions are made: because the eigenvalues of the B block can be close to 1 and the
clustering in the C block may not be perfect, the first |I| eigenvectors may be supported either
on C or on B, and there is generally no guarantee that the squared sum (2.3) will distinguish
the two blocks. We make the following two assumptions:

(1) At t = 0, the eigenvectors in I which are supported on B are su�ciently delocalized
(“flat”) and those on C are close to the well-clustered case.

(2) The fraction � of |C| is su�ciently small so that the eigenvectors on C are of su�ciently
larger magnitude than those on B, due to the eigenvector normalization (2.2). The precise
condition depends on the choice of |I|, the node degrees, and so on.

We denote the volume of set A at time t by ⌫(A, t) defined as the sum of the degrees at
time t:

(3.1) ⌫(A, t) =
X

x2A
d(x, t), d(x, t) =

X

y2V
W (x, y; t).

We also define lower and upper bounds

(3.2) d0 := min
x2V

d(x, 0), d0 := max
x2V

d(x, 0),

and assume that d0 > 0. By construction (2.1), the degree d(x, t) of any node monotonically
increases over time. Thus d0 is the universal degree lower bound.

Lemma 3.1. For all x 2 V and all 0  t  1, d(x, t) � d0 > 0.

At t = 0, since the a�nity matrix decomposes into two separated blocks B and C, so do
the eigenvectors. We call them initial eigenvectors, and the set of eigenvectors which are only
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supported on B are called the B-eigenvectors, denoted by  B, and similarly for C-eigenvectors
and  C . The assumption on these eigenvectors and the index set I is the following.

Assumption 1 (B and C-eigenvectors). At t = 0,
(a) the index I includes K C-eigenvectors and |I|�K B-eigenvectors;
(b) each of the K eigenvectors in I \ C (up to a K-by-K rotation of these K vectors) is

associated with one of the K clusters in the following sense: there exists 0  "1 < 1, and for
each  2 I \ C, there is a unique j, 1  j  K, s.t.

1� "1
⌫(Cj , 0)

  (x)2  1 + "1
⌫(Cj , 0)

8x 2 Cj ,(3.3)

 (x)2  "1
⌫(C, 0)

8x 2 C\Cj ;(3.4)

(c) there exists "2 � 0, s.t. for any  2 I \ B,

 (x)2  1 + "2
⌫(B, 0)

8x 2 B.

The above assumption, while appearing to be complicated, poses only generic conditions
on the subgraphs B and C:

In the perfectly separated case the largest K C-eigenvalues are 1, and the (K+1)th one is
strictly less than 1 and depends on the mixing time of the Markov chain within each cluster.
This spectral gap is usually significant since we primarily work with a well-clustered C which
takes a small fraction of nodes and is localized in the graph; e.g., C is an outlier cluster; or
several localized regions of interest. As a result, even when the clustering is not perfect, the
(K + 1)th C-eigenvalue is still su�ciently far away from the first K ones, and they can be
excluded from the index set I, since I selects the largest |I| eigenvalues. This fulfills (a).

If the K clusters in C are perfectly separated, one can verify that "1 = 0 in (b). Thus (b)
holds when C (without the B component) is not far from being well-clustered.

Assumption 1(c) requires that the eigenvector  is su�ciently delocalized, or “flattened”
on B. Recall that (2.2), X

x2B
 (x)2d(x, 0) = 1,

and the first eigenvector (associated with eigenvalue 1) takes the constant value  (x)2 = 1
⌫(B,0) .

If all the other eigenvectors are flattened, then (c) holds with some small "2. The delocalization
widely applies when the B are built from data vectors lying on certain regular manifolds:
assuming that the discrete eigenvectors well-approximate the continuous limits which are
eigenfunctions of the manifold Laplacian, the delocalization of the former inherit from that of
the latter (quantum ergodicity theorem [44, 47]). When the spectral convergence is poor, the
finite-sample e↵ects may create some localized pattern in the “noisy” eigenvectors; however,
since |I| is typically a small number compared to n, we assume that the selected B-eigenvectors
are su�ciently close to the population ones.

The second assumption is on the proportion of cluster nodes: Recall that � = |C|
|V| .
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Assumption 2. The constants �, |I|, and K satisfy that

(3.5)
�

1� �

|I|�K

K
<

d0(1� "2)

d0(1 + "1)
,

where "1, "2 are as in Assumption 1.

Prototypical cases where Assumptions 1 and 2 are satisfied include the example in section
2.3 (Figures 1) and in section 4.1 (Figures 3, A.1). Theoretically, the above two assumptions
guarantee that the embedding norm S(x, 0) separates the blocks C and B at time t = 0
together with an upper bound of S(x, 0) over V.

Proposition 3.2 (initial separation by S(x)). Under Assumption 1, at time t = 0,

1

nd0

K

�
(1� "1)  S(x)  1

nd0

K

�
(1 + 2"1) 8x 2 C,(3.6)

S(x)  1

nd0

(1 + "2)(|I|�K)

1� �
8x 2 B.(3.7)

If furthermore, Assumption 2 holds, then
(1) the initial gap between B and C is at least

(3.8) g0 :=
1

nd0

K

�
(#), (#) :=

d0(1� "1)

d0
� �

1� �

|I|�K

K
(1 + "2),

that is, 8x 2 C and y 2 B, S(x)� S(y) � g0 > 0;
(2) at t = 0,

(3.9) sup
x2V

S(x)  1

nd0

K

�
(1 + 2"1).

Proof is given in section 5.

3.2. Stable deformation of S and separation. We will prove the stability of S(x, t) over
time making use of the Hadamard variation formula for the eigenvalues and eigenvectors,
after properly indexing them. Specifically, since we assume that d0 > 0, the diagonal matrix
D is invertible throughout time, and the Markov matrix P = D�1W is diagonalizable and
similar to D�1/2WD�1/2. Under the matrix perturbation model (2.1) which is linear in t,
the n eigenvalues of the Markov matrix P can be indexed as �1(t), . . . ,�n(t), so that they are
descending at t = 0, i.e., �k+1(0)  �k(0), and di↵erentiable with respect to t for 0  t  1
(Chapter 2 of [17]). Similarly to the classical Hadamard variation formula, the evolution
equation of �k can be shown to be

(3.10) �̇k =  T
k (Ẇ � �kḊ) k,

and the equation of the associated eigenvector  k is, when valid,

(3.11)  ̇k = �1

2
( T

k Ḋ k) k +
X

j 6=k

 T
j (Ẇ � �kḊ) k

�k � �j
 j ,
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that is, (3.11) holds on time intervals when no eigencrossing of any pair of �k and �j happens.
The derivation of (3.10), (3.11) is left to Appendix B.

