2020 IEEE 61st Annual Symposium on Foundations of Computer Science (FOCS) | 978-1-7281-9621-3/20/$31.00 ©2020 IEEE | DOI: 10.1109/FOCS46700.2020.00090

2020 IEEE 61st Annual Symposium on Foundations of Computer Science (FOCS)

Bipartite Matching in Nearly-linear Time on Moderately Dense Graphs

Jan van den Brand®, Yin-Tat LeeT, Danupon Nanongkai*, Richard Pengi,
Thatchaphol Saranurakg, Aaron Sidford", Zhao SongH and Di Wang™*
*KTH Royal Institute of Technology, Sweden TUniversity of Washington and Microsoft Research Redmond, USA
iGeorgia Institute of Technology, USA §Toyotal Technological Institute at Chicago, USA 11Stanford University, USA
I Cotumbia University, Princeton University and Institute for Advanced Study, USA **Google Research, USA

Abstract—We present an O(m + n!-5)-time randomized algorithm
for maximum cardinality bipartite matching and related problems (e.g.
transshipment, negative-weight shortest paths, and optimal transport)
on m-edge, n-node graphs. For maximum cardinality bipartite match-
ing on moderately dense graphs, i.e. m = Q(n!®), our algorithm
runs in time nearly linear in the input size and constitutes the first
improvement over the classic O(m./n)-time [Dinic 1970; Hopcroft-
Karp 1971; Karzanov 1973] and O(n“)-time algorithms [Ibarra-
Moran 1981] (where currently w ~ 2.373). On sparser graphs, i.e.
when m = n9/8+9 for any constant § > 0, our result improves upon
the recent advances of [Madry 2013] and [Liu-Sidford 2020b, 2020a]
which achieve an O(m?4/3+t°(1)) runtime.

We obtain these results by combining and advancing recent lines
of research in interior point methods (IPMs) and dynamic graph
algorithms. First, we simplify and improve the IPM of [v.d.Brand-Lee-
Sidford-Song 2020], providing a general primal-dual IPM framework
and new sampling-based techniques for handling infeasibility induced
by approximate linear system solvers. Second, we provide a simple
sublinear-time algorithm for detecting and sampling high-energy edges
in electric flows on expanders and show that when combined with re-
cent advances in dynamic expander decompositions, this yields efficient
data structures for maintaining the iterates of both [v.d.Brand et al.]
and our new IPMs. Combining this general machinery yields a simpler
O(n+/m) time algorithm for matching based on the logarithmic barrier
function, and our state-of-the-art O(m + n'-3) time algorithm for
matching based on the [Lee-Sidford 2014] barrier (as regularized in
[v.d.Brand et al.]).

Keywords-bipartite matching, shortest paths, transshipment, optimal
transport, nearly linear time, interior point method, linear program

I. INTRODUCTION

The maximum-cardinality bipartite matching problem is to com-
pute a matching of maximum size in an m-edge n-vertex bipartite
graph G = (V,E). This problem is one of the most funda-
mental and well-studied problems in combinatorial optimization,
theoretical computer science, and operations research. It naturally
encompasses a variety of practical assignment questions and is
closely related to a wide range of prominent optimization problems,
e.g. optimal transport, shortest path with negative edge-lengths,
minimum mean-cycle, etc.

Beyond these many applications, this problem has long served
as a barrier towards efficient optimization and a proving ground
for new algorithmic techniques. Though numerous combinatorial
and continuous approaches have been proposed for the problem,
improving upon the classic time complexities of O(m+/n) [2]-
[4] and O(n®) [5]' has proven to be notoriously difficult. Since
the early 80s, these complexities have only been improved by

The full version of this paper is available as [1] at https://arxiv.org/abs/
2009.01802.
'Here w is the matrix multiplication exponent and currently w ~ 2.373

(61, [7]

polylogarithmic factors (see, e.g., [8]) until a breakthrough result
of Madry [9] showed that faster algorithms could be achieved when
the graph is moderately sparse. In particular, Madry [9] showed that
the problem could be solved in O(mlo/ ") and a line of research
[10]1-[14] led to the recent O(m*/3+°M))_time algorithm [15].2
Nevertheless, for moderately dense graphs, i.e. m > n'>T® for
any constant 6 > 0, the O(min(m+/n,n“)) runtime bound has
remained unimproved for decades.

