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A B S T R A C T   

Identifying and monitoring parturition of individual animals may help producers increase attentiveness, enabling 
early detection of dystocia during parturition. Parturition events are marked by subtle behavioral changes often 
difficult to detect by observation alone. The aim of this study was to determine the ability of tri-axial acceler
ometer data to accurately identify and predict parturition-related behavior of mature ewes in a pen setting. Tri- 
axial accelerometers recording at 12.5 Hz were placed on ear tags and attached to 13 Debouillet mature ewes 
before parturition. Activity was monitored 7 days prior to lambing (d −7); on the day of lambing (d 0); and 7 
days post lambing (d +7). Using random forest machine learning, accelerometer data and visual observations 
were used to predict (i) seven mutually-exclusive behaviors; and (ii) activity (active and inactive behavior) based 
on five metrics calculated using variation of movements recorded by the accelerometer. The accuracy of seven 
predicted behaviors from an independent validation set was 66.7 %, and the accuracy for activity was 87.2 %. In 
addition to predicted behavior and activity, metrics calculated from accelerometer data and used for random 
forest predictions were evaluated 7 d before and after lambing and 12 h before and after lambing on six of the 13 
ewes where the actual time of lambing was observed. No differences were detected in the seven predicted be
haviors either before or after lambing. Four of five accelerometer metrics (P ≤ 0.002) were higher during the 7 
d after lambing than the 7 d before lambing. Values for three of the five metrics were highest (P < 0.01) on the 
day of lambing. All five accelerometer metrics varied during the 12 h pre- and 12 h post parturition (P ≤ 0.004). 
All accelerometer metrics increased (P ≤ 0.008) 1–2 h before parturition compared to 3–4 h before parturition. In 
this current study, calculated direct sensor metrics served as a better indicator of lambing than predicted be
haviors, processed through complex machine learning algorithms. Commercial use of accelerometers by pro
ducers may allow for detection of prolonged labor indicating potential dystocia during parturition, which may 
reduce lamb mortality and increase production efficiency. These results suggest that real time accelerometers 
could remotely monitor ewes and potentially provide managers an indication that the dam may lamb soon.   

1. Introduction 

Parturition is a critical time for livestock operations that requires 
increased supervision to improve animal welfare and decrease offspring 
mortality (Cornou and Kristensen, 2014). Prey animals such as sheep, 
have the ability to obscure discomfort and fail to show apparent changes 
in behavior (Underwood, 2002). Known behavior patterns may assist in 
identification of changes in the physical health status of animals (Frost 
et al., 1997). Increased monitoring at the earliest stages of parturition 
may allow for identification and intervention by the producer (Bellows 
et al., 1988; Frost et al., 1997; Dobos et al., 2014), which has been shown 
to result in greater lamb survival in cases of dystocia (Holmøy et al., 

2012). 
Microelectromechanical system (MEMS) accelerometers are data 

logging devices capable of detecting slight changes in activity by gath
ering acceleration signals that are generated in two forms, measuring 
static accelerations of gravity (−9.8 m s−2) and dynamic accelerations of 
movement (Watanabe et al., 2008). Accelerometers may serve as an 
alternative to labor intensive human observation of livestock (Barwick 
et al., 2018). Sensor technologies could potentially provide managers 
with early warning tool in distinguishing abnormalities (Bikker et al., 
2014). 

Parturition can be characterized into three stages: 1) dilation of the 
cervix; 2) expulsion of the fetus(es); and 3) expulsion of the placenta. 
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Stage one may be demonstrated through discomfort and constant lying 
to standing bouts with isolation from the flock. It may last up to 12 h 
before to lambing and concludes with the rupture of the chorio-allantoic 
sac. At onset of parturition, livestock increase the amount of standing 
bouts when compared to pre and post-parturition (Huzzey et al., 2005). 
Stage two results in visible contractions and abdominal straining of the 
dam. The ejection of the lamb usually takes 30−45 min. The end of this 
stage is signified by licking of the lamb. Stage three is the expulsion of 
the placenta which happens within four hours post-parturition. 

Prolonged labor during parturition may increase risk of dystocia and 
could be avoided with proper identification and intervention (Bellows 
et al., 1988). Most lamb mortality events occur within the first three 
days of the lamb’s life, with nearly half of all pre-weaning deaths 
happening on the day of lambing (Dwyer, 2008). The most common 
causes of lamb mortality are dystocia (20 %) and birth injury (47 %) 

(Hatcher et al., 2011). Dystocia remains a significant problem for sheep 
production, as it may lead to injuries and potentially death of the lamb 
(Cloete et al., 1993; Nowak and Poindron, 2006). Increased attention 
should be given to primiparous ewes, as they may exhibit lamb refusal 
and reject suckling of the lamb (Lévy et al., 1995). Primiparous ewes 
lack motherly experience and tend to have more instances of prolonged 
labor which may result in higher lamb mortality (Nowak and Poindron, 
2006; Dwyer, 2008). 