Though the n eigenvalues are ordered from large to small at t = 0, an eigencrossing (or
neighboring eigenvalues becoming very close) may happen as t increases, as illustrated in the
diagram in Figure 2, and numerically in the toy example in Figure 1. This voids a direct
adoption of (3.11) unless one shows that the singularity does not a↵ect the di↵erentiability of
the eigenvector branches before and after the crossing, which is still possible in our setting [17].
However, even if (3.11) can be made valid with such an e↵ort, when an eigencrossing or a near
crossing happens there is generally no control on the speed of change of the associated pair of
eigenvectors. Some steep changes of eigenvectors are shown in the toy example in Figure 1,
at times of (near) eigencrossings. This instability of eigenvectors under matrix perturbation
underlies the main di�culty of justifying the use of leading eigenvectors in this environment,
for both theoretical analysis and for algorithms.

The main observation of this work is to overcome such instability by considering the
spectral embedding norm instead of individual eigenvectors. A key quantity needed in the
stability bounds (of both the eigenvalues and the embedding norm) is the C-B “connection
strength”, measured by

(3.12) C :=
X

x2B
y2C

W (x, y).

The analysis needs C to be a small compared to the magnitude of the node degrees, specifically,
C
d0

needs to be a small constant. We note that the condition may be much stronger than

encountered in applications due to the reliance on a spectral gap between I and Ic eigenvalues.
To be specific, we define the I-eigengap (depending on time t) to be

(3.13) �(t) := min
i2I
j /2I

|�i(t)� �j(t)|, t 2 [0, 1].

Such an “I-eigengap” prevents eigenvalues from I and Ic from getting too close, but allows
arbitrary eigencrossings within I and within Ic. While needed in the perturbation analysis,
we note that �(t) should be viewed as an artifact due to the limitation of our theory (see
remark after Theorem 3.5). However, this is essentially di↵erent from the traditional spectral
gap assumed after the Kth eigenvalue. All proofs for this section are given in section 5.

The following proposition proves the preserved I-eigengap assuming an initial one, based
upon the stable evolution of eigenvalues; cf., (3.10).

Proposition 3.3 (preservation of I-eigengap). Under Assumption 1, C as in (3.12), if for
some constant � > 0, �(0) � 2�, and

(3.14)
C

d0
 1

8
�,

then

�(t) � � 80  t  1.
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As shown in the proof, the constant C in (3.14) can be improved to be a smaller one which
only involves the maximum of the row sum of E rather than the summation of all the entries
in E. We however keep the stronger condition with C here as control by C is needed later in
Theorem 3.5 to control the deformation of S(x) for each x.

The significance of the preserved I-eigengap is that we can derive the evolution equation
of the embedding norm S(x, t) without being concerned with the eigencrossings within I (and
within Ic). This is possible by relying on S(x) being the (x, x)th diagonal entry of the spectral
projection matrix PI :=

P
k2I  k T

k , which can be written in the form of a contour integral of
the resolvent in the complex plane where the contour circles the eigenvalues in I throughout
t 2 [0, 1], as illustrated in Figure 2. The evolution equation below only requires the eigenvalue
di↵erence �k � �j to be nonvanishing when one is from I and the other is from Ic. Actually,
this di↵erence is bounded from below by the constant � by Proposition 3.3.

Proposition 3.4 (evolution of S). When Proposition 3.3 applies, for 0 < t < 1,

@

@t
S(x, t) = �

X

k2I
j2I

( T
j Ḋ k) k(x) j(x) + 2

X

k2I
j /2I

 T
j (Ẇ � �kḊ) k

�k � �j
 k(x) j(x).(3.15)

We then derive the main result.

Theorem 3.5 (separation at t = 1). Under Assumptions 1 and 2, if for some constant
� > 0, the following conditions are satisfied:

(i) �(0) � 2�, �(t) as in (3.13);
(ii) C as in (3.12),

then

(3.16)
C

d0
 �

8

1

1 + �
4

log

✓
1 +

1

2
· (#)

1 + 2"1

◆
,

where (#) is defined in (3.8), and (#) > 0 under Assumption 2.
Then the two parts B and C can be separated by thresholding the embedding norm, i.e.,

there exists a constant ⌧ s.t. at t = 1

S(x) > ⌧ 8x 2 C,
S(x) < ⌧ 8x 2 B.

In practice, ⌧ can be set to a certain quantile of the empirical values of S(x) on all the
nodes. The proof controls the pointwise change of S(x) using the condition (3.16), which can
be viewed as bounding the change after adding one weighted edge in the C-B connection (one
entry in E) and then summing over accumulatively for all such edges.

We now make a few comments on the assumptions needed in Theorem 3.5.
First, we show that in the typical setting the right-hand side (r.h.s.) of (3.16) can be

simplified to be a multiple of � similar to the form of (3.14) ((3.16) implies the latter, as will
be shown in the proof). Note that the r.h.s. is greater than (using that log(1 + x

2 ) >
2
5x for

0 < x  1)

(3.17)
�

8
· 1

1 + �
4

2

5
· (#)

1 + 2"1
,

and thus unless (#) is too small, this term would be comparable to �
8 . To be specific, suppose
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that � is so small that the first term in the formula of (#) (3.8) dominates, which makes (#)

approximately
d0
d0
, assuming that "1 and "2 are small constants. This is reasonable since we

typically apply the proposed method when the initial separation is large, where the initial
gap g0 = K

nd0
(#)
� . Furthermore, in such cases, if the graph has balanced degree, i.e., d0 ⇡ d0,

then (#) would be close to 1. Combined with � being small, e.g., � < 0.1, (3.17) is then
approximately 0.39 · �8 .

Second, our theory relies on the I-eigengap condition (3.16). Empirically, we have ob-
served that the matrix P = I � L may have a bulk of eigenvalues near 1 and, when moving
from 1 (towards 0), namely, going “deeper” into the the spectrum, the eigengaps may be larger
compared to immediately near 1. The eigenvalue distribution also depends on the construc-
tion of the graph a�nity W . For example, when the bandwidth parameter kST used in the
self-tuning kernel is large the eigengaps are usually also larger. The empirical eigenvalues and
eigengaps for the data example in Figure 1 are shown in Figure A.4(d) and (e). Our theory
thus improves over the traditional eigengap constraint on the Kth eigengap, where K is the
number of clusters.

Nevertheless, we conjecture that the requirement on C in (3.16) and the need for an I-
eigengap are more restrictive than what occurs in practical applications. We have observed
that in practice the embedding norm S can successfully separate C from B even when these
conditions are not satisfied. This suggests that the analysis here is likely to be not tight:
for one thing, the relaxation of the term 1

(�k��j)
for k 2 I, j 2 Ic by 1

� is crude, and can

be improved, e.g., under proper assumptions of the eigenvalue distribution. We think that
further analysis should be able to relax the constraints in (3.16) and the I-eigengap.

3.3. Extensions of the analysis. The main result Theorem 3.5 extends to the following
cases, with proof sketches given.

1. Weighed embedding norm. The definition of the embedding norm S can be generalized
as

(3.18) S(x) =
X

k2I
f(�k) k(x)

2,

where f(�) is a (complex) analytic function which is real valued on real �. With f being a
power of � and a certain exponential function, S is related to di↵usion distance [8] and heat
kernel signature [37], respectively, to be discussed more in the last section.