The more general problem of minimum-cost perfect bipartite
b-matching, where an edge can be used multiple times and the
goal is to minimize the total edge costs in order to match every
node v for b(v) times, for given non-negative integers b(v), has
been even more resistant to progress. An O(m+/n) runtime for
this problem with arbitrary polynomially bounded integer costs and
b was achieved only somewhat recently by [16]. Improving this
runtime by even a small polynomial factor for moderately dense
graphs, is a major open problem (see Table II).

The minimum-cost perfect bipartite b-matching problem can
encode a host of problems ranging from transshipment, to negative-
weight shortest paths, to maximum-weight bipartite matching.
Even more recently, the problem has been popularized in machine
learning through its encapsulation of the optimal transport problem
[17]-[20]. There has been progress on these problems in a variety
of settings (see tables in Section I-A and the full version [1]),
including recent improvements for sparse-graphs [12], [14], and
nearly linear time algorithms for computing (1 + €) approximate
solutions for maximum-cardinality/weight matching [2]-[4], [21]-
[23] and undirected transshipment [24]-[26]. However, obtaining
nearly linear time algorithms for solving these problems to high-
precision for any density regime has been elusive.

A. Our Results

In this paper, we show that maximum cardinality bipartite
matching, and more broadly minimum-cost perfect bipartite b-
matching, can be solved in O(m 4 n'-®) time. Tables I and II
compare these results with previous ones. Compared to the state-
of-the-art algorithms for maximum-cardinality matching our bound
is the fastest whenever m = n®/®%® for any constant § > 0,
ignoring polylogarithmic factors. Our bound is the first (non-fast-
matrix multiplication based) improvement in decades for the case
of dense graphs. More importantly, our bound is nearly linear when
m > n'5. This constitutes the first near-optimal runtime in any
density regime for the bipartite matching problem.

ZFor simplicity, we use 5() to hide polylogn and sometimes
polylog(W), where W typically denotes the largest absolute value used
for specifying any value in the problem.

2575-8454/20/$31.00 ©2020 IEEE 919
DOI 10.1109/FOCS46700.2020.00090

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on June 28,2021 at 20:12:16 UTC from IEEE Xplore. Restrictions apply.

Year Authors References Time (O(+))
Sparse | Dense
1969-1973 | Hopcroft, Karp, [2]-[4] my/n
Dinic, Karzanov
1981 Ibarra, Moran [5] n%
2013 Madry [9] m10/7
2020 Liu, Sidford [15] m?/3
2020 This paper m+nlb
Table 1

THE SUMMARY OF THE RESULTS FOR THE max-cardinality bipartite
matching PROBLEM. FOR A MORE COMPREHENSIVE LIST, SEE [23].

Year | Authors References | Time (O(+))

1972 | Edmonds and Karp | [27] mn

2008 | Daitch, Spielman [28] m3/2

2014 | Lee, Sidford [16] my/n

2020 | This paper m +nt?
Table 1T

THE SUMMARY OF THE RESULTS FOR THE min-cost perfect bipartite
b-matching PROBLEM (EQUIVALENTLY, transshipment) FOR
POLYNOMIALLY BOUNDED INTEGER COSTS AND b. FOR A MORE
COMPREHENSIVE LIST, SEE CHAPTERS 12 AND 21 IN [8]. NOTE THAT
THERE HAVE BEEN FURTHER RUNTIME IMPROVEMENTS TO THIS
PROBLEM (NOT INCLUDED IN THE TABLE) UNDER THE ASSUMPTION
THAT [|b|[1 = O(m), SEE [12]. RECENTLY, A STATE-OF-THE-ART
RUNTIME OF O(m*/3+°(1)) WAS ACHIEVED BY [14] UNDER THIS
ASSUMPTION.

As a consequence, by careful application of standard reductions,
we show that we can solve a host of problems within the same time
complexity. These problems are those that can be described as or
reduced to the following transshipment problem. Given b € R",
¢ € R™, and matrix A € {0,1,—1}"*" where each row of A
consists of two nonzero entries, one being 1 and the other being
—1, we want to find = € RY, that achieves the following objective:

min ¢ z. 1)
ATz=b, 2>0
Viewed as a graph problem, we are given a directed graph G =
(V, E), ademand function b : V' — R and a cost function ¢ : £ —
R. This problem is then to compute a transshipment f : £ — Rx>g
that minimizes), .p f(uv)c(uv), where a transshipment is a
flow f: E — Ryxq such that for every node v,

> fluw) = > flow) = b(v). @)

uwveE vweE

The main result of this paper is the following Theorem I.1
providing our runtime for solving the transshipment problem.