Accelerometers can provide a wide range of fine-scale information 
on animal behavior and physiology, exceeding human observation 
abilities which is typically limited to a short period of time and only a 
fraction of the animals daily activities (Brown et al., 2013). Elusive 
changes in behavior may indicate health status of livestock (Frost et al., 
1997). Changes in activity are not readily observed through physical 
observation, and technological advancements may allow for the ability 

Fig. 1. (A-G) Examples of tri-axial accelerometer signals of one ewe over 60 s (750 accelerometer readings at 12.5 Hz) for the seven mutually-exclusive behaviors. 
The X-axis is indicated by the blue line, Y-axis by the green line, and Z-axis by the red line. (H) Location and orientation of the tri-axial accelerometer attached to an 
ear tag as shown on sheep. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article). 
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to remotely monitor livestock and notify management (Bailey et al., 
2018). Remote monitoring systems may detect patterns of activity 
related to parturition, including highly active behaviors like continuous 
lying and standing, licking of the lamb, and pushing associated with 
active contractions. Sensor technologies could detect pivotal changes in 
behavior associated with health and welfare of livestock (Walton et al., 
2018) while relying on little human input, consequently increasing 
production efficiency (Kuźnicka and Gburzyński, 2017). The aim of this 
current study was to determine the ability of a tri-axial accelerometer to 
accurately identify and predict parturition-related activities of mature 
ewes in a pen setting. We hypothesized that accelerometers will accu
rately detect changes in activity and/or ewe movement patterns prior to 
and during parturition, which might be useful for prediction of partu
rition events. 

2. Materials and methods 

2.1. Site and animals 

All procedures were approved by the New Mexico State University 
Institutional Animal Care and Use Committee (2019-007). 

This study was conducted on the campus of New Mexico State Uni
versity in Las Cruces, New Mexico, USA at the West Sheep Unit research 
facility. Thirteen pregnant Debouillet ewes averaging 3 years (± 0.3) 
were housed in a single pen (18.3×9.1 m) and monitored from 13 March 
until 13 April 2019. Ewes were confirmed pregnant by evaluation of 
progesterone concentration via radioimmunoassay. Each ewe was fed 
1.6 kg of an alfalfa-corn ration in the morning (08:00 h) with ad libitum 
access to water, mineral, and salt. 

2.2. Accelerometers 

A tri-axial Axivity AX3 MEMS accelerometer (Axivity Ltd, Newcastle, 
UK) was attached to an Allflex ear tag (Allflex USA Inc., DFW, TX, USA) 
with shrink wrap tubing, which was then conventionally attached to the 
pinna of either the left or right ear of the ewe prior to parturition. Ac
celerometers were charged prior to deployment to last a duration min
imum of 30 days (study duration). Accelerometers were configured to 
collect acceleration signals at a sample rate of 12.5 Hz measuring lon
gitudinal movements of the horizontal X-axis (left and right), longitu
dinal Y-axis (forward and backward), and vertical Z-axis (up and down) 
demonstrated in Fig. 1H. The dimensions of each accelerometer were 23 
× 32.5 × 7.6 mm and weighed 11 g. 

Accelerometer movements were subsequently stored on the NAND 
Memory within the device. Accelerometers were removed post-study to 
retrieve data via USB connection to the OmGui Axivity computer soft
ware. The OmGui program downloads data from the accelerometer, 
allows for manipulation for desired study period, and stores raw data as 
a. CWA file, not compatible with Microsoft Excel (Microsoft Corpora
tion, Redmond, WA, USA). 

2.3. Data collected 

Data were retrieved using the Axivity proprietary software, OmGui, 
and condensed into 10 s epochs using Anaconda Python (Anaconda, Inc., 
Austin, TX, USA) programming. 

2.4. Behavioral annotation 

Sheep behaviors were recorded 24 h a day by four Reolink Argus 2 
video cameras (Reolink, Hong Kong, China) placed in each corner of the 
pen. Ewes were marked on their sides using Paintstik markers for visual 
identification and monitored during the 30 day study. Cameras were 
weatherproof security cameras capable of capturing footage in both dark 
and daylight with built in motion sensors to activate recording. Cameras 
were retrieved every 3–4 days to recharge batteries and download 

videos to computer via USB connection then placed back in pen after 
retrieval of data. Post-study, video recordings were analyzed and 
annotated. 