We have been addressing the special case where f = 1. To extend the analysis to any
analytic f , consider the contour integral of f(z)R(z), R being the resolvent (defined in (5.10)),
and then the time-evolution equation of S(x, t) can be shown to be

Ṡ(x) = 2
X

k2I
j /2I

f(�k)

�k � �j
( T

k (Ẇ � �kḊ) j) k(x) j(x)

+
X

k,j2I
k 6=j

✓
f(�k)� f(�j)

�k � �j
 T
k Ẇ j �

�kf(�k)� �jf(�j)

�k � �j
 T
k Ḋ j

◆
 k(x) j(x)

+
X

k2I
(f 0(�k) 

T
k Ẇ k � (zf(z))0(�k) 

T
k Ḋ k) k(x)

2,
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where in the case that the eigenvalues �k and �j coincide, the term f(�k)�f(�j)
�k��j

is replaced by

f 0(�k) and
�kf(�k)��jf(�j)

�k��j
by (zf(z))0(�k). So the r.h.s. is well-defined when an eigencrossing

within I happens, and the terms f(�k)�f(�j)
�k��j

and �kf(�k)��jf(�j)
�k��j

are uniformly bounded due

to the analyticity of f . When f = 1, the equation reduces to (3.15). Proceeding with the
same technique as in the proof of the main result, the deformation bound of S(x, t) will then
involve constant factors which depend on the boundedness of f and f 0 on [0, 1]. Specifically,
the constant C̃ will need to be redefined to be (c1 + c2

� )2Cd0 , where c1 and c2 are absolute

constants. E.g., when f(�) = �p, p > 0, c2 remains 4 (which is the dominating term with
small �) and c1 = (p+ 1).

2. Unequal cluster size in C. The requirement of equal cluster size of the K clusters in C
can be relaxed. Specifically, suppose that the K clusters have varying sizes |Cj | = �jn andPK

k=1 �j = �. Let �min = min1jKmin�j and similarly define �max. Then under Assumption
1, (3.6) and (3.7) become

1� "1
nd0�j

 S(x, 0)  1

nd0

✓
"1
�/K

+
1 + "1
�j

◆
8x 2 Cj for some j,(3.19)

S(x, 0)  1

nd0

(1 + "2)(|I|�K)

1� �
8x 2 B.(3.20)

Define for j = 1, . . . ,K,

(3.21) gj,0 :=
1

nd0

✓
d0(1� "1)

d0�j
� (1 + "2)(|I|�K)

1� �

◆
,

and the minimum of gj,0 is

gmin,0 =
1

nd0

✓
d0(1� "1)

d0�max
� (1 + "2)(|I|�K)

1� �

◆
.

Modify Assumption 2 so that gmin,0 > 0, then the initial separation of S(x, 0) on C and B is
at least gmin,0 (and more precisely gj,0 between Cj and B), and (3.9) becomes

(3.22) S̄(0) = sup
x2V

S(x)  1

nd0

✓
"1
�/K

+
1 + "1
�min

◆
.

Note that Propositions 3.3 and 3.4 and claims (i) and (ii) in the proof of Theorem 3.5 do
not rely on Assumptions 1 or 2 and are valid. As a result, it can be shown that the t = 1
separation between C and B by S holds as long as

(3.23) gmin,0 � 2(eC̃ � 1)
1

nd0

✓
"1
�/K

+
1 + "1
�min

◆
, C̃ =

✓
1 +

4

�

◆
2C

d0
.

This condition is more restrictive when the cluster sizes in C are less balanced, namely, when
the di↵erence �max��min becomes larger. In our numerical experiments, all the subclusters are
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of comparable sizes (in the outlier detection in images, K = 1 or 2, and in image segmentation
the clusters are of similar sizes), while we note that an extremely unbalanced cluster size, e.g.,
very small �min, could a↵ect the performance of the method.

3. Detection of parts of C. The above argument leads to a “personalized” detection
condition for each cluster Cj in C, that is, even when S(x, 1) fails to separate some clusters
in C from B it may still successfully detect the rest. To see this, note that the proof of the
theorem actually gives the following: for any subsets E1 and E2 of V, if

min
x2E1

S(x, 0)�max
x2E2

S(x, 0) � gE1,E2 > 0,

then E1 and E2 can be separated by S(x, 1) by some threshold as long as

gE1,E2 � 2(eC̃ � 1)S̄(0).

The previous results correspond to E1 = C and E2 = B. Let E1 be any individual cluster Cj ,
then since S̄(0) is upper bounded by (3.22), we have that each cluster Cj can be separated
from B by S(x, 1) if gj,0 as defined in (3.21) is larger than the r.h.s. of (3.23).

4. Initial inclusion of I. Assumption 1(a) can be relaxed by only requiring K 0 C-
eigenvectors in I, 0 < K 0  K, as long as they contribute to a su�ciently large S(x, 0)
on C, or any subset of C such as an individual cluster Cj . The separation guarantee at time
1 follows the same argument as in item 2 above, where the quantities (3.19), (3.20) and con-
sequently (3.21), (3.22) need to be modified. The precise condition is not pursued here. In
practice, this means that even if less than K “nearly” C-eigenvectors are included in I, the
method may still be able to detect part of C from B.

4. Experiments. In this section we will apply the spectral embedding norm to both syn-
thetic and real-world datasets, in scenarios of both single outliers and multiple clusters in a
cluttered background. Codes are available at https://github.com/xycheng/EmbeddingNorm.

4.1. Manifold data toy example. We begin with a simulated dataset in R2 composed
of a manifold-like background B and clusters in C according to the following model. The
background B consists of independent and identically distributed (i.i.d.) samples xi distributed
as xi = yi+ni, where yi are uniformly distributed on the unit circle, which is a one-dimensional
manifold, and ni ⇠ N (0, ✏2BI) with ✏B = 0.01. C contain K equal-sized subclusters, each
has i.i.d. samples drawn from N (µj , ✏2CI), where the µj are centered close to the circle, and
✏C = 0.02. We generate n = 5000 points, and the number of points in C is set to be �n for
positive �, rounded to the closest integer. To measure the accuracy of the detection of C we
compute the F1 score, F1 = 2pr

p+r , where p := TP
TP+FPp , r := TP

TP+FN , and TP, FP, and FN
stand for true positive, false positive, and false negative, respectively. The �-quantile of the
empirical values of S is used as the threshold ⌧ when computing the classification.

