
Bipartite Matching in Nearly-linear Time on Moderately Dense Graphs

Jan van den Brand∗, Yin-Tat Lee†, Danupon Nanongkai∗, Richard Peng‡,
Thatchaphol Saranurak§, Aaron Sidford¶, Zhao Song‖ and Di Wang∗∗

∗KTH Royal Institute of Technology, Sweden †University of Washington and Microsoft Research Redmond, USA
‡Georgia Institute of Technology, USA §Toyota Technological Institute at Chicago, USA ¶Stanford University, USA
‖Columbia University, Princeton University and Institute for Advanced Study, USA ∗∗Google Research, USA

Abstract—We present an Õ(m+ n1.5)-time randomized algorithm
for maximum cardinality bipartite matching and related problems (e.g.
transshipment, negative-weight shortest paths, and optimal transport)
on m-edge, n-node graphs. For maximum cardinality bipartite match-
ing on moderately dense graphs, i.e. m = Ω(n1.5), our algorithm
runs in time nearly linear in the input size and constitutes the first
improvement over the classic O(m

√
n)-time [Dinic 1970; Hopcroft-

Karp 1971; Karzanov 1973] and Õ(nω)-time algorithms [Ibarra-
Moran 1981] (where currently ω ≈ 2.373). On sparser graphs, i.e.
when m = n9/8+δ for any constant δ > 0, our result improves upon
the recent advances of [Madry 2013] and [Liu-Sidford 2020b, 2020a]
which achieve an Õ(m4/3+o(1)) runtime.

We obtain these results by combining and advancing recent lines
of research in interior point methods (IPMs) and dynamic graph
algorithms. First, we simplify and improve the IPM of [v.d.Brand-Lee-
Sidford-Song 2020], providing a general primal-dual IPM framework
and new sampling-based techniques for handling infeasibility induced
by approximate linear system solvers. Second, we provide a simple
sublinear-time algorithm for detecting and sampling high-energy edges
in electric flows on expanders and show that when combined with re-
cent advances in dynamic expander decompositions, this yields efficient
data structures for maintaining the iterates of both [v.d.Brand et al.]
and our new IPMs. Combining this general machinery yields a simpler
Õ(n

√
m) time algorithm for matching based on the logarithmic barrier

function, and our state-of-the-art Õ(m + n1.5) time algorithm for
matching based on the [Lee-Sidford 2014] barrier (as regularized in
[v.d.Brand et al.]).

Keywords-bipartite matching, shortest paths, transshipment, optimal
transport, nearly linear time, interior point method, linear program

I. INTRODUCTION

The maximum-cardinality bipartite matching problem is to com-

pute a matching of maximum size in an m-edge n-vertex bipartite

graph G = (V,E). This problem is one of the most funda-

mental and well-studied problems in combinatorial optimization,

theoretical computer science, and operations research. It naturally

encompasses a variety of practical assignment questions and is

closely related to a wide range of prominent optimization problems,

e.g. optimal transport, shortest path with negative edge-lengths,

minimum mean-cycle, etc.

Beyond these many applications, this problem has long served

as a barrier towards efficient optimization and a proving ground

for new algorithmic techniques. Though numerous combinatorial

and continuous approaches have been proposed for the problem,

improving upon the classic time complexities of O(m
√
n) [2]–

[4] and O(nω) [5]1 has proven to be notoriously difficult. Since

the early 80s, these complexities have only been improved by

The full version of this paper is available as [1] at https://arxiv.org/abs/
2009.01802.

1Here ω is the matrix multiplication exponent and currently ω ≈ 2.373
[6], [7]

polylogarithmic factors (see, e.g., [8]) until a breakthrough result

of Madry [9] showed that faster algorithms could be achieved when

the graph is moderately sparse. In particular, Madry [9] showed that

the problem could be solved in Õ(m10/7) and a line of research

[10]–[14] led to the recent Õ(m4/3+o(1))-time algorithm [15].2

Nevertheless, for moderately dense graphs, i.e. m ≥ n1.5+δ for

any constant δ > 0, the O(min(m
√
n, nω)) runtime bound has

remained unimproved for decades.

The more general problem of minimum-cost perfect bipartite
b-matching, where an edge can be used multiple times and the

goal is to minimize the total edge costs in order to match every

node v for b(v) times, for given non-negative integers b(v), has

been even more resistant to progress. An Õ(m
√
n) runtime for

this problem with arbitrary polynomially bounded integer costs and

b was achieved only somewhat recently by [16]. Improving this

runtime by even a small polynomial factor for moderately dense

graphs, is a major open problem (see Table II).

The minimum-cost perfect bipartite b-matching problem can

encode a host of problems ranging from transshipment, to negative-

weight shortest paths, to maximum-weight bipartite matching.

Even more recently, the problem has been popularized in machine

learning through its encapsulation of the optimal transport problem

[17]–[20]. There has been progress on these problems in a variety

of settings (see tables in Section I-A and the full version [1]),

including recent improvements for sparse-graphs [12], [14], and

nearly linear time algorithms for computing (1 + ε) approximate

solutions for maximum-cardinality/weight matching [2]–[4], [21]–

[23] and undirected transshipment [24]–[26]. However, obtaining

nearly linear time algorithms for solving these problems to high-

precision for any density regime has been elusive.

A. Our Results

In this paper, we show that maximum cardinality bipartite

matching, and more broadly minimum-cost perfect bipartite b-

matching, can be solved in Õ(m + n1.5) time. Tables I and II

compare these results with previous ones. Compared to the state-

of-the-art algorithms for maximum-cardinality matching our bound

is the fastest whenever m = n9/8+δ for any constant δ > 0,

ignoring polylogarithmic factors. Our bound is the first (non-fast-

matrix multiplication based) improvement in decades for the case

of dense graphs. More importantly, our bound is nearly linear when

m ≥ n1.5. This constitutes the first near-optimal runtime in any

density regime for the bipartite matching problem.

2For simplicity, we use Õ(·) to hide polylogn and sometimes
polylog(W), where W typically denotes the largest absolute value used
for specifying any value in the problem.

919

2020 IEEE 61st Annual Symposium on Foundations of Computer Science (FOCS)

2575-8454/20/$31.00 ©2020 IEEE
DOI 10.1109/FOCS46700.2020.00090

20
20

 IE
EE

 6
1s

t A
nn

ua
l S

ym
po

siu
m

 o
n

Fo
un

da
tio

ns
 o

f C
om

pu
te

r S
ci

en
ce

 (F
O

CS
) |

 9
78

-1
-7

28
1-

96
21

-3
/2

0/
$3

1.
00

 ©
20

20
 IE

EE
 |

 D
O

I:
10

.1
10

9/
FO

CS
46

70
0.

20
20

.0
00

90

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on June 28,2021 at 20:12:16 UTC from IEEE Xplore. Restrictions apply.

Year Authors References Time (Õ(·))
Sparse Dense

1969-1973 Hopcroft, Karp,
Dinic, Karzanov

[2]–[4] m
√
n

1981 Ibarra, Moran [5] nω

2013 Madry [9] m10/7

2020 Liu, Sidford [15] m4/3

2020 This paper m+ n1.5

Table I
THE SUMMARY OF THE RESULTS FOR THE max-cardinality bipartite
matching PROBLEM. FOR A MORE COMPREHENSIVE LIST, SEE [23].

Year Authors References Time (Õ(·))
1972 Edmonds and Karp [27] mn

2008 Daitch, Spielman [28] m3/2

2014 Lee, Sidford [16] m
√
n

2020 This paper m+ n1.5

Table II
THE SUMMARY OF THE RESULTS FOR THE min-cost perfect bipartite

b-matching PROBLEM (EQUIVALENTLY, transshipment) FOR

POLYNOMIALLY BOUNDED INTEGER COSTS AND b. FOR A MORE

COMPREHENSIVE LIST, SEE CHAPTERS 12 AND 21 IN [8]. NOTE THAT

THERE HAVE BEEN FURTHER RUNTIME IMPROVEMENTS TO THIS

PROBLEM (NOT INCLUDED IN THE TABLE) UNDER THE ASSUMPTION

THAT ‖b‖1 = O(m), SEE [12]. RECENTLY, A STATE-OF-THE-ART

RUNTIME OF Õ(m4/3+o(1)) WAS ACHIEVED BY [14] UNDER THIS

ASSUMPTION.

As a consequence, by careful application of standard reductions,

we show that we can solve a host of problems within the same time

complexity. These problems are those that can be described as or

reduced to the following transshipment problem. Given b ∈ R
n,

c ∈ R
m, and matrix A ∈ {0, 1,−1}m×n where each row of A

consists of two nonzero entries, one being 1 and the other being

−1, we want to find x ∈ R
m
≥0 that achieves the following objective:

min
A�x=b, x≥0

c�x. (1)

Viewed as a graph problem, we are given a directed graph G =
(V,E), a demand function b : V → R and a cost function c : E →
R. This problem is then to compute a transshipment f : E → R≥0

that minimizes
∑

uv∈E f(uv)c(uv), where a transshipment is a

flow f : E → R≥0 such that for every node v,∑
uv∈E

f(uv)−
∑

vw∈E
f(vw) = b(v). (2)

The main result of this paper is the following Theorem I.1

providing our runtime for solving the transshipment problem.

Theorem I.1. The transshipment problem can be solved to ε-
additive accuracy in Õ((m+n1.5) log2(‖b‖∞‖c‖∞/ε)) time. For
the integral case, where all entries in b, c, and x are integers, the
problem can be solved exactly in Õ((m+n1.5) log2(‖b‖∞‖c‖∞))
time.

Leveraging Theorem I.1 we obtain the following results.

1) A maximum-cardinality bipartite matching can be computed

in Õ(m+ n1.5) time, where Õ hides poly log(n) factors.

