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Analysis and Distributed Control of Periodic
Epidemic Processes

Sebin Gracy ““, Philip. E. Paré

Abstract—This article studies epidemic processes over
discrete-time periodic time-varying networks. We focus on
the susceptible-infected-susceptible (SIS) model that ac-
counts for a (possibly) mutating virus. We say that an
agent is in the disease-free state if it is not infected by
the virus. Our objective is to devise a control sirategy
which ensures that all agents in a network exponentially
(respectively asymptotically) converge to the disease-free
equilibrium (DFE). Toward this end, we first provide 1) suf-
ficient conditions for exponential (respectively, asymptotic)
convergence to the DFE and 2) a necessary and sufficient
condition for asymptotic convergence to the DFE. The suf-
ficient condition for global exponential stability (GES) [re-
spectively global asymptotic stability (GAS)] of the DFE is
in terms of the joint spectral radius of a set of suitably de-
fined matrices, whereas the necessary and sufficient con-
dition for GAS of the DFE involves the spectral radius of an
appropriately defined product of matrices. Subsequently,
we leverage the stability results in order to design a dis-
tributed control strategy for eradicating the epidemic.

Index Terms—Discrete-time networks, distributed con-
trol strategy, epidemic processes, global asymptotic stabil-
ity (GAS), global exponential stability (GES), susceptible-
infected-susceptible (SIS) models, time-varying systems.

[. INTRODUCTION

PREADING processes, like epidemics, propagation of

(mis)information in social networks, etc., often have signif-
icant consequences. For instance, the outbreak of Severe Acute
Respiratory Syndrome (SARS) in 2003 in Hong Kong resulted
in 286 deaths [1]. More recently, the increasing instances of
coronavirus infections have severely affected normal life across
multiple continents [2]. It is known that certain epidemics exhibit
yearly seasonal patterns, such as meningococcal meningitis in
Western Africa, which typically occurs between January and
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May of each year [3]. Furthermore, in the modern world, the
networks that people have often recur with some periodicity,
for example, professional networks during the day, personal
networks at other times, and transportation networks. In this
article, we will consider seasonal epidemic processes in periodic
time-varying networks, and will be interested in the following
natural question: how can the epidemic be eradicated? Answer-
ing this question is a two-step process: First, we need to know
under what conditions do all the agents in a population become
healthy. Second, given the knowledge of the convergence con-
ditions, what measures can be adopted in order to guarantee that
the epidemic is eradicated.

Modeling and analysis of spreading processes has attracted
the attention of researchers across a wide spectrum ranging from
mathematical epidemiology [4], [5] and physics [6] to the social
sciences [7]. The primary objective behind these research efforts
is to better understand how various diseases can spread through
a population, which could then inform effective methods of
management and control of the disease. In this pursuit, various
models have been studied in the literature; here, we concern
ourselves with susceptible-infected-susceptible (SIS) models.

In an SIS model, an agent is either in the susceptible or
infected state. A healthy agent can, as a consequence of its
neighbors being infected, become infected with some infection
rate 3. An infected agent can be cured, with a healing rate 4,
thereby returning to the susceptible state. It is assumed that there
is no entry into or exit from the population, that is, the number
of agents in the network remains fixed [8], [9].

A. Related Works

The analysis of SIS epidemic models has attracted the at-
tention of researchers over the last several decades; for the
continuous-time case, see [6], [10], and [11], whereas for the
discrete-time case, see [8], [12]-[14]. In this article, we consider
a discrete-time setup and, therefore, mainly review the discrete-
time literature. In this context, for the case of time-invariant
graphs, the authors in [12] provide an epidemic threshold for
the model equal to the inverse of the maximum eigenvalue
of the matrix representing the graph structure. However, the
result in [12] is restricted to homogeneous virus spread, i.e.,
the infection and healing rates of each agent are identical. The
result in [12] has been further strengthened by accounting for
directed and weighted graphs in [13]. In particular, the authors
in [13, Theor. 5] establish that as long as the spectral radius
of an appropriately defined matrix is strictly less than 1, the
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epidemic becomes extinct. However, note that the time-invariant
discrete-time SIS model in [13] is different from the one in [14].
The disease-free equilibrium (DFE) and the nondisease free
equilibrium (NDFE)! of several models have been studied in [8].
Moreover, the authors in [8] also provide existence, stability, and
uniqueness conditions for the NDFE. A necessary and sufficient
condition, in terms of the spectral radius of a matrix that is a
function of the graph structure and the infection and healing
rates, for global asymptotic stability (GAS) of the DFE has
been established in [14]. To the best of our knowledge, for
discrete-time time-invariant SIS models as in [14], a sufficient
condition for global exponential stability (GES) of the DFE is
missing in the existing literature.

The models in [8] and [12]-[14] suffer from the following
limitation: they cannot account for highly complex settings, in
particular, one where the interconnection between agents in a
population (possibly) changes with time, for instance, real-world
social and human-interaction networks. Such a scenario imposes
a time-varying topology on the underlying graph, thus motivat-
ing the need for time-varying SIS models.

The interest in SIS models with time-varying topology is
rather recent; for continuous-time setting, see [9], [16], and [17],
while for discrete-time setting, see [18] and [19]. In the context of
switched SIS models (both continuous-time and discrete-time),
asufficient condition for local exponential stability (respectively
instability) of the DFE is provided in [19]. It turns out that the
condition in [19, Theor. 2.2] implies GAS of the DFE for a
continuous-time switched SIS model; see [16]. Following up
on the work in [16] and [20], a switching susceptible-infected
(SI) model is studied, albeit under the assumption of complete
connectivity. In a similar vein, for a subset of random graphs,
sufficient conditions for almost sure GES of the DFE are pro-
vided in [21].

In the continuous-time setting, for heterogeneous virus spread
and directed graphs, under assumptions that the topology of
the underlying graph does not change foo quickly, sufficient
conditions for exponential convergence to the DFE are provided
in [9, Theor. 2]. The setup considered in this article differs
from the aforementioned works in the following sense: First,
we consider periodic discrete-time time-varying SIS models.
That is, SIS models where the number of agents remains fixed,
but the interconnection between them (possibly) changes with
time. Second, we account for mutating viruses, that is, even the
healing (respectively infection) rate of each agent can change
with time. Finally, the interconnections between agents and the
healing (respectively infection) rates repeat after every period.