Figure 3 shows results for a typical realization of the dataset with K = 10, � = 0.1. From
(c) it can be seen that the eigenvalues do not reveal any clear eigengap at K = 10. The
first K eigenvectors do not give a clear indication of the cluster C, but are mainly supported
on the B-eigenvectors, as shown in (e) for k = 2 and 8. Examining up to the first k ⇠ 40
ones, certain eigenvectors are more localized on C when k > K, e.g., k = 24 and 26. The
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(a) (b) (c) (d)

(e) (f)

Figure 3. Detection of C from a manifold-like B: (a) n = 5000 data points in R2 sampled on B [ C, where
B points lie close to a circle (blue) and C points form K = 10 clusters lying nearby (red), � = 0.1. (b) The
a�nity matrix W (t) at t = 1; cf., (2.1). (c) The first 100 eigenvalues of the Markov matrix. (d) The plot of
S. (e) kth eigenvectors of multiple k’s of the Markov matrix. (f) F1 score of the detection of C by thresholding
the values of SI , where |I| varies from 2 to 100, and for multiple choices of self-tuning parameter (k-nearest
neighbor in self-tuning, denoted by kST). Mean and standard deviation of the F1 score are shown, and optimal
values of |I| are indicated by a red cross.

embedding norm SI clearly separates C from B, as shown in (d). The results are not sensitive
to algorithmic parameter choices. Let kST be the k-nearest neighbor used to set the local
self-tuning scale [45] in constructing the a�nity matrix W . Then, throughout varying values
of the parameter kST, the F1 score of the detection by thresholding S reveals a “plateau” of
valid values of |I|, e.g., when kST = 8, the range of |I| is about 30 ⇠ 45, with the optimal F1
score obtained at |I| =36. The best F1 scores for kST = 4, 8, or 16 are all greater than 0.98.

Similar results are obtained for smaller K = 2, where � = 0.02, as shown in Figure A.1.
The condition (3.5) in Assumption 2 suggests that |I| is chosen to be proportional to K

� , and
this is revealed in Figures 3 and A.1 (in these two examples K

� is kept to be the same) as the
plateaus of valid |I| are at about the same range, across values of kST.

4.2. Image anomaly detection. Anomaly detection can be seen as a special case of clus-
tering in which there is a vast imbalance in the size of clusters, i.e., background versus anomaly,
and the density of each cluster. In image anomaly detection, the goal is to detect a small
compact region (subset of connected pixels) that di↵ers from the normal image background.
In general, we can assume the number of anomalies K to be small or even 1.
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(a) (b) (c) (d) (e)

(f) (g)

Figure 4. Detection of outlier patches in a synthetic image. (a) Image consisting of background stripes and
an anomaly region in the center, � ⇡ 0.01. (b)–(e) Embedding norm SI computed with |I| = 150, 200, 250, 300,
respectively, plotted as images, where the pixel value indicates the value of SI and the pixel location is the center
of every image patch. (f) F1 score of the detection of outlier patches by thresholding the values of SI , where
|I| varies from 100 to 400. Randomness is attained by subsampling image patches and running independent
replicas of the experiment. Mean and standard deviation of the F1 score are shown, and optimal values of
|I| are indicated by a red cross. (g) Eigenvectors for various index k, plotted as images. The last three show
high-index exemplar eigenvectors which are localized on the outlier patches, while the first 100 eigenvectors are
mainly supported on the background.

Figure 4 shows the numerical result on a synthetic image which consists of anomaly patches
against a slowly varying background, as a model of patterned images. The image is a function
on [�1, 1]2 expressed as

I(x, y) =

✓
1 +

1

2
cos((0.05x+ y + 1.5)2 · 2⇡)

◆
+ 0.6 exp

⇢
� x2 + y2

2 · 0.052

�
,

where the first term models the background stripes, and the second term models the outlier
region in the center, as shown in (a). The image size is 200 ⇥ 200, and n = 4096 image
patches of size 9 ⇥ 9 are extracted with a stride of 3. True outlier patches are identified by
thresholding the value of the Gaussian bump with a fraction of � ⇡ 0.01. The graph a�nity
is computed with self-tuning bandwidth [45] and kST = 32. The spectral embedding norm
computed for various values of |I| is shown in (b)–(c), all of which identify the outlier region
with improved performance for |I| = 200 and 250. The leading eigenvectors up to k = 100
fail to be indicative of the outlier region, while those with higher k may be, as shown in
(g). To quantitatively evaluate the performance of the proposed method, we threshold SI at
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3 67 13

A

C

D

E

B | I | = 3 | I | = 5 | I | = 22 | I | = 50 | I | = 100

| I | = 3 | I | = 6 | I | = 13 | I | = 50 | I | = 100

5

Figure 5. Detecting anomalies in side-scan sonar images. (A), (C) Side-scan sonar images with sea mines
indicated by a red circle. (B) Spectral embedding norm SI for image (a) with increasing |I|. |I| = 50 reveals the
sea mine and the separation is stable up to |I| = 100. (D) Spectral embedding norm SI for image in (C) with
increasing |I|. The sea mine first “appears” for |I| = 6. For |I| = 13 the sea mine separates cleanly from the
background, and as |I| increases to 100 the embedding norm starts to slightly reveal background components as
well. (E) Exemplar eigenvectors computed from the image in (C) plotted as an image demonstrating localization
on the background in the three left plots and localization on the sea mine in the two right plots.

the 0.99 quantile to detect the anomaly patches, and compute the F1 score. We repeat 100
experiments by randomly subsampling 3000 patches and the average F1 score is shown in (f)
with standard deviation. The method achieves an average best F1 = 85.02 when |I| = 229.
The results are similar with kST = 16 and 64.

In Figure 5 we demonstrate on real-world images that eigenvectors localizing on the anom-
aly can be buried deep within the spectrum of the image, and that by calculating the spectral
embedding norm we can separate the anomalies from a cluttered background. We examine
two side-scan sonar images containing a single sea mine, displayed in (A) and (C), where we
consider the sea mine to be an anomaly (indicated by a red circle). The sea mine can appear
as either either a bright highlight (A) or as only a dark shadow (C), which is due to the object
blocking the sonar waves from reaching the seabed. The background is composed of sea-bed
reverberations and exhibits great variability in appearance. For the side-scan sonar images,
in practice � is in the range of 5 ⇥ 10�3 ⇠ 5 ⇥ 10�4. To construct the a�nity matrix W , we
extract all overlapping patches of size 8, and build a nearest neighbor graph with 64 neighbors,
setting kST = 32. (B) and (D) display S(x) for all pixels x in the image for increasing values
of |I|. For both images the sea mine is revealed consistently for a wide range of values, while
the background is suppressed. Note that in both cases this requires looking deep enough in
the spectrum, and summing over the first few eigenvectors brings out background structures.
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Finally, (E) displays eigenvectors  k for the side-scan sonar image in (C), where the three left
eigenvectors localize on the background B, revealing its periodic nature at di↵erent scales and
orientations, while the eigenvectors in the right two plots localize on the sea mine C.

4.3. Calcium imaging. Calcium imaging is an experimental method in neuroscience that
enables imaging the individual activity of hundreds of neurons in an awake behaving animal,
at cellular resolution [38]. The acquired data are composed of a spatiotemporal volume, where,
after motion correction, the neuron locations are fixed and the temporal activity consists of
hundreds to tens of thousands of time frames. There is also varying temporal activity in the
background (neuropil). Thus, these data can also be viewed as an image whose pixels lie in a
high-dimensional space (time frames), consisting of hundreds of clusters (neurons) in an image
plane with a nontrivial background, which matches our problem setting.