Video recordings were analyzed seven days prior to parturition (d - 
7) until the day of lambing (d 0). Each dam was observed individually to 
determine a specific activity displayed. The behaviors most prominent 
throughout the study were: standing, lying, walking, feeding, licking 
salt, licking of the lamb, and active contractions. Feeding was defined as 
the ewe consuming feed from the bunk, chewing with head up or down 
while standing or moving. Licking salt was the movement of head up and 
down, licking salt block. Licking lamb was the large movement of head 
up and down while licking the lamb after parturition. Contractions were 
classified as such when the ewe was on its side with movement of head 
due to straining during the process of parturition. Each ewe had to 
perform one of the seven behaviors for at least sixty consecutive seconds 
for it to be annotated as such. If the ewe changed between one behavior 
and another or if the observer was unsure, the annotation was not used. 
This 1 min epoch minimum for annotation helped ensure that the 
accelerometer readings could be tied to a specific behavior and increase 
validation accuracy. At onset of parturition, behavioral events were 
recorded, including: continuous lying to standing bouts, contractions, 
and licking of the lamb. Time stamps of the annotated behaviors were 
manually synchronized and integrated with the time stamps of the 
accelerometer data in Microsoft Excel to merge the data into one file for 
statistical analysis. 

2.5. Observation and validation data sets 

Accelerometer data and associated behaviors were partitioned 
randomly by ewe into two groups to create the training and validation 
data sets. Seventy percent of the data from each of the 13 ewes was used 
to develop (train) the model; thirty percent of the data was used to 
validate the model predictions. 

2.6. Development of activity classification algorithm 

The mean, maximum, minimum, range and standard deviation were 
calculated for each 10 s epoch from each of the accelerometer axes (x, y, 
z). In addition, the mean and standard deviation of movement intensity 
and signal magnitude area (Table 1) were calculated for each 10 s epoch. 
The 10 s epoch was selected for this study to help ensure the acceler
ometer data during the epoch reflected one behavior (Fogarty et al., 
2020c). The 10 s epochs were then averaged into 1-minute intervals that 
were time matched with the annotated behavior data, which were based 
on 1 min intervals. A total of 3288 and 1420 behavior observations were 
used in the training and validation, respectively. Table 2 provides the 
number of behavioral observations used for training and validation. 

Table 1 
Calculated features from the raw X, Y, and Z-axis values. Maximum, mean, 
minimum, and range were calculated for each axis. Equations discussed in 
(Fogarty et al., 2020c; Tobin et al., 2020).  

Feature Equation 

Maximum (Max) The maximum acceleration value of x,y,z axes within 
each epoch 

Mean (A) 
A =

1
T

∑T

t=1
x(t)

Minimum (Min) The minimum acceleration value of x,y,z axes within 
each epoch 

Movement Intensity 
(MI) MI =

1
T

∑T

t=1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
Ax2

)
+

(
Ay2

)
+ (Az2)

√

(t)

Range (R) R = max − min  
Standard Deviation (SD) 

SD =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
T

∑T

t=1
(x(t) − x)

2

√
√
√
√

Signal Magnitude Area 
(SMA) SMA =

1
T

(
∑T

t=1
|Ax(t)| +

∑T
t=1 |Ay(t)| +

∑T
t=1 |Az(t)|)
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Random forest machine learning was used to predict behaviors using 
metrics calculated from the 1-minute epochs and the annotated behav
iors. The parameters for PROC HPFOREST (Nord and Keeley, 2016) of 
SAS (SAS Institute Inc., NC, USA) used in the analyses were: 1) six for the 
maximum variables to try, 2) 20 for the maximum number of trees, 3) 
0.1 for the prune threshold, 4) 30 for the number of category bins, 5) five 
for the minimum category size, and 6) 100 for the number of interval 
bins. Gini was used as the split criterion. 

Using the validation data set, predicted behaviors were determined 
using PROC HPSCORED (SAS Institute, Inc.) and the random forest final 
model. The performance of the algorithm was evaluated by calculating 
the sensitivity, specificity, precision, and recall (Alvarenga et al., 2016; 
Barwick et al., 2018). Confusion matrices were used to evaluate the 
accuracy of the model and predicted behaviors (Table 2). 

Accelerometer metrics and predicted behavior from the random 
forests model (both training and validation data) were averaged into 1 h 
periods by ewe for subsequent repeated measures analyses using SAS 
Proc Mixed (Littell et al., 2006). The hour periods including the hour 
lambing occurred (h 0) and the 12 h before lambing (h −12 to −1) and 
the 12 h following lambing (h + 1 to +12). The response variables 
included the five most informative accelerometer metrics used in 
random forests for predicting behaviors: the range of the X-axis, the 
standard deviation from the X-axis, the range of the Y-axis, the minimum 
SMA and the minimum of the X-axis. Response variables also included 
predicted behavior from the random forests model: percent active, 
percent lying, percent standing, percent walking and percent feeding. 
The fixed effect was hour of lambing (−12 to +12), and the subject was 
ewe. The covariance structures evaluated were compound symmetry, 
autoregressive order 1 and unstructured (Littell et al., 2006), and the 
structure used of the three was based on the lowest Akaike Information 
Criterion (AIC). Pre-planned orthogonal contrasts were also used to 
evaluate differences between the 2 h before lambing (−1 and −2 h) and 
the 3–4 h before lambing (−3 and −4 h). 

