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ARTICLE INFO ABSTRACT

Keywords: Identifying and monitoring parturition of individual animals may help producers increase attentiveness, enabling
ACCflﬁrometef early detection of dystocia during parturition. Parturition events are marked by subtle behavioral changes often
ACU‘“FY difficult to detect by observation alone. The aim of this study was to determine the ability of tri-axial acceler-
E:?ti‘:i(t)iron ometer data to accurately identify and predict parturition-related behavior of mature ewes in a pen setting. Tri-
Sheep axial accelerometers recording at 12.5 Hz were placed on ear tags and attached to 13 Debouillet mature ewes

before parturition. Activity was monitored 7 days prior to lambing (d —7); on the day of lambing (d 0); and 7
days post lambing (d +7). Using random forest machine learning, accelerometer data and visual observations
were used to predict (i) seven mutually-exclusive behaviors; and (ii) activity (active and inactive behavior) based
on five metrics calculated using variation of movements recorded by the accelerometer. The accuracy of seven
predicted behaviors from an independent validation set was 66.7 %, and the accuracy for activity was 87.2 %. In
addition to predicted behavior and activity, metrics calculated from accelerometer data and used for random
forest predictions were evaluated 7 d before and after lambing and 12 h before and after lambing on six of the 13
ewes where the actual time of lambing was observed. No differences were detected in the seven predicted be-
haviors either before or after lambing. Four of five accelerometer metrics (P < 0.002) were higher during the 7
d after lambing than the 7 d before lambing. Values for three of the five metrics were highest (P < 0.01) on the
day of lambing. All five accelerometer metrics varied during the 12 h pre- and 12 h post parturition (P < 0.004).
All accelerometer metrics increased (P < 0.008) 1-2 h before parturition compared to 3—4 h before parturition. In
this current study, calculated direct sensor metrics served as a better indicator of lambing than predicted be-
haviors, processed through complex machine learning algorithms. Commercial use of accelerometers by pro-
ducers may allow for detection of prolonged labor indicating potential dystocia during parturition, which may
reduce lamb mortality and increase production efficiency. These results suggest that real time accelerometers
could remotely monitor ewes and potentially provide managers an indication that the dam may lamb soon.

1. Introduction

Parturition is a critical time for livestock operations that requires
increased supervision to improve animal welfare and decrease offspring
mortality (Cornou and Kristensen, 2014). Prey animals such as sheep,
have the ability to obscure discomfort and fail to show apparent changes
in behavior (Underwood, 2002). Known behavior patterns may assist in
identification of changes in the physical health status of animals (Frost
et al., 1997). Increased monitoring at the earliest stages of parturition
may allow for identification and intervention by the producer (Bellows
etal., 1988; Frost et al., 1997; Dobos et al., 2014), which has been shown
to result in greater lamb survival in cases of dystocia (Holmgy et al.,
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2012).

Microelectromechanical system (MEMS) accelerometers are data
logging devices capable of detecting slight changes in activity by gath-
ering acceleration signals that are generated in two forms, measuring
static accelerations of gravity (—9.8 m s %) and dynamic accelerations of
movement (Watanabe et al., 2008). Accelerometers may serve as an
alternative to labor intensive human observation of livestock (Barwick
et al., 2018). Sensor technologies could potentially provide managers
with early warning tool in distinguishing abnormalities (Bikker et al.,
2014).

Parturition can be characterized into three stages: 1) dilation of the
cervix; 2) expulsion of the fetus(es); and 3) expulsion of the placenta.
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Fig. 1. (A-G) Examples of tri-axial accelerometer signals of one ewe over 60 s (750 accelerometer readings at 12.5 Hz) for the seven mutually-exclusive behaviors.
The X-axis is indicated by the blue line, Y-axis by the green line, and Z-axis by the red line. (H) Location and orientation of the tri-axial accelerometer attached to an
ear tag as shown on sheep. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article).