The analysis pipeline of calcium imaging typically includes calculating a two-dimensional
(2D) image that depicts the structure that exists in this volume and highlights the existing
neurons. Such images serve for manual segmentation, to align volumes across days (where the
field of view may shift), to display neurons detected by automatic and manual means, and
even for initialization of automatic region of interest extraction algorithms methods [27, 30].
A common choice is the temporal correlation image [35], or the temporal mean image. Here we
show that the spectral embedding norm provides a meaningful visualization of the data, with
sharp morphology and suppression of noise from the background clutter. For these datasets,
depending on the brain region and neuron type being imaged, K is in the range of dozens to
a few hundreds, and � / 0.1.

In Figure 6, we analyze a publicly available dataset from Neurofinder [3]. The images
are 512 ⇥ 512 pixels and 8000 time frames have been recorded at 8 Hz. Ground truth labels
provided with the dataset include 197 identified neurons; however, note that recent papers
point out that the ground truth on Neurofinder datasets is probably lacking, i.e., not all
neurons are labeled [30, 36]. The a�nity matrix W is calculated using a nearest neighbor
graph for all pixels, represented as high-dimensional vectors in time, with 50 nearest neighbors.
To accelerate the nearest neighbor search, dimensionality is reduced from 8000 to 300 using
principal component analysis. (A) displays examples of eigenvectors from both the background
(top) and localizing on single neurons (bottom).

In (B) we compare the spectral embedding norm (right) to the temporal mean (left) and
temporal correlation image (middle). In each image, the values (mean/correlation/norm)
appear in the green channel, while we overlay in the red channel a mask of the ground truth
labels that were manually detected (where the two overlap it appears as yellow). The mean
image exhibits a strong background, while neurons appear as typical “donuts” [27]. In the
correlation image, the background mostly appears as noise. In comparison, the background
has been suppressed in the spectral embedding norm image, while neurons which are barely
or not at all visible in the correlation image appear as bright clusters.

To quantify, the separation of background and clusters, we segment the spectral embedding
norm image for increasing |I|, and compare the overlap between the segmented clusters and
the given ground-truth mask. We set the threshold ⌧ to be the value of the 93rd percentile
of S values for each value of |I|. In (C) we plot the F1 score for this segmentation and
demonstrate a plateau of stable F1-score values for |I| in the range 200–250. To demonstrate
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Figure 6. (A) Example of Laplacian eigenvectors on a calcium imaging dataset from Neurofinder, either
mainly supported on the background clutter (top) or localizing on neurons which are clusters (bottom). (B)
Images of the temporal mean (left), temporal correlation (middle), and spectral embedding norm (right) for a
Neurofinder dataset. The spectral embedding norm has both removed the background (which is present in the
mean image) and enhanced the appearance of the structure in the image: neuronal soma and dendrites with
sharp morphology. The correlation image is much noisier with fewer visual neurons. (C) F1 score of segmenting
neurons from background based on the spectral embedding norm image, for increasing |I| values. For a range
of values (200–250) the F1 score plateaus, and then decreases as the number of included eigenvectors increases.
(D) S(x) for |I| = 20, 49, 100, 250 demonstrates how more and more clusters are revealed.

the property of the spectral embedding norm to perform partial detection of C, we display
S(x) for multiple values of |I| in (D). Note that we are not performing clustering here, but
rather demonstrating how the embedding norm can be used to separate meaningful structure
from background clutter. Thus, beyond visualization, this approach can then serve to remove
the background and focus only on the remaining clusters in C, thus simplifying subsequent
clustering and data analysis tasks.

5. Proofs.

Proof of Proposition 3.2. It su�ces to prove (3.6) and (3.7) because Assumption 2 implies
that the r.h.s of (3.7) is strictly less than the left-hand side of (3.6) by g0, and then claims
(1) and (2) directly follow.

To prove (3.6), note that for any x 2 C, at t = 0,

S(x) =
X

k2I
 k(x)

2 =
X

k2I\ C

 k(x)
2.

By Assumption 1(a), up to a possible K-by-K rotation among the K eigenvectors in I \ C ,
we assume that  j is the eigenvector associated with the subcluster Cj , j = 1, . . . ,K, and
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then

(5.1) S(x) =
KX

j=1

 j(x)
2,

as the rotation preserves the squared sum. Furthermore, suppose that x 2 Cjx , Assumption
1(b) gives

 j(x)
2 2 1

⌫(Cj , 0)
[1� "1, 1 + "1], j = jx,

 j(x)
2  "1

⌫(C, 0)
, j 6= jx.

Plugging this into (5.1), it shows that

S(x)  1 + "1
⌫(Cjx , 0)

+ (K � 1)
"1

⌫(C, 0)
,

and together with ⌫(Cj) =
P

x2Cj
d(x, 0) � d0|Cj | = d0

�n
K for any j (the K subclusters are of

equal size) and similarly ⌫(C) � d0|C| = d0�n, it gives the upper bound in (3.6). Considering
the lower bound, (5.1) continues as

S(x) �  jx(x)
2 � 1� "1

⌫(Cjx , 0)
.

Combined with ⌫(Cj) =
P

x2Cj
d(x, 0)  d0|Cj | = d0

�n
K for any j, this gives the lower bound

in (3.6).
Proof of (3.7): For any x 2 B, at t = 0,

(5.2) S(x) =
X

k2I
 k(x)

2 =
X

k2I\ B

 k(x)
2 

X

k2I\ B

1 + "2
⌫(B, 0)

,

where ⌫(B, 0) =
P

x2B d(x, 0) � d0|B| = d0n(1� �), and the last inequality is by Assumption
1(c). Meanwhile, |I \ B| = |I|�K by Assumption 1(a). Plugging this into (5.2), this proves
(3.7).

Proof of Proposition 3.3. We will establish that for any k = 1, . . . , n,

(5.3) |�k(t)� �k(0)| 
4C

d0
t, 0  t  1.

Given that this inequality holds, then by (3.14),

(5.4) |�k(t)� �k(0)| 
4C

d0
 1

2
� 81  k  n.

This means that it is impossible for �(t) < �; otherwise, there exists |�k1(t) � �k2(t)| < �,
where k1 2 I and k2 /2 I, and then (5.4) implies that |�k1(0)��k2(0)| < 2� which contradicts
the assumption that �(0) � 2�.

D
ow

nl
oa

de
d 

06
/2

8/
21

 to
 1

07
.1

5.
22

5.
73

. R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

C
C

B
Y

 li
ce

ns
e 



© 2020 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

SPECTRAL EMBEDDING NORM 1035

It su�ces to show (5.3) to finish the proof. To do so, we prove the following bound:

(5.5) |�̇k| 
4C

d0
8k 8t.

From (3.10),
|�̇k| = | T

k (Ẇ � �kḊ) k|  | T
k Ẇ k|+ |�k|| T

k Ḋ k|.

As |�k|  1 (Perron–Frobenius), then

(5.6) |�̇k|  | T
k Ẇ k|+ | T

k Ḋ k|.