Accelerometer metrics and predicted behavior from the random 
forests model and (both training and validation data) were also averaged 
into 1 day periods (24 h, 00:00 to 23:59 h) for subsequent repeated 
measures analyses using SAS Proc Mixed (Littell et al., 2006). This 
analysis included the day of lambing (day 0), the 7 d before lambing 
(days −7 to −1), and the 7 d after lambing (days +1 to +7). The response 
variables were the same as for the hour analysis above. The fixed effect 
was day of lambing (−7 to +7), and the subject was ewe. Similar to the 
hour analysis above the covariance structure with lowest AIC was 

selected. Pre-planned orthogonal contrasts were used to evaluate dif
ferences before (days −7 to −1) and after lambing (days +1 to +7). 
Pre-planned orthogonal contrasts were also used to evaluate differences 
between the day of lambing (day 0) and the two days prior to lambing 
(days −2 and −1). 

2.7. Radioimmunoassay 

The progesterone (P4) assay (MP Biomedical) utilized polypropylene 
tubes coated with an antibody against P4 and 125I-P4 as the tracer. A 
stock standard solution was prepared by suspending P4 (Sigma) at 10 
ng/mL in assay buffer and pipetted into the antibody-coated tubes in 
amounts to provide a standard curve of 0, 0.1, 0.2, 0.4, 0.8, 1.6, and 3.2 
ng of P4 per tube. Serum samples were assayed at a 100 u L, and all tubes 
were normalized to 0.5 mL using assay buffer and assayed in duplicate. 
Each tube subsequently received 1.0 mL MP Biomedical P4-tracer, after 
which tubes were vortexed and incubated at room temperature for 24-h. 
Tubes were decanted and counted for 1 min. The specific binding was 82 
%. Detection limit (95 % of maximum binding) of the assay was 0.1 ng/ 
mL. Serum progesterone values were used to determine pregnancy and 
allowed for selection of ewes for the study. Progesterone values greater 
than 2.5 ng/mL were considered pregnant as described by (Schneider 
and Hallford, 1996). 

3. Results 

3.1. Ewe and lambing data 

Initially 13 ewes were used in this study, with the first birth occur
ring on the first day of accelerometer deployment (15 March 2019) and 
the last birth 16 days later (31 March 2019). Of the 13 ewes, data from 
six were analyzed, as exact lambing times were successfully determined 
from video analysis. The earliest birth occurred within hours of accel
erometer deployment and was excluded from analysis. The exact hour of 
lambing were not determined for five of the thirteen ewes. One ewe was 
removed from study because of a prolapsed uterus, shortly following 
parturition. 

3.2. Prediction of animal behavior using accelerometer metrics 

The five most important accelerometer variables for predicting ac
tivity (active and inactive) and behaviors were X-axis range, X-axis 

Table 2 
Confusion matrix of classification of: Model I the seven mutually-exclusive behaviors; Model II active and inactive behaviors; from the random forest model using the 
validation data set. Feeding, licking lamb, licking salt, contractions, and walking were classified as active. Laying and standing were classified as inactive. The numbers 
in bold indicate the percent of accurate classification behaviors by comparing both observed and predicted behaviors Model I and the percent of accurately classified 
activity Model II. Overall accuracy of each model: (I) 66.7 %; (II) 87.2 %.  

ObservedBehavior (%) Predicted Behavior (%)   

Behavior  

Model I Feeding Laying Licking 
Lamb 

Licking 
Salt 

Contractions Standing Walking Validationa Trainingb 

Feeding 75.6 5.7 4.1 0.5 0 2.6 11.4 193 502 
Laying 4.9 83.6 0.3 0 0.3 8.7 2.1 654 1445 
Licking Lamb 46.3 3.0 35.8 0 0 10.4 4.5 67 145 
Licking Salt 6.5 27.4 0 29.0 0 30.6 6.5 62 150 
Contractions 14.3 23.8 9.5 0 23.8 0 28.6 21 64 
Standing 5.2 32.8 0.3 0 1.4 56.2 4.1 290 709 
Walking 39.1 15.0 3.0 1.5 0 8.3 33.1 133 266         

1420 3288  
Activity        

Model II Active Inactive        
Active 79.9 20.1      492  
Inactive 8.9 91.1      928         

1420   

a Total number of observations from the 13 ewes that were fitted with accelerometers used in validation. 
b Total number of observations from the 13 ewes that were fitted with accelerometers used in training the random forests model. 
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standard deviation, Y-axis range, signal magnitude area minimum, and 
X-axis minimum. The gini values ranged from 0.107 to 0.025 for these 
five predictors of the seven behaviors. For activity (active or inactive) 
the gini values for these five most important variables varied from 0.111 
to 0.023. 