Stage one may be demonstrated through discomfort and constant lying
to standing bouts with isolation from the flock. It may last up to 12 h
before to lambing and concludes with the rupture of the chorio-allantoic
sac. At onset of parturition, livestock increase the amount of standing
bouts when compared to pre and post-parturition (Huzzey et al., 2005).
Stage two results in visible contractions and abdominal straining of the
dam. The ejection of the lamb usually takes 30—45 min. The end of this
stage is signified by licking of the lamb. Stage three is the expulsion of
the placenta which happens within four hours post-parturition.
Prolonged labor during parturition may increase risk of dystocia and
could be avoided with proper identification and intervention (Bellows
et al., 1988). Most lamb mortality events occur within the first three
days of the lamb’s life, with nearly half of all pre-weaning deaths
happening on the day of lambing (Dwyer, 2008). The most common
causes of lamb mortality are dystocia (20 %) and birth injury (47 %)

(Hatcher et al., 2011). Dystocia remains a significant problem for sheep
production, as it may lead to injuries and potentially death of the lamb
(Cloete et al., 1993; Nowak and Poindron, 2006). Increased attention
should be given to primiparous ewes, as they may exhibit lamb refusal
and reject suckling of the lamb (Lévy et al., 1995). Primiparous ewes
lack motherly experience and tend to have more instances of prolonged
labor which may result in higher lamb mortality (Nowak and Poindron,
2006; Dwyer, 2008).

Accelerometers can provide a wide range of fine-scale information
on animal behavior and physiology, exceeding human observation
abilities which is typically limited to a short period of time and only a
fraction of the animals daily activities (Brown et al., 2013). Elusive
changes in behavior may indicate health status of livestock (Frost et al.,
1997). Changes in activity are not readily observed through physical
observation, and technological advancements may allow for the ability
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to remotely monitor livestock and notify management (Bailey et al.,
2018). Remote monitoring systems may detect patterns of activity
related to parturition, including highly active behaviors like continuous
lying and standing, licking of the lamb, and pushing associated with
active contractions. Sensor technologies could detect pivotal changes in
behavior associated with health and welfare of livestock (Walton et al.,
2018) while relying on little human input, consequently increasing
production efficiency (Kuznicka and Gburzynski, 2017). The aim of this
current study was to determine the ability of a tri-axial accelerometer to
accurately identify and predict parturition-related activities of mature
ewes in a pen setting. We hypothesized that accelerometers will accu-
rately detect changes in activity and/or ewe movement patterns prior to
and during parturition, which might be useful for prediction of partu-
rition events.

2. Materials and methods
2.1. Site and animals

All procedures were approved by the New Mexico State University
Institutional Animal Care and Use Committee (2019-007).

This study was conducted on the campus of New Mexico State Uni-
versity in Las Cruces, New Mexico, USA at the West Sheep Unit research
facility. Thirteen pregnant Debouillet ewes averaging 3 years (£ 0.3)
were housed in a single pen (18.3x9.1 m) and monitored from 13 March
until 13 April 2019. Ewes were confirmed pregnant by evaluation of
progesterone concentration via radioimmunoassay. Each ewe was fed
1.6 kg of an alfalfa-corn ration in the morning (08:00 h) with ad libitum
access to water, mineral, and salt.

2.2. Accelerometers

A tri-axial Axivity AX3 MEMS accelerometer (Axivity Ltd, Newcastle,
UK) was attached to an Allflex ear tag (Allflex USA Inc., DFW, TX, USA)
with shrink wrap tubing, which was then conventionally attached to the
pinna of either the left or right ear of the ewe prior to parturition. Ac-
celerometers were charged prior to deployment to last a duration min-
imum of 30 days (study duration). Accelerometers were configured to
collect acceleration signals at a sample rate of 12.5 Hz measuring lon-
gitudinal movements of the horizontal X-axis (left and right), longitu-
dinal Y-axis (forward and backward), and vertical Z-axis (up and down)
demonstrated in Fig. 1H. The dimensions of each accelerometer were 23
x 32.5 x 7.6 mm and weighed 11 g.

Accelerometer movements were subsequently stored on the NAND
Memory within the device. Accelerometers were removed post-study to
retrieve data via USB connection to the OmGui Axivity computer soft-
ware. The OmGui program downloads data from the accelerometer,
allows for manipulation for desired study period, and stores raw data as
a. CWA file, not compatible with Microsoft Excel (Microsoft Corpora-
tion, Redmond, WA, USA).