Theorem L.1. The transshipment problem can be solved to -
additive accuracy in O((m+n*5)log?(||b]|oc||clloc /€)) time. For
the integral case, where all entries in b, ¢, and x are integers, the
problem can be solved exactly in O((m~+n**)log?(]|b||sol|cllo))
time.

Leveraging Theorem 1.1 we obtain the following results.

1) A maximum-cardinality bipartite matching can be computed
in O(m +n'%) time, where O hides poly log(n) factors.

2) The minimum-cost perfect bipartite b-matching on graph G =
(V, E), with integer edge costs in [—W, W] and non-negative

Year Authors References | Time (O(-))
1972 Edmonds, Karp [27] n3
2014 Lee, Sidford [16] n2>
2017-19 | Altschuler, [20] n?W?2/e2
Weed, Rigollet
2018-19 | Lin, Ho, Jordan | [19] n2SW03 /e
2018 Quanrud/Blanchet,| [17], [18] n?W/e
Jambulapati,
Kent, Sidford
2020 This paper n?

Table III
THE SUMMARY OF THE RESULTS FOR THE optimal transport PROBLEM.

integer b(v) < W for all v € V, can be computed in O((m+
n'5) log?(W)) time.

3) The O((m + n'%)log?(W)) time complexity also holds for
maximum-weight bipartite matching, negative-weight shortest
paths, uncapaciated min-cost flow, vertex-capacitated min-cost
s-t flow, minimum mean cost cycle, and deterministic Markov
decision processes (here, W denotes the largest absolute value
used for specifying any value in the problem).

4) The optimal transport problem can be solved to e-additive
accuracy in O(n? log?(W/e)) time.

We have already discussed the first two results. Below we briefly
discuss some additional results. See Section 8.6 in the full version
[1] for the details of all results.

Single-source shortest paths with negative weights and min-
imum weight bipartite perfect matching.: Due to Gabow
and Tarjan’s algorithm from 1989 [21], this problem can be
solved in O(my/nlog(nW)) time where W is the absolute
maximum weight of an edge in the graph. For sparse graphs,
this has been improved to O(m'"log W) [12] and recently to
O(m*/ 3+j(1) log W) [14]. Here, our algorithm obtains a running
time of O((m + n'%)log®(W)), which again is near-linear for
dense graphs and is the lowest known when m = n/8+3 for any
constant 6 > 0 and W is polynomially bounded.

Optimal Transport.: Algorithms with e-additive error received
much attention from the machine learning community since the
introduction of the algorithm of Altschuler, Weed, Rigollet [20]
(e.g. [171-[19]). The algorithm of [20] runs in time O(n*W?/e?),
and [18], [19] runs in time O(n?W/e). We improve these running
times to O(n? log?(W/e)). (Note that the problem size is Q(n?).)

B. Techniques

Here we provide a brief high-level overview of our approach (see
Section III for a much more detailed and formal overview which
links to the main theorems of the paper).

Our results constitute a successful fusion and advancement of
two distinct lines of research on interior point methods (IPMs)
for linear programming [11], [16], [29]-[39] and dynamic graph
algorithms [40]-[45]. This fusion was precipitated by a break-
through result of Spielman and Teng [46] in 2004 that Laplacian
systems could be solved in nearly linear time. As IPMs for linear
programming essentially reduce all the problems considered in this
paper to solving Laplacian systems in each iteration, one can hope
for a faster algorithm via a combination of fast linear system solvers

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on June 28,2021 at 20:12:16 UTC from IEEE Xplore. Restrictions apply.

and interior point methods. Via this approach, Daitch and Spielman
[28] showed in 2008 that minimum cost flow and other problems
could be solved in O(m?/?) time. Additionally, along this line the
results of Madry and others [9]-[14] all showed that a variety of
problems could be solved faster. However, as discussed, none of
these results lead to improved runtimes for computing maximum
cardinality bipartite matching in significantly dense graphs.

