TurbolIKOS: Improved Non-interactive Zero
Knowledge and Post-Quantum Signatures

Yaron Gvili', Julie Ha2, Sarah Scheffler?, Mayank Varia?, Ziling Yang?, and
Xinyuan Zhang?

! Cryptomnium LLC
yaron.gvili@cs.tau.ac.il
2 Boston University
{hajulie,sscheff,varia,zilyang}@bu.edu
3 George Mason University
xzhang44@gmu.edu

Abstract. In this work, we present a zero knowledge argument for gen-
eral arithmetic circuits that is public-coin and constant rounds, so it can
be made non-interactive and publicly verifiable with the Fiat-Shamir
heuristic. The construction is based on the MPC-in-the-head paradigm,
in which the prover jointly emulates all MPC protocol participants and
can provide advice in the form of Beaver triples whose accuracy must be
checked by the verifier. Our construction follows the Beaver triple sacri-
ficing approach used by Baum and Nof [PKC 2020]. Our improvements
reduce the communication per multiplication gate from 4 to 2 field ele-
ments, matching the performance of the cut-and-choose approach taken
by Katz, Kolesnikov, and Wang [CCS 2018] and with lower additive
overhead for some parameter settings. We implement our protocol and
analyze its cost on Picnic-style post-quantum digital signatures based on
the AES family of circuits.

1 Introduction

Zero knowledge proofs are a useful cryptographic primitive for verifiable yet
confidential computing that have found applications in the design of anonymous
cryptocurrencies [10,62] and identification schemes [27]. They are also used as a
component within other cryptographic protocols like digital signature schemes
[8, 55] and malicious-secure multiparty computation protocols [43, 58]. Both
the interactive [44,45] and non-interactive [19, 35] variants of zero knowledge
(ZK) proofs (respectively, arguments) allow an unbounded (resp., polynomially-
bounded) prover P to convince a verifier V that a relation C is satisfiable while
hiding the witness to this fact. We focus on ZK arguments in this work.

There have been substantial advances over the past decade to improve the
efficiency of ZK arguments along several metrics. We categorize these advances
into three groups based on their tradeoffs between proof size (or total commu-
nication for interactive protocols), RAM requirements, and whether the proofs
are verifiable to the general public or a single designated verifier.

2 Y. Gvili et al.

First, ZK-SNARKs and ZK-STARKSs offer sublinear proof size and verifi-
cation time (between logarithmic and square root of the circuit size |C|) but
require the prover to use enormous amounts of memory. There is a long line
of research into ZK succinct interactive arguments of knowledge (SNARKS),
building upon the work of Killian [57]. Initial constructions required superlinear
prover time and per-circuit structured setup [11,14,18,21,32,41,46,47,65], and
subsequent work achieved linear prover time and permitted universal structured
setup [22,30,38,39,48,60, 72]. The newest ZK-SNARKSs and ZK scalable trans-
parent arguments of knowledge (STARKS) leverage ideas from interactive oracle
proofs [13,66] or the sumcheck protocol [29,59] to remove structured setup alto-
gether but have slightly higher proof size [3,12,17,25,26,67,68,70,74]. Moreover,
the large RAM requirement remains.

Second, there exist ZK arguments that scale to large statements due to their
moderate RAM requirements (approximately security parameter x circuit size)
and linear prover and verifier runtime, but that sacrifice public verification be-
cause they need a designated verifier to maintain secret randomness. ZK proofs
based on privacy-free garbled circuits [37,40, 50,53, 73] require a designated ver-
ifier to garble the circuit and keep the wire labels hidden until the end of the
protocol. A separate line of research [5,71] uses vector oblivious linear evalua-
tion (VOLE) (23,24, 63] to build proofs with a highly efficient (and optionally
non-interactive) online phase, after a one-time interactive preprocessing phase
is used to establish correlated randomness between the prover P and verifier V.

The focus of this work is the remaining situation: when both public verifia-
bility and low RAM utilization are required and a linear proof size is acceptable,
the best available constructions are based on the “MPC-in-the-head” paradigm
developed by Ishai et al. [51]. These proofs are constructed by executing a secure
multiparty computation (MPC) protocol, which only requires fast symmetric key
crypto operations and is amenable to the Fiat-Shamir transform [36]. As a re-
sult, proofs in the MPC-in-the-head paradigm form the basis of the Picnic digital
signature scheme that is currently an “alternate candidate” in round 3 of the
NIST post-quantum crypto competition [1,28,55,61].

1.1 Owur contributions

In this work, we contribute a new zero knowledge proof in the MPC-in-the-
head paradigm that provides concretely smaller proof sizes than prior work. Our
construction, called TurboIKOS, retains the benefits of all constructions in the
MPC-in-the-head paradigm: low RAM utilization, public verifiability, avoiding
structured setup, prover and verifier runtime that are linear in the circuit size |C/,
and the ability to make the proof non-interactive via the Fiat-Shamir transform.

We describe two variants of TurbolKOS, both of which operate over an NP
relation encoded as an arithmetic circuit C' over a large field F. The first version
is an improvement over Baum-Nof [6] that reduces the number of field elements
sent per gate from 4 to 3, and is intended for circuits with large field size (Section
3.3). The second version further reduces the number of field elements sent per
mult gate from 3 to 2, and uses a modified batched consistency check that allows

TurbolKOS: Improved Non-interactive Zero Knowledge 3

the technique to be used in smaller fields (Section 3.4). We analyze our security
in Section 4. We describe our implementation of our first variant and evaluate
the proof size of our second variant in Section 5.

1.2 The MPC-in-the-head paradigm

MPC-in-the-head is a method to construct a zero knowledge proof from a secure
multiparty computation (MPC) protocol. Given an NP relation encoded as a
circuit C, the prover P runs all parties in a secure computation of C' beginning
with a sharing of the witness, and the verifier V challenges P to open some
of the views. Zero knowledge follows from the privacy of the MPC protocol,
and soundness is achieved because a malicious P must have created inconsistent
views and V finds them with noticeable probability. The seminal work of Ishai
et al. [51] (also referred to as “IKOS”) demonstrated that this transformation
works for any MPC protocol. Subsequently, a line of works designed specific
protocols with increasingly smaller proof size: ZKBoo [42], ZKB++ [28], Katz
et al. [55], and Baum-Nof [6].

Table 1 shows proof sizes for MPC-in-the-head constructions in which the
prover P runs R iterations of an MPC protocol, each of which involves IV parties
securely evaluating a circuit C' with I input wires, O output wires, and M
multiplication gates. When using an ordinary MPC protocol like SPDZ [33], a
multiplication gate requires all parties to broadcast one message that is stored in
the resulting proof, yielding in a proof size of Q(M N R). To do better, MPC-in-
the-head constructions make optimizations that are not acceptable for “normal”
MPC protocols: they design circuit decompositions that look like MPC party
views, yet can only be computed when a single entity P knows the inputs of
all MPC parties. In circuit decompositions, the emulated MPC parties don’t
communicate to compute the views, but rather only to check their consistency.

We briefly survey the main ideas in each construction and the impact they
have on the proof size per multiplication gate, which tends to be the largest
contributor to the proof size.

— ZKBoo [42] and ZKB++ [28] are based on the N = 3 party replicated secret
sharing MPC protocol of Araki et al. [4]; they do not generalize to arbitrary
choices of N. All data is secret shared using 3-out-of-3 additive sharing, and
addition can be done locally. Multiplication requires sending 3 messages,
each of which is a function of a different subset of 2 of the 3 shares of the
input wires. The verifier V receives two shares, and therefore can verify 1 of
the 3 messages sent during each multiplication.

— ZKB++ and all subsequent works sample shares pseudorandomly. Given a
seed o, for each party p, to share a value v,, on wire w, only the offset
Cw = Uy + Zp PRF(op,, w) is recorded in the proof, reducing the cost per
multiplication gate but requiring a (cheap) initial setup to distribute seeds.

— Katz et al. [55] extends MPC-in-the-head to accommodate MPC protocols
with preprocessing. They build Beaver triples using a cut-and-choose ap-
proach, where some triples are opened and checked during preprocessing.

4 Y. Gvili et al.

Table 1: Proof size (in # of field elements) and soundness error (for large fields)
for several MPC-in-the-head protocols. Some lower-order terms are omitted for
legibility. N is the number of parties, M is the circuit size (number of multipli-
cation gates), I and O are the number of input and output wires for the circuit,
respectively, and R is the number of times the protocol is repeated. Note that
ZKBoo and ZKB++ are only constructed for N = 3. P is a parameter specific
to [55] indicating how many Beaver triples are committed to in advance.

Protocol Proof size Soundness error
IKOS+SPDZ [33,52] |R-(6MN + (I +O)N) (1/N)F
ZKBoo [42] R-(2M + 21 +20) (2/3)F
ZKB++ [28] R-(M+1) (2/3)F

)
Katz et al. [55] R-(2M + I +1log N + logg(P))|maxo<i<r ﬁ
Baum-Nof [6] R-(4M +1 +1logN) (1/N)E
I rurborrcos (this work)|R - (3M + I +log N) (1/N)E
H purborkos (this work)|R - (2M + I +1og N + NU) See Theorem 3

The proof size (Rlogg(P)) required to assist V in the preprocessing step is
independent of the circuit size. The remaining Beaver triples are assumed to
be valid and used to verify the real execution.

— Baum-Nof [6] also uses pseudorandom shares and Beaver triples in a variant
of the SPDZ MPC protocol, but avoids cut-and-choose in favor of sacrificing
one Beaver triple to check the validity of each multiplication gate.

For each multiplication gate: ZKB++ requires 1 field element to represent the
offset e, for the output value (but requires more repetitions than the rest), Katz
et al. requires 1 more field element to represent the offset for the Beaver triple
value, and Baum-Nof requires 2 more field elements to test whether the sacrificed
Beaver triple and the circuit values are consistent. In this work, we introduce two
new sacrificing-based MPC-in-the-head constructions that require 1 and then 0
field elements to perform this consistency test; the latter introduces an additive
overhead that can be smaller than that of Katz et al. for some parameter settings.
See Table 1 for more details about the proof size for each protocol.

1.3 Overview of our construction

The simplest way to describe our first protocol variant is that we combine the
techniques used in the Baum-Nof ZK proof with the Turbospeedz MPC protocol
[9] so that sacrificing a Beaver triple costs only one field element instead of two,
while preserving the soundness error. Our second variant replaces the remaining
field element per multiplication gate with some prover advice about the overall
circuit, reducing the proof size so that it is competitive with Katz et al. [55] but
with a different set of parameter tradeoffs. In this section, we briefly describe
the Turbospeedz construction and explain the challenge when integrating it into
MPC-in-the-head.