As a first step toward designing a control strategy for eradicat-
ing epidemics in the aforementioned setup, we ask the following
questions: First, what are the sufficient conditions for the DFE
to be GES? Second, what are necessary and sufficient conditions
for the DFE to be GAS? To the best of our knowledge, both the
stated questions remain open. This article aims to answer these
questions. The second step essentially involves comprehending

!"The NDFE is an equilibrium where the infection persists in the network, and
is also referred to as the endemic equilibrium elsewhere in the literature; see for
instance [14] and [15].

how the dynamics of the spreading process can be controlled so
as to ensure that all agents converge to the DFE exponentially (re-
spectively asymptotically) fast. In this regard, various strategies
have been proposed in the literature; see, for instance, [15] and
[22], whereas for a survey of this subtopic, see [23]. In particular,
the authors in [24] consider a directed, network comprising
heterogeneous agents and propose a fully distributed Alternating
Direction Method of Multipliers (ADMM) algorithm that allows
for local computation of optimal investment required to boost
the healing rate at each node. However, the ADMM algorithm
in [24] involves heavy communication overhead, since every
agent needs to share with its neighbors their local estimate of
the full network. Overcoming the drawbacks with the ADMM
algorithm in [24] and [25] proposes distributed discrete-time
nonlinear algorithms for handling a class of distributed resource
allocation problems. A decentralized algorithm that involves
disconnecting nodes and increasing the healing rate subject to
resource constraints has been proposed in [26]. This algorithm
also accounts for control sparsity, that is, control resources can
be allocated only to a subset of nodes, and not necessarily to the
whole network. A distributed algorithm that, given resource lim-
itations, ensures the eradication of an epidemic with a specified
rate has been recently provided in [27]. The distributed control
algorithms provided in [15], [24]-[27], and the results in [22] and
[23] are for time-invariant SIS models. Similar techniques for the
more general setting of the discrete-time, periodic, time-varying,
mutating SIS model are, as far as we know, not available in the
literature. This article closes this gap.

B. Contributions

The central premise of this article is: given that a seasonal
epidemic is prevalent within a population with time-varying
interconnection between the agents, how do we eradicate it?
We answer this question in the following manner. First, we find
conditions which ensure that regardless of the initial state of an
agent, i.e., healthy or sick, all agents converge to the healthy
state exponentially (respectively asymptotically) fast. Second,
with the knowledge of the aforementioned conditions in hand,
we show that by sufficiently boosting the healing rate of each
agent, the epidemic can be eradicated in exponential (respec-
tively asymptotic) time. More specifically, under assumptions
of periodicity, we show that the following hold.

1) The joint spectral radius of an appropriately defined set
of matrices being strictly less than 1 ensures GES of the
DFE; see Theorem 1.

2) The joint spectral radius of an appropriately defined set of
matrices being no greater than 1 ensures GAS of the DFE;
see Theorem 2. A less restrictive condition that endows
the DFE with the GES (respectively GAS) property re-
quires the spectral radius of a suitably defined product of
matrices to be strictly less than (respectively not greater
than) 1; see Corollary 1 (respectively Corollary 3). In
particular, for discrete-time SIS time-invariant models,
we establish that the spectral radius of a suitably defined
matrix being strictly less than 1 implies GES of the DFE;
see Proposition 3.
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3) The spectral radius, of a suitably defined product of ma-
trices, being no greater than 1 is a necessary and sufficient
condition for GAS of the DFE; see Theorem 3.

4) A novel distributed control strategy exponentially (re-
spectively asymptotically) stabilizes the DFE; see The-
orem 4 (respectively Corollary 4).

C. Outline

This article unfolds as follows: we conclude the present sec-
tion by listing all the notation used in the sequel. The problems
under investigation, and hence, the main objectives of this article,
are stated in Section II, whereas the background material needed
for developing the main results are provided in Section III. We
present conditions for exponential convergence (respectively
asymptotic convergence) to the DFE in Section I'V (respectively
Section V). We propose the distributed control strategy in Sec-
tion VI. The simulations are provided in Section VII. Finally,
we summarize this article, and highlight certain problems that
could be of possible interest for future work in Section VIII.

D. Notation

Let R (respectively Zxp) denote the set of real numbers
(respectively nonnegative integers). We denote by Z, the set
of positive integers. For a pair of integers a,b € Z, amod b
indicates a modulo b. For any positive integer n, we have [n] =
{1,...,n} and [n]” ={0,...,n—1}. Given a matrix A €
R™ ™ a,; denotes the entry corresponding to the ith row and jth
column; and p(A) denotes its spectral radius. Given a matrix A,
supposing its spectrum is real, Amin (A ) (respectively Amax(A))
denotes the minimum (respectively maximum) eigenvalue of A.
A diagonal matrix is denoted diag(-). Given a vector z € R™,
its transpose is denoted =" and its average ¥ := 2 "7 | z;. The
Euclidean norm is denoted by || - ||, whereas the infinity norm
is indicated by || - ||c. Given a sequence of matrices A(k + p),
Alk+p—1), ..., A(k+1), A(k), their product Ay ypi1:x is
definedas Agypi1. =A(k+p) - A(k+p—1)---A(k+1)-
A(k). Given a matrix A, A < 0 (respectively A < 0) indicates
that A is negative definite (respectively negative semidefinite),
whereas A - 0 (respectively A = 0) indicates that A is positive
definite (respectively positive semidefinite).

[I. PROBLEM FORMULATION

Consider a possibly time-varying epidemic network of n
agents, where the interpretation of fime-varying is as follows: the
set of agents remains fixed, whereas the interconnections among
the agents could possibly be time-varying. Due to the possibly
time-varying nature of the interconnections, the healing rate and
infection rate of each agent might also be time-dependent, that
is, mutating. Thus, the continuous-time dynamics of each agent
can be represented as follows:

&i(t) = (1 — ) Bi(t) Zaij(t)ﬂ?j —6i(t)zs(t) (1)

j=1

where 2 represents the ith agent, =; is the infection level, and
for every t € R, j3;(t) > O (respectively é;(t) > 0) denotes the

infection (respectively healing) rate. Assuming there exists a
directed edge from agent j to agent 1 at time £, the corresponding
edge weight is denoted by a;;(t) > 0. If a;;(¢) = 0, then there
does not exist an edge from agent j to agent : at time ¢. Intuitively,
one can think of x; as an approximation of the probability of
agent 7 being infected, and 1 — x; represents an approximation
of the probability of agent ¢ being healthy. The state can also be
interpreted as the proportion of subpopulation z that is infected.
Therefore, for the remainder of the article, we assume that the
initial values of each node’s state lie in the interval [0,1].

The model in (1) was introduced in [9, eq. (10)], whereas, for
the time-invariant case, it has been also proposed in [14, eq. (1)].

The virus outbreaks that motivate this work are often recorded
in epidemiological reports that are compiled per day [28], [29]
or week [30]. This sampling of the system behavior motivates
the use of a discrete-time SIS model [14]. The model is obtained
by applying the Euler’s method [31] to (1),

zi(k+1) = z;(k) + h((l —zi(k)Bs(k) D aij(k); (k)

j=1

_ aﬁ(mzi(k)) @

where h is the sampling parameter, and, therefore, h > 0. Ob-
serve that system (2) is a discrete-time nonlinear time-varying
system, and quite naturally its stability analysis differs consid-
erably from that of discrete-time linear time-varying systems.