2.3. Data collected

Data were retrieved using the Axivity proprietary software, OmGui,
and condensed into 10 s epochs using Anaconda Python (Anaconda, Inc.,
Austin, TX, USA) programming.

2.4. Behavioral annotation

Sheep behaviors were recorded 24 h a day by four Reolink Argus 2
video cameras (Reolink, Hong Kong, China) placed in each corner of the
pen. Ewes were marked on their sides using Paintstik markers for visual
identification and monitored during the 30 day study. Cameras were
weatherproof security cameras capable of capturing footage in both dark
and daylight with built in motion sensors to activate recording. Cameras
were retrieved every 3-4 days to recharge batteries and download
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Table 1

Calculated features from the raw X, Y, and Z-axis values. Maximum, mean,
minimum, and range were calculated for each axis. Equations discussed in
(Fogarty et al., 2020c; Tobin et al., 2020).

Feature Equation

Maximum (Max) The maximum acceleration value of x,y,z axes within
each epoch
Mean (A)

1 T
=7 Zx(t)

t=1
Minimum (Min) The minimum acceleration value of x,y,z axes within

each epoch
Movement Intensity 1L
) MI =23/ (Ax2) + (Ay2) + (A22) (1)
Range (R) R = rrLa.xt:—l min
Standard Deviation (SD) 1.0
_ |1 2
SD = T ;(x(t) X)
Signal Magnitude Area 11X
(SMA) SMA = }(Z\AX(O\ + Y0 Y]+ X [Az(t))

videos to computer via USB connection then placed back in pen after
retrieval of data. Post-study, video recordings were analyzed and
annotated.

Video recordings were analyzed seven days prior to parturition (d -
7) until the day of lambing (d 0). Each dam was observed individually to
determine a specific activity displayed. The behaviors most prominent
throughout the study were: standing, lying, walking, feeding, licking
salt, licking of the lamb, and active contractions. Feeding was defined as
the ewe consuming feed from the bunk, chewing with head up or down
while standing or moving. Licking salt was the movement of head up and
down, licking salt block. Licking lamb was the large movement of head
up and down while licking the lamb after parturition. Contractions were
classified as such when the ewe was on its side with movement of head
due to straining during the process of parturition. Each ewe had to
perform one of the seven behaviors for at least sixty consecutive seconds
for it to be annotated as such. If the ewe changed between one behavior
and another or if the observer was unsure, the annotation was not used.
This 1 min epoch minimum for annotation helped ensure that the
accelerometer readings could be tied to a specific behavior and increase
validation accuracy. At onset of parturition, behavioral events were
recorded, including: continuous lying to standing bouts, contractions,
and licking of the lamb. Time stamps of the annotated behaviors were
manually synchronized and integrated with the time stamps of the
accelerometer data in Microsoft Excel to merge the data into one file for
statistical analysis.

2.5. Observation and validation data sets

Accelerometer data and associated behaviors were partitioned
randomly by ewe into two groups to create the training and validation
data sets. Seventy percent of the data from each of the 13 ewes was used
to develop (train) the model; thirty percent of the data was used to
validate the model predictions.

2.6. Development of activity classification algorithm

The mean, maximum, minimum, range and standard deviation were
calculated for each 10 s epoch from each of the accelerometer axes (x, y,
z). In addition, the mean and standard deviation of movement intensity
and signal magnitude area (Table 1) were calculated for each 10 s epoch.
The 10 s epoch was selected for this study to help ensure the acceler-
ometer data during the epoch reflected one behavior (Fogarty et al.,
2020c). The 10 s epochs were then averaged into 1-minute intervals that
were time matched with the annotated behavior data, which were based
on 1 min intervals. A total of 3288 and 1420 behavior observations were
used in the training and validation, respectively. Table 2 provides the
number of behavioral observations used for training and validation.
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Table 2
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Confusion matrix of classification of: Model I the seven mutually-exclusive behaviors; Model II active and inactive behaviors; from the random forest model using the
validation data set. Feeding, licking lamb, licking salt, contractions, and walking were classified as active. Laying and standing were classified as inactive. The numbers
in bold indicate the percent of accurate classification behaviors by comparing both observed and predicted behaviors Model I and the percent of accurately classified

activity Model II. Overall accuracy of each model: (I) 66.7 %; (II) 87.2 %.