TurbolKOS: Improved Non-interactive Zero Knowledge 5

SPDZ and Turbospeedz. The SPDZ line of works [15,33,64] is a popular family of
MPC protocols that offloads the (expensive) generation of Beaver triples into a
preprocessing phase so that the online phase has free additions and only requires
broadcasting 2 elements per multiplication gate (1 per input wire). Turbospeedz
[9] saves 1 element per multiplication gate by exploiting a redundancy: when
generating shares of an input wire w pseudorandomly such that the shares of
the value are [vy,] = ey + [A\w], the public offsets e,, can also serve “for free” as
the broadcast values for the input wires, and the only effort required is to create
the new offset for the 1 output wire.

The challenge of TurboIKOS. When SPDZ is used in MPC-in-the-head to check
a multiplication gate whose input and output wires are claimed to be a Beaver
triple (vg, vy, vs), it suffices to use the semi-honest protocol without MAC checks,
and for the prover P to cheaply generate an independent Beaver triple (3\;,;, j\y, 0.).
However, with Turbospeedz there is a problem: the protocol transmits 2 field el-
ements in the preprocessing stage, in addition to the 1 field element in the online
stage. This is fine from an MPC perspective where preprocessing work might be
viewed as “free,” but is unacceptable for MPC-in-the-head where all elements
add equally to the proof size.

To overcome this issue, we turn to another member of the SPDZ family:
Overdrive [56]. The Overdrive protocol includes a clever method for generating
a partially-correlated Beaver triple (A, ;\y, 0,) where the shares [\;] for the first
element of the Beaver triple are the same as the shares for the true value v,,. With
a common element between the two Beaver triples, all of the setup calculations
become linear steps that can be computed locally by the parties. Integrating
Turbospeedz’s function-dependent preprocessing with Overdrive’s Beaver triple
generation mechanism is one of the accomplishments of our TurboIKOS protocol.

Implementing Picnic digital signatures. We provide an open source implemen-
tation of our protocol [49] and evaluate our proof size when using a variant of
the Picnic post-quantum digital signature scheme [61] that uses AES as its block
cipher, following the techniques introduced by BBQ [34]. Picnic signatures are
based on an MPC-in-the-head proof of knowledge of a secret key k such that
AESk(z) =y, where the corresponding public key is (z,y). As we show in §5.1,
our protocol returns the smallest proof size among streaming- and memory-
friendly systems using less than 32 emulated MPC parties. Our signature sizes
are also competitive with those of Banquet [7], an independent recent work that
involves a memory-intensive polynomial interpolation over the entire circuit.

2 Preliminaries

2.1 Notation

Throughout this work, P denotes the prover and V denotes the verifier. We
let C' denote an arithmetic circuit corresponding to the NP relation with a

6 Y. Gvili et al.

canonical output message corresponding to logical true (i.e., the witness satisfies
the relation). We use ADD, MUL to denote addition and multiplication gates,
respectively.

The circuit has a set of gates G of which a subset M are MUL gates, as
well as a set W of wires, of which there are subsets I of inputs to the circuit
and outputs of MUL gates. O C W denotes the output wires for the circuit. By
abuse of notation, we use the same variables to denote the size of each set; for
instance, we let M denote the number of multiplication gates when it is clear
from context that we are describing an integer rather than a set.

We consider an MPC-in-the-head protocol execution with IV parties that is
repeated R times. If a single iteration of a protocol has soundness error 4, then
we can run R = (m} independent iterations to reduce the soundness error
to 27" (where all logarithms are taken base-2 in this work).

For computation and equations, we use F to refer to a finite field and F* to
refer to the units of that field. We generally use k as our security parameter and
[v] to refer to an additive secret sharing of a value v among the N parties.

We say a party is p.p.t. to denote that it is probabilistic polynomial time.

2.2 Definitions

Pseudorandom Functions and Commitments. We require the existence of a pseu-
dorandom function PRF and a computationally hiding commitment scheme Com
in our security analysis in Appendix 4. Our implementation uses hash-based com-
mitments that models the hash function as a random oracle and assumes that
AES acts as a PRF. Below we give the formal definitons for PRF and Com:

Definition 1 (Pseudorandom Function). Let F:{0,1}* x {0,1}* — {0,1}*
be an efficient, length-preserving, and keyed function. F is a pseudorandom func-
tion with soundness K if for all adversaries A that run in at most q time steps,
A’s advantage Advprp(A) = | Pri[AT(F:=) = 1] — Pry AP = 1]| at distinguishing
the pseudorandom function from a random oracle H is at most q/2".

Definition 2 (Commitment). A commitment scheme is a protocol between
two parties S and R with the following algorithms:

— Com(m): The sender S has an input message m € {0,1}* and security pa-
rameter 1. The algorithm Commit outputs a pair (c,r) where c is the public
commitment and r is the private decommitment randomness.

— Decom(c, m,r): the sender S sends (c,m,r) to the receiver R, who then
either accepts and outputs m or rejects.

A computationally secure commitment scheme satisfies the following properties:

— Completeness: If (c,r) = Com(m), then in Decom(c, m,r) the receiver R
accepts and outputs m.

— (Computational) Hiding: For any two message pairs m,m’ € {0,1}*, any
recetver R* running in q time cannot distinguish their respective commit-
ments Advcom(R*) = |Pr[R*(Com(m,r)) = 1] — Pr[R*(Com(m/,r")) = 1]|
except with probability at most q/2".

TurbolKOS: Improved Non-interactive Zero Knowledge 7

— (Computational) Binding: No adversarial sender S* running in at most
q time has more than probability q/2" of outputting ¢, m,m’,r,v" such that
m # m', and Decom(c,m,r) and Decom(c, m’,r") both accept.

While our main construction can support arbitrary commitment schemes, in
this work we focus on the hash-based commitment scheme in the random oracle
model, in which Com(m;r) = H(m,r) feeds the input message and randommess
into the random oracle and Decom(c,m,r) = (m,r) provides the preimage to
the hash. The binding of this scheme follows from a birthday bound analysis: if a
random oracle has 2k bit output length and an adversary makes at most ¢ queries
to this oracle, then the probability that the adversary finds a collision in the
oracle is at most ¢% /22", and a collision is necessary to break the binding property
of the commitment scheme. The hiding property can be proved similarly.

There are a few optimizations that prior works have used here to save space.
First, when committing to a list of messages (mj,ma, ..., my), the sender can
provide a succinct commitment H(Com(mgy,r1),...,Com(myg,r¢)) to the entire
list, again thanks to collision resistance. Second, if m is already known to the
receiver, then it suffices to send only r during decommitment. Third and most
ambitiously, because we will only commit to strings that already have min-
entropy x, when generating a signature scheme we can go further and remove
the randomness r from the Com and Decom algorithms to create a deterministic
scheme in which decommitments are free. This strategy breaks the hiding prop-
erty of the commitment and thus the zero knowledge property of the schemes we
will construct, but it will suffice for our signature construction; we refer readers
to Katz et al. [55, §3.1] for details.

Honest Verifier Zero-knowledge Arqgument of Knowledge. Next, we formally de-
fine the notion of ZK arguments over an NP-relation R(z,w) as a two-party
protocol involving two p.p.t. algorithms, a prover P and a verifier V. Both par-
ties have the same NP statement x, and only the prover receives its corresponding
witness w. The parties interact to determine whether R(z,w) = 1 without re-
vealing the witness. We restrict our attention to the honest verifier setting in
which V never deviates from the protocol.

Definition 3. The protocol (P, V) is an honest verifier ZK argument for the
relation R(x,w) if it satisfies the following properties:

— Completeness: If P and V are honest and R(xz,w) =1,V always accepts.

— Soundness: For any malicious and computationally bounded prover P*,
there is a negligible function negl(-) such that a statement x is not in the
language (i.e., R(x,w) = 0 for all w), then V rejects on x with probability
> 1 — negl(|xz|) when interacting with P*.

— Honest verifier computational zero knowledge: Let Viewy(y) be a
random variable describing the distribution of messages received by V(x) from
P(x,w). Then, there exists a p.p.t. simulator Sim such that for all x in the
language, Sim(x) ~. Viewy (g)

8 Y. Gvili et al.

In this work, we will construct a ZK argument of knowledge, which provides a
stronger knowledge soundness guarantee that if a bounded-time malicious prover
P* can make the verifier accept a statement z with non-negligible probability,
then there exists an extractor E¥” (z) that can output a witness w such that the
relation holds R(z,w) = 1.

Additionally, we restrict our attention to honest verifier ZK in this work
because our protocol TurboIKOS is also public coin and constant round, so
it can be transformed into a non-interactive argument using the Fiat-Shamir
transform.

Secure Multi Party Computation (MPC). An MPC protocol allows N players
to jointly compute a function of their respective inputs while maintaining the
privacy of their individual inputs and the correctness of the output. In addition,
the protocol should prevent an adversary who may corrupt a subset of play-
ers, from learning additional information or harming the protocol execution. A
party’s view in MPC contains that party’s input, randomness, and any messages
received by that party. For use in MPC-in-the-head, secure computation proto-
cols must satisfy t-privacy, meaning that the view of any subset ¢t < N of the
parties can be simulated (see [51] for a formal definition).

3 Construction

We present our protocol IITuhorkos in this section and in Figure 1. We start
by describing the Baum-Nof [6] SPDZ-like protocol and the Turbospeedz MPC
protocol. Then, we show how to incorporate Turbospeedz [9] into the MPC-in-
the-head paradigm to reduce the amount of communication per MUL gate.

3.1 Starting point: SPDZ and Baum-Nof

We use the MPC-in-the-head paradigm introduced by Ishai et al. (IKOS) [51]
combined with a semi-honest version of the (N — 1)-private SPDZ MPC proto-
col [33] as a starting point for our zero-knowledge proof using MPC-in-the-head
protocol. In TKOS, a prover simulates an MPC protocol for all parties and com-
mits to a view for each party containing the party’s randomness, input, and
messages received. To save proof space, an additional “broadcast channel” is
committed to for messages that are sent to all parties, rather than writing the
same value in all party views. Then the verifier chooses a subset of the parties
and challenges the prover to open the committed views of these parties. The
verifier then confirms that the views of the opened parties are consistent, that
is, the message party ¢ sent to party j is the same in views of both those par-
ties. For N-party MPC protocols that only send broadcast messages and do not
contain any private messages between parties, the verifier opening T parties will
have a % chance of catching a prover who cheats by creating inconsistent views:
the “receiving” half of the message is always revealed in the broadcast channel,
and these are checked for consistency with the revealed parties’ “sent” messages.

TurbolKOS: Improved Non-interactive Zero Knowledge 9

By repeating this process R times with fresh randomness, the verifier can shrink
the probability of error by a power of R.