The spread of diseases in a network can be modeled using a
graph: the nodes representing the agents or subpopulations, and
the edges representing the interaction among them. More for-
mally, let Gy, = (V, E}) represent such a network, where V =
{1,2,...,n}isthe vertex setand Ey = {(z;, ;) | as;(k) # 0}
is the edge set.

The model in (2) can be written in a matrix form as

z(k+ 1) = =(k) + h((I — X(k))B(k)A(k) — D(k)):c(kgs)
where X (k) = diag(z(k)), B(k) = diag(B:(k)), D(k)=
diag(d;(k)), and A(k) = [ai;(k)], for every i, j € [n]. Let us
define B(k) := B(k)A(k), with its entries being denoted as
PBij (k). Then, (3) can be rewritten as

2(k+1) = 2(k) + (I — X(k))B(k) — D(R))x(k). ()

Observe that j3;;(k) represents the infection rate and nearest-
neighbor graph both at time instant k. That is, assuming /3; (k) >
0 and that there exists an edge from vertex j to vertex ¢ (i.e.,
a;j(k) > 0), B;; (k) scales the weight on the edge from vertex j
to vertex ¢ by 3;(k).

Since we are interested in seasonal epidemics, we restrict our
attention to discrete-time periodic SIS models. Thus, we have
the following assumption.

Assumption 1: Given some period pe Z,, B(k+p) =
B(k), A(k +p) = A(k), and D(k + p) = D(k) forall k > 0.

The DFE is defined as the state where z;(k) = Oforall: € [n],
which, from (4), implies that z;(x) = 0 for all k > E, for all
1 € [n]. We are interested in ensuring that, irrespective of the
initial condition of an agent, i.e., healthy or sick, the system
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should exponentially (respectively asymptotically) converge to
the DFE.

Throughout this article, we interchangeably use the terms
“healthy state” and “DFE,” and likewise the terms “convergence
to the DFE” and “eradication of the virus.”

With the above-described setup in place, the objectives of this
article are as follows.

1) For the system with dynamics as given in (4), find suffi-
cient condition(s) such that the DFE is the only equilib-
rium and GES.

2) For the system with dynamics as given in (4), find nec-
essary and sufficient condition such that the DFE is the
only equilibrium and GAS.

3) Based on the knowledge of the graph topologies, infec-
tion rates and the conditions for exponential (respec-
tively asymptotic) convergence to the DFE, develop a
distributed control strategy such that the DFE can be
exponentially (respectively asymptotically) stabilized.

We make the following assumptions.

Assumption 2: We have hd;(k) > Oand 3;;(k) > 0forevery

i,j € [n], k€ [p]". u
Assumption 3: Forevery i, j € [n]and k € [p]~, hdi(k) < 1
and by, By (k) < 1. N

Assumption 2 says that, for each agent, the healing and
infection rates are non-negative. Assumption 3 is required for
ensuring that our model is well-defined.

Lemma 1: For the system in (4), under the conditions of
Assumptions 2 and 3 and if z;(0) € [0, 1], for all 7 € [n], then
z;(k) € [0,1] foralli € [r] and k > 0. |

The proof is along similar lines as that of [14, Lemma 1], and,
hence, is skipped. O

Lemma 1 ensures that the set [0,1]™ is positively invariant,
i.e., once a trajectory of (4) enters the set [0, 1]™, it stays within
the set [0, 1]™ for all future time instants.

Ill. PRELIMINARIES

In this section, we recall various notions of stability of
discrete-time deterministic systems [32, Sec. 5.9], which will be
used in the sequel. Additionally, we collect some useful results
from the literature that facilitate the development of our main
results.

Consider a system, described as follows:

z(k+1) = f(k,z(k)) ©)

where f : Z.o x R™ — R™ is locally Lipschitz. We say that
an equilibrium of the abovementioned equation is (uniformly)
asymptotically stable if it is (uniformly) stable and (uniformly)
attractive. An equilibrium is said to be GAS [respectively glob-
ally uniformly asymptotically stable (GUAS)] if in addition to
being asymptotically stable (respectively uniformly asymptot-
ically stable) the system converges to that equilibrium for any
initial condition. We recall a sufficient condition for GUAS of
an equilibrium of (5).

Lemma 2: [32, Sec. 5.9 Th. 27] The DFE of system (5) is
GUAS if there is a function V : Z, x R™ — R such that i)

V(k,0) = 0,and, forallz # 0,V (k, z) > 0,ii) V is decrescent,
and radially unbounded, and iii) — AV (where the forward differ-
ence function AV : Z, x R™ — R is defined as: AV (k,z) =
V(E+1,z(k+1)) — V(k,x))is positive definite. |

A stronger notion of stability is that of GES, which is defined
as follows.

Definition 1: An equilibrium point of (5) is GES if there exist
positive constants c and 73, with 0 < 5 < 1, such that

lz(k)I| < a [l2(ko)l| n™* ) VK, ko > 0 Vzx, € R™

We recall a sufficient condition for GES of an equilibrium
of (5) in the following proposition.

Lemma 3: [32, Sec. 5.9 Th. 28] Suppose there exists a
functionV : Z, x R™ — R, and constants a,b,c > 0 and p >
1 such that a|z||P < V(k,z) < b||z|P, AV (K, z) < —c|z|?
¥k >0, and Yz € R™, then = = 0 is an exponentially stable
equilibrium of (5). |

The initial values are in the domain [0, 1], since otherwise
they do not correspond to reality for the model under consider-
ation. Consequently, we can say that the DFE of system (4) is
GES if the condition in Definition 1 (respectively Lemma 3) is
satisfied for all z;, € [0, 1]"™. Similarly, we say that the DFE of
system (4) is GAS if the condition in Lemma 2 is satisfied for
all ¢, € [0,1]™.

The following lemmas will be needed for proving the suffi-
ciency results in the sequel.

Lemma 4: 33, Proposition 1] Suppose that M is a nonneg-
ative matrix such that p(M) < 1. Then there exists a diagonal
matrix P > 0 such that M " PM — P < 0. o

Lemma 5: [14, Lemma 3] Suppose that M is an irreducible
nonnegative matrix such that p(M) = 1. Then there exists a
diagonal matrix P > 0 such that M " PM — P < 0. o

The following proposition is used for proving the necessity
result in the sequel.

Proposition 1:[32, Sec. 5.9 Th. 42] Consider the autonomous
system

z(k +1) = f(z(k)). (6)

Define A = [%ﬁ]zzg. If A has at least one eigenvalue with
magnitude greater than 1, then = = 0 is an unstable equilibrium
of (6). |

Given that this article concerns periodic systems, we now
recall a result concerning the time invariance of the spectrum of
the state transition matrix.