If the following claim is true, then (5.5) follows directly from (5.6):

(5.7) | T
l Ẇ k| | T

l Ḋ k| 
2C

d0
8k, l = 1, . . . , n, 80  t  1.

Proof of (5.7): To bound | T
l Ẇ k|, note that Ẇ = E, and then

(5.8) | T
l E k| 

X

x2C,y2B
|W (x, y)|| l(x)|| k(y)|+

X

x2B,y2C
|W (x, y)|| l(x)|| k(y)|.

We prove a stronger claim which replaces C with

C1 := max

⇢
max
x2C

X

y2B
W (x, y),max

y2B

X

x2C
W (x, y)

�

in (5.7), and C1  C. To proceed, by Cauchy–Schwarz,

X

x2C,y2B
W (x, y)| l(x)|| k(y)| 

0

@
X

x2C,y2B
W (x, y) l(x)

2

1

A
1/20

@
X

x2C,y2B
W (x, y) k(y)

2

1

A
1/2


 
C1

X

x2C
 l(x)

2

!1/2
0

@C1

X

y2B
 k(y)

2

1

A
1/2

.

We then use that 8k,

(5.9) 1 =
X

x2V
 k(x)

2d(x) � d0
X

x2V
 k(x)

2,

which gives that X

x2C
 l(x)

2,
X

y2B
 k(y)

2  1

d0
.

This proves that
X

x2C,y2B
W (x, y)| l(x)|| k(y)| 

C1

d0
,
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and using the same argument in the second term in (5.8), we have that

| T
l E k| 

2C1

d0
.

For | T
l Ḋ k|, similarly,

| T
l Ḋ k| 

X

x2V
| l(x)|| k(x)||ḋ(x)|

=
X

x2V
| l(x)|| k(x)|

X

y

E(x, y)

 C1

X

x2V
| l(x)|| k(x)|

 C1

d0
,

where Cauchy–Schwarz and (5.9) are used to obtain the last inequality.
Note that while time dependence has been omitted in all the notations, the above argu-

ments hold throughout time t 2 [0, 1].

Proof of Proposition 3.4. As explained in the text, one may first establish the validity of
(3.11) and then verify the formula (3.15) based on the former by observing the cancelation of
terms. As an alternative approach, we use the contour integral of the resolvent.

For z 2 C and not an eigenvalue of P = D�1W , define

R(z) = (W � zD)�1,

where the time dependence is omitted. Since P =  ⇤�T , ⇤ = diag{�1, ·,�n}, � = D , and
 T� = I, one can verify the equivalent form of R as

(5.10) R(z) =  (⇤� zI)�1 T =
nX

k=1

 k T
k

�k � z
.

This means that

PI =
X

k2I
 k 

T
k = � 1

2⇡i

I

�
R(z)dz,

where the contour � is such that the eigenvalues in I (Ic) stay inside (outside) � throughout
time t (Figure 2), and such � exists due to Proposition 3.3. Thus the above expression of PI

holds for all time t and, as a result,

ṖI = � 1

2⇡i

I

�
Ṙ(z)dz.

By di↵erencing both sides of
(W � zD)R = I,
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one obtains that

Ṙ = �R(Ẇ � zḊ)R.

This means that

ṖI =
1

2⇡i

I

�
R(z)(Ẇ � zḊ)R(z)dz

=
nX

k=1

nX

l=1

1

2⇡i

I

�

 T
k (Ẇ � zḊ) l

(�k � z)(�l � z)
 k 

T
l dz

=
nX

k=1

nX

l=1

( T
k (↵klẆ � �klḊ) l) k 

T
l ,(5.11)

where

↵kl =
1

2⇡i

I

�

1

(�k � z)(�l � z)
dz, �kl =

1

2⇡i

I

�

z

(�k � z)(�l � z)
dz.

By Cauchy’s integral formula, one can verify the following:
(a) When k 2 I, l 2 I, ↵kl = 0, �kl = 1.
(b) When k 2 I, l /2 I, ↵kl =

1
�k��l

, �kl =
�k

�k��l
.

(c) When k /2 I, l 2 I, ↵kl =
�1

�k��l
, �kl =

��l
�k��l

.
(d) When k /2 I, l /2 I, ↵kl = 0, �kl = 0.
Then (5.11) continues as

ṖI =
X

k2I
l2I

�( T
k Ḋ l) k 

T
l +

X

k2I
l/2I

 T
k (Ẇ � �kḊ) l

�k � �l
 k 

T
l +

X

k/2I
l2I

 T
k (�Ẇ + �lḊ) l

�k � �l
 k 

T
l

=
X

k2I
l2I

�( T
k Ḋ l) k 

T
l +

X

k2I
l/2I

 T
k (Ẇ � �kḊ) l

�k � �l
( k 

T
l +  l 

T
k ).

Since S(x) = PI(x, x), the claim follows by evaluating at the entry (x, x) on both sides.

Proof of Theorem 3.5. We first show that condition (ii) implies (3.14). Note that

(#) 
d0(1� "1)

d0


d0

d0
 1,

thus

log

✓
1 +

1

2
· (#)

1 + 2"1

◆
 log

✓
1 +

1

2
(#)

◆
 log

✓
1 +

1

2

◆
< 0.5.

Together with 1
1+�

4

< 1, this means that the r.h.s. of (3.16) is less than 0.5�8 .
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As a result, under these assumptions, Propositions 3.3 and 3.4 apply. By (3.15),

S(x, t)� S(x, 0) =

Z t

0

8
>><

>>:
�
X

k2I
j2I

( T
j Ḋ k) k(x) j(x) + 2

X

k2I
j /2I

 T
j (Ẇ � �kḊ) k

�k � �j
 k(x) j(x)

9
>>=

>>;
d⌧,

(5.12)

where in the integrand all the variables involving time take value at time ⌧ .
Introducing the notation

(5.13) S̄(t) := sup
x2V=B[C

S(x, t),

we are going to prove the following two claims: For any t 2 [0, 1],
(1) 8x 2 V = B [ C,

|S(t, x)� S(0, x)|  C̃

Z t

0
S̄(⌧)d⌧, C̃ :=

✓
1 +

4

�

◆
2C

d0
.

(2) S̄(t)  eC̃tS̄(0).
If true, then

|S(t, x)� S(0, x)|  C̃

Z t

0
S̄(⌧)d⌧  C̃

Z t

0
S̄(0)eC̃⌧d⌧ = S̄(0)(eC̃t � 1).

Meanwhile, by Proposition 3.2(2), S̄(0)  1
nd0

K
� (1 + 2"1), thus

|S(t, x)� S(0, x)|  (eC̃t � 1)
K(1 + 2"1)

n�d0
8x 2 V.

By Proposition 3.2(1), the initial separation on B and C by S(x) is at least g0, so the threshold
claimed in the theorem exists as long as

g0 � 2(eC̃t � 1)
K(1 + 2"1)

n�d0
.