2) The minimum-cost perfect bipartite b-matching on graph G =
(V,E), with integer edge costs in [−W,W] and non-negative

Year Authors References Time (Õ(·))
1972 Edmonds, Karp [27] n3

2014 Lee, Sidford [16] n2.5

2017-19 Altschuler,
Weed, Rigollet

[20] n2W 2/ε2

2018-19 Lin, Ho, Jordan [19] n2.5W 0.5/ε
2018 Quanrud/Blanchet,

Jambulapati,
Kent, Sidford

[17], [18] n2W/ε

2020 This paper n2

Table III
THE SUMMARY OF THE RESULTS FOR THE optimal transport PROBLEM.

integer b(v) ≤W for all v ∈ V , can be computed in Õ((m+
n1.5) log2(W)) time.

3) The Õ((m+ n1.5) log2(W)) time complexity also holds for

maximum-weight bipartite matching, negative-weight shortest

paths, uncapaciated min-cost flow, vertex-capacitated min-cost

s-t flow, minimum mean cost cycle, and deterministic Markov

decision processes (here, W denotes the largest absolute value

used for specifying any value in the problem).

4) The optimal transport problem can be solved to ε-additive

accuracy in Õ(n2 log2(W/ε)) time.

We have already discussed the first two results. Below we briefly

discuss some additional results. See Section 8.6 in the full version

[1] for the details of all results.

Single-source shortest paths with negative weights and min-
imum weight bipartite perfect matching.: Due to Gabow

and Tarjan’s algorithm from 1989 [21], this problem can be

solved in O(m
√
n log(nW)) time where W is the absolute

maximum weight of an edge in the graph. For sparse graphs,

this has been improved to Õ(m10/7 logW) [12] and recently to

Õ(m4/3+o(1) logW) [14]. Here, our algorithm obtains a running

time of Õ((m + n1.5) log2(W)), which again is near-linear for

dense graphs and is the lowest known when m = n9/8+δ for any

constant δ > 0 and W is polynomially bounded.

Optimal Transport.: Algorithms with ε-additive error received

much attention from the machine learning community since the

introduction of the algorithm of Altschuler, Weed, Rigollet [20]

(e.g. [17]–[19]). The algorithm of [20] runs in time Õ(n2W 2/ε2),
and [18], [19] runs in time Õ(n2W/ε). We improve these running

times to Õ(n2 log2(W/ε)). (Note that the problem size is Ω(n2).)

B. Techniques

Here we provide a brief high-level overview of our approach (see

Section III for a much more detailed and formal overview which

links to the main theorems of the paper).

Our results constitute a successful fusion and advancement of

two distinct lines of research on interior point methods (IPMs)

for linear programming [11], [16], [29]–[39] and dynamic graph
algorithms [40]–[45]. This fusion was precipitated by a break-

through result of Spielman and Teng [46] in 2004 that Laplacian

systems could be solved in nearly linear time. As IPMs for linear

programming essentially reduce all the problems considered in this

paper to solving Laplacian systems in each iteration, one can hope

for a faster algorithm via a combination of fast linear system solvers

920

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on June 28,2021 at 20:12:16 UTC from IEEE Xplore. Restrictions apply.

and interior point methods. Via this approach, Daitch and Spielman

[28] showed in 2008 that minimum cost flow and other problems

could be solved in Õ(m3/2) time. Additionally, along this line the

results of Madry and others [9]–[14] all showed that a variety of

problems could be solved faster. However, as discussed, none of

these results lead to improved runtimes for computing maximum

cardinality bipartite matching in significantly dense graphs.

More recently, the result of v.d.Brand, Lee, Sidford and

Song [38], which in turn was built on [16], [35], [37], led to

new possibilities. These methods provide a robust IPM framework

which allows one to solve many sub-problems required by each

iteration approximately, instead of doing so exactly as required by

the previous interior point frameworks. Combining this framework

with sophisticated dynamic matrix data structures (e.g., [35]–

[37], [47]–[51]) has led to the linear programming algorithm of

v.d.Brand et al. [38]. Unfortunately, this algorithm runs in time

Õ(mn) for graph problems, and this running time seems inherent

to the data structures used. Moreover, solving sub-problems only

approximately in each iteration leads to infeasible solutions, which

were handled by techniques which somewhat complicated and in

certain cases inefficient (as this work shows).

Correspondingly this paper makes two major advances. First we

show that the data structures (from sparse recovery literature [52]–

[59]) used by v.d.Brand et al. [38] can be replaced by more efficient

data structures in the case of graph problems. These data structures

are based on the dynamic expander decomposition data structure

developed in the series of works in [40]–[45]. For an unweighted

undirected graph G undergoing edge insertions and deletions given

as input, this data structure maintains a partition of edges in G
into expanders. This data structure was originally developed for

the dynamic connectivity problem [41], [44], [45], but has recently

found applications elsewhere (e.g. [43], [60], [61]). We can use

this data structure to detect entries in the solution that change

significantly between consecutive iterations of the robust interior

point methods. It was known that this task is a key bottleneck in

efficiently implementing prior IPMs methods. Our data structures

solve this problem near optimally. We therefore hope that they may

serve in obtaining even faster algorithms in the future.

The above data structures allow us to solve the problem needed

for each iteration (in particular, some linear system) approximately.

It is still left open how to use this approximate solution. The

issue is that we might not get a feasible solution (we may get

x such that Ax �= b when we try to solve the LP (1)). In [38],

this was handled in a complicated way that would at best give an

Õ(n2) time complexity for the graph problems we consider. In this

paper, we simplify and further improve the method of [38] by sub-

sampling entries of the aforementioned approximate solution (and

we show that such sampling can be computed efficiently using

the aforementioned dynamic expander decompositions). Because

of the sparsity of the sampled solution, we can efficiently measure

the infeasibity (i.e. compute Ax − b) and then fix it in a much

simpler way than [38]. We actually provide a general framework

and analysis for these types of interior point methods that (i) when

instantiated on the log barrier, with our data structures, yields a

Õ(n
√
m)-time algorithm and (ii) when applied using the more

advanced barriers of [16] gives our fastest running time.

We believe that our result opens new doors for combining

continuous and combinatorial techniques for graph related prob-

lems. The recent IPM advances for maximum flow and bipartite

matching problems, e.g. [9], [10], [12]–[16], [28] all use Laplacian

system solvers [46] or more powerful smoothed-�p solver [51],

[62], [63] statically and ultimately spend almost linear work per

iteration. In contrast, in addition to using such solvers, we leverage

dynamic data-structures for maintaining expanders to implement

IPM iterations possibly in sublinear time. Our ultimate runtimes

are then achieved by considering the amortized cost of these

data structures. We hope this proof of concept of intertwining

continuous and combinatorial techniques opens the door to new

algorithmic advances.

II. PRELIMINARIES

We write [n] for the interval {1, 2, ..., n}. When we write with
high probability (or w.h.p), we mean with probability 1 − nc for

any constant c > 0.

Diagonal Matrices: Given a vector v ∈ R
d for some d, we

write Diag(v) for the d×d diagonal matrix with Diag(v)i,i = vi.

For vectors x, s, s, x, xt, st, w, w,wt, τ, g we let X
def
= Diag(x),

S
def
= Diag(s), and define X, S, Xt, St, W, W, Wt, T, G

analogously.

Matrix and Vector operations: Given vectors u, v ∈ R
d for

some d, we perform arithmetic operations ·,+,−, /,√· element-

wise. For example (u · v)i = ui · vi or (
√
v)i =

√
vi.

For symmetric matrices A,B ∈ R
n×n we write A 	 B to

indicate that x�Ax ≤ x�Bx for all x ∈ R
n and define
, ≺,

and � analogously. We let Sn×n
>0 ⊆ R

n×n denote the set of n ×
n symmetric positive definite matrices. We call any matrix (not

necessarily symmetric) non-degenerate if its rows are all non-zero

and it has full column rank.

We use a ≈ε b to denote that exp(−ε)b ≤ a ≤ exp(ε)b entry-

wise and A ≈ε B to denote that exp(−ε)B 	 A 	 exp(ε)B.

Note that this notation implies a ≈ε b ≈δ c ⇒ a ≈ε+δ c, and

a ≈ε b ⇒ ax ≈ε·x bx for x ≥ 0.

For any matrix A over reals, let nnz(A) denote the number of

non-zero entries in A.

Leverage Scores and Projection Matrices: For any non-

degenerate matrix A ∈ R
m×n we let P(A)

def
= A(A�A)−1A�

denote the orthogonal projection matrix onto A’s image. The

definition extends to degenerate matrices via the Penrose-

Pseudoinverse, i.e. P(A) = A(A�A)†A�. Further, we let

σ(A) ∈ R
m with σ(A)i

def
= P(A)i,i denote A’s leverage

scores and let Σ(A)
def
= Diag(σ(A)), and we let τ(A)

def
=

σ(A)+ n
m
�1 denote A’s regularized leverage scores and T(A)

def
=

Diag(τ(A)). Finally, we let P(2)(A)
def
= P(A) ◦ P(A) (where

◦ denotes entrywise product), and Λ(A)
def
= Σ(A)−P(2)(A).

Norms: We write ‖ · ‖p for the �p-norm, i.e. ‖v‖p :=
(
∑

i |vi|p)1/p, ‖v‖∞ = maxi |vi| and ‖v‖0 being the number

of non-zero entries of v. For a positive definite matrix M we

define ‖v‖M =
√
v�Mv. For a vector τ we define ‖v‖τ :=

(
∑

i τiv
2
i)

1/2 and ‖v‖τ+∞ := ‖v‖∞+40 log(4m/n)‖v‖τ , where

m ≥ n are the dimensions of the constraint matrix of the linear

program.

921

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on June 28,2021 at 20:12:16 UTC from IEEE Xplore. Restrictions apply.

Graph Matrices: Given a directed graph G = (V,E), we

define the (edge-vertex) incidence matrix A ∈ {−1, 0, 1}E×V via

Ae,u = −1, Ae,v = 1 for every edge e = (u, v) ∈ E. We

typically refer to the number of edges by m and the number of

nodes by n, so the incidence matrix is an m× n matrix, which is

why we also allow indices Ai,j for i ∈ [m], j ∈ [n] by assuming

some order to the edges and nodes.

For edge weights w ∈ R
E
≥0 we define the Laplacian matrix as

L = A�WA. For an unweighted undirected simple graph the

Laplacian matrix has Lu,v = −1 if {u, v} ∈ E and Lv,v =
deg(v), which is the same as the previous definition when assigning

arbitrary directions to each edge.