Proposition 2: [34, p. 157] Consider the discrete-time p-
periodic time-varying autonomous system

z(k+1) = A(k)z(k). 0

Let Ay p: denote the corresponding state transition matrix.
The spectrum of Ay p.i is independent of k. u

One of the approaches toward studying stability issues in time-
varying networks relies on the notion of joint spectral radius—
first introduced by Rota and Strang in [35]—of a set of matrices;
see for instance [16], [19]. In the sequel, we will explore the
relation between the joint spectral radius of an appropriately
defined set of matrices and GES (respectively GAS) of the DFE.
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We define the following:
M (k) :=I — hD(k) + hB(k) (8
M (k) :=I + h((I — X(k))B(k) — D(k))
My = M(k+p—1)M(k+p—2)---M(K). ()

Observe that the linearizing system (4) around the DFE yields a
linear time-varying periodic system, whose state matrix is M (k).

Let M = {M(0),M(1),...,M(p—1)} denote a set of p
matrices M (k), where k € [p]. As was defined in [19], the
joint spectral radius of M, denoted by p(M), is

p(M) = lim sup ||M(p —1)M(p - 2)- - M(0)]7,

where M (k) e M Vk e [p]”. (10)

That is, p(M) is the largest eigenvalue of the product of p
matrices in M amongst all products of p matrices in M.

IV. EXPONENTIAL CONVERGENCE TO THE DFE

In this section, we present sufficient conditions for GES of
the DFE. In the context of epidemic outbreaks, these conditions
guarantee the eradication of the epidemic exponentially fast.
Recalling the understanding of joint spectral radius in (10), the
following result gives a sufficient condition for the DFE to be
GES.

Theorem 1: Consider (4) under Assumptions 1-3. If p(M) <
1, then the DFE is GES. [ |

Proof: See the Appendix, where additionally we establish an
upper bound on the rate of convergence. O

The result in Theorem 1, albeit restricted to periodic systems,
is relevant inits own right: Theorem 1 gives a sufficient condition
for GES of the DFE, whereas the same conditionin [19, Th. 2.2],
particularized for periodicity assumptions, guarantees only local
exponential stability of the DFE. Moreover, the proof technique
is entirely different.

Notice that checking the condition on the joint spectral radius
in Theorem 1 essentially entails asking the following question:
given a set of matrices, say R, is each and every product of
matrices within R stable? Answering this question is known to
be NP-hard; see [36, Corollary 2]. Hence, we are motivated to
seek a different condition that is computationally tractable.

The following corollary is an immediate consequence of
Proposition 2 and the proof of Theorem 1, and provides a less
restrictive sufficient condition for GES of the DFE.

Corollary 1: Consider (4) under Assumptions 1-3. If, for
some k € [p|~, p(Mg4p:x) < 1, then the DFE is GES. O

For the continuous-time setting, [9, Th. 2] gives a sufficient
condition for GES of the DFE, under the assumption that the
rate of change of topology is suitably bounded. To the best of
our knowledge, for discrete-time time-varying SIS epidemics,
Theorem 1 and Corollary 1 are the first results for GES of
the DFE. Moreover, unlike [9, Th. 2], neither Theorem 1 nor
Corollary 1 rely on any restrictions on how large the variations
in topology can be.

The following remark provides an epidemiological interpre-
tation of the implications of Theorem 1 (and Corollary 1).

Remark 1:The result in Corollary 1 is useful in the following
sense: Subject to virus mutation and the underlying sequence
of graph topologies repeating with some period p, we can
conclude that the virus will be eradicated. Notice that this result
is irrespective of how the aforementioned parameters vary with
time; in particular, even if at times, compared to the healing rates,
the infection rates are dominant. The same has been illustrated
via simulations in Section VIL |

Recall that [13, Theor. 5] provides a sufficient condition
for exponential convergence to the DFE. However, the model
in [13] is different from (4); healing (respectively infection)
rates are non-negative and cannot be greater than 1, and the
edge-weights and the spreading parameters are not allowed to
vary with time. Additionally, there are certain restrictions on
the underlying time-invariant graph; in particular, all self-loops
have weight equal to 1, and no edge can have weight greater than
1. Consequently, [13, Theor. 5] is less general than Theorem 4.

To the best of our knowledge, for the SIS model in (4), even
when particularized for the fime-invariant case (thus, yielding
the model in [14]), a sufficient condition for exponential con-
vergence to the DFE does not exist in the literature. It can
be immediately seen that the condition in Corollary 1 can be
specialized for the time-invariant setting, as discussed next.
First, note that time-invariant systems are periodic systems with
periodicity p = 1. Hence, My p.x = M for every k € Zo,
which implies that the condition in Corollary 1 is satisfied if
p(M) < 1. Therefore, we have the following proposition.

Proposition 3: Consider the nonmutating, static graph topol-
ogy version of (4), that is, where p = 1. If p(M) < 1, then the
DFE is GES. |

Proposition 3 establishes GES of the DFE, whereas [14,
Theor. 2], under the same condition as in Proposition 3, estab-
lishes only GAS of the DFE. Hence, Proposition 3 is a stronger
version of [14, Theor. 2].

Notice that, on one hand, the conditions in Theorem 1 and
Corollary 1 involve strict inequalities. On the other, they guar-
antee faster convergence to the DFE. An obvious question that
one can ask is the following: is it possible to relax the strict
inequalities in Theorem 1 and Corollary 1 at the cost of slower
convergence? In the context of epidemiology, the motivation
for doing so goes along the following lines: depending on the
severity of the epidemic in question, there might be scenarios,
for instance the common cold, where a positive answer to the
question: “will the disease die out?” suffices, and one is not too
concerned with the speed with which the epidemic disappears.
We investigate the same in the following section.

V. AsyMPTOTIC CONVERGENCE TO THE DFE

It turns out that if the inequality in Corollary 1 and, therefore,
in Theorem 1 were not necessarily strict, then the DFE is GAS.
Furthermore, if the inequality in Corollary 1 were to be reversed,
then the healthy state is an unstable equilibrium. Thus, in this
section, we establish a sufficient condition, and a necessary and
sufficient condition for GAS of the DFE.

We begin by noting that an immediate consequence of Theo-
rem 1 is the following.
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Corollary 2: Consider (4) under Assumptions 1-3. If
p(M) < 1, then the DFE is GAS. |

It turns out that the DFE is endowed with the property of
GAS even if p(M) = 1. To prove this claim, we need, besides
the assumptions in Corollary 2, the following assumptions.