ObservedBehavior (%) Predicted Behavior (%)

Behavior
Model 1 Feeding Laying Licking Licking Contractions Standing Walking Validation® Training”
Lamb Salt
Feeding 75.6 5.7 4.1 0.5 0 2.6 11.4 193 502
Laying 4.9 83.6 0.3 0 0.3 8.7 2.1 654 1445
Licking Lamb 46.3 3.0 35.8 0 0 10.4 4.5 67 145
Licking Salt 6.5 27.4 0 29.0 0 30.6 6.5 62 150
Contractions 14.3 23.8 9.5 0 23.8 0 28.6 21 64
Standing 5.2 32.8 0.3 0 1.4 56.2 41 290 709
Walking 39.1 15.0 3.0 1.5 0 8.3 33.1 133 266
1420 3288
Activity
Model I Active Inactive
Active 79.9 20.1 492
Inactive 8.9 91.1 928
1420

# Total number of observations from the 13 ewes that were fitted with accelerometers used in validation.
Y Total number of observations from the 13 ewes that were fitted with accelerometers used in training the random forests model.

Random forest machine learning was used to predict behaviors using
metrics calculated from the 1-minute epochs and the annotated behav-
iors. The parameters for PROC HPFOREST (Nord and Keeley, 2016) of
SAS (SAS Institute Inc., NC, USA) used in the analyses were: 1) six for the
maximum variables to try, 2) 20 for the maximum number of trees, 3)
0.1 for the prune threshold, 4) 30 for the number of category bins, 5) five
for the minimum category size, and 6) 100 for the number of interval
bins. Gini was used as the split criterion.

Using the validation data set, predicted behaviors were determined
using PROC HPSCORED (SAS Institute, Inc.) and the random forest final
model. The performance of the algorithm was evaluated by calculating
the sensitivity, specificity, precision, and recall (Alvarenga et al., 2016;
Barwick et al., 2018). Confusion matrices were used to evaluate the
accuracy of the model and predicted behaviors (Table 2).

Accelerometer metrics and predicted behavior from the random
forests model (both training and validation data) were averaged into 1 h
periods by ewe for subsequent repeated measures analyses using SAS
Proc Mixed (Littell et al., 2006). The hour periods including the hour
lambing occurred (h 0) and the 12 h before lambing (h —12 to —1) and
the 12 h following lambing (h + 1 to +12). The response variables
included the five most informative accelerometer metrics used in
random forests for predicting behaviors: the range of the X-axis, the
standard deviation from the X-axis, the range of the Y-axis, the minimum
SMA and the minimum of the X-axis. Response variables also included
predicted behavior from the random forests model: percent active,
percent lying, percent standing, percent walking and percent feeding.
The fixed effect was hour of lambing (—12 to +12), and the subject was
ewe. The covariance structures evaluated were compound symmetry,
autoregressive order 1 and unstructured (Littell et al., 2006), and the
structure used of the three was based on the lowest Akaike Information
Criterion (AIC). Pre-planned orthogonal contrasts were also used to
evaluate differences between the 2 h before lambing (—1 and —2 h) and
the 3—-4 h before lambing (—3 and —4 h).

Accelerometer metrics and predicted behavior from the random
forests model and (both training and validation data) were also averaged
into 1 day periods (24 h, 00:00 to 23:59 h) for subsequent repeated
measures analyses using SAS Proc Mixed (Littell et al., 2006). This
analysis included the day of lambing (day 0), the 7 d before lambing
(days —7 to —1), and the 7 d after lambing (days +1 to +7). The response
variables were the same as for the hour analysis above. The fixed effect
was day of lambing (-7 to +7), and the subject was ewe. Similar to the
hour analysis above the covariance structure with lowest AIC was

selected. Pre-planned orthogonal contrasts were used to evaluate dif-
ferences before (days —7 to —1) and after lambing (days +1 to +7).
Pre-planned orthogonal contrasts were also used to evaluate differences
between the day of lambing (day 0) and the two days prior to lambing
(days —2 and —1).