More recently, the result of v.d.Brand, Lee, Sidford and
Song [38], which in turn was built on [16], [35], [37], led to
new possibilities. These methods provide a robust IPM framework
which allows one to solve many sub-problems required by each
iteration approximately, instead of doing so exactly as required by
the previous interior point frameworks. Combining this framework
with sophisticated dynamic matrix data structures (e.g., [35]-
[37], [47]-[51]) has led to the linear programming algorithm of
VN.d.Brand et al. [38]. Unfortunately, this algorithm runs in time
O(mn) for graph problems, and this running time seems inherent
to the data structures used. Moreover, solving sub-problems only
approximately in each iteration leads to infeasible solutions, which
were handled by techniques which somewhat complicated and in
certain cases inefficient (as this work shows).

Correspondingly this paper makes two major advances. First we
show that the data structures (from sparse recovery literature [52]—
[59]) used by v.d.Brand et al. [38] can be replaced by more efficient
data structures in the case of graph problems. These data structures
are based on the dynamic expander decomposition data structure
developed in the series of works in [40]-[45]. For an unweighted
undirected graph GG undergoing edge insertions and deletions given
as input, this data structure maintains a partition of edges in G
into expanders. This data structure was originally developed for
the dynamic connectivity problem [41], [44], [45], but has recently
found applications elsewhere (e.g. [43], [60], [61]). We can use
this data structure to detect entries in the solution that change
significantly between consecutive iterations of the robust interior
point methods. It was known that this task is a key bottleneck in
efficiently implementing prior IPMs methods. Our data structures
solve this problem near optimally. We therefore hope that they may
serve in obtaining even faster algorithms in the future.

The above data structures allow us to solve the problem needed
for each iteration (in particular, some linear system) approximately.
It is still left open how to use this approximate solution. The
issue is that we might not get a feasible solution (we may get
x such that Ax # b when we try to solve the LP (1)). In [38],
this was handled in a complicated way that would at best give an
O(n?) time complexity for the graph problems we consider. In this
paper, we simplify and further improve the method of [38] by sub-
sampling entries of the aforementioned approximate solution (and
we show that such sampling can be computed efficiently using
the aforementioned dynamic expander decompositions). Because
of the sparsity of the sampled solution, we can efficiently measure
the infeasibity (i.e. compute Az — b) and then fix it in a much
simpler way than [38]. We actually provide a general framework
and analysis for these types of interior point methods that (i) when
instantiated on the log barrier, with our data structures, yields a
6(n\/771)—time algorithm and (ii) when applied using the more
advanced barriers of [16] gives our fastest running time.

We believe that our result opens new doors for combining
continuous and combinatorial techniques for graph related prob-

921

lems. The recent IPM advances for maximum flow and bipartite
matching problems, e.g. [9], [10], [12]-[16], [28] all use Laplacian
system solvers [46] or more powerful smoothed-£, solver [51],
[62], [63] statically and ultimately spend almost linear work per
iteration. In contrast, in addition to using such solvers, we leverage
dynamic data-structures for maintaining expanders to implement
IPM iterations possibly in sublinear time. Our ultimate runtimes
are then achieved by considering the amortized cost of these
data structures. We hope this proof of concept of intertwining
continuous and combinatorial techniques opens the door to new
algorithmic advances.

II. PRELIMINARIES

We write [n] for the interval {1,2,...,n}. When we write with
high probability (or w.h.p), we mean with probability 1 — n® for
any constant ¢ > 0.

Diagonal Matrices: Given a vector v € R? for some d, we
write Diag(v) for the d x d diagonal matrix with Diag(v);; = v;.
For vectors z, s,s, T, x¢, St, w,w, wt, T,g we let X of Diag(z),
s &f Diag(s), and define X, S, X:, S;, W, W, W, T, G

analogously.

Matrix and Vector operations: Given vectors u,v € R? for
some d, we perform arithmetic operations -, +, —, /, /- element-
wise. For example (u - v); = wi - v; or (/)i = /vi.

For symmetric matrices A, B € R™*"™ we write A < B to
indicate that z' Az < z "Bz for all z € R” and define >, <,
and > analogously. We let SZ5™ C R™*"™ denote the set of n X
n symmetric positive definite matrices. We call any matrix (not
necessarily symmetric) non-degenerate if its rows are all non-zero
and it has full column rank.