Assumption 4: We have h # 0 and, for all k € [p]~, there

exists ¢ # j such that 3;;(k) > 0. [ |
Assumption 5: For each k € [p]~, the graph G} is strongly
connected. |

Assumption 4 rules out scenarios wherein an agent is infected,
yet since it is not connected to any of the other agents in the
network, it does not transmit the virus. Assumption 5 implies
that the adjacency matrix B(k), where k € [p], is irreducible,
i.e., B(k) cannot be permuted to a block upper triangular matrix.

Proposition 4: Consider (4) under Assumptions 1-5. If
p(M) = 1, then the DFE is GAS. |

Proof: See Appendix O

Combining Corollary 2 and Proposition 4, we readily obtain
the following result.

Theorem 2: Consider (4) under Assumptions 1-5.If p(M) <
1, then the DFE is GAS. |

Theorem 2 establishes asymptotic stability of the equilibrium
point = = 0, even for the case when p(M) = 1. Thus, it differs
from [19, Theor. 2.2] wherein no conclusions can be drawn when
pM) =1.

It is well-known that the condition in Theorem 2 is undecid-
able; see [37, Theor. 2]. That is, given a finite set of matrices
R, itis impossible to construct an algorithm that gives a correct
binary answer to the question: is p(R) < 1?

Observe that from Proposition 2 and the proof of Theorem 2,
the following less restrictive sufficient condition is immediate.

Corollary 3: Consider (4) under Assumptions 1-5. If, for
some k € [p]~, p(Mjp:x) < 1, then the DFE is GAS. |

It turns out that condition in Corollary 3 is also necessary.

Proposition 5: Consider (4) under Assumptions 1-5. The
DFE is asymptotically stable only if, for some k € [p]-,

p(ﬂ’-{k+p:k) < 1. |
Proof: See Appendix. O
Combining Corollary 3 and Proposition 5, readily yields the
following.

Theorem 3: Consider (4) under Assumptions 1-5. The DFE
of system (4) is GAS if, and only if, for some k € [p]~,
p(ﬂ’-fk+p:k) <1 n

For the continuous-time setting, it has been shown that the
switched SIS model admits a limit cycle if the condition in
Theorem 3 is violated; see [16, Theor. 6.4]. While our simu-
lations suggest that, for the discrete-time setting, violating the
condition in Theorem 3 could lead to the existence of a limit
cycle (see Section VII), this conjecture remains open. The main
difficulty in proving this claim stems from the fact that the
celebrated Poincaré-Benedickson Theorem—which forms the
underpinning for the proof in the continuous-time case—does
not seem to have a discrete-time counterpart.

Theorem 3 is a more general version of [14, Theor. 2], as
discussed next.

Remark 2: If system (4) is time-invariant or equivalently,
p =1, then the condition in Theorem 3 coincides with the

condition in [14, Theor. 2]. To see this, consider the follow-
ing argument: since p = 1, for every k € Z>0 Myipx = M.
Therefore, p(Mp4p.x) = p(M). Hence, p(My4p:) < 1if and
only if p(M) < 1, which is the same as the condition in [14,
Th. 2]. |

Notice that the objective insofar has been to find conditions
that ensure exponential (respectively asymptotic) convergence
to the DFE. Knowledge of the stability conditions enables health
administration officials to determine how the model parameters
in (4) should be adjusted so as to completely stop the spreading
of a disease. We focus on the same in the following section.

VI. DISTRIBUTED CONTROL STRATEGY

In this section, we show that increasing the healing rate of
each agent by a sufficiently high amount ensures eradication
of the epidemic. For time-invariant continuous-time SIS mod-
els, (local) techniques for eliminating the spread of epidemics
have been provided in [15, Sec. V]. Inspired by the same, we
explore similar strategies for the periodic, mutating setup, as
in this article. More specifically, in the sequel, we study how
to influence the healing rate of each agent so that the DFE is
exponentially (respectively asymptotically) stabilized. Toward
this end, we consider the following healing rates:

6i(k) = By(k)+v Vkelpl,ien] (1)

j=1

where for each 7 € [n], ; > 0.

It turns out that choosing healing rates as in (11) together
with appropriate assumptions on y; ensures that the DFE of (4)
is GES. Hence, we have the following theorem.

Theorem 4: Consider (4) under Assumptions 1-2. Suppose
that, foreachi € [n],~; in (11) satisfies h }°7_; B;(k) + hy: <
1. Then for healing rates as in (11), the DFE of (4) is GES. N

Proof: See Appendix. 0

Observe that if v; = 0 Vi € [n] in (11), then, from the proof
of Theorem 4, and that of Proposition 4, it follows that the DFE
is GAS; thus, leading us to the following corollary.

Corollary 4: Consider (4) under Assumptions 1-5. For heal-
ing rates of the form

8i(k) = Bij(k)
j=1

foreach i € [n] and k € [p]~, the DFE of (4) is GAS. o

The key insight that can be gleaned from Theorem 4 and
Corollary 4 is that there exist sufficiently large, yet finite,
time-varying healing rates such that the DFE can be stabilized.
This could inform healthcare professionals of disease-response
techniques, as explained in the following remark.

Remark 3: The distributed control strategy proposed in The-
orem 4 (respectively Corollary 4) may be interpreted in the
following sense: if the healing rate of each agent is suitably
increased—for instance by injecting sufficiently high dosages
of antidote—then the virus will be eradicated exponentially
(respectively asymptotically) fast. While the control strategy is
extreme, i.e., no constraints are imposed, it informs decision
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Fig. 1. Final condition for simulation with 4 = 35. All nodes are in the
DFE, depicted by blue.

makers of the best way to respond if ample resources are
available and encourages the stockpiling of resources to combat
possible outbreaks. |

VII. SIMULATIONS

The main challenge with new infectious diseases is that it is
often unclear how they spread and how contagious they are [1].
Therefore, motivated by diseases like SARS and COVID-19
and to further understand the implications of the results from
the previous sections, we present simulations over a network of
64 cities in the United States. The default graph structure is a
binary, nearest-neighbor graph depicted in Fig. 1 by black dotted
edges. For the periodic parts of the network we aggregate the
Southwest Airlines flights between the cities, split by departure
time in the morning (0:00-8:00), the day (8:00-16:00), and
the evening (16:00-24:00), which are depicted in Fig. 1 by
green, magenta, and cyan, respectively, and the edge weights
are scaled by the number of flights. The maximum number
flights in and out of one city during the day is 125; therefore,
we set h = 0.005 to meet Assumption 3. We use the initial
condition of Albuquerque completely infected and every other
city completely healthy (however, the results are independent of
nonzero initial condition). In the plots of the network, blue (b)
represents healthy and red (r) represents infected. The coloring
of each node 7 at time & follows:

z5(k)r + (1 — 4(k))b.