2.7. Radioimmunoassay

The progesterone (P4) assay (MP Biomedical) utilized polypropylene
tubes coated with an antibody against P4 and 2°I-P4 as the tracer. A
stock standard solution was prepared by suspending P4 (Sigma) at 10
ng/mL in assay buffer and pipetted into the antibody-coated tubes in
amounts to provide a standard curve of 0, 0.1, 0.2, 0.4, 0.8, 1.6, and 3.2
ng of P4 per tube. Serum samples were assayed ata 100 u L, and all tubes
were normalized to 0.5 mL using assay buffer and assayed in duplicate.
Each tube subsequently received 1.0 mL MP Biomedical P4-tracer, after
which tubes were vortexed and incubated at room temperature for 24-h.
Tubes were decanted and counted for 1 min. The specific binding was 82
%. Detection limit (95 % of maximum binding) of the assay was 0.1 ng/
mL. Serum progesterone values were used to determine pregnancy and
allowed for selection of ewes for the study. Progesterone values greater
than 2.5 ng/mL were considered pregnant as described by (Schneider
and Hallford, 1996).

3. Results
3.1. Ewe and lambing data

Initially 13 ewes were used in this study, with the first birth occur-
ring on the first day of accelerometer deployment (15 March 2019) and
the last birth 16 days later (31 March 2019). Of the 13 ewes, data from
six were analyzed, as exact lambing times were successfully determined
from video analysis. The earliest birth occurred within hours of accel-
erometer deployment and was excluded from analysis. The exact hour of
lambing were not determined for five of the thirteen ewes. One ewe was
removed from study because of a prolapsed uterus, shortly following
parturition.

3.2. Prediction of animal behavior using accelerometer metrics

The five most important accelerometer variables for predicting ac-
tivity (active and inactive) and behaviors were X-axis range, X-axis
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Table 3

Precision, recall and specificity for predicted behaviors from the random forest
using the validation data obtained the 13 ewes fitted with accelerometers.
Behavioral observations used in validation are shown in Table 3.

Behavior Precision (%) Recall (%) Specificity (%)
Feeding 0.76 0.52 0.74
Lying 0.84 0.78 0.58
Licking lamb 0.36 0.59 0.28
Licking salt 0.29 0.86 0.06
Contractions 0.24 0.45 0.27
Standing 0.56 0.62 0.44
Walking 0.33 0.42 0.41

standard deviation, Y-axis range, signal magnitude area minimum, and
X-axis minimum. The gini values ranged from 0.107 to 0.025 for these
five predictors of the seven behaviors. For activity (active or inactive)
the gini values for these five most important variables varied from 0.111
to 0.023.

Table 2 highlights the confusion matrix classification for the seven
mutually-exclusive behaviors utilized in the random forest model. Lying
(83.6 %) and feeding (75.6 %) had the highest level of agreement be-
tween observed and predicted individual behaviors. The initial model
had difficulty predicting the behaviors for walking (33.1 %), licking salt
(29.0 %), contractions (23.8 %) and licking of the lamb (35.8 %). The
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second model was more successful in predicting activity. When ewes
were inactive (standing or lying) the model predictions agreed with
observations 91.2 % of the time. When ewes were active, the model
successfully predicted that sheep were active 79.9 % of the time.

3.3. Classification algorithm performance evaluation

The overall accuracy, sensitivity, precision, and specificity of pre-
dictions of active and inactive behaviors from the random forest models
approached or exceeded 80.0 % (Table 2). The random forests model
was not as successful predicting specific behaviors (Table 3). The pre-
cision of predictions of lamb licking, salt licking, contractions, and
walking was less than 50.0 %. Recall rates for predictions of walking and
contractions was less than 50.0 %. The specificity was less than 50.0 %
for all behaviors except lying and feeding. The overall accuracy of the
random forests model for predicting the seven behaviors was 66.7 %.