We use a =, b to denote that exp(—e)b < a < exp(e)b entry-
wise and A ~. B to denote that exp(—¢)B < A < exp(¢)B.
Note that this notation implies a ~¢ b ~5 ¢ = a ~ets5 ¢, and
a b= a® ~c, b" for x > 0.

For any matrix A over reals, let nnz(A) denote the number of
non-zero entries in A.

Leverage Scores and Projection Matrices: For any non-
degenerate matrix A € R™*" we let P(A) = AATA)TIAT
denote the orthogonal projection matrix onto A’s image. The
definition extends to degenerate matrices via the Penrose-
Pseudoinverse, ie. P(A) = A(ATA)TAT. Further, we let
o(A) € R™ with o(A); < P(A),; denote A’s leverage
scores and let $(A) < Diag(c(A)), and we let 7(A) &
o(A)+ 2T denote A’s regularized leverage scores and T(A) =

Diag(7(A)). Finally, we let P (A) ' P(A) o P(A) (where

o denotes entrywise product), and A(A) &t S(A) — PP (A).
Norms: We write || - ||, for the {p-norm, ie. |[v||, :=
(3, [vilP)V?, ||v]js = max;|vi| and ||v]jo being the number

of non-zero entries of v. For a positive definite matrix M we
define |[v|lm = VvTMu. For a vector 7 we define ||v||; :=
(32, 7)) and [[v]]-+00 := [|0]oc +40 log(4m/n) [v]|-, where
m > n are the dimensions of the constraint matrix of the linear
program.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on June 28,2021 at 20:12:16 UTC from IEEE Xplore. Restrictions apply.

Graph Matrices: Given a directed graph G = (V, E), we
define the (edge-vertex) incidence matrix A € {—1,0,1}**" via
Ac. = -1, A., = 1 for every edge e = (u,v) € E. We
typically refer to the number of edges by m and the number of
nodes by n, so the incidence matrix is an m X n matrix, which is
why we also allow indices A; ; for i € [m], j € [n] by assuming
some order to the edges and nodes.

For edge weights w € RZ, we define the Laplacian matrix as
L = ATWA. For an unweighted undirected simple graph the
Laplacian matrix has Ly, = —1 if {u,v} € E and L,, =
deg(v), which is the same as the previous definition when assigning
arbitrary directions to each edge.

Our algorithm must repeatedly solve Laplacian systems. These
types of linear systems are well studied [46], [64]-[72] and
we use the following result for solving Laplacian systems (see
e.g. Theorem 1.2 of [72]):

Lemma II.1. There is a randomized procedure that given any
n-vertex m-edge graph G with incidence matrix A, diagonal non-
negative weight matrix W, and vector b € R such that there
exists an x € RY with (ATWA)g = b computes T € RV with
17— 2llaTwa < €llzllaTwa in O(mloge™) whp.

Note that we can express the approximation error of Lemma II.1
as some spectral approximation, i.e. that there exists some H =290,
A TWA such that HZ = b [38, Section 8].

Expanders:
expander, if

We call an undirected graph G = (V,E) a ¢-

. {{u,v} € E|ue S,veV\S}
< min - .
P B min{3, g deg(v), Soers dea(v)]

For an edge partition Ule E; = E, consider the set of subgraphs
Gi,...,G¢, where G; is induced by FE; (with isolated vertices
removed). We call this edge partition and the corresponding set
of subgraphs a ¢-expander decomposition of G if each G; is a
¢-expander.

III. OVERVIEW

We start the overview by explaining how our new interior point
method (IPM) works in Section III-A. A graph-algorithmic view
of this IPM can be found in Section III-B and the full detail can
be found in the full version [1]. This new IPM reduces solving
linear programs to efficiently performing a number of computations
approximately. To efficiently perform these computations for graph
problems and implement our IPM we provide new data structures,
outlined in Section III-C. Some of these data structures are easy to
obtain via known tools, e.g. Laplacian solvers, and some constitute
new contributions. In Section III-D we outline our main data
structure contributions. The details for these data structures are
found in the full version.