Table 2 highlights the confusion matrix classification for the seven 
mutually-exclusive behaviors utilized in the random forest model. Lying 
(83.6 %) and feeding (75.6 %) had the highest level of agreement be
tween observed and predicted individual behaviors. The initial model 
had difficulty predicting the behaviors for walking (33.1 %), licking salt 
(29.0 %), contractions (23.8 %) and licking of the lamb (35.8 %). The 

second model was more successful in predicting activity. When ewes 
were inactive (standing or lying) the model predictions agreed with 
observations 91.2 % of the time. When ewes were active, the model 
successfully predicted that sheep were active 79.9 % of the time. 

3.3. Classification algorithm performance evaluation 

The overall accuracy, sensitivity, precision, and specificity of pre
dictions of active and inactive behaviors from the random forest models 
approached or exceeded 80.0 % (Table 2). The random forests model 
was not as successful predicting specific behaviors (Table 3). The pre
cision of predictions of lamb licking, salt licking, contractions, and 
walking was less than 50.0 %. Recall rates for predictions of walking and 
contractions was less than 50.0 %. The specificity was less than 50.0 % 
for all behaviors except lying and feeding. The overall accuracy of the 
random forests model for predicting the seven behaviors was 66.7 %. 

Differences in the precision, recall and sensitivity among the seven 
predicted behaviors may be partially explained by the comparisons of 
the signals recorded by the accelerometers. Fig. 1 shows examples of 
accelerometer signals from each behavior. The acceleration signals from 
the standing (Fig. 1A) and lying (Fig. 1B) behaviors were similar with 
minimal amplitude on all three axes. Licking salt and licking of the lamb 
behaviors had different levels of amplitude during the 60 s example, 
which differed from feeding (Fig. 1E), which had consistent and 

Table 3 
Precision, recall and specificity for predicted behaviors from the random forest 
using the validation data obtained the 13 ewes fitted with accelerometers. 
Behavioral observations used in validation are shown in Table 3.  

Behavior Precision (%) Recall (%) Specificity (%) 

Feeding 0.76 0.52 0.74 
Lying 0.84 0.78 0.58 
Licking lamb 0.36 0.59 0.28 
Licking salt 0.29 0.86 0.06 
Contractions 0.24 0.45 0.27 
Standing 0.56 0.62 0.44 
Walking 0.33 0.42 0.41  

Fig. 2. Mean (+/- SE) of the five most important metrics: A.) Y-axis range; B.) X-axis minimum; C.) X-axis range; D.) signal magnitude area minimum; E.) X-axis 
standard deviation; derived directly from accelerometer over a 15 d period, with day 0 indicating the day of lambing. Data is from the six ewes that were fitted with 
accelerometers and observed by cameras at lambing. Error bars represent standard errors. 
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relatively large amplitude on all three axes. Acceleration signals of 
contractions had a unique pattern with infrequent peaks followed by low 
levels of activity. 

3.4. Accelerometer metrics and predicted behavior before, during, and 
following parturition 

The Y-axis range varied (P < 0.001) among days (Fig. 2A), was 
higher on the day of lambing and had values higher (P = 0.001) after 
lambing than before lambing. No differences in the X-axis minimum 
(Fig. 2B) were detected among days (P = 0.14). The X-axis range varied 
(P < 0.001) among days (−7 to +7) was greatest on the day of lambing 
(Fig. 2C) and was greater (P = 0.03) after lambing than before lambing. 
The minimum of SMA varied (P = 0.002) among days, and values were 
lower (P = 0.03) after lambing than before lambing (Fig. 2D). The 
standard deviation of the X-axis also varied (P < 0.001) among days. The 
X-axis standard deviation was greatest on the day of lambing (day 0) 
(Fig. 2E), with the values following lambing being greater than before to 
lambing (P = 0.001). 