Our algorithm must repeatedly solve Laplacian systems. These

types of linear systems are well studied [46], [64]–[72] and

we use the following result for solving Laplacian systems (see

e.g. Theorem 1.2 of [72]):

Lemma II.1. There is a randomized procedure that given any
n-vertex m-edge graph G with incidence matrix A, diagonal non-
negative weight matrix W, and vector b ∈ R

V such that there
exists an x ∈ R

V with (A�WA)x = b computes x ∈ R
V with

‖x− x‖A�WA ≤ ε‖x‖A�WA in Õ(m log ε−1) w.h.p.

Note that we can express the approximation error of Lemma II.1

as some spectral approximation, i.e. that there exists some H ≈20ε

A�WA such that Hx = b [38, Section 8].

Expanders: We call an undirected graph G = (V,E) a φ-

expander, if

φ ≤ min
∅�=S�V

|{{u, v} ∈ E | u ∈ S, v ∈ V \ S}|
min{∑v∈S deg(v),

∑
v∈V \S deg(v)} .

For an edge partition
⋃t

i=1 Ei = E, consider the set of subgraphs

G1, ..., Gt, where Gi is induced by Ei (with isolated vertices

removed). We call this edge partition and the corresponding set

of subgraphs a φ-expander decomposition of G if each Gi is a

φ-expander.

III. OVERVIEW

We start the overview by explaining how our new interior point

method (IPM) works in Section III-A. A graph-algorithmic view

of this IPM can be found in Section III-B and the full detail can

be found in the full version [1]. This new IPM reduces solving

linear programs to efficiently performing a number of computations

approximately. To efficiently perform these computations for graph

problems and implement our IPM we provide new data structures,

outlined in Section III-C. Some of these data structures are easy to

obtain via known tools, e.g. Laplacian solvers, and some constitute

new contributions. In Section III-D we outline our main data

structure contributions. The details for these data structures are

found in the full version.

A. Interior Point Method

Here we provide an overview of our new efficient sampling-

based primal-dual IPMs. Our method builds upon the recent IPM

of v.d.Brand, Lee, Sidford, and Song [38] and a host of recent IPM

advances [11], [35]–[37]. As with many of these recent methods,

given a non-degenerate A ∈ R
m×n and b ∈ R

n and c ∈ R
m, these

IPMs are applied to linear programs represented in the following

primal (P) and dual (D) form:

(P)
def
= min
x∈Rm

≥0
:A�x=b

c�x and (D)
def
= max
y∈Rn,s∈Rm

≥0
:Ay+s=c

b�y . (3)

In the remainder of this subsection we explain, motivate, and com-

pare our IPM for this general formulation. For more information

about how this IPM is applied in the case of matching problems,

see the next subsections.

Path following: As is typical for primal-dual IPMs, both our

IPM and the IPMs in [35]–[39] maintain primal x(i) ∈ R
m
≥0 and

dual slack s(i) ∈ R
m
≥0 and proceed for iterations i = 0, 1, . . .

attempting to iteratively improve their quality. In each iteration i,
they attempt to compute (x(i), s(i)) so that

x(i)s(i) ≈ μ(i)τ(x(i), s(i)) (4)

for some path parameter μ(i) ∈ R≥0 and weight function
τ(x(i), s(i)) ∈ R

m
≥0. (Recall from Section II that x(�)s(�) is an

element-wise multiplication.)

The intuition behind this approach is that for many weight

functions, e.g. any constant positive vector, the set of primal-dual

pairs (xμ, sμ) ∈ R
m
≥×Rm

≥0, that are feasible, i.e. satisfy A�xμ = b
and Ay + s = c for some y ∈ R

n, and are μ-centered, i.e.

xs = μτ(x, s), form a continuous curve from solutions to (3),

at limμ→0(xμ, sμ), to a type of center of the primal and dual

polytopes (in the case they are bounded), at limμ→∞(xμ, sμ).
This curve is known as the central path and consequently these

methods can be viewed as maintaining approximately centrality to

approximately follow the central path.

Our methods follow a standard step-by-step approach (similar

to [38]) to reduce solving a linear program to efficiently following

the central path, i.e. maintaining (4) for changing μ.

Where the IPMs of [35]–[39] and ours all differ is in what weight

function is used and how the central path is followed. There is a

further complication in some of these methods in that in some cases

feasibility of x is not always maintained exactly. In some, linear

systems can only be solved to high-precision, however this can be

handled by natural techniques, see e.g. [16], [28]. Further, in [38],

to allow for approximate linear system solves in the iterations and

thereby improve the iteration costs, feasibility of x was maintained

more crudely through complicated modifications to the steps. A

key contributions of this paper, is a simple sampling-based IPM

that also maintains approximately feasible x to further decrease

the iteration costs of [38].

Weight function: In this paper we provide a general IPM

framework that we instantiate with our sampling-based techniques

on two different weight functions τ(x(i), s(i)). While there are

many possible weight functions we restrict our attention to τlog
induced by the standard logarithmic barrier: τlog(x

(i), s(i))
def
= �1

and τLS a regularized variant of the weights induced by the

Lee-Sidford barrier function [11] (also used in [38]) defined as

τLS(x
(i), s(i)) = σ(x(i), s(i)) + n

m
�1. Above, σ(x(i), s(i)) ∈ R

m

are leverage scores of A under a particular row re-weighting by

x(i), and s(i) as used in, e.g., [11], [16], [38]. Roughly, σ(x(i), s(i))
measures the importance of each row of A with respect to the

current primal dual pair x(i) and s(i) in a way that the induced

central path is still continuous and can be followed efficiently.

922

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on June 28,2021 at 20:12:16 UTC from IEEE Xplore. Restrictions apply.

On the one hand, τlog is perhaps the simplest weight function

one could imagine. The central path it induces is the same as the

one induced by penalizing approach the constraints of (P) and (D)
with a logarithmic barrier function. Starting with the seminal work

of [30] there have been multiple Õ(
√
m) iteration IPMs induced

by τlog. On the other hand, τLS is closely related to the Lewis

weight barrier or Lee-Sidford barrier given in [11] and its analysis

is more complex. However, in [38] it was shown that this weight

function induces a Õ(
√
n) iteration IPM. (See [11], [38] for further

explanation and motivation of τLS):

Though the bounds achieved by τLS in this paper are never worse

than those achieved by τlog (up to logarithmic factors), we consider

both weight functions for multiple reasons. First, the analysis of

τlog in this paper is simpler than that for τlog and yet is sufficient

to still obtain Õ(n
√
m) = Õ(n2) time algorithms for the matching

problems considered in this paper (and consequently on a first

read of this paper one might want to focus on the use of τlog).

Second, the analysis of the two weight functions is very similar

and leverage much common algorithmic and analytic machinery.

Consequently, considering both barriers demonstrates the versatility

of our sampling-based IPM approach.

Centrality potentials: To measure whether (4) holds (for τ ∈
{τlog, τLS}) and design our steps, as with previous IPM advances

[11], [35]–[39] we use the softmax potential function Φ : Rm → R

defined for all vectors v by Φ(v)
def
=

∑
i∈[n] φ(vi) where φ(vi)

def
=

exp(λ(vi−1))+exp(−λ(vi−1)) for some parameter λ. We then

define the centrality measures or potentials as

Φ(x(i), s(i), μ(i))
def
= Φ

(
x(i)s(i)

μ(i)τ(x(i), s(i))

)

where τ ∈ {τlog, τLS} depending on which weight function is used.

Φ intuitively measure how far x(i)s(i) is from μ(i)τ(x(i), s(i)),
i.e. how far x(i) and s(i) are from being centered and having (4)

hold. Observe that Φ(v) is small when v = �1 (thus x(i)s(i) =
μ(i)τ(x(i), s(i))) and increases very quickly as v deviates from �1.

The centrality potential we consider has been leveraged exten-

sively by previous IPM advances. In particular, Φ with τ = τlog
was used in [35]–[37], [39] and Φ with τ = τLS was used in [38].

Where our method differs from prior work is in how we design our

steps for controlling the value of this potential function a discussed

in the next section.

Improvement Step (Short Step): Given the choice of weight

function τ ∈ {τlog, τLS} our IPM follows the central path by

taking improvement steps (called short steps) given by x(i+1) =
x(i) + ηxδ

(i)
x , s(i+1) = s(i) + ηs, and μ(i+1) = μ(i) + δ

(i)
μ . where

ηx, ηs are constants depending on whether we use τlog or τLS,

and δ
(i+1)
x , δ

(i+1)
s , and δ

(i+1)
μ are defined next. Informally, these

steps are defined as approximate projected Newton steps of Φ in the

appropriate norm. Formally, δ
(i)
x and δ

(i)
s are given by the following

equations

δ(i)x = X
(i)
g(i)

−R(i)[X
(i)
(S

(i)
)−1A(H

(i)
)−1A�X

(i)
g(i) + δ(i)c], (5)

δ(i)s = A(H
(i)
)−1A�X

(i)
g(i). (6)

where the variables in (5) and (6) are described below.

(I) x(i), s(i) ∈ R
m are any entry-wise, multiplicative approxima-

tions of x(i), s(i), and X
(i)

= Diag(x(i)), S
(i)

= Diag(s(i)).
(II) g(i) ∈ R

m: This is an approximate steepest descent direction

of Φ with respect to some norm ‖·‖. Formally, for v(i) ∈ R
m

which is an element-wise approximation of x(i)s(i)

μ(i)τ(x(i),s(i))
, we

choose

g(i) = argmax
z∈Rm:‖z‖≤1

〈∇Φ(v(i)), z〉 (7)

for some norm ‖ · ‖ that depends on whether we use τlog or

τLS.

(III) H
(i) ∈ R

n×n is any matrix such that H
(i) ≈

A�X
(i)
(S

(i)
)−1A.