Since our interest lies in eradicating the virus, we explore the
results on the stability of the DFE from Sections IV and V via
simulations. For simplicity we use homogeneous, nonmutating
virus parameters with 5 = 1. We also suppose that the healing
rate of each agent is the same, i.e., §; = § foreach: € [n]. Recall
from Proposition 2, that the spectrum of My . is independent
of k. When é = 35, p(Mgy3:x) = 0.9815. Consistent with the
results in Section IV, the system converges to the DFE; see Fig. 1.
When § = 33.765, p(Mpy3:x) = 1.000. In line with the results
in Section V, the system with p(Mp3.x) = 1.000 converges
at a much slower rate than the other; see Fig. 2. For both of
these systems p(My) < 1, while p(M;) and p(M;) are greater

(12)

Z(k)

Fig. 2. Average infection level of the cities over time. Blue is for the
system with p( M} 43.5) = 1.000 and red is for p( M} 3.) < 1.000.
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Fig. 3. Average infection level of the cities over time for the simulation

with d; (k) = 10, forevery k € {0,1,2},1 € [n].

than 1. Thus, we see that even if the infection rates dominate the
healing rates for the majority of the time, the virus can still be
eradicated. This insight offers hope for control algorithm design;
having actuator capabilities for some portion of the period might
be sufficient to eradicate a virus.

Next, we focus on illustrating the instability result from
Section V. Our simulations, consistent with the result in
Proposition 5, exemplify that when p(Mj.4p:) > 1, the DFE
is an unstable equilibrium. Moreover, although it still needs
to be rigorously proven, our simulations show the existence of
limit-cycle behavior, thus, implying persistence of an outbreak
when p(Myypz) > 1.

For this simulation, we employ the same parameters as
the simulations in Fig. 2 except § = 10. This system has
p(Mpy3.) = 1.4015 and converges to a limit cycle with three
states. This limit-cycle behavior is illustrated via the average
infection level plotted in Fig. 3. The values of the three limit cycle
states are quite close to each other; therefore, we only plot one in
Fig. 4. Simulations show that the limit cycle is independent of the
initial condition, given that x(0) # 0. This finding implies that
if, when factoring in the network connections, the infection rates
dominate the healing rates sufficiently, the virus can pervade the
network. Therefore, intervention is essential.

In order to see how well the distributed control technique
from Section VI performs, we implement it here. In the con-
text of the simulation, the algorithm can be interpreted as a
strategy for boosting the healing rates of the more suscepti-
ble cities, which could be implemented by deploying mobile
treatment clinics, distributing medicine/antidote, and installing
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Fig. 4. One of the limit cycle states for the simulation with 8; (k) =
10. All cities become at least partially infected, depicted by the reddish
purple color, following (12).
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Fig. 5. Average infection level of the cities over time with the healing
rates set to (11) with y; = {0,0.01,0.1,1.0, 10, 100}, for every i € [n].

hand-washing stations in airports and other public places. For
this simulation, we keep the model parameters the same as the
previous simulations except we set the healing rates using (11)
with~; =~ = {0,0.01,0.1,1.0, 10, 100}, forevery i € [n],and
h = 0.004. Consistent with the results in Theorem 4 and Corol-
lary 4, the system converges to the DFE in exponential time
for nonzero  and in asymptotic time when « = 0. Here, we
explore the effect of v on the convergence rate. The average
level of infection for each « value is shown in Fig. 5. We see
that for this system + = 0.01 behaves very similarly to v = 0,
while v > 10 eradicates the virus relatively quickly. Therefore,
if there are enough resources available to boost the healing rates
of the cities, the virus can be eradicated.

However, in certain situations there may not be enough re-
sources to implement such viral-combatant measures during
every time step. Nevertheless, as we saw in the simulations in
Fig. 2, it is not necessary that the healing rates dominate the
infection rates atevery time step, or even a majority of the time, in
order for the virus to be eradicated. In this set of simulations, we
explore the effectiveness of the distributed control strategy pro-
posed in Section VI when the redesign of the healing parameters
can only be implemented for part of the period. Given our flight
example, the constraint can be interpreted as there only being
enough resources to boost the healing rates of the cities during
the day, however, not in the early morning or at night. Therefore,
we implement the controller from (11) but only during the work

Fig. 6. Average infection level of the cities over time with the heal-
ing rates for the work day period (8:00-16:00) set to (11) with ~; =
{0,10,19.7, 25,50, 100} and for the other two periods ~; = 10, Vi € [n].

day (8:00-16:00). For the other two periods, we set § = 10 for
every city, similar to the simulation in Fig. 3 that displayed the
limit-cycle behavior. We run a set of simulations with different
~ values in (11), v = {0,10,19.7, 25,50, 100}, where v = ~;
for every ¢ € [n]. We plot the average infection level for each
simulation in Fig. 6. As would be expected, a greater -y value
is needed to eradicate the virus than when actuation is allowed
for all three periods. However, even when no control actuation
is available for the majority of the periods, the virus can be
eradicated for this system if, for the work day period, v > 19.7.
As would be expected, in the case where the equality holds,
p(Mpsp.x) = 1. This result gives hope that, even when there
are constraints on the distributed control strategy, the virus can
be eradicated.

VIIl. ConcLUsION

Considering discrete-time periodic time-varying networks
with a mutating virus, this article has dealt with the problem
of designing a control strategy that ensures exponential (re-
spectively asymptotic) convergence to the healthy state. Our
approach was the following: we first provided conditions for
exponential (respectively asymptotic) convergence to the DFE.
Thereafter, we exploited the proven conditions for the design of
a distributed control strategy.

Note that we have restricted our attention to periodic time-
varying systems. Hence, a line of future research could be to
remove the periodicity assumption. Second, this article operated
under the assumption that there was a single virus that was
infecting the population. Generalizing this setup to account for
multiple—not necessarily two—competing viruses could be an
appealing line of investigation. Third, this article dealt with a
deterministic model; an inherent drawback with deterministic
models is that they do not account for the possibility that the
system dynamics can be corrupted by noise. Consequently,
deterministic models limit our understanding of the potential
behaviors involved and a future direction is to study the stochas-
tic version of the periodic SIS model. Finally, our simulations
indicate, under the assumption that the condition in Theorem 3 is
violated, the possible existence of a limit-cycle behavior. How-
ever, a rigorous proof (or a counterexample) for this conjecture
remains missing.
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APPENDIX
Proof of Theorem 1

We use the cyclic reformulation of a linear periodic system;
see [38, Sec. 6.3]. Specifically, define

0 0 .- 0 M(p—1)]
M@© 0 - 0 0
M=1] 0 M) --- 0 0 . (13)
L0 o Mp-2) 0 |
Note that
Mp:(} 0 0
i | O M 0 (14)
0 0 M‘Zp—l:p—l

Since MP is a block diagonal matrix, the eigenvalues of M?
are the eigenvalues of Mp.0, Mpii:1, ..., Map_1.p-1. By as-
sumption, p(M) < 1. Hence, from (10), it follows that, for all
k € [p]~, p(Mp:x) < 1, and therefore, p(MP) < 1. Since the
eigenvalues of M are the pth roots of eigenvalues of MP, it
follows that p(M) < 1.