We start with the variant of semi-honest SPDZ [33] used by Baum-Nof [6].
Let N denote the set of parties and M denote the set of multiplication gates
in the circuit C. The parties hold sharings of the inputs [x,,] and [y.,] for each
MUL gate m € M; since this MPC protocol is being emulated by a prover who
knows the value on the wire, the parties additionally have a sharing of the gate’s
output [z,]. The prover generates a random multiplication triple, (@, by, ¢m),
which will be “sacrificed” to check a multiplication constraint in a MUL gate.
The verifier will send a random challenge &,,, < F. Each party does the following;:

1. Broadcast [fm] = em[Tm] + [am] and [gm] = [Ym] + [bm]
2. Use the recombined f and g to compute

[Cn] = emlzm] = fmgm + fm[bm] + gm[am] — [cm]. (1)

Baum and Nof show that if either (am,,bm, cm) Or (Tm, Ym, 2m) is not a valid
multiplication triple, this value (,, will be nonzero with probability at least
1 — 1/|F| over the choice of €,,. We will prove similar claims in Lemmas 1-2.

To save proof space, rather than broadcasting the (,, values for each MUL
gate m, an additional challenge variable &,, € F is sent by the verifier V and the
prover P responds by sending a linear combination [Z] = > 1/ €m[Gn] of the
secret values and public coefficients. If the prover is honest then Z = 0. Baum
and Nof show (Proposition 1 of [6]) that Z will be nonzero if at least one mult
gate constraint is violated with probability at least 1 — 2/|F|. Later in Lemma 2
of this pape we will improve this bound for a batched set of {,, values to a 1/|F|
error using a very-slightly different batching technique.

If 1/|F| does not yield sufficient soundness error, we can reduce this error
by doing multiple batched checks. To do so, we reveal linear combinations
[Z1],...,[Zy], all over the same [(,] shares, but using different random &,,
choices provided by the verifier. Let U be the number of these checks.

Naively, this protocol broadcasts (2M+U)N elements since each party broad-
casts their f shares and g shares for each multiplication gate, plus [Z]. Later in
this work we will show multiple ways to reduce this size with different tradeoffs,
by taking advantage of the fact that V has corrupted IV — 1 parties. We empha-
size that all parties’ shares must still be committed to before P knows which
party will remain uncorrupted.

To compress the parties’ views, we can generate the shares of all values
pseudorandomly, with only one public “offset” value per wire. Then, for each
multiplication gate, the prover only needs to broadcast the offset values for f
and g, along with the offsets of the true output wire z and the Beaver triple
product c. Hence, the proof contains 4 field elements per multiplication gate, as
shown in Table 1.

3.2 Introducing Turbospeedz

Turbospeedz [9] generally shows how to have only one broadcast per multipli-
cation gate instead of two in normal SPDZ by adding a function-dependent

10 Y. Gvili et al.

preprocessing step where the circuit to be computed is known, but the input to
the circuit need not yet be known. The idea is to add a sharing of a “mask”
on each wire, propagated additively (but not multiplicatively) during prepro-
cessing. Then, the masks of the input wires can serve as the first two elements
of a Beaver triple, which is also generated during the preprocessing. Let x and
y denote the input wire and z denote the output wire of any gate. Let v, vy,
v, denote the real values on the wires. In the preprocessing phase, the prover
performs the following:

1. For each party, the prover generates random “masking shares” [\,] for each
input wire and the output wire of each MUL, w.

2. The prover homomorphically computes the mask shares for each ADD gate
internal output wire, [A;] = [Ag] + [Ay]-

3. For each wire w, the prover computes external value, e,, = Ay, + 0. In MPC,
these external values are public to all parties. In MPC-in-the-head, P will
give them to V in the clear.

In Turbospeedz, given e,,e,, and a Beaver triple (a,, b, ¢,), each party
computes their share of MUL gate m’s output wire by locally computing

[v:] = exey — eylam] — ex[bm] + [c]
= (Vg + am) (Ve + b)) — (Uy + b)) [am] — (Uy + am) [bim] + [cm]

= [vz0y].

The parties then proceed to compute and open [e,] = [v.] 4+ [\.]. Note that
this relies on the parties already possessing a sharing of a wvalid Beaver triple
(@, by Cm) in advance.

The upshot of this method is that multiplication gates can be computed using
only one opening (e,) instead of two (d and e in the previous section).

3.3 Adapting Turbospeedz into sacrificing-based MPC-in-the-head

In this section, we incorporate a modified version of the Turbospeedz method
from Section 3.2 into the SPDZ-based MPC-in-the-head framework described
above from Section 3.1. For large field sizes, the resulting MPC-in-the-head pro-
tocol Ituyborkos Will require only 3 field elements per multiplication, rather
than the 4 elements used in Baum-Nof [6].

Committing to all wire values. The first step of converting Turbospeedz into
an MPC-in-the-head protocol is to replace the step of opening shares of e, by
having the P simply provide e, in the clear. However, unlike Turbospeedz, we
do not wish to have a costly preprocessing process in which the verifier becomes
convinced of the validity of all Beaver triples in the circuit; instead we wish to
use (, values as in Eq. 1. In order to do this without reusing masks on multiple
values, we must make some subtle changes to the original Turbospeedz protocol.

TurbolKOS: Improved Non-interactive Zero Knowledge 11

Fig. 1: Beginning of an interactive zero knowledge protocol between prover P
and honest verifier V), given a relation represented as an arithmetic circuit with
ADD and MUL gates over a field F. All verifier messages are public coins, so the
protocol can be made non-interactive using the Fiat-Shamir transform. There
are two different endings to this protocol, given in Figures 2 and 4.

Input: The prover P and verifier V receive an input circuit C' comprising a set of
gates G of which a subset M are MUL gates, along with a set of wires W with subsets
of input and output wires I and O, respectively. P is the sole recipient of a witness.
Both parties also receive constants R and N (the latter of which we equate with the
set {1,..., N} by abuse of notation). The prover P and verifier V run R independent
executions of the following protocol in parallel.

Function-dependent preprocessing: P pseudorandomly derives shares [A,] for each
wire w € W and a Beaver triple for each multiplication gate as follows.

1. Generate a random master seed 0. Pseudorandomly derive a binary tree with root
o* until there are as many leaves as parties. Assign the pt" leaf as party key Op.
2. For each input wire w € I and party p € N, pseudorandomly derive share [Ay]
from key op.
3. Go through C layer by layer, starting at the input layer. For every g € GG, do the
following on gate Cy with input wires z,y and output wire z.
— If Cy is an ADD gate: assign [A.] == [Az] + [A\y]-
— If Cy is a MUL gate:
e Derive [\.], [Ay,4], and [\;] for every p € N from o,. (Note that y can be
an input to many MUL gates, hence the two indices in [, 4].)
o Set é, =)\, - j\y,g + 5\2, which creates a Beaver triple (A, iy,m €, — 5\2)

Interactive phase: Once P receives the witness, the parties interact as follows.

1. (P — V) P executes the circuit to determine the value v, of each wire w € W,
and assigns the offset e, := vy + Ay for each wire w € W. It sends to V:
— Offsets ey, for input wires w € I, and offsets e, and é, for the outputs of MUL
gates. (The remaining offsets can then be computed.)
— A commitment to all shares [A] for all output wires w € O.
— A commitment to the seeds o, for all parties p € N.

2. (V — P) V randomly selects two elements &, £ < F for every MUL gate m € M.

[There are two ways to complete this protocol, shown in Figures 2 and 4.]

12 Y. Gvili et al.

Fig. 2: End of the interactive zero knowledge protocol Ity horkos between prover
‘P and honest verifier V, given a relation represented as an arithmetic circuit with
ADD and MUL gates over a field F. See Figure 1 for the beginning of this protocol.

Interactive phase, continued from Fig. 1:

3. (P = V) P sends all a, values and commits to P commits to all [a,] and [Z]
shares. These variables are computed as follows. R
— For every MUL gate m € M, assign [am] = em[Ay] + Em[Ay,m].
— For every party p € N, assign [Z] = > \/[(m], which is the sum of all
[Cm] = Emes —Emeney +Emés + (Emey — am) [Aa] +Emen[Ay] — m[A:] — Em[A2].
4. (V — P) V randomly selects a set T = N \ {i*} of N — 1 parties to corrupt.

5. (P = V) P reveals the log(N) seeds from preprocessing step 1 that suffice for V
to recompute o, for all corrupted parties p € T', but not the remaining seed o;«.

Verification. V accepts only if all of the following are true:

— The output values (v, for w € O) provided by P correspond to logical true.

— The commitments in rounds 1 and 3 are consistent with the opened keys o, for
corrupted parties, and with the shares of [Z], [am], and [Aw] for output wires for
all parties. V can compute N — 1 shares of these from its seeds, and the remaining
shares from the revealed a., values and the known values for Z and output wires.

To save space, we set the parties’ shares [\,] on each wire pseudorandomly,
taking advantage of the external value e as an offset: the value on wire w is
defined as simply vy, = €, — Ay-

P will generate all A\, values for all wires in the circuit the same as in original
Turbospeedz, but by generating each party’s share pseudorandomly using a party
key. Additionally, for each MUL gate m, the prover will generate additional
pseudorandom shares [;\ym] and [S\Z] P computes é, = /\,U/A\%m + \., forming
a correlated Beaver triple (A, 5\y7m, é, — 5\2) that will be sacrificed. The double
index on [S\ym] is due to the fact that wire y may be reused in several different
mult gates m, each of which must define their own Beaver triple for the prover’s
privacy. (For legibility, we sometimes omit this double-subscript when the gate
under consideration is clear from context.)

Creating a test for consistency of all gates. The largest change is in how (,, is
calculated for each MUL gate m. To save space, we check the consistency of all
of these values with one random linear combination of Eq. (1) for all MUL gates.
We begin similarly to the Baum-Nof challenge: V will send random challenges
Em,Em F. Our oy, values are defined slightly differently, for a reason we will
explain shortly. The prover will send a;,, = ep)y + émj\y. Then, the parties
compute:

[Cm] = Em€r — EmEzly + Emés + (Emey - am)[/\z] + Emex [/\y] - em[/\z] - ém[;\z]

TurbolKOS: Improved Non-interactive Zero Knowledge 13

First, we wish to show that this (,, serves a similar purpose to Baum-Nof’s,
assuming (for the moment) that the prover P honestly computes all a,, values
from the parties’ shares. For each MUL gate m € M, define:

Avn = (2 = X)) — (e — Ax)(ey — Ny) and A, = (62 — A.) — Aoy

Observe that if P is honest, then (e; — Az, ey — Ay, e — A;) and (A, S\y, é, — 5\Z>
are both valid Beaver triples and therefore A, ,,, = AALm =0.