(IV) R(i) ∈ R
m×m is a randomly selected PSD diagonal matrix

chosen so that (i) E[R(i)] = I, (ii) A�X
(i)
(S

(i)
)−1R(i)A ≈

A�X
(i)
(S

(i)
)−1A, and (iii) the second moments of δx are

bounded. The number of non-zero entries in R(i) is Õ(n +√
m) when we use τlog and Õ(n + m/

√
n) when we use

τLS. Intuitively R randomly samples some rows of the matrix

following it in (5) with overestimates of importance measures

of the row.

(V) δ
(i)
c ∈ R

m: a “correction vector” which (as discussed more

below), helps control the infeasibility of x(i+1). For a param-

eter ηc of value ηc ≈ 1 (more precisely, ηc = 1 for τlog and

ηc = 1
1−1/O(logn)

for τLS) this is defined as

δ(i)c
def
= ηcX

(i)
(S

(i)
)−1A(H

(i)
)−1(A�x(i) − b). (8)

Flexibility of variables: Note that there is flexibility in choosing

variables of the form �, i.e. x(i), s(i), g(i) and H
(i)

. Further,

our algorithms have flexibility in the choice of R(i), we just need

too sample by overestimates. This flexibility gives us freedom in

how we implement the steps of this method and thereby simplifies

the data-structure problem of maintaining them. As in [38], this

flexibility is key to our obtaining our runtimes.

Setting δ
(i+1)
μ : As we discuss more below, if R(i) = I and δ

(i)
c = 0

in (5), our short steps would be almost the same as those in the

IPMs in [35], [37]–[39]. For such IPMs, it was shown in [35],

[37], [39] (respectively in [38]) that δ
(i)
μ can be set to be roughly

Õ(1/
√
m)μ(i) if we use τlog (respectively Õ(1/

√
n)μ(i) if we

use τLS), leading to a method with Õ(
√
m) (respectively Õ(

√
n))

iterations.

In this paper, we can adjust the analyses in [35], [37]–[39]

to show that our IPMs require the same number of iterations.

In particular, we provide a general framework for IPMs of this

type and show that by carefully choosing the distribution for

R(i) (and restarting when necessary) we can preserve the typical

convergence rates from [35], [37]–[39] for using τlog and τLS while

ensuring that the infeasibility of x is never too large. Provided

R(i) can be sampled efficiently, our new framework supports

arbitrary crude polylogarithmic multiplicative approximations of

H
(i)

to A�X
(i)
(S

(i)
)−1A, in contrast to the high precision

approximations required by [35], [37], [39] and a more complicated

approximation required in [38]

Motivations and comparisons to previous IPMs: The IPM in

[38] and ours share a common feature that they only approximately
solve linear systems in each iteration, i.e. they apply (H

(i)
)−1

923

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on June 28,2021 at 20:12:16 UTC from IEEE Xplore. Restrictions apply.

to a vector for H
(i) ≈ A�X

(i)
(S

(i)
)−1A. While [38] carefully

modified the steps to make them feasible in expectation, here

we provide a new technique of simply sampling from δx to

essentially sparsify the change in x so that we always know the

infeasibility and therefore can better control it. In particular, the

short steps in [38] are almost the same as ours with R(i) = I and

δ
(i)
c = 0 in (5). This means that we modify the previous short

steps in two ways. First, we sparsify the change in x(i) using a

sparse random matrix R(i) defined in (IV). Since E[R(i)] = I,

in expectation the behavior of our IPM is similar to that in

[38]. However, since R(i) has Õ(n + m/
√
n) non-zero entries

(and less for τlog), we can quickly compute A�x(i+1) − b from

A�x(i) − b by looking at Õ(n + m/
√
n) rows of A. This

information is very useful in fixing the feasibility of x(i+1) so

that A�x(i+1) = b in the LP. In particular, while [38] requires

a complicated process to keep x(i+1) feasible, we only need our

second modification: a “correction vector” δ
(i)
c . The idea is that we

choose δ
(i)
c so that x(i+1) = x(i) + δ

(i)
x + δ

(i)
c would be feasible

if we use H
(i)

= A�X
(i)
(S

(i)
)−1A. Although we will still have

H
(i) ≈ A�X

(i)
(S

(i)
)−1A and so x(i+1) will be infeasible, the

addition of δ
(i)
c fixes some of the previous induced infeasibility.

This allows us to bypass the expensive infeasibility fixing step in

[38] which takes Õ(mn+n3) time, and improve the running time

to Õ(mn+ n2.5), and even less when A is an incidence matrix.

To conclude, we advance the state-of-the-art for IPMs by pro-

viding new methods which can tolerate crude approximate linear

system solvers and gracefully handle the resulting loss of infeasi-

bility. Provided certain sampling can be performed efficiently, our

methods improve and simplifying aspects of [38]. This new IPM

framework, together with our new data structures (discussed next),

allow τlog to be used to obtain an Õ(n
√
m)-time matching algo-

rithm and τLS to be used to obtain our Õ(m+n1.5)-time matching

algorithm. We believe that this framework is of independent interest

and may find further applications.

B. A Graph-Algorithmic Perspective on our IPM

Here we provide an overview of the IPM discussed in Sec-

tion III-A, specialized to the graph problems we consider, such as

matching and min-cost flow. This subsection is intended to provide

further intuition on both our IPM and the data structures we develop

for implementing the IPM efficiently. For simplicity, we focus on

our IPM with τlog in this subsection. In the case of graph problems,

typically the natural choice of A in the linear programming

formulations is the incidence matrix A ∈ {−1, 0, 1}E×V of a

graph (see Section II). The structure of this matrix ultimately

enables our methods to have the graph interpretation given in this

section and allows us to achieve more efficient data structures (as

compared to the case of general linear programs). This interpre-

tation is discussed here and the data structures are discussed in

Sections III-C and III-D.

Note that incidence matrices are degenerate; the all-ones vector

is always in the kernel and therefore A is not full column rank

(and A�A is not invertible). Consequently, the algorithms in

Section III-A do not immediately apply. This can be fixed by

standard techniques (e.g. [28]). In this paper we fix this issue by

appending an identity block at the bottom of A (which can be

interpreted as adding self-loops to the input graph). For simplicity,

we ignore this issue in this subsection.

Min-cost flow: We focus on the uncapacited min-cost flow

(a.k.a. transshipment) problem, where the goal is the find the flow

satisfying nodes’ demands. Other graph problems can be solved

by reducing to this problem (see full version). For simplicity, we

focus on computing δ
(i)
x as in (5) and assume that ηx = ηs = 1.

Below, entries of any n-dimensional (respectively m-dimensional)

vectors are associated with vertices (respectively edges). After i
iterations of our IPM, we have

• a flow x(i) ∈ R
m that is an approximation of a flow x(i) (we

do not explicitly maintain x(i) but it is useful for the analysis),

• an approximated slack variable s(i) ∈ R
m, and

• A�x(i) − b ∈ R
n called infeasibility (a reason for this will

be clear later).

We would like to improve the cost of x(i) by augmenting it

with flow x(i)g(i) ∈ R
m, for some “gradient” vector g(i). This

corresponds to the first term in (5) and gives us an intermediate

m-dimensional flow vector ẋ(i+1) def
= x(i) + x(i)g(i). Let us

oversimplify the situation by assuming that g(i) has Õ(n) non-

zero entries, so that computing x(i)g(i) is not a bottleneck in our

runtime. We will come back to this issue later.

Infeasibility: The main problem of ẋ(i+1) is that it might be

infeasible, i.e. A�ẋ(i+1) �= b. The infeasibility A�ẋ(i+1) − b is

due to (i) the infeasibility of x(i) (i.e. A�x(i)−b), and (ii) the ex-

cess flow of x(i)g(i), which is (A�X
(i)
g(i))v =

∑
uv∈E x

(i)
uvg

(i)
uv−∑

vu∈E x
(i)
vug

(i)
vu on each vertex v. This infeasibility would be fixed

if we subtract ẋ(i+1) with some “correction” flow f
(i)
c that satisfies,

for every vertex v, the demand vector d(i) ∈ R
n where

d(i)
def
= A�ẋ(i+1) − b = A�X

(i)
g(i) + (A�x(i) − b). (9)

Note that given sparse g(i) (as assumed above) and A�x(i) − b,

we can compute the demand vector d(i) in Õ(n) time.

Electrical flow: A standard candidate for f
(i)
c is an electrical

flow on the input graph G(i) with resistance r
(i)
e = s

(i)
e /x

(i)
e

on each edge e. In a close form, such electrical flow is f
(i)
c =

X
(i)
(S

(i)
)−1A(H(i))−1d(i), where H(i) is the Laplacian of G(i).

(Note that (H(i))−1 does not exist. This issue can be easily fixed

(see full version), so we ignore it for now.) Observe that f
(i)
c is

exactly the second term of (5) (also see (8)) with R(i) = I and

H(i) = H
(i)

. Such f
(i)
c can be computed in Õ(m) time in every

iteration via fast Laplacian solvers (Lemma II.1).3 Since known

IPMs require Ω(
√
n) iterations, this leads to Õ(m

√
n) total time

at best. This is too slow for our purpose. The main contribution of

this paper is a combination of new IPM and data structures that

reduces the time per iteration to Õ(n).

Spectral sparsifier: A natural approach to avoid Õ(m) time

per iteration is to approximate f
(i)
c using a spectral approximation

of H(i), denoted by H
(i)

. In particular, consider a new inter-

mediate flow ẍ(i+1) def
= x(i) + x(i)g(i) − f

(i)

c where f
(i)

c
def
=

X
(i)
(S

(i)
)−1A(H

(i)
)−1d(i). Note that the definition of f

(i)

c is

exactly the second term of (5) with R(i) = I, and it differs

from f
(i)
c only in H

(i)
. Given d ∈ R

n, computing (H
(i)
)−1d ∈

3We use a (1 + ε)-approximation Laplacian solver. Its runtime depends
logarithmically on ε−1, so we can treat it essentially as an exact algorithm.

924

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on June 28,2021 at 20:12:16 UTC from IEEE Xplore. Restrictions apply.

R
n is straightforward: a spectral sparsifier H

(i)
with (1 + ε)-

approximation ratio and Õ(n/ε2) edges can be maintained in

Õ(n/ε2) time per iteration (under the change of resistances), either

using the leverage scores [38] or the dynamic sparsifier algorithm

of [43]. We then run a fast Laplacian solver on top of such sparsifier

to compute (H
(i)
)−1d. This requires only Õ(n) time per iteration.