The predicted percent of active behavior varied (P < 0.001) among 
days (-7 to +7), but no differences were detected before and after 
lambing. No differences (P = 0.11) for activity were detected between 
the day of lambing and the two days before lambing. Time spent lying 
varied (P < 0.001) among days, but no differences were detected before 

and after lambing (P = 0.60) and the day of lambing versus the two days 
before lambing (P = 0.27). No differences were detected for the time 
spent standing among days (P = 0.99). Time spent feeding varied among 
days (P < 0.001), but no differences were detected before and after 
lambing (P = 0.33) or between the day of lambing and the two days 
before lambing (P = 0.17). No differences in time spent walking were 
detected among days (P = 0.11). 

The Y-axis range was greater (P = 0.001) after lambing than before 
lambing (Fig. 3A), varied during the 12 h before and after lambing (P =
0.002) and was also greater (P = 0.002) 1–2 h before lambing than 3–4 h 
before lambing. The X-axis minimum varied (P < 0.001) during the 12 h 
before and after lambing (Fig. 3B), was greater (P < 0.001) after lambing 
than before lambing and was higher (P = 0.008) 1–2 h before lambing 
than 3–4 h before lambing. The X-axis range varied (P = 0.004) during 
the 12 h before and after lambing (Fig. 3C), with no differences (P =
0.12) detected before and after lambing. However, the X-axis range was 
higher (P = 0.004) 1–2 h before lambing than 3 and 4 h before lambing. 
The SMA minimum varied (P = 0.001) during the 12 h before and after 
lambing (Fig. 3D), was lower (P < 0.001) after lambing than before 
lambing, and lower (P < 0.001) 1–2 h before than 3–4 h before lambing. 
The X-axis standard deviation varied (P < 0.001) between the 12 h 
preceding and following lambing (Fig. 3E), was greater (P < 0.001) after 
lambing than before lambing, and was higher 1–2 h before lambing than 
3–4 h before lambing. 

Fig. 3. Mean (+/- SE) of the five most important metrics: A.) Y-axis range; B.) X-axis minimum; C.) X-axis range; D.) signal magnitude area minimum; E.) X-axis 
standard deviation; derived directly from accelerometer attached to six ewes over a 24 h period, with hour 0 indicating the time of expulsion of the fetus. Error bars 
represent standard errors. 
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No differences were detected (P = 0.06) in the percent active 
behavior during the 12 h preceding and following lambing (Fig. 4A). The 
predicted time ewes spent feeding varied (P = 0.04) during the 12 h 
before and after lambing (Fig. 4B), but no differences in predicted 
feeding time were detected before and after lambing (P = 0.70) and 
between 1–2 h before lambing and 3–4 h before lambing (P = 0.55). The 
predicted time ewes spent lying varied (P = 0.05) during the 12 h pre
ceding and following lambing (Fig. 4C), but no differences were detec
ted in the time spent lying before and after lambing (P = 0.37) or 
between 1–2 h before lambing compared to 3–4 h before lambing (P =
0.82). No differences (P = 0.33) were found for predicted time spent 
walking (Fig. 4D) and predicted time spent standing (P = 0.26) during 
the 12 h before and after lambing (Fig. 4E). 

4. Discussion 

The ability of an ear-tag positioned tri-axial accelerometer to accu
rately detect changes in activity associated with parturition events, was 
evaluated using 10 s epochs for the calculation of accelerometer metrics 
in this study. The 10 s epoch was selected as the most suitable due to the 
length and complexity of the parturition period. Recent studies have 
evaluated varying lengths of epochs to determine which is the most 
accurate for certain activities (Alvarenga et al., 2016; Walton et al., 

2018; Fogarty et al., 2020c). Alvarenga et al. (2016) discovered the 3 s 
epoch performed poorly for predicting common behaviors. However, 
shorter epochs could be more useful in predicting sub-behaviors such as 
chewing and small movements of the head. Walton et al. (2018) 
compared short period lengths of 3, 5, and 7 s, ultimately selecting the 7 
s epoch. These authors also reported that longer epochs would be better 
suited for more complex behaviors. In this current study, the behaviors 
with the highest percent of accuracy were feeding (75.6 %) and lying 
(83.6 %). Alvarenga et al. (2016) accurately predicted grazing (89.8 %), 
running (100.0 %), and walking (100.0 %) using a 10 s epoch. Data 
herein did not include running, due to the limitation of space in a pen 
setting. Also, predictions of walking in our study were low (33.1 %) and 
were often misclassified as feeding. The initial model had a relatively 
low overall accuracy (66.7 %) for predicting specific behaviors. An 
additional model was created to predict behaviors as either active or 
inactive, similar to those described in Cornou and Kristensen (2014) and 
McLennan et al. (2015). McLennan et al. (2015) classified activity scores 
first as six behaviors then as low, medium, and high activity. This study 
found that the accuracy of the medium activity was low compared to the 
low and high levels. Subsequently McLennan et al. (2015) categorized 
activity as active and inactive which improved accuracy. Similarly, 
classifying activity into two levels (active and inactive) rather than 
multiple categories increased accuracy in our study. 