This is reduced to

2(eC̃t � 1)  (#)

1 + 2"1
,

which is guaranteed by condition (ii).
To prove claim (1): By (5.12), 8x 2 V,

|S(x, t)� S(x, 0)| 
Z t

0
I(x, ⌧) + II(x, ⌧) + III(x, ⌧)d⌧,
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where

I(x, ⌧) =

����
X

k2I
j2I

( T
j Ḋ k) k(x) j(x)

����,(5.14)

II(x, ⌧) = 2

����
X

k2I
j /2I

 T
j Ẇ k

�k � �j
 k(x) j(x)

����,(5.15)

III(x, ⌧) = 2

����
X

k2I
j /2I

�k T
j Ḋ k

�k � �j
 k(x) j(x)

����.(5.16)

For I(x, ⌧), note that

I(x, ⌧) 
X

k2I
j2I

X

y2V
|Ḋ(y)|| j(y)|| k(y)|| k(x)|| j(x)|

=
X

y2V
|Ḋ(y)|

✓X

k2I
| k(y)|| k(x)|

◆2


X

y2V
|Ḋ(y)|

✓X

k2I
| k(y)|2

◆✓X

l2I
| l(x)|)2

◆

=
X

y2V
|Ḋ(y)|S(y)S(x).

Utilizing the relation that D  T = I, and thus   T = D�1, we have that

S(x) =
X

j2I
 j(x)

2 
nX

j=1

 j(x)
2 =

1

d(x)
 1

d0
8x 2 V,

and then

I(x, ⌧)  S(x)
X

y2V

����Ḋ(y)

����
1

d0
= S(x)

1

d0

X

y2V

����
X

z2V
E(y, z)

���� = S(x)
2C

d0
.

By the definition of S̄ in (5.13), this gives

(5.17) I(x, ⌧)  S̄(⌧)
2C

d0
.
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For II(x, ⌧), by Proposition 3.3, in the denominator |�k � �j | � �, and then

II(x, ⌧)  2
X

k2I
j /2I

| T
j Ẇ k|

|�k � �j |
| k(x)|| j(x)|

 2

�

X

k2I
j /2I

| T
j E k|| k(x)|| j(x)| (Ẇ = E)

 2

�

X

k2I
j /2I

X

y2V
z2V

E(y, z)| j(y)|| k(z)|| k(x)|| j(x)|

=
2

�

X

y2V
z2V

E(y, z)
X

k2I
| k(z)|| k(x)|

X

j /2I

| j(y)|| j(x)|

 2

�

X

y2V
z2V

E(y, z)

✓X

k2I
 k(z)

2

◆1/2✓X

l2I
 l(x)

2

◆1/2

⇥
✓ nX

j=1

 j(y)
2

◆1/2✓ nX

m=1

 m(x)2
◆1/2

 2

�

X

y2V
z2V

E(y, z)
p
S(z)

p
S(x)

1p
d(y)

1p
d(x)

✓
definition of S,

nX

j=1

 j(x)
2 =

1

d(x)

◆

 2

�
S̄(⌧)

1

d0

X

y2V
z2V

E(y, z)

(by that S(x), S(z)  S̄(⌧), and d(y), d(x) � d0)

which means that

(5.18) II(x, ⌧)  2

�
S̄(⌧)

2C

d0
.

For III(x, ⌧), since |�k|  1, and Ḋ(y) =
P

z2V E(y, z), one can show that

(5.19) III(x, ⌧)  2

�
S̄(⌧)

2C

d0

using a similar argument as in bounding II(x, ⌧). Putting (5.17), (5.18), (5.19) together, one
has that

|S(x, t)� S(x, 0)| 
Z t

0
S̄(⌧)

2C

d0

✓
1 +

4

�

◆
d⌧ =

Z t

0
S̄(⌧)C̃d⌧,

namely, claim (1).
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To prove claim (2): Note that

S̄(t)� S̄(0)  sup
x2V

(S(x, t)� S(x, 0))

(suppose that S̄(t) = S(x0, t) for some x0, then S(x0, t) � S̄(0)  S(x0, t) � S(x0, 0)). Since
claim (1) holds uniformly for x, this implies that

S̄(t)� S̄(0)  C̃

Z t

0
S̄(⌧)d⌧,

and the claim then follows by Gronwall’s inequality.

6. Further comments. Eigenvector selection. Related works have devised di↵erent meth-
ods to perform eigenvector selection to identify anomalies [18, 42]. The proposed spectral
embedding norm can also be used for eigenvector selection. [21] demonstrated that it can be
used to identify pixels which define clusters and find the embedding coordinates that best
separate them from the background. An example in the anomaly detection case is given in
Appendix A.

Viewed as di↵usion distance. With f(�) = �p, S(x) can be interpreted as the (squared)
di↵usion distance between node x and the origin at di↵usion time p

2 [8]. The di↵usion distance
can be interpreted as a geometric distance between two nodes when the a�nity graph is built
from data points lying on a manifold embedded in the ambient space, and the distance is
intrinsic to the manifold geometry and invariant to the specific embedding. Since �pk ! 0
when p is large (except for �k = 1), the origin point is te limiting point of the di↵usion map
embedding. Thus for x in a subcluster in C, the weighted norm S(x) with positive p can be
viewed as a measurement of the extent of metastability (the depth of the well) of the potential
well associated with the subcluster. In view of the di↵usion distance, under the setting of this
paper, nodes in B are very similar to one another and, in comparison, nodes in C are distinct
from those in B (as well as from other subclusters in C, which is not reflected in S). A similar
weighted form has also been studied in [6] for graph-based outlier detection. In the primary
application considered in this paper, the leading eigenvalues are all close to 1, which means
that the weighted form (3.18) is not very di↵erent unless p is large. On the other hand setting
p to be large may suppress the high-index eigenvectors by small weights while they are actually
the informative ones to indicate C. Due to these reasons, we mainly consider f = 1 in the
current paper, though the analysis directly extends.