Difficulties: There are at least two difficulties in implementing

the above idea:

1) Infeasibility: An approximate electrical flow f
(i)

c might not

satisfy demand d(i), thus does not fix the infeasibility of x(i).

2) Time: Computing f
(i)

c ∈ R
m explicitly requires Ω(m) time

even just to output the result.

Bounding infeasibility and random correction: For the first

issue, it turns out that while we cannot keep each x(i) feasible,

we can prove that the infeasibility remains small throughout. As

a result, we can bound the number of iterations as if every x(i)

is feasible (e.g. Õ(
√
m) iterations using τlog). To get around the

second issue, we apply the correction flow f
(i+1)

c only on Õ(n)
carefully sampled and rescaled edges4; i.e. our new (final) flow is

x(i+1) def
= x(i) + x(i)g(i) − R(i)f

(i)

c , for some random diagonal

matrix R(i) ∈ R
m×m with Õ(n) non-zero entries; in other words,

x
(i+1)
e = x

(i)
e + x

(i)
e g(i)e −R

(i)
e,e(f

(i)

c)e for every edge e. Observe

that this is equivalent to how we define x(i+1) in our IPM ((5)

and (6)). Since R(i) has Õ(n) non-zero entries4, we can compute

h(i) = R(i)f
(i)

c in Õ(n) time.5

Our sampled edges basically form an enhanced spectral spar-

sifier, A�R(i)A. For each edge e, let p
(i)
e be a probability

that is proportional to the effective resistance of e and (f
(i)

c)e.

With probability p
(i)
e , we set R

(i)
e,e = 1/p

(i)
e and zero otherwise.

Without (f
(i)

c)e influencing the probability, this graph would be a

standard spectral sparsifier. Our enhanced spectral sparsifier can be

constructed in Õ(n) time using our new data structure based on

the dynamic expander decomposition data structure, called heavy
hitter (discussed in Section III-D and Section 5 of the full version).

Compared to a standard spectral sparsifier, it provides some new

properties (e.g. ‖Rfc‖∞ is small in some sense and some moments

are bounded) that allow us to bound the number of iterations to be

the same as when we do not have R(i). In other words, introducing

R(i) does not create additional issues (though it does change the

analysis and make the guarantees probabilistic), and helps speeding

up the overall runtime.

Computing x(i+1), s(i+1) and A�x(i+1)−b: Above, we show

how to compute x(i+1) in Õ(n) time under an oversimplifying

assumption that g(i) is sparse. In reality, g(i) may be dense and

we cannot afford to compute x(i+1) explicitly. A more realistic

assumption (although still simplified) is that we can guarantee that

4If we use τLS, the number of edges becomes Õ(m/
√
n).

5Given d(i) ∈ Rn, we can compute (H(i))−1d(i) ∈ Rn using spectral
sparsifiers and Laplacian solvers as discussed earlier. We can then compute

(R(i)f
(i)
c)uv = R

(i)
uv,uv(x

(i)/s(i))(h
(i)
v −h

(i)
u) for every edge uv such

that Ruv,uv �= 0.

the number of non-zero entries in g(i) − g(i−1) is Õ(
√
m).6 In

this case we cannot explicitly compute x(i)g(i), and thus x(i+1).

Instead, we explicitly maintain x(i+1) such that for each edge e,

x
(i+1)
e is within a constant factor of x

(i+1)
e . This means that, for

any edge e, if �e(i) is the last iteration before iteration i that we set

x
(�e(i))
e = x

(�e(i))
e , and |∑i

t=�e(i)
g(t)e | = Ω(1), then we have to

set x
(i)
e = x

(i)
e . Using the fact that g(i) is a unit vector, we can show

that we do not have to do this often; i.e. there are Õ(m) pairs of

(i, e) such that |∑i
t=�e(i)

g(t)e | = Ω(1). By exploiting the fact that

g(i)− g(i−1) contains Õ(
√
m) non-zero entries, we can efficiently

detect entries of x(i) that need to be changed from x(i−1). Also

by the same fact, we can maintain d(i), thus R(i)f
(i)

c , in Õ(n)
time per iteration. This implies that we can computed x(i+1) in

Õ(n+
√
m) = Õ(n) amortized time per iteration.

We are now left with computing s(i+1) and A�x(i+1) − b.

Observe that δ
(i)
s (Eq. (6)) appear as part of δ

(i)
x in (5); so,

intuitively, s(i) can be computed in a similar way to x(i). Note

that although R(i) does not appear in (6), we can use our

heavy hitter data structure (mentioned earlier and discussed in

Section III-D and Section 5 of the full version) to also detect

edges e where s
(i)
e is no longer a good approximation of s

(i)
e .

That is, when j was the last iteration when we set s
(j)
e = s

(i)
e

then we can use the heavy hitter data structure to detect when

|s(i)e − s
(i)
e | = |s(i)e − s

(j)
e | grows too large, because the difference

s(i)−s(j) can be interpreted as some flow again. Finally, note that

A�x(i+1)− b = (A�x(i)− b)+A�X
(i)
g(i)−A�R(i)f

(i)

c . The

first term is given to us. The last term can be computed quickly due

to the sparsity of R(i)f
(i)

c . The middle term can be maintained in

Õ(
√
m) time by exploiting the fact that there are Õ(

√
m) non-zero

entries in g(i) − g(i−1).

C. Data Structures

As noted earlier, our IPMs are analyzed assuming that the

constraint matrix A of the linear program is non-degenerate (i.e.

the matrix (A�A)−1 exists). If A is an incidence matrix, then this

is not satisfied. We fix this by appending an identity block at the

bottom of A. For proving and discussing the data structures we

will, however, assume that A is just an incidence matrix without

this appended identity block, as it results in a simpler analysis.

Ultimately we would like to compute x(�) in the final iteration �
of the IPM. However, we do not compute x(i) or s(i) in iterations

i < � because it would take to much time. Instead, we implement

efficient data structures to maintain the following information about

(5) and (6) in every iteration.

i Primal and Gradient Maintenance Maintain vectors g(i),

A�X
(i)
g(i) and x(i) ∈ R

m.

ii Dual Vectors Maintenance: Maintain vector s(i) ∈ R
m.

6The actual situations are slightly more complicated. If we use τlog, we

can guarantee that we know some t(i) ∈ R, for all i, such that
∑

i ‖g(i)−
t(i)g(i−1)‖0 = Õ(m); i.e. we can obtain g(i) by rescaling g(i−1) and

change the values of amortized Õ(
√
m) non-zero entries. We will stick with

the simplified version in this subsection. Note further that if we use τLS,
we can guarantee that entries of each g(i) can be divided into polylog(n)
buckets where entries in the same bucket are of the same value. For every
i, we can describe the bucketing of g(i) by describing polylog(n) entries
in the buckets of g(i−1) that move to different buckets in the bucketing of
g(i). Additionally, each bucket of g(i) may take different values than its
g(i−1) counterpart.

925

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on June 28,2021 at 20:12:16 UTC from IEEE Xplore. Restrictions apply.

iii Row (edge) sampling: Maintain R(i).

iv Inverse Maintenance: Maintain (implicitly) (H
(i)
)−1. Given

w ∈ R
n, return (H

(i)
)−1w.

v Leverage Scores Maintenance (τLS(x
(i), s(i))): When us-

ing the faster Õ(
√
n)-iteration IPM with potential τLS,

we must maintain an approximation τLS(x
(i), s(i)) of

τLS(x
(i), s(i)) = σ(x(i), s(i)) + n/m, so we can maintain

v(i) ≈ x(i)s(i)

μ(i)(τLSx
(i),s(i))

which is needed for g(i) (in (7)).

vi Infeasibility Maintenance: Maintain the n-dimensional vec-

tor (A�x(i) − b).

The above values, except for g(i) (i) and (H
(i)
)−1 (iv), are

computed explicitly, meaning that their values are maintained in the

working memory in every iteration. The vector g(i) is maintained

in an implicit form, and for (H
(i)
)−1, we maintain a data structure

that, given w ∈ R
n, can quickly return (H

(i)
)−1w.

Implementing the IPM via i-vi: Below, we repeat (5), (6) and

(8) to summarize how we use our data structures to maintain the

information in these equations.

δ(i)x = X
(i)
g(i)︸ ︷︷ ︸

(i)

−R(i)︸︷︷︸
(iii)

X
(i)︸︷︷︸

(i)

(S
(i)
)−1︸ ︷︷ ︸

(ii)

A (H
(i)
)−1︸ ︷︷ ︸

(iv)

A�X
(i)
g(i)︸ ︷︷ ︸

(i)

+R(i)δ(i)c︸ ︷︷ ︸
below

,

δ(i)s = A (H
(i)
)−1︸ ︷︷ ︸

(iv)

A�X
(i)
g(i)︸ ︷︷ ︸

(i)

. (10)

R(i)δ(i)c = ηc R
(i)︸︷︷︸

(iii)

X
(i)︸︷︷︸

(i)

(S
(i)
)−1︸ ︷︷ ︸

(ii)

A (H
(i)
)−1︸ ︷︷ ︸

(iv)

(A�x(i) − b)︸ ︷︷ ︸
(vi)

.

Here we see, that all information required to compute δx and δs
is provided by the data structures i-iv.

Constructing the data structures: Next, we explain how to

implement these data structures efficiently. Our main contribution

with respect to the data structures are for i, ii, and iii (primal, dual

and gradient maintenance and row sampling). These data structures

are outlined in Section III-D.

When A is an incidence matrix, maintaining the inverse implic-

itly (iv) can be done by maintaining a sparse spectral approximation

H
(i)

of the Laplacian A�X
(i)
(S

(i)
)−1A and then running an

existing approximate Laplacian system solver [46], [64]–[72]. The

spectral approximation H
(i)

can be maintained using existing tools

such as the dynamic spectral sparsifer data structure from [43] or

sampling from the leverage scores upper bounds.

Maintaining the leverage scores (v) is done via a data structure

from [38] which reduces leverage scores maintenance to dual slack

maintenance (ii) with some overhead.