Lemma 1. Fiz a MUL gate m € M. If e, and &y, are chosen uniformly ran-
domly from F, and if either A, ,,, #0 or A, ,, # 0 (or both), then ¢, # 0 with
probability at least 1 — 1/|F|.

Proof. Observe that

Cm = Em€s — Emealy + Em€s + (Emey — Q) Ag + Emezhy — EmAs — EmA;

=Em€s — Emeyey + Em(AzAy + Azm) + (Emey —) Az + EmesAy — EmAs
= Em€s — Emeyly + EmAL m + (Emey — EmAy) Az + EmesAy — EmA;
= Em€s — EmAz — EmErCy + EmeaAy + Emeyrz — EmAyAg +En A

=em((ez — Az) — (ex — Az)(ey — Ay)) +EmAsm
= EmAz,m + érnAAz,m,

Now, consider the probability that (,, = 0 over the uniform choice of ¢,
and €, from F. The only way for this to occur is if €, A, ,, = —émAAz’m. If
A, m,m = 0, this happens if and only if €,, = 0, which occurs with probability
1/|F|. If A, ., # 0, then for any choice of &,, there exists a single option for
Em = —émAAz,mAz_’}n that makes (,,, = 0, so again we arrive at a probability of
1/|F|. These two cases are mutually exclusive, which yields the desired bound.

Similar to Baum-Nof, we can combine these in a linear combination Z to
test all multiplication gates at once. However, because we defined (,,, to already
include two different random coefficients on the different A values, these coeffi-
cients already suffice to serve as challenge coefficients for this linear combination.
As we show in Lemma 2, the upshot is that we can test all gates in the circuit
with a soundness error of only 1/[F| by merely revealing [Z] = " /[Gn].

Lemma 2. If e, and é,, are chosen uniformly randomly from F for all multi-
plication gates in the circuit, and if there exists at least one MUL gate m € M
such that A, #0 or AAzym # 0, then Z # 0 with probability at least 1 — 1/|F|.
Proof. Consider Z = 37 1/ Cm = (EmAzm + émAAZ,m) + 7' where Z' is the
sum of all other terms in the formula and m € M is the gate where the sum
is guaranteed to be nonzero; without loss of generality, suppose that A, z # 0.
Then, Z = 0 if and only if &7 = A;:ﬁ (=7 - émAAZ’mL which occurs with
probability 1/|F|.

14 Y. Gvili et al.

Completing the consistency test. Rounds 3-5 of the protocol provide a method
for the verifier to check whether Z = 0, up to 1/N soundness error. We will
describe two ways to perform this task: a base protocol Ity borkos described in
this section (shown also in Figure 2) and an improved protocol ﬁTurboIKos in
Section 3.4. Both techniques involve providing some ‘advice’ in the form of the
non-privacy-sensitive a,, value for each MUL gate that assists the verifier in its
computation of Z.

In round 3 of the base protocol IlTuhorkos in this section, the prover provides
for each MUL gate m € M. Importantly, the prover also commits to all shares
[@m] = m[Ay]+Em [N,], and analogously for all [Z] shares. There are three claims
that the verifier must check:

— The committed [a,,] and [Z] are consistent with the parties’ individual views,
at least for the N — 1 emulated parties that the verifier can open.

— The committed [ou,] shares in round 3 collectively sum to the provided a,
value. That is, the prover provided the public «,, ‘advice’ value correctly.

— Assuming the advice is correct, then the [Z] shares committed in round 3
sum to Z = 0. That is, the prover passes the test posed in Lemma 2.

After the prover reveals seeds for N —1 parties in round 5, the verifier can check
these claims as follows. First, V can compute the remaining party’s [a,] by
subtracting the known shares from the public «,, value, and then check whether
these shares together constitute a valid opening of the commitment in round
3. This checks (most of) the first two claims simultaneously. The final claim is
verified similarly; the key observation here is that if the prover is honest, then the
value Z = 0 is publicly known. So, the V computes N — 1 shares of Z, calculates
what the remaining party’s share must be in order for the overall value Z = 0
as required, and then checks whether these shares together constitute a valid
opening of the commitment.

Putting it all together. Our protocol is described in detail in Figure 1. The prover
‘P and verifier V interact in a 5-round protocol, and if all consistency checks pass
then the verifier believes that the output wire labels derived from the circuit
evaluation is correct.

Completeness is a straightforward consequence of the fact that the honest
prover computes the desired circuit (many times, in fact). We prove the privacy
and knowledge soundness of our ZK argument of knowledge in Section 4.

Compared to Baum-Nof [6], we reduce communication per multiplication gate
from 4 to 3 field elements. Concretely, for each multiplication gate, Baum-Nof
must send the f and g values described in §3.1. Their protocol must also send
a Beaver triple offset (analogous to é,) as well as the offset for the output wire
of the MUL gate (similar to e,). By using the Turbospeedz approach, we reduce
communication to only 3 field elements: e,, é,, and a,,.

Algorithmic optimizations. There are a few optimizations that we can apply to
the base protocol IITuhorkos to save space even further. Some of these optimiza-
tions are deliberately omitted from Figures 1 and 2 for brevity; they are simple
to add, and they are built into our implementation in §5.

TurbolKOS: Improved Non-interactive Zero Knowledge 15

Our first optimization saves on the cost of commitments. Recall that we need
to commit to values in each of the prover steps (rounds 1, 3, and 5), and also
that the entire procedure from Figs. 1-2 is repeated R times. It suffices to build a
single commitment per round across all repetitions: that is, just 2 commitments
in total for the entire proof.

Second, we described the SPDZ-style MPC protocol by considering pseudo-
random values for each party plus a public offset. Following prior works, we save
space by integrating the offset into a single party’s value (say, party 1). While
this party no longer has pseudorandom value, the upshot is that we only need
to reveal the €, values within party 1’s view, or in other words we don’t need
to reveal these values for the 1/N fraction of repetitions in which party 1 is the
unopened party. (Note that we still need to publish the e, and «,, values on all
repetitions because V needs this information to perform its consistency check.)

Third, if the circuit has a single known value that represents ‘logical true’
(say, the value 0), then we can save on the cost of opening the output wire shares
[Aw] for all parties (i.e., including the unopened party). Instead, we can follow a
similar trick as we described above for [a,,] and [Z]. In round 1 of the protocol,
the prover P commits to all output wire shares. Once the verifier V learns the
seeds to reconstruct N — 1 of these shares for itself, it assumes that the output
wires collectively reconstruct to logical true and calculates the remaining share
accordingly. Finally, V checks that all shares match P’s commitment.

3.4 Constructing smaller consistency tests

In this section, we describe an improved protocol ﬁTurboIKos that reduces the
cost per multiplication gate from 3 field elements down to 2. Specifically, we show
a new method to check the consistency of Z in rounds 3-5 without revealing an
o, element for each MUL gate. The motivation for this change is twofold. The
first reason is obvious: reducing the number of field gates required per MUL gate
shrinks the proof size. The second and more subtle reason is to improve the
performance of TurboIKOS on smaller fields, such as the field GF(256) used in
AES, without blowing up the size of the protocol with additional zero-checks.

We will explain this second motivation at a high level here; for more detail
see the soundness analysis (Theorems 2 and 3) in §4. A cheating prover must
have a sufficiently low chance of getting a set of coefficients ¢,,, é,, where Z =0
even though at least one MUL constraint is violated. For small fields, a mali-
cious prover has a decently-high probability of passing a single zero-test Z by
pure chance. While one could overcome this issue by increasing the number of
repetitions R, there is an alternative solution: run multiple Z values with fresh
random &, and &, coefficients for each, but the same wire shares A, and offsets
e, and €.

This alternative method doesn’t fare well in the original protocol ITurborkos
because our method requires revealing an «.,, value per MUL gate for each test,
so each additional Z value used to improve the soundness error would reveal
an additional field element per MUL gate, making the proof size much larger.

16 Y. Gvili et al.

Thus, our goal in this section is to show how to consistency-check multiple zero-
tests Z1,...,Zy without transmitting additional information proportional to
the number of MUL gates beyond the two field elements e, and é, we already
transmitted in round 1.

Recall that for a single MUL gate m,

[Cm] =E&Em€y — €7ney€y + éméz + Emey [Al} - O‘m[Al] + Emey [Ay] - Em[Az] - ém[Az]
is a sharing of ¢, = e A, + émAAz’m = 0 for an honest prover. Observe that
each party can calculate most of the terms in this sum even without receiving
Q- Specifically, for each MUL gate, define ¢y, == (pn +am A, Each party has the
information to compute its own share [¢,,] using information already available:
the public €, and &, values, the known offsets e, and the corrupted shares [A].

Also, recall from the original protocol that the parties never test each [(]
directly, but rather they only test that the sum Z =37, (» equals zero. We
can rewrite the shares of this test in the following way. (We add a subscript m
to the wire values to make it unambiguous which gate each wire belongs to.)

[Z] = Z [Cm] = Z [¢m] - Z O‘m[/\m,x]-

meM meM meM

The corrupted parties can compute their shares for the left sum. However, the
sharing of the remaining term, which we will name

6 = Z am)‘m,w (2>

meM

is problematic because it seems to require each «,, to be known in the clear to
calculate the sum. This is where the original protocol Ity porkos revealed all
Qi 50 that each party could compute their share of 8 as > 1/ @ [Am 2]

We proceed to show a different way that the prover can commit to and
provide the shares for [3], which we also describe pictorially in Fig. 3. Let [z];
denote the ith share of x. The crucial observation is that all shares [a,,] can
be revealed without a loss in privacy; our only objective here is a performance
improvement to avoid sending these shares, even though we could safely do so.
Furthermore, observe that:

M M N N M N N
ﬁ = Z am>\m,z - Z <Z[am]z> (Z[Am,fﬁ]3> = Z Z Z[am]z[)‘m,xb
m=1 m=1 i=1 j=1 m=1 i=1 j=1
N N M
= ZZﬁi,j, where 3; ; = Z [am]i[Am,z); 3)
j=1i=1 m=1

We will take advantage of the MPC-in-the-head structure of our proof to
create a sharing where each party essentially holds a “column” of these values:
that is, party j’s share of § is Zf\il Bi,j- In a normal MPC protocol, each pair
of parties ¢ and j could collaborate to compute 3; ;. In MPC-in-the-head this is

TurbolKOS: Improved Non-interactive Zero Knowledge 17

Fig. 3: Creating a more efficient sharing of 5 (Eq. 2). Each cell holds a single ; ;
value (Eq. 3). A single commitment A binds the entire matrix. To open N —1 of
the columns, P gives V the field elements in the shaded region along with h;«.

jEN

- Bii = Yomr[@mli[Am.z];

B = vazl Z;'v:1 Bi.j

Vool b v
H(hi hs - h#hy)—h

mostly unnecessary, because V has corrupted N — 1 of the parties, it has N — 1
of these [a;,]; shares and therefore can compute f; ; for all corrupted parties
i,7 € T. It is missing only B;« ;, where ¢* is the remaining, uncorrupted party.