Differences in the precision, recall and sensitivity among the seven
predicted behaviors may be partially explained by the comparisons of
the signals recorded by the accelerometers. Fig. 1 shows examples of
accelerometer signals from each behavior. The acceleration signals from
the standing (Fig. 1A) and lying (Fig. 1B) behaviors were similar with
minimal amplitude on all three axes. Licking salt and licking of the lamb
behaviors had different levels of amplitude during the 60 s example,
which differed from feeding (Fig. 1E), which had consistent and

A. os B. 03
Y axis range 0.2
0.5 4 X axis minimum
> : 01 1
& 047 x 001
:
“g" 031 3 0.1
] £
4 £ 02
0.2 4
-0.3
0.1

0.5 X axis range
0.4
0.3
0.2

0.1 4

Range in X axis, g

0.0 4

-0.1 4

-0.2

=

0.12

0114 Xaxis
standard deviation

0.10

0.09 4

0.08

0.07 -

0.06 -

Standard deviation of X axis, g

0.05 -

0.04

Day of lambing

D. 124
122
120 SMA minimum
1.18
1.16
114
112
1.10
1.08
1.06

SMA minimum

1.04 T T T T T T T
-8 -6 -4 -2 0 2 4 6 8

Day of lambing

Fig. 2. Mean (+/- SE) of the five most important metrics: A.) Y-axis range; B.) X-axis minimum; C.) X-axis range; D.) signal magnitude area minimum; E.) X-axis
standard deviation; derived directly from accelerometer over a 15 d period, with day 0 indicating the day of lambing. Data is from the six ewes that were fitted with
accelerometers and observed by cameras at lambing. Error bars represent standard errors.



S.C. Gurule et al.

Y axis range
0.8 A

0.6 4

0.4 4

Range in Y axis, g

0.2 4

Applied Animal Behaviour Science 237 (2021) 105296

&

X axis minimum

g
o o o
o 4oN

Minimum of X axis,

10

0

S5 6 6 5 5 5
o AW N

10

o

X axis range
0.8 - 9

0.6 4
0.4 4

0.2 1

Range in X axis, g

0.0 4

SMA minimum

Minimum of SMA
5 = 3

154
©

-10

=

0.22
0.20
0.18
0.16
0.14
0.12
0.10
0.08
0.06
0.04
0.02

X axis
standard deviation

X axis standard deviation, g

-15 -10 -5 0 5

Hour of lambing

-10 -5 0 5 10

Hour of lambing

Fig. 3. Mean (+/- SE) of the five most important metrics: A.) Y-axis range; B.) X-axis minimum; C.) X-axis range; D.) signal magnitude area minimum; E.) X-axis
standard deviation; derived directly from accelerometer attached to six ewes over a 24 h period, with hour 0 indicating the time of expulsion of the fetus. Error bars

represent standard errors.

relatively large amplitude on all three axes. Acceleration signals of
contractions had a unique pattern with infrequent peaks followed by low
levels of activity.

3.4. Accelerometer metrics and predicted behavior before, during, and
following parturition

The Y-axis range varied (P < 0.001) among days (Fig. 2A), was
higher on the day of lambing and had values higher (P = 0.001) after
lambing than before lambing. No differences in the X-axis minimum
(Fig. 2B) were detected among days (P = 0.14). The X-axis range varied
(P < 0.001) among days (—7 to +7) was greatest on the day of lambing
(Fig. 2C) and was greater (P = 0.03) after lambing than before lambing.
The minimum of SMA varied (P = 0.002) among days, and values were
lower (P = 0.03) after lambing than before lambing (Fig. 2D). The
standard deviation of the X-axis also varied (P < 0.001) among days. The
X-axis standard deviation was greatest on the day of lambing (day 0)
(Fig. 2E), with the values following lambing being greater than before to
lambing (P = 0.001).