Relation to heat kernel signature. With f(�) = e�(1��)t from some positive t, S(x) takes
the form of the heat kernel signature (HKS) proposed by Sun, Ovsjanikov, and Guibas [37].
HKS is used in the shape analysis community as a concise multiscale feature descriptor on
manifolds or three-dimensonal (3D) meshes in tasks of shape matching, correspondence, and
retrieval. Note that the HKS has been used locally to identify salient features on a given
shape, similarly to the spectral embedding norm used for outlier detection in this paper.
The application setting for HKS focuses on Riemannian manifolds and 3D mesh, which di↵ers
from here as we analyze the a�nity matrix of a high-dimensional dataset composed of clusters
and background. In particular, for reasons explained above, we mainly consider f = 1 in the
definition of S(x). We experimentally compare the embedding norm with HKS in Appendix C.
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Indexing eigenvectors by support regions. The phenomenon studied here also suggests
that sorting by the magnitude of eigenvalues may not be the most informative way to index
the eigenvectors, a problem recently addressed in [31]. Here we study the special case where
eigenvectors can be grouped by what they are mainly supported on. In the pseudodynamic
(2.1), the eigenvectors begin with being exactly supported on either C or B at t = 0, and as
time develops this pattern is nearly preserved as long as the C-B interblock connections are
not too strong. The distinct support regions of eigenvectors appears to be irrelevant to the
magnitude of the eigenvalues nor the existence of spectral gaps. This suggests that grouping
eigenvectors by their localization regions may be a better way to arrange them in such cases.
However, one still needs to be careful with the instability of eigenvectors: As shown in the nu-
merical example, when two eigenvalues get close in the pseudodynamic, the associated pair of
eigenvectors “swap” their values. (The swapping may be analyzed by the di↵erential equation
(3.11): assuming that among all the pairs of neighboring eigenvalues only one pair (�k��j) is
approaching zero, then the dynamic of  k evolution is dominated by that pair, which approx-
imates a rotation among the indices j and k.) Our analysis in the current paper handles this
by the summation in S over the index group I, which makes S invariant to such swaps as long
as j and k both belong to I. Generally, since eigencrossings only happen at isolated times in
the deformation dynamics [17], these special times can be excluded. Then one can say that
the eigenvectors continue to almost localize on one of the two blocks most of the time.

Appendix A. Selection of eigenvectors in anomaly detection. Eigenvector selection
can be used to better visualize and characterize an anomaly in the data, by finding a subspace

(a) (b) (c) (d)

(e) (f)

Figure A.1. Same plot as Figure 3. K = 2 clusters, � = 0.02.
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Figure A.2. Selected eigenvectors of the graph Laplacian computed from the side-scan sonar image in
Figure 5(a). (Left) Plot of | k(xmax)|, where xmax = argmaxx S(x), and the x-axis is the index k. (Middle)
Each pixel colored according to RGB colors assigned to the three embedding coordinates, (right) with maximum
absolute value on xmax.
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Figure A.3. Same plot as Figure A.2 for the side-scan sonar image in Figure 5(c).

in which it is separated from the normal data. Let xmax = argmaxx S(x) be the pixel with
the maximal embedding norm. In Figures A.2–A.3 we select the three eigenvectors with
maximum absolute value on xmax, plotting | k(xmax)| on the left. In the middle plot we
color the pixels in the image according to pseudo-RGB values assigned to the three selected
coordinates (right plot). Note that for Figure A.3, the selected coordinates are quite deep in
the spectrum: k = 59, 47, 48.

Appendix B. Derivation of (3.10) and (3.11). Recall that {�k}nk=1 are the n real-valued
eigenvalues of P , and  k is the eigenvector associated with �k. By definition,

W k = �kD k,  T
k D l = �kl,

where W , D, �k, and  k all depend on t (the dependence is omitted in the notation) and are
di↵erentiable over time. Taking the derivative w.r.t t of both sides,

Ẇ k +W  ̇k = �̇kD k + �kḊ k + �kD ̇k,(B.1)

0 =  ̇T
k D l +  T

k Ḋ l +  T
k D ̇l.(B.2)

Applying  T
k to both sides of (B.1) gives

 T
k Ẇ k = �̇k 

T
k D k + �k 

T
k Ḋ k = �̇k + �k 

T
k Ḋ k,

where in the first equality we use W k = �kD k. This proves (3.10).
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To prove (3.11), since the { k}k form a D-orthonormal basis of Rn, let

 ̇k =
nX

j=1

bj j , bj =  ̇T
k D j .

Applying  T
j , j 6= k, to both sides of (B.1) gives

 T
j Ẇ k = (�k � �j) 

T
j D ̇k + �k 

T
j Ḋ k,

thus

�j =
 T
j (Ẇ � �kḊ) k

�k � �j
, j 6= k,

whenever �k � �j 6= 0. Letting l = k in (B.2) gives

2 ̇T
k D k +  T

k Ḋ k = 0,

thus

�k = �1

2
 T
k Ḋ k.

This proves (3.11).

Appendix C. Comparison to classical methods and HKS.
k-means and spectral clustering. Traditional k-means or spectral clustering fails to

separate C from B in the synthetic 2D examples in the paper; cf., Figures 1, A.1, 3, and
similarly on the real-world data examples.

The results on the data in Figure 1 are shown in Figure A.4. In this case, the di�culty
of k-means to cluster the data is due to the unbalanced size of the clusters, both in terms of
cluster diameter (the circle in B can be large) and the number of nodes in each cluster (the
parameter �, defined to be ratio of number of nodes in C and the total number of nodes, is
small). Spectral clustering is problematic due to the unbalanced cluster and the manifold-like
component B, as has been pointed out in [23]. Specifically, for this example in section 2.3,
none of the leading 10 eigenvectors will indicate the small cluster B, thus using the leading
eigenvectors will not detect the cluster B.

HKS. For the scenario considered in the current paper, the embedding norm can outper-
form HKS on detecting small clusters. The results of HKS on the side-scan sonar image data
in Figure 5 with multiple values of the time t are shown in Figure A.5: the best results are with
t = 8 or 16, while the embedding norm removes the background in a much “cleaner” fashion
in comparison; cf., |I| = 13 in Figure 5(D). The weights f(�k) given to the kth eigenvector by
HKS is plotted in Figure A.5(f).

In this example, the first eigenvector which gives a significant indication of the small
cluster C (the sea mine) starts at k = 6; cf., Figure 5(E), while the first 5 leading eigenvec-
tors are mainly supported on the background. Due to the exponential decay of the weights
in HKS, when t is small, the weights given to higher-indexed eigenvectors are large, which
gives a poor result as shown in Figure A.5(a), apart from the computational issue of com-
puting many more eigenvectors. Increasing t will suppress the tail, as shown in (f), while
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(a) (b) (c)

(d) (e)

Figure A.4. (a) Results of k-means, k = 2, applied to the example in Figure 1, and (b), (c) spectral clustering
using the first 2 and 5 eigenvectors. (d), (e) Eigenvalues and di↵erences between consecutive eigenvalues of the
normalized graph Laplacian for di↵erent settings of the graph construction parameter kST .

(a) (b) (c)

(d) (e)
(f)

Figure A.5. (a)–(e): Plots of HKS on the side-scan sonar image data in Figure 5(C) with multiple values
of the time t. (f): The weights f(�k) given to kth eigenvector by HKS with di↵erent t and by the Embedding
norm.
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giving much smaller weights to k = 6 than the first 5 eigenvectors which are not indicating C.
This results in relatively large values on the background in the HKS, as shown in (b)–(c) and,
when t � 32, mainly the first 3 eigenvectors remain to contribute to HKS and the C disappears
from the plot as in (d), (e). In comparison, the embedding norm gives the same weights to
the first |I| eigenvectors which help to enhance C when |I| ⇠ 10, as shown in Figure 5(D). The
negative e↵ects of decaying weights is similar to the di↵usion distance scheme f(�k) = �tk.

Acknowledgments. We thank Ronald R. Coifman for useful discussions, and the anony-
mous reviewers for their constructive comments and useful suggestions.
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