In Fig. 3, the parties’ shares of 8 are the sum of the elements in each column.
VY has N — 1 elements (the unshaded regions in each column) out of the N
elements needed to compute the full share (column sum), but needs to be sent
the remaining (shaded) element to sum the column and compute the share.

For soundness, we require that all 8; ; be committed to in advance. To do
this, we concatenate all elements in each column and commit to them; call these
commitments hy,...,hy. Each commitment h; must be randomized since the
field elements might be small enough not to provide the required min-entropy
on their own, but this can be done “for free” by using party j’s seed to generate
this random value. We then commit to the concatenation of those commitments
and give the result h to V in round 3, before the corrupted parties are chosen.

To check the commitments, V checks two properties: First, the commitment
to the B; ; values must be consistent with the party views, and second, the shares
of Z must sum to 0. To show the first property, V first recreates all (N — 1)
elements it can from the parties it corrupted. It then receives (N — 1) missing
elements (the shaded region in Fig. 3) from P, which lets it compute the shares
[B]; for the parties it corrupted and also the commitment h; to the concatenation
of the elements in each column. V does not get the missing share [3];; instead,
it is given h;-, the missing commitment. Using all these, it can check h to ensure
the corrupted party views are consistent with the commitment to the j3; ;.

Second, as in the other version of this protocol, the shares to Z are also
committed to, but where the S component of Z is shared using this method.
V checks that Z = 0 by recomputing the N — 1 shares it corrupted, and then

18 Y. Gvili et al.

Fig. 4: Ending of the improved zero knowledge protocol ﬁTurboIKOS between
prover P and honest verifier V, given a relation represented as an arithmetic
circuit with ADD and MUL gates over a field F. See Figure 1 for the beginning
of this protocol. Compared to Fig. 2, step 3 is new, and this change affects the
opening and checking of commitments in step 5 and verification; the remainder
of the protocol is unchanged from before. If multiple zero tests are desired, then
steps 2, 3, and 5 are repeated with independent €,, and é,,, Z, and j; ; values.

Interactive phase, continued from Fig. 1:

3. (P = V) P commits to all 8; ; by sending h and commits to all [Z] shares. These
variables are computed as follows.
— Fori € N, for j € N, Bi; = M [am]iAmals
— For every party j € N, assign [Z]; =Y, .1/ (Em€m,z — Emem yem,y + Emé: +
emeyAm.a] + emem,o[Amy] = €m[Am =] = EmlAm 2]) = Ficn Bis-
4. (V — P) As before, V samples a set T = N \ {i*} of N — 1 parties to corrupt.
5.

(P — V) P opens commitments to V in the following way:
— As before, reveal log(N) seeds from preprocessing step 1 that suffice for V to
recompute o, for all corrupted parties p € T', but not the remaining seed o;x.
— Reveal §;+ ; for all j # i* and reveal h;=.

Verification. V accepts only if all of the following are true for all executions:

— The output values (v, for w € O) provided by P correspond to logical true.

— The commitments in rounds 1 and 3 are consistent with the opened keys o, for
corrupted parties, with the f8; ; opened, and with the shares of [Z] and [Aw] for
output wires for all parties. V computes these using the party seeds, the remaining
B+ ; values it is given, and the known Z and output values.

computes the last share by subtracting those shares from 0. The recomputed
shares are checked against the commitment to the [Z] shares from round 3.

This portion of the proof sends (N — 1) field elements (the shaded elements)
and one commitment (h;«) per repetition; the additional commitments to the
shares of Z and the h need only use one commitment for the entire proof, across
all repetitions. It bears repeating that this method was able to check the con-
sistency of all multiplication gates without revealing an additional a,, value per
MUL gate. This allows us to add additional fresh zero-tests independently of the
number of MUL gates as well. If there are U of these tests, our communication
per repetition becomes about (2M + UN) field elements, which can outperform
Katz et al. [55] when the number of parties N is small. The description of this
version of the protocol is given in Fig. 4.

4 Security analysis

In this section we prove the honest-verifier zero-knowledge and knowledge sound-
ness properties of the two protocols constructed in §3. For each property, we first

TurbolKOS: Improved Non-interactive Zero Knowledge 19

analyze the base protocol HTurboIKQS, and then we describe how the analysis
changes for the improved protocol Ity hoikos-

Theorem 1. When instantiated with a pseudorandom function PRF and a com-
putationally hiding commitment scheme Com, both the base protocol I pyrporkos
and improved protocol I 1urborkos Tun with N parties and R repetitions is honest-
verifier computational zero knowledge with distinguishing bound at most R -
(Ad’l)com + AvaRF)'

Proof. We focus here on the privacy argument for the base protocol Ity hoikos-
The privacy of the improved protocol [YTurboIKOS then follows immediately from
the fact that it provides strictly less information to the verifier than the base
protocol ITtuhorkos does. Additionally, we prove the statement for a single
repetition of the base protocol IItuhoikos, from which the theorem follows by
a union bound over the independent repetitions.

Let I and M’ represent the set of input wires and MUL-gate-output wires
respectively. Consider a simulator that follows the following steps during the
interactive protocol.

1. The simulator samples all verifier challenges uniformly at random: all €,,, &,
in round 2, and a party ¢* € N in round 4 to be the “uncorrupted party”
whose key will not be revealed to V.
2. Choose keys o, for all parties p € N uniformly at random, honestly following
step 1 of preprocessing.
3. For all corrupted parties, derive all shares [\,] for all wires w from the keys
honestly, as in step 3 of the preprocessing.
4. For the output wires w € O, choose the e,, values uniformly at random, and
set party ¢*’s share of A\, such that v,, = e,, — A\, represents logical true.
5. Now, work backward through the circuit in reverse topological order.
(a) For ADD gates, choose a random setting of the e, and e, values on
the input wires to the ADD gate, conditioned on meeting the linear
constraints induced by all ADD gates at this layer.
(b) For a MUL gate with input wires z and y and output wire z, the values of
€z, €y, and the corrupted shares of ;\y, j\z, and é, must all be simulated.
Note that e;, e,, or both may already be set by an existing constraint
(e g. if the wire was reused in a later layer or used in multiple gates).
. Generate)\ and initialize the \, shares honestly for the corrupted
parties from the party keys (leaving it unspecified for party *).

ii. Generate é, uniformly (and also e, or e, if they are unspecified).

iii. Let A, be the difference between the value on the output wire z
and the product of the value on the input wires xy. That is, A, =
Vy — VpUy = €; — €xy — Ay + € hy + eyAy — Ay, Let A be the
difference between (é, — 5\,3) and)\zj\y; that is, A, = &, — A\, — Ay)\
For an honest prover, A, = A = 0, but the simulator is not honest
so these values are likely to be non-zero. Using the foreknowledge of
em and é,,, alter party ¢*’s share of A, so that (=end, + EmA,
equals 0 (or alter A, if A, =0but A, # 0).

20 Y. Gvili et al.

6. In round 1, commit honestly to all parties’ keys o, and all parties’ shares
[A:] for all output wires z € O. Also, send the offsets e, for all z € TU M’.

7. In round 3, commit to all shares [a,,] and [Z], where [Z] is computed cor-
rectly from the already-manipulated ¢ shares from above.

8. In round 5, honestly open the key commitments for all parties except i*.
Also, honestly reveal party i*’s shares [Z], [am], and [\,] for output wires.

It is straightforward to confirm that the simulated proof passes all verification
checks. It remains to show that the simulated proof is computationally indistin-
guishable from a real one. As a stepping stone, we consider a hybrid proof H
that is constructed like the real one, except using an ideal commitment scheme
Com (where it is impossible to recover an un-opened key) and a truly random
function in place of PRF. The distinguishing probability between the real game
and H is at most Advcom + Advpgre.-

In the hybrid world, we claim that all of the information provided by P to
V throughout the proof is meaningless. The commitment to o« is now useless,
values like the output wires or Z are publicly known to V beforehand, and the
remaining information (e, for all wires w € W, é, and «, values for all MUL
gates, and the shares [Z]) contains masks that hide the real values from V.

— On each wire w, the revealed e,, = v,, + A, does not reveal anything about
the value on the wire v,, because it is masked by party ¢*’s share of A,,.

— For each MUL gate m € M, information in o, is masked by i*’s share of ;\y

— For each MUL gate, é, hides info about)\zj\y by masking it with party ¢*’s
share of 5\Z.

— Party i*’s share of Z reveals no information because it can be computed as
— > _perlZ] (leveraging the fact that Z = 0 is public knowledge), and the
corrupted parties’ shares of Z are only a function of their own data.

All of these masks are truly random in the hybrid world. Observe that e,,, €, and
a,, all have the uniform distribution in the simulated world as well. Therefore,
the distance between the hybrid and simulated games is 0, which completes the
proof for the base protocol IITurboikoOs-

Next, we examine the soundness of the base protocol ITTuhorkos. We focus on
its security for the non-interactive version of the MPC-in-the-head construction
using the Fiat-Shamir transform using a random oracle H with 2« bits of output,
so that finding a collision has 2% cost. (The interactive version of the protocol
has even better soundness because the prover cannot rewind the verifier.)

Theorem 2. Consider the non-interactive version of the base protocol Il pyrborkos
over a large field |F| = 2% and instantiated with a random oracle H with 2k out-
put length. Then, Protocol Il pyrpoixos with R = 10&% + 1 repetitions provides
knowledge soundness with error at most 1/2%.

Proof. We focus here on proving the traditional soundness property. The stronger
knowledge soundness claim immediately follows by applying the analysis from

TurbolKOS: Improved Non-interactive Zero Knowledge 21

Katz et al. [55, §3.1] in order to build an extractor that recovers a witness by
observing the inputs to the random oracle-based commitment scheme on a single
execution. The reduction is tight because the extractor never needs to rewind.

To prove soundness, consider a malicious prover P* that is attempting to
prove a false statement. Since an honest execution of the circuit would return
logical false, the prover must deviate from the protocol on each repetition. There
are effectively four different places where the malicious prover P* can deviate
from the protocol in order to gain an advantage:

1. In round 1 of the protocol, P* can change the offsets for one or more MUL
gates, so that the A, or A, values on these gate(s) are non-zero. (We presume
it is simple for the prover to determine a sufficient set of gates to tamper
in order to cause the circuit to return logical true.) P* will learn in round
2 whether V catches this deviation or whether P* has successfully evaded
detection. By Lemma 2, the prover is successful with probability 1/|F|.