The predicted percent of active behavior varied (P < 0.001) among
days (-7 to +7), but no differences were detected before and after
lambing. No differences (P = 0.11) for activity were detected between
the day of lambing and the two days before lambing. Time spent lying
varied (P < 0.001) among days, but no differences were detected before

and after lambing (P = 0.60) and the day of lambing versus the two days
before lambing (P = 0.27). No differences were detected for the time
spent standing among days (P = 0.99). Time spent feeding varied among
days (P < 0.001), but no differences were detected before and after
lambing (P = 0.33) or between the day of lambing and the two days
before lambing (P = 0.17). No differences in time spent walking were
detected among days (P = 0.11).

The Y-axis range was greater (P = 0.001) after lambing than before
lambing (Fig. 3A), varied during the 12 h before and after lambing (P =
0.002) and was also greater (P = 0.002) 1-2 h before lambing than 3-4 h
before lambing. The X-axis minimum varied (P < 0.001) during the 12 h
before and after lambing (Fig. 3B), was greater (P < 0.001) after lambing
than before lambing and was higher (P = 0.008) 1-2 h before lambing
than 3-4 h before lambing. The X-axis range varied (P = 0.004) during
the 12 h before and after lambing (Fig. 3C), with no differences (P =
0.12) detected before and after lambing. However, the X-axis range was
higher (P = 0.004) 1-2 h before lambing than 3 and 4 h before lambing.
The SMA minimum varied (P = 0.001) during the 12 h before and after
lambing (Fig. 3D), was lower (P < 0.001) after lambing than before
lambing, and lower (P < 0.001) 1-2 h before than 3—-4 h before lambing.
The X-axis standard deviation varied (P < 0.001) between the 12 h
preceding and following lambing (Fig. 3E), was greater (P < 0.001) after
lambing than before lambing, and was higher 1-2 h before lambing than
3-4 h before lambing.
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No differences were detected (P = 0.06) in the percent active
behavior during the 12 h preceding and following lambing (Fig. 4A). The
predicted time ewes spent feeding varied (P = 0.04) during the 12 h
before and after lambing (Fig. 4B), but no differences in predicted
feeding time were detected before and after lambing (P = 0.70) and
between 1-2 h before lambing and 3-4 h before lambing (P = 0.55). The
predicted time ewes spent lying varied (P = 0.05) during the 12 h pre-
ceding and following lambing (Fig. 4C), but no differences were detec-
ted in the time spent lying before and after lambing (P = 0.37) or
between 1-2 h before lambing compared to 3-4 h before lambing (P =
0.82). No differences (P = 0.33) were found for predicted time spent
walking (Fig. 4D) and predicted time spent standing (P = 0.26) during
the 12 h before and after lambing (Fig. 4E).

4. Discussion

The ability of an ear-tag positioned tri-axial accelerometer to accu-
rately detect changes in activity associated with parturition events, was
evaluated using 10 s epochs for the calculation of accelerometer metrics
in this study. The 10 s epoch was selected as the most suitable due to the
length and complexity of the parturition period. Recent studies have
evaluated varying lengths of epochs to determine which is the most
accurate for certain activities (Alvarenga et al., 2016; Walton et al.,

2018; Fogarty et al., 2020c). Alvarenga et al. (2016) discovered the 3 s
epoch performed poorly for predicting common behaviors. However,
shorter epochs could be more useful in predicting sub-behaviors such as
chewing and small movements of the head. Walton et al. (2018)
compared short period lengths of 3, 5, and 7 s, ultimately selecting the 7
s epoch. These authors also reported that longer epochs would be better
suited for more complex behaviors. In this current study, the behaviors
with the highest percent of accuracy were feeding (75.6 %) and lying
(83.6 %). Alvarenga et al. (2016) accurately predicted grazing (89.8 %),
running (100.0 %), and walking (100.0 %) using a 10 s epoch. Data
herein did not include running, due to the limitation of space in a pen
setting. Also, predictions of walking in our study were low (33.1 %) and
were often misclassified as feeding. The initial model had a relatively
low overall accuracy (66.7 %) for predicting specific behaviors. An
additional model was created to predict behaviors as either active or
inactive, similar to those described in Cornou and Kristensen (2014) and
McLennan et al. (2015). McLennan et al. (2015) classified activity scores
first as six behaviors then as low, medium, and high activity. This study
found that the accuracy of the medium activity was low compared to the
low and high levels. Subsequently McLennan et al. (2015) categorized
activity as active and inactive which improved accuracy. Similarly,
classifying activity into two levels (active and inactive) rather than
multiple categories increased accuracy in our study.
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Previous studies have monitored sheep in a pasture setting, which
could potentially challenge results from studies in a confined operation,
attributable to ewes performing more behaviors such as grazing and
walking on pasture (Alvarenga et al., 2016; Walton et al., 2018). Time
spent walking in our study was low, due to limited amount of space in a
pen setting and the requirement for a continuous bout of 60 s for
behavioral annotation. Studies have monitored parturition using GNSS
tracking, which lacks the capability of the accelerometer to detect subtle
behavioral changes (Dobos et al., 2014; Fogarty et al., 2020b, ¢). Fogarty
et al. (2020b) discovered GNSS tracking used independently is not
adequate in detecting the onset of parturition, but were able to deter-
mine activity change on a daily scale.