Fig. 4. Mean (+/- SE) proportion of time spent performing A.) active behaviors; B.) feeding; C.) lying; D.) walking; E.) standing; over a 24 h period, with hour 
0 indicating the time of expulsion of the fetus. 
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Previous studies have monitored sheep in a pasture setting, which 
could potentially challenge results from studies in a confined operation, 
attributable to ewes performing more behaviors such as grazing and 
walking on pasture (Alvarenga et al., 2016; Walton et al., 2018). Time 
spent walking in our study was low, due to limited amount of space in a 
pen setting and the requirement for a continuous bout of 60 s for 
behavioral annotation. Studies have monitored parturition using GNSS 
tracking, which lacks the capability of the accelerometer to detect subtle 
behavioral changes (Dobos et al., 2014; Fogarty et al., 2020b, c). Fogarty 
et al. (2020b) discovered GNSS tracking used independently is not 
adequate in detecting the onset of parturition, but were able to deter
mine activity change on a daily scale. 

Similarly, Fogarty et al. (2020b) identified parturition patterns that 
may be used to inform a model to predict the onset of lambing, when 
compared to a ‘normal’ baseline pattern. Our results demonstrate an 
increase in activity 2 h prior to lambing, which may be due to restless
ness of the ewe and onset of abdominal straining. Results reported by 
(Fogarty et al., 2020a) are similar, as restlessness peaked between h −1 
to h + 2. Huzzey et al. (2005) found an 80 % increase in number of 
standing bouts during parturition, in relation to restless and discomfort 
due to calving. Pre-partum ewes frequently change position, begin 
pawing the ground, and increase activity through abdominal straining 
associated with active contractions (Owens et al., 1985). Immediately 
following the expulsion of the fetus, the dam begins to groom the lamb, 
which may be why the dam maintains high activity slightly after 
parturition. Contrary to our results, others have reported a decrease in 
sow activity at the hour when farrowing begins, and peak of activity is 
observed at h −9, before farrowing (Bohnenkamp et al., 2013; Cornou 
and Kristensen, 2014). 

Fogarty et al. (2020a) successfully used changes in predicted be
haviors from accelerometer readings to estimate the time of lambing. In 
our study, metrics calculated directly from the accelerometer such as the 
range in the X-axis change were more related to the time of lambing than 
predicted behaviors. Calculations made directly from the sensor reduces 
the amount of computation, which may be helpful in a future algorithm 
for potential real time data output and analysis. In this current study, 
accelerometer signals varied among ewes which was accounted for in 
the subject term of the repeated measures, but was not accounted for by 
predicted behaviors derived from random forest modelling. The accel
erometer signals deviated from normal patterns about 2 h before 
lambing. Such deviations could be identified using simple algorithms. 
Tobin et al. (2020) demonstrated the potential for using a 4-day moving 
average to detect changes in normal behavioral patterns that occur on 
the onset of bovine ephemeral fever in beef heifers. This approach 
allowed comparisons of an individual animal against its previous be
haviors rather than against means calculated from the herd. 

To be useful for managers in detecting lambing, accelerometers on 
ear tags should provide data or data summaries in real time or near real 
time (Bailey et al., 2018). To facilitate data transfer from the tag to a 
reader or the internet, the data will likely need to be summarized to 
minimize battery usage for transmissions. Data processing and sum
marization is a new field termed as edge computing (Habib ur Rehman 
et al., 2016; Habib ur Rehman et al., 2017). The results from this study 
suggest that future research projects should consider edge computing 
when developing sensor technologies to remotely monitor livestock 
welfare issues such as lambing. 

5. Conclusion 

Our study has demonstrated the ability of the tri-axial accelerometer 
to detect changes in individual animal activity related to parturition 
events on both an hourly and daily scale. The initial model developed 
had difficulty discriminating specific behaviors. However, using active 
and inactive behaviors only increased model accuracy. Metrics calcu
lated directly from accelerometer axes provided a better indication of 
lambing than predicted behaviors processed through complex machine 

learning algorithms. Our results suggest that real time accelerometers 
could remotely monitor pregnant ewes and potentially be used in a 
commercial setting, providing managers with an indication that the dam 
may lamb soon. 
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Kuźnicka, E., Gburzyński, P., 2017. Automatic detection of suckling events in lamb 
through accelerometer data classification. Comput. Electron. Agric. 138, 137–147. 