To maintain A�x(i) − b (vi), observe that A�x(i) − b =
A�x(i−1)−b+A�δ(i−1)

x . Here A�x(i−1)−b is known from the

previous iteration and

A�δ(i−1)
x = A�X

(i−1)
g(i−1) −A�R(i−1)[X

(i−1)
(S

(i−1)
)−1

A(H
(i−1)

)−1A�X
(i−1)

g(i−1) + δ(i−1)
c]

can be computed efficiently because of the sparsity of R(i−1) and

the fact that we know the vector A�X
(i−1)

g(i−1) from gradient

maintenance (i).

Time complexities: The total time to maintain the data struc-

tures i, ii, iv, and vi over � iterations is Õ(m + n�) when using

the slower
√
m-iteration IPM, and Õ(m + (n + m/

√
n)�) when

using the faster
√
n-iteration IPM. The exception is for the leverage

scores τLS(x
(i), s(i)) (v) which is only needed for the

√
n-iteration

IPM, where we need Õ(m + n� + �2m/n) time. So, in total

these data structures take Õ(n
√
m) time when we use τlog and

Õ(m+ n
√
n) time using τLS.

D. Primal, Dual, and Gradient Maintenance and Sampling

We first describe how to maintain the approximation s(i) ≈ s(i),
i.e. the data structure of ii. Via a small modification we then obtain

a data structure for iii. Finally, we describe a data structure for i

which allows us to maintain the gradient g and the primal solution

x.

Approximation of s (See Section 5 and 6 of the full version):
In order to maintain an approximation s(i) ≈ s(i) (i.e. a data

structure for ii), we design a data structures for the following two

problems:

(D1): Maintain the exact vector s(i) ∈ R
m implicitly, such that any

entry can be queried in O(1) time.

(D2): Detect all indices j ∈ [m] for which the current s
(i)
j is no

longer a valid approximation of s
(i)
j .

Task (D1) can be solved easily and we explain further below how to

do it. Solving task (D2) efficiently is one of our main contributions

and proven in Section 5 of the full version, though we also given

an outline in this section further below. Once we solve both tasks

(D1) and (D2), we can combine these data structures to maintain a

valid approximation of s(i) as follows (details in Section 6 of the

full version): Whenever some entry s
(i)
j changed a lot so that s

(i)
j is

no longer a valid approximation, (which is detected by (D2)) then

we simply query the exact value via (D1) and update s
(i)
j ← s

(i)
j .

To construct these data structure, observe that by (10), we have

s(i+1) = s(i) +A (H
(i)
)−1︸ ︷︷ ︸

(iv)

A�X
(i)
g(i)︸ ︷︷ ︸

(i)

= s(i) +Ah(i).

Here the vector h(i) ∈ R
n can be computed efficiently, thanks to

iv and i. So we are left with the problem of maintaining s(i+1) ≈
s(i+1) = s(init)+A

∑i
k=1 h

(k). Here we can maintain
∑i

k=1 h
(k)

in O(n) time per iteration by simply adding the new h(i) to the

sum in each iteration. For any j one can then compute s
(i+1)
j in

O(1) time so we have a data structure that solves (D1).

To get some intuition for (D2), assume we have some s(i) with

s(i) ≈ s(i). Now if an entry (δ
(i)
s)j is small enough, then we have

s
(i)
j ≈ s

(i)
j + (δ

(i)
s)j = s

(i+1)
j . This motivates why we want to

detect a set J ⊂ [m] containing all j where |(δ(i)s)j | is large, and

then update s(i) to s(i+1) by setting s
(i+1)
j ← s

(i+1)
j for j ∈ J .

So for simplicity we start with the simple case where we only

need to detect entries of s(i+1) that changed by a lot within a

single iteration of the IPM. That is, we want to find every index

j such that |(δ(i)s)j | = |s(i+1)
j − s

(i)
j | > εs

(i)
j for some ε ∈ (0, 1);

equivalently, |(Ah(i))j | > εs
(i)
j . We assume that in each iteration

we are given the vector h(i). Since A is an incidence matrix, index

j corresponds to some edge (u, v) and thus finding large entries

is equivalent to finding edges with |h(i)
v − h

(i)
u | > εs

(i)

(u,v) where

s
(i)

(u,v) := s
(i)
j . Assume by induction s

(i−1)
j ≈ s

(i−1)
j for all j,

926

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on June 28,2021 at 20:12:16 UTC from IEEE Xplore. Restrictions apply.

so then finding all j’s where sj is changed by a lot in iteration

(i+1) reduces to the problem of finding all edges (u, v) such that

|(h(i)
v − h

(i)
u)/s

(i)

(u,v)| > ε′ for some ε′ = Θ(ε).
To get the intuition of why we can efficiently find all such edges,

start with the simplified case when the edges have uniform weights

(i.e. s(i) = �1). Since we only care about the differences between

entries in the vector h, we can shift h by any constant vector c ·�1
in O(n) time to make h⊥d, where d is the vector of degrees of the

nodes in the graph. For any edge j = (u, v) to have |hu−hv| ≥ ε′,
at least one of |hu| and |hv| has to be at least ε′/2. Thus, it suffices

to check the adjacent edges of a node u only when |hu| is large,

or equivalently h2
uε
′−2 is at least 1/4. Since checking the adjacent

edges of any u takes time deg(u), the time over all such nodes is

bounded by O(
∑

u deg(u)h2
uε
−2), which is O(h�Dhε−2) where

D is the diagonal degree matrix. If the graph G has conductance

at least φ (i.e., G is a φ-expander), we can exploit the classic

spectral graph theory result of Cheeger’s inequality to bound the

running time by O(h�Lhφ−2
G ε−2), where L = A�A is the graph

Laplacian. Here h�Lh = ‖Ah‖22 will be small due to properties of

our IPM, and thus this already gives us an efficient implementation

if our graph has large conductance φ = 1/ polylog(n).
To extend the above approach to the real setting where s is

non-uniform and the graph is not an expander, we only need

to partition the edges of G so that these two properties hold in

each induced subgraph. For the non-uniform s part, we bucket

the edges by their weights in s(i) into edge sets E
(i)
k = {(u, v) |

s(i)(u, v) ∈ [2k, 2k+1)}, so edges in each bucket have roughly uni-

form s weights. To get the large conductance condition, we further

partition each E
(i)
k into expander subgraphs, i.e., E

(i)
k,1, E

(i)
k,2, . . .,

each inducing an (1/ polylog(n))-expander. Note that edges move

between buckets over the iterations as s(i) changes, so we need to

maintain the expander decompositions in a dynamic setting. For

this we employ the algorithm of [43] (building on tools developed

for dynamic minimum spanning tree [40]–[42], [44], [45], espe-

cially [40]). Their dynamic algorithm can maintain our expander

decomposition efficiently (in polylog(n) time per weight update).

With the dynamic expander decomposition, we can essentially

implement the method discussed above in each expander as follows.

For each expander subgraph, we constrain the vector h to the nodes

of the expander. Then, we translate h by the all-one vector so that

h is orthogonal to the degree vector of the nodes in the expander.

To perform the translation on all expanders, we need the total

size (in terms of nodes) of the induced expanders to be small for

the computation to be efficient. We indeed get this property as

the dynamic expander decomposition algorithm in [43] guarantees∑
q |V (E

(i)
k,q)| = O(n log n). In total this will bound the running

time in the ith iteration of the IPM to be

Õ((ε′)−2‖(S(i)
)−1Ah(i)‖22 + n logW),

where W is a bound on the ratio of largest to smallest entry in s.

By properties of the IPM, which bound the above norm, the total

running time of our data structure over all Õ(
√
n) iterations of the

IPM becomes Õ(m + n1.5), or Õ(
√
mn) when using the slower

Õ(
√
m) iteration IPM.

In the above we only consider detecting entries of s(i) undergo-

ing large changes in a single iteration. In order to maintain s(i), we

also need to detect entries of s(i) that change slowly every iteration,

but accumulate enough change across multiple iterations so our

approximation is no longer accurate enough. This can be handled

via a reduction similar to the one performed in [38], where we

employ lazy update and batched iteration tracking. In particular, for

every k = 0, 1, . . . , �(log n)/2�, we use a copy of (D2) to check

every 2k iterations of the IPM, if some entry changes large enough

over the past 2k iterations. This reduction only incurs a polylog(n)
factor overhead in running time comparing to the method that only

detects large single iteration changes, so the total running time is

the same up to polylog factors.

Row Sampling (See Section 5 in the full version): An-

other task is to solve data structure problem iii which is

about constructing the random matrix R(i). The desired dis-

tribution of R(i) is as follows. For some large enough con-

stant C > 0 let q ∈ R
m with qj ≥ √

m((δ
(i)
r)2j/‖δr‖22 +

1/m) + C · σ((X(i)
)1/2(S

(i)
)−1/2A)j polylog n where δ

(i)
r =

X
(i)
(S

(i)
)−1A(H

(i)
)−1AX

(i)
g(i) + δ

(i)
c then we have R

(i)
j,j =

(min(qi, 1))
−1 with probability min(qi, 1) and 0 otherwise.

This sampling task can be reduced to the two tasks of (i)

sampling according to
√
m((δr)

2
j/‖δr‖22 and (ii) sampling ac-

cording to C · σ((X(i)
)1/2(S

(i)
)−1/2A) polylog n. The latter can

be implemented easily as we have approximate leverage scores

via data structure v. The former is implemented in a similar

way as data structure (D2) of the previous paragraph. Instead of

finding large entries of some vector (S
(i)
)−1Ah(i), we now want

to sample the entries proportional to X
(i)
(S

(i)
)−1Ah′(i) where

h′(i) = (H
(i)
)−1(AX

(i)
g(i) +A�x(i) − b).

This sampling can be constructed via a simple modification of

the previous (D2) data structure. Where (D2) tries to find edges

(u, v) with large |((S(i)
)−1Ah(i))(u,v)| by looking for nodes v

with large |h(i)
v |, we now similarly sample edges (u, v) proportional

to (X
(i)
(S

(i)
)−1Ah′(i))2(u,v) by sampling for each node v incident

edges proportional to (h
(i)
v)2.