Since, by Assumptions 2-3, M (k) is nonnegative, it follows
that M is also nonnegative. Therefore, from Lemma 4, there
exists a diagonal matrix Q; > 0 such that M TQ; M — Q; < 0.
Let the diagonal blocks of Q; be denoted by [Q1]r € RV*V,
forall k € [p]. By defining P (k) = [Q1]k,1,forall k € [p]~, it
is immediate that M (k)" P (k + 1)M (k) — P;(k) < 0 for all
kelp”.

Consider the following Lyapunov function Vi(k,z) =
z"Py(k)z. Since Q; > 0 and diagonal, each of the blocks
along its diagonal must be positive definite. This implies that,
for all k € [p]~ and for = # 0, =" Py(k)z > 0, and hence,
Vi(k,z) > 0. Since for all k € [p]~ P;(k) is positive definite,
each eigenvalue of P; (k) is real and positive. Then, since P; (k)
is also symmetric, by applying the Rayliegh—Ritz Theorem [39],
we obtain

Amin(PL (k)T < Py(k) < Amae (Py (k)T
and hence

danin(P1(R)) llz]|* < Vi(k, 2) < Amax(P1(K)) ll|*. (15

Define o1 := minge[p)- Amin(F1(k)), and

72 3= max Amax(P1(k))- (16)

Since for k € [p|™ Apmin(P1(k)) > 0 and Ao (Pr(k)) > 0, it
follows that o3 > 0 and o3 > 0. Thus, we have found positive
constants oy, o such that for all k € [p]~

o1 ||zl” < Vi(k,z) < o2 ||z]|*. (17)

Define AV, (k,z) = Vi (z(k + 1)) — Vi (z(k)). For « #0,
and for all k € [p]~, one obtains the following:

AVi(k,z) =" M7 (k)Py(k +1)M(k) — =" Py(k)z
=z (M (k)Pi(k+1)M(k) — Pi(k))z
— 2ha " BT (k)X (k) Py (k + 1)M (k)
+ h2z" BT (k)X (k)Pi(k +1)X B(k)z. (18)
From Assumptions 2-3 and Lemma 1, the following is satisfied:
z' (h2z" BT (k)X (k) Py (k + 1) X (k)B(k)
—2ha " BT (k)X (k)Py(k + 1)M (k))z < 0.
Hence, from (18), we obtain
AVy(k,z) < z" (M (k)Py(k+1)M (k) — Py(k))z.

Recall that, for all k € [p|~, M " (k)Py(k + 1)M (k) — Py (k)
is negative definite, and therefore, M " (k)P;(k + 1)M (k) —
P, (k) is symmetric with all real and negative eigenvalue. Hence,
applying Rayleigh-Ritz Theorem yields: for all k € [p]~

AVi(k,z) < Amax(M " (k)Py(k + 1)M (k) — Py (k) |lz]* .

Since M (k)Pi(k+1)M (k) — P(k) is negative definite,
Pi(k) — MT(k)Py(k+1)M (k) is positive definite, and
hence, we obtain Apax(M ' (k)Pi(k+ 1)M (k) — Py(k)) =
—Amin(P1(k) — M " (k)Py(k + 1)M (k)), which leads to

AVy(k, 2) £ —Amin(Py(k) = MT(k)Py(k + 1)M(K)) ||]|*.
(19)

Defining

o3 1= F[?;f Amin(P1(k) — MT(k)Pl(k +1)M(k)) (20)
clol-
it follows from (19) that AV; (k, ) < —a3|z||2. Since, for all
ke [p]-, Pi(k) — MT(k)Py(k+ 1)M(k) is positive definite,
it follows that o3 > 0.
Thus, there exists positive constants, oy, o2, and o3, such that
for z # 0 and for all k € [p],

o1 ||lz]|* < Vi(k,z) < o2 ||| 1)

AVy(k, ) < —os ||z])*. (22)

By Assumption 1, M(k+p)= M(k) for every k € Z>o.
Hence, over every successive interval of size p, the matrix M
remains the same. This implies that P;(k + p) = P (k) for
every k € Z>¢. Hence, we can use the same Lyapunov function
over every successive interval of size p. Thus, repeating the same
analysis as in the interval [0, p — 1] for every successive interval
of size p results in inequalities (21) and (22) being satisfied for
all k € Zx¢ and for all z € [0, 1]™. Therefore, from Lemma 3,
the system converges exponentially fast to the DFE, for all
z(0) € [0,1]™. O
Next, we explore the rate of convergence to the DFE.
Proposition 6 (Rate of Convergence): Under the assump-
tions of Theorem 1, the rate of convergence to the DFE is upper
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bounded by an exponential with rate , /1 — ?2-, where o9 and
o are defined in (16) and (20), respectively. |
Proof: The expression for the rate , /1 — §—2 follows directly

from (21) to (22) and [40, Theor. 23.3]. Now we show that
the rate is well-defined, thatis, 0 < ,/1 — ﬂ—; < 1. To see this,

consider the following: notice that, since o9 > 0 and o3 > 0, it
suffices to show that o2 > o3. Toward this end, observe that, for
all k € [p]~, both P;(k) and M " (k)Py(k + 1)M (k) are sym-
metric. Applying Weyl’s inequalities [39, Corollary 4.3.15] to
Pi(k) — MT(k)Py(k + 1)M(k), one obtains, for all k € [p]~
and i € [n]:

Ai(Py(k) — M (k)Py(k + 1)M (K))
< Ai(P1(k)) + Amax (—M " (k) Pi(k + 1)M (k))
which implies

max (P1(K)) = Amax (P1(k) — M7 (k)Pi(k + 1)M (k))
(23)

> Amin(Pi(k) — M7 (E)Py(k+ 1)M(k)) (24)

where (23) holds because —M " (k)P (k + 1)M (k) is nega-
tive semidefinite, implying Amax (—M " (k) Py (k + 1)M (k)) <
0. By definitions of o3 and o3, and since (24) is satisfied for all
k € [p]~, it follows that o3 > o3. O

Proof of Proposition 4

By assumption, p(M) = 1. This implies, from the definition
of joint spectral radius, that, for all k € [p]~, p(Mp.x) < 1, and
therefore, p(MP) < 1. Since the eigenvalues of M are the pth-
roots of eigenvalues of M?, it follows that p(M) < 1. For the
case where p(M ) < 1, from the proof of Theorem 1, the DFE
of (4) is GAS. Hence, in the rest of the proof, we focus on the
case where p(M) = 1.