S.C. Gurule et al.                                                                                                                                                                                                                                

http://refhub.elsevier.com/S0168-1591(21)00083-6/sbref0005
http://refhub.elsevier.com/S0168-1591(21)00083-6/sbref0005
http://refhub.elsevier.com/S0168-1591(21)00083-6/sbref0005
http://refhub.elsevier.com/S0168-1591(21)00083-6/sbref0010
http://refhub.elsevier.com/S0168-1591(21)00083-6/sbref0010
http://refhub.elsevier.com/S0168-1591(21)00083-6/sbref0010
http://refhub.elsevier.com/S0168-1591(21)00083-6/sbref0015
http://refhub.elsevier.com/S0168-1591(21)00083-6/sbref0015
http://refhub.elsevier.com/S0168-1591(21)00083-6/sbref0020
http://refhub.elsevier.com/S0168-1591(21)00083-6/sbref0020
http://refhub.elsevier.com/S0168-1591(21)00083-6/sbref0020
http://refhub.elsevier.com/S0168-1591(21)00083-6/sbref0025
http://refhub.elsevier.com/S0168-1591(21)00083-6/sbref0025
http://refhub.elsevier.com/S0168-1591(21)00083-6/sbref0025
http://refhub.elsevier.com/S0168-1591(21)00083-6/sbref0030
http://refhub.elsevier.com/S0168-1591(21)00083-6/sbref0030
http://refhub.elsevier.com/S0168-1591(21)00083-6/sbref0030
http://refhub.elsevier.com/S0168-1591(21)00083-6/sbref0035
http://refhub.elsevier.com/S0168-1591(21)00083-6/sbref0035
http://refhub.elsevier.com/S0168-1591(21)00083-6/sbref0035
http://refhub.elsevier.com/S0168-1591(21)00083-6/sbref0040
http://refhub.elsevier.com/S0168-1591(21)00083-6/sbref0040
http://refhub.elsevier.com/S0168-1591(21)00083-6/sbref0045
http://refhub.elsevier.com/S0168-1591(21)00083-6/sbref0045
http://refhub.elsevier.com/S0168-1591(21)00083-6/sbref0045
http://refhub.elsevier.com/S0168-1591(21)00083-6/sbref0050
http://refhub.elsevier.com/S0168-1591(21)00083-6/sbref0050
http://refhub.elsevier.com/S0168-1591(21)00083-6/sbref0050
http://refhub.elsevier.com/S0168-1591(21)00083-6/sbref0055
http://refhub.elsevier.com/S0168-1591(21)00083-6/sbref0055
http://refhub.elsevier.com/S0168-1591(21)00083-6/sbref0055
http://refhub.elsevier.com/S0168-1591(21)00083-6/sbref0060
http://refhub.elsevier.com/S0168-1591(21)00083-6/sbref0060
http://refhub.elsevier.com/S0168-1591(21)00083-6/sbref0060
http://refhub.elsevier.com/S0168-1591(21)00083-6/sbref0065
http://refhub.elsevier.com/S0168-1591(21)00083-6/sbref0065
http://refhub.elsevier.com/S0168-1591(21)00083-6/sbref0065
http://refhub.elsevier.com/S0168-1591(21)00083-6/sbref0070
http://refhub.elsevier.com/S0168-1591(21)00083-6/sbref0070
http://refhub.elsevier.com/S0168-1591(21)00083-6/sbref0070
http://refhub.elsevier.com/S0168-1591(21)00083-6/sbref0075
http://refhub.elsevier.com/S0168-1591(21)00083-6/sbref0075
http://refhub.elsevier.com/S0168-1591(21)00083-6/sbref0075
http://refhub.elsevier.com/S0168-1591(21)00083-6/sbref0080
http://refhub.elsevier.com/S0168-1591(21)00083-6/sbref0080
http://refhub.elsevier.com/S0168-1591(21)00083-6/sbref0080
http://refhub.elsevier.com/S0168-1591(21)00083-6/sbref0085
http://refhub.elsevier.com/S0168-1591(21)00083-6/sbref0085
http://refhub.elsevier.com/S0168-1591(21)00083-6/sbref0090
http://refhub.elsevier.com/S0168-1591(21)00083-6/sbref0090
http://refhub.elsevier.com/S0168-1591(21)00083-6/sbref0095
http://refhub.elsevier.com/S0168-1591(21)00083-6/sbref0095
http://refhub.elsevier.com/S0168-1591(21)00083-6/sbref0095
http://refhub.elsevier.com/S0168-1591(21)00083-6/sbref0100
http://refhub.elsevier.com/S0168-1591(21)00083-6/sbref0100
http://refhub.elsevier.com/S0168-1591(21)00083-6/sbref0100
http://refhub.elsevier.com/S0168-1591(21)00083-6/sbref0105
http://refhub.elsevier.com/S0168-1591(21)00083-6/sbref0105


Applied Animal Behaviour Science 237 (2021) 105296

9
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