Gradient Maintenance and Approximation of x (Section 7 in
the full version): For the primal solution x, again we aim

to maintain a good enough approximation x through our IPM

algorithm. Consider the update to x(i) in (5),

x(i+1) = x(i) +X
(i)
g(i)

−R(i)X
(i)
(S

(i)
)−1A(H

(i)
)−1A�X

(i)
g(i) +R(i)δ(i)c

the last two terms will be sparse due to the sparse diagonal

sampling matrix R(i), so we can afford to compute that part

of the updates explicitly. For the part of X
(i)
g(i) where g(i) =

argmax
z∈Rm:‖z‖≤1

〈∇Φ(v(i)), z〉 (see (7)) we will show that g admits

a low dimensional representation. Here by low dimensionality of

g ∈ R
m we mean that the m indices in the vector can be put

into Õ(1) buckets, where indices j, j′ in the same bucket share the

common value gj = gj′ . This allows us to represent the values of

g as a Õ(1) dimensional vector so we can efficiently represent and

do computations with g in a very compact way.

For simplicity consider the case where we use ‖ · ‖2 as the

norm for the maximization problem that defines g(i) (this norm

is used by the
√
m-iteration IPM, while the

√
n-iteration IPM

uses a slightly more complicated norm). In that case g(i) =

927

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on June 28,2021 at 20:12:16 UTC from IEEE Xplore. Restrictions apply.

∇Φ(v(i))/‖∇Φ(v(i))‖2 and the way we construct the Õ(1) di-

mensional approximation is fairly straightforward. We essentially

discretize v(i) by rounding each entry down to the nearest multiple

of some appropriate granularity to make it low dimensional. Once

v(i) is made to be Õ(1) dimensional, it is simple to see from

the definition of the potential function Φ(·) that ∇Φ(v(i)) will

also be in Õ(1) dimension. For the faster
√
n iteration IPM

where a different norm ‖ · ‖ is used, we can show that the low

dimensionality of ∇Φ(v(i)) also translates to the maximizer being

in low dimensional.

Once we compute the low dimensional updates, we still need

to track accumulated changes of X
(i)
g(i) over multiple iterations.

Because of properties of the IPM, we have that on average any

index j switches its bucket (of the low dimensional representation

of g) only some polylog(n) times. Likewise, the value of any entry

X
(i)
j changes only some polylog(n) number of times. Thus the

rate in which
∑i

k=1 X
(k)
j g

(k)
j changes, stays the same for many

iterations. This allows us to (A) predict when x
(i)
j is no longer

a valid approximation of x
(i)
j , and (B) the low dimensionality

allows us to easily compute any x
(i)
j . In the same way as s(i)

was maintained via (D1) and (D2), we can now combine (A) and

(B) to maintain x(i).

ACKNOWLEDGMENT

We thank Yang Liu for helpful conversations, feedback on earlier

drafts of the paper, and technical suggestions. This project has

received funding from the European Research Council (ERC) under

the European Unions Horizon 2020 research and innovation pro-

gramme under grant agreement No 715672. Danupon Nanongkai

is also partially supported by the Swedish Research Council (Reg.

No. 2015-04659 and 2019-05622). Aaron Sidford is supported by

NSF CAREER Award CCF-1844855 and a PayPal research gift.

Yin Tat Lee is supported by NSF awards CCF-1749609, CCF-

1740551, DMS-1839116, Microsoft Research Faculty Fellowship,

a Sloan Research Fellowship. Di Wang did part of this work while

at Georgia Tech, and was partially supported by NSF grant CCF-

1718533. Richard Peng was partially supported by NSF grants

CCF-1718533 and CCF-1846218. Zhao Song was partially sup-

ported by Ma Huateng Foundation, Schmidt Foundation, Simons

Foundation, NSF, DARPA/SRC, Google and Amazon.

REFERENCES

[1] J. v. d. Brand, Y. T. Lee, D. Nanongkai, R. Peng, T. Saranu-
rak, A. Sidford, Z. Song, and D. Wang, “Bipartite matching
in nearly-linear time on moderately dense graphs,” CoRR, vol.
abs/2009.01802, 2020.

[2] J. E. Hopcroft and R. M. Karp, “An n5/2 algorithm for maximum
matchings in bipartite graphs,” SIAM J. Comput., vol. 2, no. 4,
pp. 225–231, 1973, announced at FOCS’71.

[3] E. A. Dinic, “Algorithm for solution of a problem of maximum
flow in networks with power estimation,” in Soviet Math. Dok-
lady, vol. 11, 1970, pp. 1277–1280.

[4] A. V. Karzanov, “On finding maximum flows in networks with
special structure and some applications,” Matematicheskie Vo-
prosy Upravleniya Proizvodstvom, vol. 5, pp. 81–94, 1973.

[5] O. H. Ibarra and S. Moran, “Deterministic and probabilistic
algorithms for maximum bipartite matching via fast matrix mul-
tiplication,” Inf. Process. Lett., vol. 13, no. 1, pp. 12–15, 1981.

[6] F. L. Gall, “Powers of tensors and fast matrix multiplication,” in
ISSAC. ACM, 2014, pp. 296–303.

[7] V. V. Williams, “Multiplying matrices faster than coppersmith-
winograd,” in STOC. ACM, 2012, pp. 887–898.

[8] A. Schrijver, Combinatorial optimization: polyhedra and effi-
ciency. Springer Science & Business Media, 2003, vol. 24.

[9] A. Madry, “Navigating central path with electrical flows: From
flows to matchings, and back,” in FOCS. IEEE Computer
Society, 2013, pp. 253–262.

[10] ——, “Computing maximum flow with augmenting electrical
flows,” in 2016 IEEE 57th Annual Symposium on Foundations
of Computer Science (FOCS). IEEE, 2016, pp. 593–602.

[11] Y. T. Lee and A. Sidford, “Solving linear programs with
√
rank

linear system solves,” in arXiv preprint. https://arxiv.org/pdf/
1910.08033.pdf, 2019.

[12] M. B. Cohen, A. Madry, P. Sankowski, and A. Vladu, “Negative-
weight shortest paths and unit capacity minimum cost flow in
O(m10/7 logW) time,” in Proceedings of the Twenty-Eighth
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA).
SIAM, 2017, pp. 752–771.

[13] Y. P. Liu and A. Sidford, “Faster energy maximization for faster
maximum flow,” in STOC. https://arxiv.org/pdf/1910.14276.pdf,
2020.

[14] K. Axiotis, A. Madry, and A. Vladu, “Circulation control for
faster minimum cost flow in unit-capacity graphs,” in arXiv
preprint. https//arxiv.org/pdf/2003.04863.pdf, 2020.

[15] Y. P. Liu and A. Sidford, “Faster divergence maximization for
faster maximum flow,” in arXiv preprint. https://arxiv.org/pdf/
2003.08929.pdf, 2020.

[16] Y. T. Lee and A. Sidford, “Path finding methods for lin-
ear programming: Solving linear programs in O(

√
rank) iter-

ations and faster algorithms for maximum flow,” in 55th An-
nual IEEE Symposium on Foundations of Computer Science
(FOCS). https://arxiv.org/pdf/1312.6677.pdf, https://arxiv.org/
pdf/1312.6713.pdf, 2014, pp. 424–433.

[17] J. H. Blanchet, A. Jambulapati, C. Kent, and A. Sidford, “To-
wards optimal running times for optimal transport,” CoRR, vol.
abs/1810.07717, 2018.

[18] K. Quanrud, “Approximating optimal transport with linear pro-
grams,” in SOSA, 2019.

[19] T. Lin, N. Ho, and M. I. Jordan, “On efficient optimal transport:
An analysis of greedy and accelerated mirror descent algorithms,”
in ICML, ser. Proceedings of Machine Learning Research, vol. 97.
PMLR, 2019, pp. 3982–3991.

[20] J. Altschuler, J. Weed, and P. Rigollet, “Near-linear time approx-
imation algorithms for optimal transport via sinkhorn iteration,”
in NIPS, 2017, pp. 1964–1974.

[21] H. N. Gabow and R. E. Tarjan, “Faster scaling algorithms for
network problems,” SIAM J. Comput., vol. 18, no. 5, pp. 1013–
1036, 1989.

[22] ——, “Faster scaling algorithms for general graph-matching
problems,” J. ACM, vol. 38, no. 4, pp. 815–853, 1991.

[23] R. Duan and S. Pettie, “Linear-time approximation for maximum
weight matching,” J. ACM, vol. 61, no. 1, pp. 1:1–1:23, 2014.

[24] J. Sherman, “Generalized preconditioning and undirected
minimum-cost flow,” in SODA. SIAM, 2017, pp. 772–780.

[25] A. Andoni, C. Stein, and P. Zhong, “Parallel approximate undi-
rected shortest paths via low hop emulators,” STOC, vol. https:
//arxiv.org/pdf/1911.01956.pdf, 2020.

928

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on June 28,2021 at 20:12:16 UTC from IEEE Xplore. Restrictions apply.

[26] J. Li, “Faster parallel algorithm for approximate shortest path,”
in STOC. https://arxiv.org/pdf/1911.01626.pdf, 2020.

[27] J. Edmonds and R. M. Karp, “Theoretical improvements in algo-
rithmic efficiency for network flow problems,” J. ACM, vol. 19,
no. 2, pp. 248–264, 1972.

[28] S. I. Daitch and D. A. Spielman, “Faster approximate lossy
generalized flow via interior point algorithms,” in Proceedings
of the fortieth annual ACM symposium on Theory of computing
(STOC), 2008, pp. 451–460.

[29] N. Karmarkar, “A new polynomial-time algorithm for linear
programming,” Combinatorica, vol. 4, no. 4, pp. 373–396, 1984,
announced at STOC’84.

[30] J. Renegar, “A polynomial-time algorithm, based on newton’s
method, for linear programming,” Math. Program., vol. 40, no.
1-3, pp. 59–93, 1988.

[31] P. M. Vaidya, “An algorithm for linear programming which
requires O(((m+n)n2+(m+n)1.5n)L) arithmetic operations,”
in STOC. ACM, 1987, pp. 29–38.