2. Inround 3, P* can change one party’s [a.,] and [Z] shares so that the verifier
reconstructs a Z value of 0. The success of this attack is revealed in round
4, and P* evades detection with probability 1/N.

3. In rounds 1 or 3, P* can attempt to break the binding property of the
commitment scheme and open it later to different values.

4. In round 1, P* can change one party’s share of the final output so the
result becomes logical true. P* will learn in round 4 whether V catches this
deviation or whether P* has successfully evaded detection (this occurs with
probability 1/N).

(Observe that the pseudorandom function has no impact on soundness. It only
exists to ‘compress’ each party’s share of each wire label [\,], and any tampering
of these wire labels is equivalent to tampering the corresponding offset e,,.)
The key observation in this proof is that item 1 is strictly better for P* than
item 3 and that item 2 is strictly better than item 4. The first part of this claim
follows from the observation that items 1 and 3 both require the prover to deviate
in round 1 and the first has better probability of success since the commitment
scheme has soundness k. The second part of this claim is true because the attacks
in items 4 and 2 both give the same probability of success and are both revealed
in round 4, yet the alteration of [a,,] and [Z] occurs later. Delaying the start
of the attack is strictly better for P* because it can wait to see if the attack on
wire offsets in round 1 was successful, and only attempt this attack if necessary.
Concretely, we use the same proof technique as several recent analyses of
non-interactive zero knowledge proofs that apply the Fiat-Shamir transform to
protocols with more than three rounds [7,16,54]. We consider all attacker strate-
gies (r1,72) in which the prover P* changes wire offsets in round 1 until
repetitions happen to have Z = 0 anyway, and then P* attacks the remaining
ro = R — rq repetitions in round 3 by altering «,, and Z. In general, the cost
of any multi-round attack strategy is given by C' = 1/p; + 1/pa, where p; and
po denote the probability that the first and second parts of the attack succeed,
respectively. To achieve x soundness, we must choose a sufficiently large number
of repetitions R so that any attacker strategy (r1, R—r1) has a total cost C > 2".

22 Y. Gvili et al.

In this case, one attacker strategy dominates the rest: 11 = 1 and ry =
R — 1. In more detail, the malicious prover P* changes the wire offsets for all
repetitions in round 1, and rewinds until finding an input that evades detection
from the verifier’s round 2 challenge on r; = 1 instance. Because each instance
evades detection only with probability 1/|F| = 1/2%, the malicious prover P*
can only expect to evade detection on 71 = 1 instance in time less than 2”. Even
succeeding on 2 instances is exceedingly unlikely in the adversary’s runtime, and
the P* gains no benefit by foregoing an attack on round 1 altogether. Thereafter,
P* must complete the attack on the remaining 7o = R —1 repetitions by altering
[a,] and [Z]. This change is undetected by the verifier with probability 1/N
independently for each repetition. Hence, the overall probability of success for the
second repetition is (1/N)"?, and thus its cost exceeds 2 when R = o T L

Theorem 3. Consider the improved protocol I purvorcos that is instantiated
with a random oracle H with 2k output length and executed over the field F with
N parties, R repetitions, and U tests per repetition. Then, the protocol satisfies
knowledge soundness with security parameter r if:

&%gR{[m::§3<§>~LéJUA[l_ﬁayxmﬁ

=71

+Nm”ﬂ}>2?(®

Proof. Once again, we focus on proving traditional soundness, after which we can
build an extractor for knowledge soundness using the same technique as before.
Additionally, the analysis from Theorem 2 about the options for a malicious
prover P* to deviate from the protocol holds here too. The prover’s dominant
strategy remains to change the offsets for one or more MUL gates in a way that
causes the remainder of the circuit (computed honestly) to return logical true;
note that this will also cause the corresponding A, or A, values to be nonzero.
For each repetition independently, there are two ways for the malicious prover
P* to evade detection by the verifier:

1. Based on the verifier’s U independent random choices of ¢,, and £,, in round
2, there is a (1/|F|)V probability that all of the Z tests happen to equal 0
(by Lemma 2).

2. If even a single Z value is non-zero, then P* can commit to erroneous 3; ;
values to ‘fix’ this error. Note that P* can only inject erroneous data in
one row of the table in Fig. 3 because the verifier can check the remaining
N — 1 rows directly. This attack evades detection only if the verifier chooses
in round 4 to leave this row as the uncorrupted party, which happens with
probability 1/N.

As before, we can analyze the malicious prover P*’s probability of success
by analyzing all attacker strategies (r1,r2) that operate as follows. First, the
prover P* rewinds round 1 until at least r; repetitions have the property that
the verifier’s choice of ¢, and &,, are such that all of the Z tests within these
repetitions equal 0. Second, P* rewinds round 3 until the remaining ro = R —ry
have been tampered in the locations chosen by the verifier in round 4.

TurbolKOS: Improved Non-interactive Zero Knowledge 23

Table 2: Valid parameter settings for Fos. The body of the table shows the
number of repetitions R based on the soundness parameter s, number of parties
N, and number of tests per repetition U.

K N U

1 2 4
8 66 53 47 45 44
128 | 16 | 54 41 36 34 33
31 | 47 35 30 28 27
8 99 79 70 68 66
192 | 16 81 62 54 52 50
31 71 53 45 43 41
8 | 132 106 95 91 &9
256 | 16 | 108 83 73 69 67
31 | 95 71 61 57 55

To achieve s soundness, we must select enough repetitions R so that any
attacker strategy (r1, R — r1) has a total cost C' > 2%. Here, the cost of this
multi-round attack strategy is given by C' = 1/p; + 1/p2, and p; and ps denote
the probability that the first and second parts of the attack succeed, respectively.

Because we consider an arbitrary field size in this theorem, the cost analysis
here is more complicated than in Theorem 2. Our argument is very similar to
that of Banquet [7]. The first probability boils down to the chance that the at-
tacker has 71 successes out of R trials, where each trial succeeds with probability
(1/|F|)Y. This is the right tail of a binomial distribution:

R

n=3 (7)- anenea - ampee. (5)

i:’l“l

The second probability is simply ps = (1/N)"2 because the malicious prover must
succeed on all remaining repetitions of the protocol. Combining the costs of both
parts of the attack results in Eq. (4), completing the proof of the theorem.

The goal here is to find the “minimum” choices of N, R, and U that yield a
desired soundness parameter for a circuit with a given field size |F|. While it is
challenging to write a closed-form version of Eq. 4 that connects the five param-
eters, it is easy to find satisfying tuples empirically. In Table 2, we show several
such choices for the field Fos. We include a computer program that calculates
valid parameter settings within our open source repository [49].

5 Performance and Prototype Implementation

In this section, we compare our ﬁTurboIKos system’s performance against other
MPC-in-the-head based systems, and we describe our prototype Python imple-
mentation of IITubolkoOs-

24 Y. Gvili et al.

5.1 Performance Analysis

To evaluate our performance, we measure our signature size when computing a
variant of the Picnic signature scheme [61]. Picnic uses MPC-in-the-head (specif-
ically, a variant of the Katz et al. protocol [55]) and LowMC [2], a block cipher
with few multiplications that is designed to be efficient in secure computation.
Picnic is currently an “alternate candidate” in round 3 of the NIST post-quantum
crypto competition [1]. BBQ [34] introduced the idea of using AES in Picnic-
like signatures and showed that the signature sizes could be competitive with
those using LowMC. To achieve this, rather than evaluating the binary circuit
for AES, they used an arithmetic MPC-in-the-head system over Fos; this facili-
tates proving constraints about inverses in Fos, the non-linear component of the
AES S-box. They also show how each field inversion can be reduced to a single
multiplication gate (without testing for the case in which the input and output
are both equal to 0) with very small reduction in the soundness of the resulting
system (less than 3 bits of security). We follow their approach in this section.
Table 3 shows the proof sizes of ITturborkos When computing signatures using
AES at different security levels. We compare against the following systems:

— BBQ [34]: The figures are taken directly from their paper, except the number
of parties is not listed. We make an educated guess that they use approxi-
mately N = 64 parties; for lower NV their proof size will be larger.

— Katz et al. [55]: We calculate the proof size using the formula in [55], assum-
ing that a field inversion constraint can be verified with two field elements
per MUL gate like in this work; we believe this should be true but did not
check. Also, our calculations use 32 parties rather than 31; this result should
be a conservative smaller estimate of the actual proof size when N = 31.

— Baum-Nof [6]: We calculate a conservative underestimate of the proof size
using the formula in [6], assuming that only a single zero-check is needed
per repetition. However, this is unlikely to be the case in Fys for the same
reason as in our work.

— Banquet [7]: The figures are taken directly from their paper.

Banquet [7] is independent recent work that reduce the size of AES-based
Picnic signatures using very different techniques based on polynomial interpola-
tion in extension fields of Fqs [20,31]. They achieve a smaller proof size than all
competitors, including us. However, this advantage comes with two downsides
relative to our scheme and prior ones. First, performing polynomial arithmetic in
extension fields would be costly on embedded devices whose CPU architectures
typically have a small word size. Second, the polynomials are proportional to
the entire circuit size, making their system more memory-costly than traditional
MPC-in-the-head based methods like ours where the memory is only propor-
tional to the circuit width (i.e., the memory required to compute the circuit).

5.2 Prototype Implementation

We created a prototype implementation for IITyhoikos in Python. We did not
optimize the runtime or memory usage of our code, thus, we will likely not

TurbolKOS: Improved Non-interactive Zero Knowledge 25

Table 3: Signature size comparison for the Picnic signature scheme at different
security levels for different systems. All signature sizes are shown in kilobytes
(KB). AES-128 has (M,I) = (200, 128), AES-192x2 has (M,I) = (416,192),
and AES-256x2 has (M, I) = (500, 256).

Scheme | N Protocol (all sizes in KB)
|7 | BBQ[34] Katzetal [55] Baum-Nof [6] IIturboikos Banquet [7]
8 \ 26.7 37.3 23.8 —
A}?E_ll)QS 16 31.6 224 29.4 20.6 19.8
31 | 19.8 24.8 19.8 17.5
8 \ 76.3 110.8 66.7 —
AE?I-};;QXQ 16 86.9 63.1 87.4 56.3 51.2
31 \ 54.9 73.4 52.2 45.1
8 | 122.6 179.9 109.3 —
AE?LQSE;(SXZ 16 133.7 101.9 140.7 90.4 83.5
31 | 89.1 118.0 82.8 73.9

win on prover runtime with other MPC-in-the-head approaches written in C
or C++, e.g. [6,55]. That having been said, our protocol is amenable to all of
the optimizations made by the recent Reverie software [69] implementing the
protocol of Katz et al. Our code currently achieves runtimes about twice as
long as Reverie for the same size circuit. In this section we briefly describe our
implementation.