Similarly, Fogarty et al. (2020b) identified parturition patterns that
may be used to inform a model to predict the onset of lambing, when
compared to a ‘normal’ baseline pattern. Our results demonstrate an
increase in activity 2 h prior to lambing, which may be due to restless-
ness of the ewe and onset of abdominal straining. Results reported by
(Fogarty et al., 2020a) are similar, as restlessness peaked between h —1
to h + 2. Huzzey et al. (2005) found an 80 % increase in number of
standing bouts during parturition, in relation to restless and discomfort
due to calving. Pre-partum ewes frequently change position, begin
pawing the ground, and increase activity through abdominal straining
associated with active contractions (Owens et al., 1985). Immediately
following the expulsion of the fetus, the dam begins to groom the lamb,
which may be why the dam maintains high activity slightly after
parturition. Contrary to our results, others have reported a decrease in
sow activity at the hour when farrowing begins, and peak of activity is
observed at h —9, before farrowing (Bohnenkamp et al., 2013; Cornou
and Kristensen, 2014).

Fogarty et al. (2020a) successfully used changes in predicted be-
haviors from accelerometer readings to estimate the time of lambing. In
our study, metrics calculated directly from the accelerometer such as the
range in the X-axis change were more related to the time of lambing than
predicted behaviors. Calculations made directly from the sensor reduces
the amount of computation, which may be helpful in a future algorithm
for potential real time data output and analysis. In this current study,
accelerometer signals varied among ewes which was accounted for in
the subject term of the repeated measures, but was not accounted for by
predicted behaviors derived from random forest modelling. The accel-
erometer signals deviated from normal patterns about 2 h before
lambing. Such deviations could be identified using simple algorithms.
Tobin et al. (2020) demonstrated the potential for using a 4-day moving
average to detect changes in normal behavioral patterns that occur on
the onset of bovine ephemeral fever in beef heifers. This approach
allowed comparisons of an individual animal against its previous be-
haviors rather than against means calculated from the herd.

To be useful for managers in detecting lambing, accelerometers on
ear tags should provide data or data summaries in real time or near real
time (Bailey et al., 2018). To facilitate data transfer from the tag to a
reader or the internet, the data will likely need to be summarized to
minimize battery usage for transmissions. Data processing and sum-
marization is a new field termed as edge computing (Habib ur Rehman
et al., 2016; Habib ur Rehman et al., 2017). The results from this study
suggest that future research projects should consider edge computing
when developing sensor technologies to remotely monitor livestock
welfare issues such as lambing.

5. Conclusion

Our study has demonstrated the ability of the tri-axial accelerometer
to detect changes in individual animal activity related to parturition
events on both an hourly and daily scale. The initial model developed
had difficulty discriminating specific behaviors. However, using active
and inactive behaviors only increased model accuracy. Metrics calcu-
lated directly from accelerometer axes provided a better indication of
lambing than predicted behaviors processed through complex machine
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learning algorithms. Our results suggest that real time accelerometers
could remotely monitor pregnant ewes and potentially be used in a
commercial setting, providing managers with an indication that the dam
may lamb soon.
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