[32] P. M. Vaidya and D. S. Atkinson, “A technique for bounding the
number of iterations in path following algorithms,” in Complexity
in Numerical Optimization. World Scientific, 1993, pp. 462–489.

[33] K. M. Anstreicher, “Volumetric path following algorithms for
linear programming,” Math. Program., vol. 76, pp. 245–263,
1996.

[34] Y. E. Nesterov and M. J. Todd, “Self-scaled barriers and interior-
point methods for convex programming,” Math. Oper. Res.,
vol. 22, no. 1, pp. 1–42, 1997.

[35] M. B. Cohen, Y. T. Lee, and Z. Song, “Solving linear programs
in the current matrix multiplication time,” in STOC, 2019, https:
//arxiv.org/pdf/1810.07896.

[36] Y. T. Lee, Z. Song, and Q. Zhang, “Solving empirical risk
minimization in the current matrix multiplication time,” in COLT.
https://arxiv.org/pdf/1905.04447, 2019.

[37] J. v. d. Brand, “A deterministic linear program solver in current
matrix multiplication time,” in SODA. SIAM, 2020, pp. 259–278.

[38] J. v. d. Brand, Y. T. Lee, A. Sidford, and Z. Song, “Solving tall
dense linear programs in nearly linear time,” in STOC. https:
//arxiv.org/pdf/2002.02304.pdf, 2020.

[39] S. Jiang, Z. Song, O. Weinstein, and H. Zhang, “Faster dynamic
matrix inverse for faster lps,” CoRR, vol. abs/2004.07470, 2020.

[40] T. Saranurak and D. Wang, “Expander decomposition and prun-
ing: Faster, stronger, and simpler,” in SODA. SIAM, 2019, pp.
2616–2635.

[41] D. Nanongkai, T. Saranurak, and C. Wulff-Nilsen, “Dynamic
minimum spanning forest with subpolynomial worst-case update
time,” in FOCS. IEEE Computer Society, 2017, pp. 950–961.

[42] J. Chuzhoy, Y. Gao, J. Li, D. Nanongkai, R. Peng, and T. Saranu-
rak, “A deterministic algorithm for balanced cut with applications
to dynamic connectivity, flows, and beyond,” in FOCS, 2020,
https://arxiv.org/pdf/1910.08025.pdf.

[43] A. Bernstein, J. v. d. Brand, M. P. Gutenberg, D. Nanongkai,
T. Saranurak, A. Sidford, and H. Sun, “Fully-dynamic graph spar-
sifiers against an adaptive adversary,” CoRR, vol. abs/2004.08432,
2020.

[44] D. Nanongkai and T. Saranurak, “Dynamic spanning forest with
worst-case update time: adaptive, las vegas, and O(n1/2−ε)-
time,” in Proceedings of the 49th Annual ACM SIGACT Sym-
posium on Theory of Computing (STOC), 2017, pp. 1122–1129.

[45] C. Wulff-Nilsen, “Fully-dynamic minimum spanning forest with

improved worst-case update time,” in Proceedings of the 49th An-
nual ACM SIGACT Symposium on Theory of Computing (STOC),
2017, pp. 1130–1143.

[46] D. A. Spielman and S. Teng, “Nearly-linear time algorithms
for graph partitioning, graph sparsification, and solving linear
systems,” in STOC’04: Proceedings of the 36th Annual ACM
Symposium on the Theory of Computing. ACM, 2004, pp. 81–90.

[47] P. M. Vaidya, “Speeding-up linear programming using fast matrix
multiplication (extended abstract),” in FOCS. IEEE Computer
Society, 1989, pp. 332–337.

[48] P. Sankowski, “Dynamic transitive closure via dynamic matrix
inverse (extended abstract),” in FOCS. IEEE Computer Society,
2004, pp. 509–517.

[49] J. v. d. Brand, D. Nanongkai, and T. Saranurak, “Dynamic matrix
inverse: Improved algorithms and matching conditional lower
bounds,” in FOCS. IEEE Computer Society, 2019, pp. 456–
480.

[50] Y. T. Lee and A. Sidford, “Efficient inverse maintenance and faster
algorithms for linear programming,” in FOCS. IEEE Computer
Society, 2015, pp. 230–249.

[51] D. Adil, R. Kyng, R. Peng, and S. Sachdeva, “Iterative refinement
for �p-norm regression,” in Proceedings of the Thirtieth Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), SIAM.
https://arxiv.org/pdf/1901.06764.pdf, 2019, pp. 1405–1424.

[52] A. C. Gilbert, Y. Li, E. Porat, and M. J. Strauss, “Approximate
sparse recovery: optimizing time and measurements,” SIAM Jour-
nal on Computing 2012 (A preliminary version of this paper
appears in STOC 2010), vol. 41, no. 2, pp. 436–453, 2010.

[53] D. M. Kane, J. Nelson, E. Porat, and D. P. Woodruff, “Fast mo-
ment estimation in data streams in optimal space,” in Proceedings
of the forty-third annual ACM symposium on Theory of computing
(STOC), 2011, pp. 745–754.

[54] H. Hassanieh, P. Indyk, D. Katabi, and E. Price, “Nearly optimal
sparse Fourier transform,” in Proceedings of the forty-fourth
annual ACM symposium on Theory of computing (STOC), ACM.
https://arxiv.org/pdf/1201.2501.pdf, 2012, pp. 563–578.

[55] R. Pagh, “Compressed matrix multiplication,” ACM Transactions
on Computation Theory (TOCT), vol. 5, no. 3, pp. 1–17, 2013.

[56] K. G. Larsen, J. Nelson, H. L. Nguyen, and M. Thorup, “Heavy
hitters via cluster-preserving clustering,” in 57th Annual Sym-
posium on Foundations of Computer Science (FOCS), IEEE.
https://arxiv.org/pdf/1604.01357, 2016, pp. 61–70.

[57] M. Kapralov, “Sample efficient estimation and recovery in sparse
FFT via isolation on average,” in 58th Annual IEEE Symposium
on Foundations of Computer Science (FOCS). https://arxiv.org/
pdf/1708.04544, 2017.

[58] V. Nakos and Z. Song, “Stronger l2/l2 compressed sensing;
without iterating,” in STOC. https://arxiv.org/pdf/1903.02742,
2019.

[59] V. Nakos, Z. Song, and Z. Wang, “(Nearly) Sample-optimal sparse
Fourier transform in any dimension; RIPless and Filterless,” in
FOCS. https://arxiv.org/pdf/1909.11123.pdf, 2019.

[60] A. Bernstein, M. P. Gutenberg, and T. Saranurak, “Deterministic
decremental reachability, scc, and shortest paths via directed ex-
panders and congestion balancing,” 2020, to appear at FOCS’20.

[61] G. Goranci, H. Räcke, T. Saranurak, and Z. Tan, “The expander
hierarchy and its applications to dynamic graph algorithms,”
CoRR, vol. abs/2005.02369, 2020. [Online]. Available: https:
//arxiv.org/abs/2005.02369

[62] R. Kyng, R. Peng, S. Sachdeva, and D. Wang, “Flows in almost

929

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on June 28,2021 at 20:12:16 UTC from IEEE Xplore. Restrictions apply.

linear time via adaptive preconditioning,” in Proceedings of the
51st Annual ACM SIGACT Symposium on Theory of Computing
(STOC). https://arxiv.org/pdf/1906.10340.pdf, 2019, pp. 902–
913.

[63] D. Adil and S. Sachdeva, “Faster p-norm minimizing flows, via
smoothed q-norm problems,” in SODA. SIAM, 2020, pp. 892–
910.

[64] P. M. Vaidya, “Solving linear equations with symmetric diag-
onally dominant matrices by constructing good precondition-
ers,” Unpublished manuscript, UIUC 1990. A talk based on the
manuscript was presented at the IMA Workshop on Graph Theory
and Sparse Matrix Computation Mineapolis, Tech. Rep., October
1991.

[65] D. A. Spielman and S.-H. Teng, “Solving sparse,” in FOCS’03:
Proceedings of the 44th Annual IEEE Symposium on Foundations
of Computer Science. diagonally-dominant linear systems in time
O(m1.31). In: symmetric, 2003, pp. 416–427.

[66] I. Koutis, G. L. Miller, and R. Peng, “Approaching optimality for
solving SDD systems,” in Proceedings of the 51st Annual IEEE
Symposium on Foundations of Computer Science (FOCS), 2010,
pp. 235–244.

[67] ——, “A nearly m logn-time solver for SDD linear systems,” in
Proceedings of the 52nd Annual IEEE Symposium on Foundations
of Computer Science (FOCS), 2011, pp. 590–598.

[68] J. A. Kelner, L. Orecchia, A. Sidford, and Z. A. Zhu, “A simple,”
in STOC’13: Proceedings of the 45th Annual ACM Symposium on
the Theory of Computing. combinatorial algorithm for solving
SDD systems in nearly-linear time. In, 2013, pp. 911–920.

[69] Y. T. Lee and A. Sidford, “Efficient accelerated coordinate descent
methods and faster algorithms for solving linear systems,” in
2013 IEEE 54th Annual Symposium on Foundations of Computer
Science. IEEE, 2013, pp. 147–156.

[70] M. B. Cohen, R. Kyng, G. L. Miller, J. W. Pachocki, R. Peng,
A. B. Rao, and S. C. Xu., “Solving sdd linear systems in
nearly m log1/2 n time,” in Proceedings of the 46th Annual ACM
Symposium on Theory of Computing (STOC), 2014, pp. 343–352.

[71] R. Kyng, Y. T. Lee, R. Peng, S. Sachdeva, and D. A. Spiel-
man, “Sparsified cholesky and multigrid solvers for connection
laplacians,” in STOC’16: Proceedings of the 48th Annual ACM
Symposium on Theory of Computing, 2016.

[72] R. Kyng and S. Sachdeva, “Approximate gaussian elimination for
laplacians - fast, sparse, and simple,” in FOCS. IEEE Computer
Society, 2016, pp. 573–582.

930

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on June 28,2021 at 20:12:16 UTC from IEEE Xplore. Restrictions apply.