Suppose that p(M') = 1. Since by Assumptions 2-5, M (k),
foreach k € [p]~, is irreducible and nonnegative, it follows that
M is also irreducible and nonnegative. Hence, from Lemma 5,
there exists a positive diagonal matrix Q5 such that M T QoM —
Q2 < 0. By defining, for all k € [p]~, Pa(k) = [Q2]x+1, it
is immediate that M (k)" Py(k + 1)M (k) — P»(k) < 0, where
ke p].

Consider the Lyapunov candidate function Va(k,z) =
x ' Py(k)z. Observe that, by analogous reasoning as in proof
of Theorem 1, for all k € [p]” and for = # 0, Va(k,z) > 0.
By mimicking the steps involved in establishing the right-hand
side of inequality (17), and invoking [32, Def. 22, p 266], it
can be seen that V3(k, x) is decrescent. Define AVa(k,x) =
Va(z(k 4+ 1)) — Va(z(k)). For = # 0, from (4), one obtains

AVy(k,z) = =" M7 (k)Py(k + 1) M(k)z(k) — =" Py(k)x
=1z (M (k)Py(k +1)M (k) — Pa(k))z
—2hz" BT (k)X (k) Pa(k + 1)M (k)z()
+ h2z" BT (k)X (k)Py(k + 1)X (k)B(k)z
< h?z" BT (k)X (k) Po(k + 1)X (k)B(k))z

— 2hz" BT (k)X (k)Py(k + 1) M (k)z
= h2z BT (k)X (k)Py(k + 1) X (k) B(k)z

— hz' BT (k)X (k)Py(k + 1) M (k)z

— K2z BT (k)X (k)Py(k + 1)B(k)z

— hz " BT (k)X (k) Pa(k + 1)(I — hD(k))z
< k22" BT (k)X (k)Py(k + 1) X (k) B(k)z

— hz " BT (k)X (k) Py(k + 1) M (k)z

— h?z" BT (k)X (k)Py(k + 1)B(k)z

< — k22" BT (k)X (k)P2(k + 1)(I — X (k))B(k)z
— hx' BT (k)X (k) Pa(k + 1) M (k)

< —hz' BT (k)X (k)Py(k + 1)M (k)

<0.

It can be immediately seen that if = = 0, then forall k € [p],
AVy(k,z) = 0. For every k € Z>(, by Assumptions 2 and 5,
B(k) (and hence M (k)) is nonzero and nonnegative, whereas,
from Lemma 5, P, (k) is a positive diagonal matrix. Hence, if,
forall k € [p]~, —hz " BT (k)X (k)Py(k + 1)M (k)z = 0, then
= 0.

For reasons, similar to those outlined in the proof of
Theorem 1, the aforesaid analysis can be repeated over ev-
ery successive interval of size p, which yields Va(k,z) > 0
and AVs(k,z) <0 for every k € Z-o. Moreover, it can be
immediately seen that V3(k,x) is radially unbounded, since
Va(k, =) = || P2(k)% z||2. Therefore, from Lemma 2, the DFE
is GAS. O

Proof of Proposition 5

System (4) can be represented as a nonlinear fime-invariant
system, using the technique provided in [41, Sec. IV-C]. Toward
this end, we first write (4) using (9) as

z(pq + k + 1) = M (pq + k)z(pq + k)

where p is the periodicity of system (4), and g is any nonnegative
integer. Recall from (9) that

M(pg+ k) = M(pg+k) — hX (pg + k)B(pq + k)
= M (k) — hX(pq + k)B(k)

(25)

(26)
where (27) is a consequence of Assumption 1. Define
M (pq) := M (k mod p) — hX (pq + k)B(k mod p). (27)

By concatenating the state vector over an interval of size p,
we define a new state variable y € RP™,

y1(pq) z(pq)
v(pg) i yz(:Pti‘) _ I(pq‘+ 1) 28)
yp(pq) z(pg+p—1)
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TABLE | _
DEFINITION OF M (X)
My-1(pg)---Mo(pa) O 0
00 0 M, (p) - : M (pg) g
0 0 Nizp—2(pg) - - Myp-1(pa)

We are interested in studying how y(pg) evolves for g €
{0,1,2,...}. From the abovementioned equation, we have

z(p(g +1))
z(p(g+1) +1)

y1(p(g+1))
y2(p(g +1))

y(p(g+1)) =

Yp(p(g+1)) z(p(¢+1)+p—1)
From (25), (27), and (28), we know that

z(p(q+1)) = Mp_1(pq) - -- Mo(pa)z(pa)
#(p(q+ 1) + 1) = My(pq) - - - Mi(pq)z(pq + 1)

o(p(g+1) +p—1) = Map_2(pq) - -- Mp_1(pa)z(pg + p — 1).

Hence, we can rewrite the dynamics as

y(p(q+1)) = M(X)y(pq)

where M (X) is defined in Table I. Note that as a consequence
of (27), the dynamics of the system in the abovementioned
equation, forany g € Z _,depend only on the matrices M (k) and
B(k), for all k € [p]~, and the state vector. Therefore, (29) is a
discrete-time nonlinear time-invariant system. Linearizing (29)
around y = 0 yields the following:

y(p(g + 1)) = MPy(pq)

where MP is defined in (14).

By way of contraposition, assume that, for all k € [p],
p(Myp:x) > 1.This assumption implies that p(MP) > 1,since
MP is a block diagonal matrix. Therefore, from Proposition 1,
y = 0 is an unstable equilibrium of system (29). Since, by (28),
y = 0 corresponds to the DFE of (4), the DFE is an unstable
equilibrium of system (4). |

(29)

(30)

Proof of Theorem 4

Consider healing rates as in (11). Define E(k) =
diag(2?=1 Bi;(k) + ;). Then substituting (11) into (2), and
rewriting the system in the matrix form yields:

z(k +1) = z(k) + h((I — X (k) B(k) — B(k))z(k). (31)

Define M'(k) = I — hB(k) + hB(k). As a consequence of
Assumptions 2 and since, for each ¢ € [n], 7; is chosen such
that k)7, B;;(k) + hy; < 1, forall k € [p]~, M (k) is non-
negative. Moreover, since h > 0, and «; > 0 Vi € [n], each row
i of M (k) satisfies )7, [M'(k)];; < 1forall k € [p] .

By building M analogous to M in (13), the structure of M?
immediately gives that M is non-negative and that each row

satisfies E;-‘:l[ﬂ:f 1];; < 1. Thus, by definition of the infinity
norm of a matrix, || M!||., < 1, which, due to [39, Th. 5.6.9],
further implies that p(M 1) < 1. From the proof of Theorem 1,
it is clear that p(M1) < 1 ensures that the DFE is GES. O
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