Our Python implementation [49] supports both Bristol circuit formats and
Prover Worksheet (PWS) formats as input. The circuit is parsed into a list of
Gate objects, found in gate.py, and initializes a Wire data structure, found in
wire.py, that takes in a list of dictionaries containing the values on each wire.

Dictionaries are used extensively to manage information. Circuit information
such as the number of various types of gates are stored in a dictionary. Values
on each wire such as e and A are also stored in a dictionary. Each wire has a
dictionary of values, resulting in a list of dictionaries with length of the number
of wires. This list of dictionaries is later used as the input to the Wire object,
found in wire.py, which defines functions to access values on the wire.

On the Prover side, P calculates all the parties as she parses through the
circuit, so P uses the Wire objects to access a party’s value. On the Verifier side,
V picks one party to leave unopened and reconstructs the other N —1 views from
the seeds given by P. We generate the shares A, 5\y, and)\, pseudorandomly using
AES as a PRF with the party’s seed as the key and the concatenation of the
(fixed-length) wire index and type of value as the message.

The prover is required to send a commitment in Round 1 and Round 3.
As discussed in §2, when committing to values with sufficient min-entropy, we
simply use Com(m) := H(m), thus decommitments are “free” aside from the
cost of m itself. This remains computationally hiding as long as m has sufficient
min-entropy and H is a random oracle. We use SHA2 from hashlib for our

26

Y. Gvili et al.

instantiation of H. To achieve non-interactivity via the Fiat-Shamir Transform
[36], the random messages sent by the Verifier in Round 2 and Round 4 are
replaced by a call to H on the info sent by P in all previous rounds.

Acknowledgments

This material is supported by a Google PhD Fellowship, the DARPA SIEVE
program under Agreement No. HR00112020021, and the National Science Foun-
dation under Grants No. 1414119, 1718135, 1739000, 1801564, 1915763, and

1931714.
References
1. Alagic, G. et al: Status report on the second round of

10.

the NIST post-quantum cryptography standardization process.
https://csre.nist.gov/publications/detail /nistir/8309/final (2020)

Albrecht, M.R., Rechberger, C., Schneider, T., Tiessen, T., Zohner, M.: Ciphers
for MPC and FHE. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015, Part I.
LNCS, vol. 9056, pp. 430-454. Springer, Heidelberg (Apr 2015)

Ames, S., Hazay, C., Ishai, Y., Venkitasubramaniam, M.: Ligero: Lightweight sub-
linear arguments without a trusted setup. In: Thuraisingham, B.M., Evans, D.,
Malkin, T., Xu, D. (eds.) ACM CCS 2017. pp. 2087-2104. ACM Press (Oct / Nov
2017)

Araki, T., Furukawa, J., Lindell, Y., Nof, A., Ohara, K.: High-throughput semi-
honest secure three-party computation with an honest majority. In: Weippl, E.R.,
Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S. (eds.) ACM CCS 2016. pp.
805-817. ACM Press (Oct 2016)

Baum, C., Malozemoff, A.J., Rosen, M., Scholl, P.: Mac’n’cheese: Zero-knowledge
proofs for arithmetic circuits with nested disjunctions. Cryptology ePrint Archive,
Report 2020/1410 (2020), https://eprint.iacr.org/2020/1410

Baum, C., Nof, A.: Concretely-efficient zero-knowledge arguments for arithmetic
circuits and their application to lattice-based cryptography. In: Kiayias, A.,
Kohlweiss, M., Wallden, P., Zikas, V. (eds.) PKC 2020, Part I. LNCS, vol. 12110,
pp. 495-526. Springer, Heidelberg (May 2020)

Baum, C., de Saint Guilhem, C.D., Kales, D., Orsini, E., Scholl, P., Zaverucha,
G.: Banquet: Short and fast signatures from AES. In: Public Key Cryptography.
Lecture Notes in Computer Science, Springer (2021)

Bellare, M., Goldwasser, S.: New paradigms for digital signatures and message
authentication based on non-interative zero knowledge proofs. In: Brassard, G.
(ed.) CRYPTO’89. LNCS, vol. 435, pp. 194-211. Springer, Heidelberg (Aug 1990)
Ben-Efraim, A., Nielsen, M., Omri, E.: Turbospeedz: Double your online SPDZ! Im-
proving SPDZ using function dependent preprocessing. In: Deng, R.H., Gauthier-
Umaia, V., Ochoa, M., Yung, M. (eds.) ACNS 19. LNCS, vol. 11464, pp. 530-549.
Springer, Heidelberg (Jun 2019)

Ben-Sasson, E., Chiesa, A., Garman, C., Green, M., Miers, 1., Tromer, E., Virza,
M.: Zerocash: Decentralized anonymous payments from bitcoin. In: 2014 IEEE
Symposium on Security and Privacy. pp. 459-474. IEEE Computer Society Press
(May 2014)

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

TurbolKOS: Improved Non-interactive Zero Knowledge 27

Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E., Virza, M.: SNARKs for C:
Verifying program executions succinctly and in zero knowledge. In: Canetti, R.,
Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 90-108. Springer,
Heidelberg (Aug 2013)

Ben-Sasson, E., Chiesa, A., Riabzev, M., Spooner, N., Virza, M., Ward, N.P.:
Aurora: Transparent succinct arguments for R1CS. In: Ishai, Y., Rijmen, V. (eds.)
EUROCRYPT 2019, Part I. LNCS, vol. 11476, pp. 103—-128. Springer, Heidelberg
(May 2019)

Ben-Sasson, E., Chiesa, A., Spooner, N.: Interactive oracle proofs. In: Hirt, M.,
Smith, A.D. (eds.) TCC 2016-B, Part II. LNCS, vol. 9986, pp. 31-60. Springer,
Heidelberg (Oct / Nov 2016)

Ben-Sasson, E., Chiesa, A., Tromer, E., Virza, M.: Succinct non-interactive zero
knowledge for a von neumann architecture. In: Fu, K., Jung, J. (eds.) USENIX
Security 2014. pp. 781-796. USENIX Association (Aug 2014)

Bendlin, R., Damgard, 1., Orlandi, C., Zakarias, S.: Semi-homomorphic encryption
and multiparty computation. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS,
vol. 6632, pp. 169-188. Springer, Heidelberg (May 2011)

Beullens, W., de Saint Guilhem, C.: LegRoast: Efficient post-quantum signatures
from the Legendre PRF. In: Ding, J., Tillich, J.P. (eds.) Post-Quantum Cryptog-
raphy - 11th International Conference, PQCrypto 2020. pp. 130-150. Springer,
Heidelberg (2020)

Bhadauria, R., Fang, Z., Hazay, C., Venkitasubramaniam, M., Xie, T., Zhang, Y.:
Ligero+-+: A new optimized sublinear IOP. In: Ligatti, J., Ou, X., Katz, J., Vigna,
G. (eds.) ACM CCS 20. pp. 2025-2038. ACM Press (Nov 2020)

Bitansky, N., Chiesa, A., Ishai, Y., Ostrovsky, R., Paneth, O.: Succinct non-
interactive arguments via linear interactive proofs. In: Sahai, A. (ed.) TCC 2013.
LNCS, vol. 7785, pp. 315-333. Springer, Heidelberg (Mar 2013)

Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its appli-
cations (extended abstract). In: 20th ACM STOC. pp. 103-112. ACM Press (May
1988)

Boneh, D., Boyle, E., Corrigan-Gibbs, H., Gilboa, N., Ishai, Y.: Zero-knowledge
proofs on secret-shared data via fully linear PCPs. In: Boldyreva, A., Micciancio, D.
(eds.) CRYPTO 2019, Part III. LNCS, vol. 11694, pp. 67-97. Springer, Heidelberg
(Aug 2019)

Bootle, J., Cerulli, A., Chaidos, P., Groth, J., Petit, C.: Efficient zero-knowledge
arguments for arithmetic circuits in the discrete log setting. In: Fischlin, M., Coron,
J.S. (eds.) EUROCRYPT 2016, Part II. LNCS, vol. 9666, pp. 327-357. Springer,
Heidelberg (May 2016)

Bootle, J., Cerulli, A., Ghadafi, E., Groth, J., Hajiabadi, M., Jakobsen, S.K.:
Linear-time zero-knowledge proofs for arithmetic circuit satisfiability. In: Takagi,
T., Peyrin, T. (eds.) ASTACRYPT 2017, Part I1I. LNCS, vol. 10626, pp. 336-365.
Springer, Heidelberg (Dec 2017)

Boyle, E., Couteau, G., Gilboa, N.; Ishai, Y.: Compressing vector OLE. In: Lie,
D., Mannan, M., Backes, M., Wang, X. (eds.) ACM CCS 2018. pp. 896-912. ACM
Press (Oct 2018)

Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Kohl, L., Scholl, P.: Efficient pseu-
dorandom correlation generators: Silent OT extension and more. In: Boldyreva,
A., Micciancio, D. (eds.) CRYPTO 2019, Part III. LNCS, vol. 11694, pp. 489-518.
Springer, Heidelberg (Aug 2019)

28

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

Y. Gvili et al.

Biinz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs:
Short proofs for confidential transactions and more. In: 2018 IEEE Symposium on
Security and Privacy. pp. 315-334. IEEE Computer Society Press (May 2018)
Biinz, B., Fisch, B., Szepieniec, A.: Transparent SNARKSs from DARK compilers.
In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020, Part I. LNCS, vol. 12105,
pp. 677-706. Springer, Heidelberg (May 2020)

Camenisch, J., Lysyanskaya, A.: An efficient system for non-transferable anony-
mous credentials with optional anonymity revocation. In: Pfitzmann, B. (ed.) EU-
ROCRYPT 2001. LNCS, vol. 2045, pp. 93-118. Springer, Heidelberg (May 2001)
Chase, M., Derler, D., Goldfeder, S., Orlandi, C., Ramacher, S., Rechberger, C.,
Slamanig, D., Zaverucha, G.: Post-quantum zero-knowledge and signatures from
symmetric-key primitives. In: Thuraisingham, B.M., Evans, D., Malkin, T., Xu, D.
(eds.) ACM CCS 2017. pp. 1825-1842. ACM Press (Oct / Nov 2017)

Chiesa, A., Forbes, M.A., Spooner, N.: A zero knowledge sumcheck
and its applications. Cryptology ePrint Archive, Report 2017/305 (2017),
http://eprint.iacr.org/2017/305

Chiesa, A., Hu, Y., Maller, M., Mishra, P., Vesely, N., Ward, N.P.: Marlin: Pre-
processing zkSNARKSs with universal and updatable SRS. In: Canteaut, A., Ishai,
Y. (eds.) EUROCRYPT 2020, Part I. LNCS, vol. 12105, pp. 738-768. Springer,
Heidelberg (May 2020)

Corrigan-Gibbs, H., Boneh, D.: Prio: Private, robust, and scalable computation of
aggregate statistics. In: NSDI. pp. 259-282. USENIX Association (2017)
Costello, C., Fournet, C., Howell, J., Kohlweiss, M., Kreuter, B., Naehrig, M.,
Parno, B., Zahur, S.: Geppetto: Versatile verifiable computation. In: 2015 IEEE
Symposium on Security and Privacy. pp. 253-270. IEEE Computer Society Press
(May 2015)

Damgard, I., Pastro, V., Smart, N.P., Zakarias, S.: Multiparty computation
from somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 643-662. Springer, Heidelberg (Aug 2012)
de Saint Guilhem, C., De Meyer, L., Orsini, E., Smart, N.P.. BBQ: Using AES
in picnic signatures. In: Paterson, K.G., Stebila, D. (eds.) SAC 2019. LNCS, vol.
11959, pp. 669-692. Springer, Heidelberg (Aug 2019)

De Santis, A., Persiano, G.: Zero-knowledge proofs of knowledge without interac-
tion (extended abstract). In: 33rd FOCS. pp. 427-436. IEEE Computer Society
Press (Oct 1992)

Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification
and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO’86. LNCS, vol. 263, pp.
186—194. Springer, Heidelberg (Aug 1987)

Frederiksen, T.K., Nielsen, J.B., Orlandi, C.: Privacy-free garbled circuits with
applications to efficient zero-knowledge. In: Oswald, E., Fischlin, M. (eds.) EURO-
CRYPT 2015, Part II. LNCS, vol. 9057, pp. 191-219. Springer, Heidelberg (Apr
2015

Gabi)zon, A.: AuroraLight: Improved prover efficiency and SRS size in
a sonic-like system. Cryptology ePrint Archive, Report 2019/601 (2019),
https://eprint.iacr.org/2019/601

Gabizon, A., Williamson, Z.J., Ciobotaru, O.: PLONK: Permutations over
lagrange-bases for oecumenical noninteractive arguments of knowledge. Cryptology
ePrint Archive, Report 2019/953 (2019), https://eprint.iacr.org,/2019/953
Ganesh, C., Kondi, Y., Patra, A., Sarkar, P.: Efficient adaptively secure zero-
knowledge from garbled circuits. In: Abdalla, M., Dahab, R. (eds.) PKC 2018,
Part II. LNCS, vol. 10770, pp. 499-529. Springer, Heidelberg (Mar 2018)

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

TurbolKOS: Improved Non-interactive Zero Knowledge 29

Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and
succinct NIZKs without PCPs. In: Johansson, T., Nguyen, P.Q. (eds.) EURO-
CRYPT 2013. LNCS, vol. 7881, pp. 626—645. Springer, Heidelberg (May 2013)
Giacomelli, I., Madsen, J., Orlandi, C.: ZKBoo: Faster zero-knowledge for Boolean
circuits. In: Holz, T., Savage, S. (eds.) USENIX Security 2016. pp. 1069-1083.
USENIX Association (Aug 2016)

Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or A
completeness theorem for protocols with honest majority. In: Aho, A. (ed.) 19th
ACM STOC. pp. 218-229. ACM Press (May 1987)

Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their validity
or all languages in NP have zero-knowledge proof systems. Journal of the ACM
38(3), 691-729 (1991)

Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof systems. STAM Journal on Computing 18(1), 186-208 (1989)

Groth, J.: Short pairing-based non-interactive zero-knowledge arguments. In: Abe,
M. (ed.) ASTACRYPT 2010. LNCS, vol. 6477, pp. 321-340. Springer, Heidelberg
(Dec 2010)

Groth, J.: On the size of pairing-based non-interactive arguments. In: Fischlin,
M., Coron, J.S. (eds.) EUROCRYPT 2016, Part II. LNCS, vol. 9666, pp. 305-326.
Springer, Heidelberg (May 2016)

Groth, J., Kohlweiss, M., Maller, M., Meiklejohn, S., Miers, I.. Updatable and
universal common reference strings with applications to zk-SNARKSs. In: Shacham,
H., Boldyreva, A. (eds.) CRYPTO 2018, Part III. LNCS, vol. 10993, pp. 698-728.
Springer, Heidelberg (Aug 2018)

Gvili, Y., Ha, J., Varia, S.S.M., Yang, Z., Zhang, X.: TurbolKOS.
https://github.com/sarahscheffler/ TurboIKOS (2021)

Heath, D., Kolesnikov, V.: Stacked garbling for disjunctive zero-knowledge proofs.
In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020, Part III. LNCS, vol. 12107,
pp. 569-598. Springer, Heidelberg (May 2020)

Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge from secure
multiparty computation. In: Johnson, D.S., Feige, U. (eds.) 39th ACM STOC. pp.
21-30. ACM Press (Jun 2007)

Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Cryptography with constant
computational overhead. In: Ladner, R.E., Dwork, C. (eds.) 40th ACM STOC. pp.
433-442. ACM Press (May 2008)

Jawurek, M., Kerschbaum, F., Orlandi, C.: Zero-knowledge using garbled circuits:
how to prove non-algebraic statements efficiently. In: Sadeghi, A.R., Gligor, V.D.,
Yung, M. (eds.) ACM CCS 2013. pp. 955-966. ACM Press (Nov 2013)

Kales, D., Zaverucha, G.: An attack on some signature schemes constructed from
five-pass identification schemes. In: Krenn, S., Shulman, H., Vaudenay, S. (eds.)
CANS 20. LNCS, vol. 12579, pp. 3-22. Springer, Heidelberg (Dec 2020)

Katz, J., Kolesnikov, V., Wang, X.: Improved non-interactive zero knowledge with
applications to post-quantum signatures. In: Lie, D., Mannan, M., Backes, M.,
Wang, X. (eds.) ACM CCS 2018. pp. 525-537. ACM Press (Oct 2018)

Keller, M., Pastro, V., Rotaru, D.: Overdrive: Making SPDZ great again. In:
Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part III. LNCS, vol. 10822,
pp. 158-189. Springer, Heidelberg (Apr / May 2018)

Kilian, J.: A note on efficient zero-knowledge proofs and arguments (extended
abstract). In: 24th ACM STOC. pp. 723-732. ACM Press (May 1992)

30

58.

59.

60.

61.
62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

4.

Y. Gvili et al.

Lindell, Y., Pinkas, B.: An efficient protocol for secure two-party computation
in the presence of malicious adversaries. In: Naor, M. (ed.) EUROCRYPT 2007.
LNCS, vol. 4515, pp. 52-78. Springer, Heidelberg (May 2007)

Lund, C., Fortnow, L., Karloff, H.J., Nisan, N.: Algebraic methods for interactive
proof systems. In: 31st FOCS. pp. 2-10. IEEE Computer Society Press (Oct 1990)
Maller, M., Bowe, S., Kohlweiss, M., Meiklejohn, S.: Sonic: Zero-knowledge
SNARKS from linear-size universal and updatable structured reference strings. In:
Cavallaro, L., Kinder, J., Wang, X., Katz, J. (eds.) ACM CCS 2019. pp. 2111-2128.
ACM Press (Nov 2019)

Microsoft Corporation: Picnic. https://microsoft.github.io/Picnic/

Miers, 1., Garman, C., Green, M., Rubin, A.D.: Zerocoin: Anonymous distributed
E-cash from Bitcoin. In: 2013 IEEE Symposium on Security and Privacy. pp. 397—
411. IEEE Computer Society Press (May 2013)

Naor, M., Pinkas, B.: Oblivious transfer and polynomial evaluation. In: 31st ACM
STOC. pp. 245-254. ACM Press (May 1999)

Nielsen, J.B., Nordholt, P.S., Orlandi, C., Burra, S.S.: A new approach to prac-
tical active-secure two-party computation. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 681-700. Springer, Heidelberg (Aug 2012)
Parno, B., Howell, J., Gentry, C., Raykova, M.: Pinocchio: Nearly practical verifi-
able computation. In: 2013 IEEE Symposium on Security and Privacy. pp. 238-252.
IEEE Computer Society Press (May 2013)

Reingold, O., Rothblum, G.N.; Rothblum, R.D.: Constant-round interactive proofs
for delegating computation. In: Wichs, D., Mansour, Y. (eds.) 48th ACM STOC.
pp. 49-62. ACM Press (Jun 2016)

Setty, S.: Spartan: Efficient and general-purpose zkSNARKSs without trusted setup.
In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020, Part ITII. LNCS, vol. 12172,
pp. 704-737. Springer, Heidelberg (Aug 2020)

Setty, S., Lee, J.: Quarks: Quadruple-efficient transparent zkSNARKSs. Cryptology
ePrint Archive, Report 2020/1275 (2020), https://eprint.iacr.org/2020/1275

Trail of Bits: Reverie. https://github.com/trailofbits/reverie (2021)

Wahby, R.S., Tzialla, 1., shelat, a., Thaler, J., Walfish, M.: Doubly-efficient zk-
SNARKSs without trusted setup. In: 2018 IEEE Symposium on Security and Pri-
vacy. pp. 926-943. IEEE Computer Society Press (May 2018)

Weng, C., Yang, K., Katz, J., Wang, X.: Wolverine: Fast, scalable, and
communication-efficient zero-knowledge proofs for boolean and arithmetic circuits.
Cryptology ePrint Archive (2020)

Xie, T., Zhang, J., Zhang, Y., Papamanthou, C., Song, D.: Libra: Succinct zero-
knowledge proofs with optimal prover computation. In: Boldyreva, A., Micciancio,
D. (eds.) CRYPTO 2019, Part III. LNCS, vol. 11694, pp. 733-764. Springer, Hei-
delberg (Aug 2019)

Zahur, S., Rosulek, M., Evans, D.: Two halves make a whole - reducing data
transfer in garbled circuits using half gates. In: Oswald, E., Fischlin, M. (eds.)
EUROCRYPT 2015, Part II. LNCS, vol. 9057, pp. 220-250. Springer, Heidelberg
(Apr 2015)

Zhang, J., Xie, T., Zhang, Y., Song, D.: Transparent polynomial delegation and its
applications to zero knowledge proof. In: 2020 IEEE Symposium on Security and
Privacy. pp. 859-876. IEEE Computer Society Press (May 2020)