A. Interior Point Method

Here we provide an overview of our new efficient sampling-
based primal-dual IPMs. Our method builds upon the recent IPM
of v.d.Brand, Lee, Sidford, and Song [38] and a host of recent IPM
advances [11], [35]-[37]. As with many of these recent methods,
given a non-degenerate A € R™*™ and b € R™ and ¢ € R™, these

922

IPMs are applied to linear programs represented in the following
primal (P) and dual (D) form:

def

. T def T
min ¢ x and (D)= ma b'y. (3)
R AT x=b YER™,s€RT:Ay+s=c

(P)=
In the remainder of this subsection we explain, motivate, and com-
pare our IPM for this general formulation. For more information
about how this IPM is applied in the case of matching problems,
see the next subsections.

Path following: As is typical for primal-dual IPMs, both our
IPM and the IPMs in [35]-[39] maintain primal () € R, and
dual slack s € RZ, and proceed for iterations i = 0,1,...
attempting to iterative_ly improve their quality. In each iteration ¢,
they attempt to compute (¥, s?)) so that

(©)

FMORORIRO RO INON

“
for some path parameter u(i) € Ryo and weight function
(@, s%) € RT,. (Recall from Section II that (s is an
element-wise mult_iplication.)

The intuition behind this approach is that for many weight
functions, e.g. any constant positive vector, the set of primal-dual
pairs (z,., s,) € RT xRT, that are feasible, i.c. satisfy Az, = b
and Ay + s = c for some y € R", and are p-centered, i.c.
xs = pt(xz,s), form a continuous curve from solutions to (3),
at lim,—0(xu, su), to a type of center of the primal and dual
polytopes (in the case they are bounded), at lim, oo (xp, Su).
This curve is known as the central path and consequently these
methods can be viewed as maintaining approximately centrality to
approximately follow the central path.

Our methods follow a standard step-by-step approach (similar
to [38]) to reduce solving a linear program to efficiently following
the central path, i.e. maintaining (4) for changing pu.

Where the IPMs of [35]-[39] and ours all differ is in what weight
function is used and how the central path is followed. There is a
further complication in some of these methods in that in some cases
feasibility of x is not always maintained exactly. In some, linear
systems can only be solved to high-precision, however this can be
handled by natural techniques, see e.g. [16], [28]. Further, in [38],
to allow for approximate linear system solves in the iterations and
thereby improve the iteration costs, feasibility of x was maintained
more crudely through complicated modifications to the steps. A
key contributions of this paper, is a simple sampling-based IPM
that also maintains approximately feasible z to further decrease
the iteration costs of [38].

Weight function: In this paper we provide a general IPM
framework that we instantiate with our sampling-based techniques
on two different weight functions 7(z®,s®). While there are
many possible weight functions we restrict our attention to Tiog
induced by the standard logarithmic barrier: Tiog (z“), s(i)) Y
and 7rs a regularized variant of the weights induced by the
Lee-Sidford barrier function [11] (also used in [38]) defined as
ms(z?,s9) = o(z®,5) + Z1. Above, o(z(V,) € R™
are leverage scores of A under a particular row re-weighting by
2@ and s as used in, e.g., [11], [16], [38]. Roughly, U(il'(i)7 s(i))
measures the importance of each row of A with respect to the
current primal dual pair 2z and s in a way that the induced
central path is still continuous and can be followed efficiently.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on June 28,2021 at 20:12:16 UTC from IEEE Xplore. Restrictions apply.

On the one hand, 71, is perhaps the simplest weight function
one could imagine. The central path it induces is the same as the
one induced by penalizing approach the constraints of (P) and (D)
with a logarithmic barrier function. Starting with the seminal work
of [30] there have been multiple O(+/m) iteration IPMs induced
by Tiog. On the other hand, 7rs is closely related to the Lewis
weight barrier or Lee-Sidford barrier given in [11] and its analysis
is more complex. However, in [38] it was shown that this weight
function induces a O(+/n) iteration IPM. (See [11], [38] for further
explanation and motivation of 71.s):

Though the bounds achieved by 71,5 in this paper are never worse
than those achieved by 710 (up to logarithmic factors), we consider
both weight functions for multiple reasons. First, the analysis of
Tiog in this paper is simpler than that for To¢ and yet is sufficient
to still obtain O(n/m) = O(n?) time algorithms for the matching
problems considered in this paper (and consequently on a first
read of this paper one might want to focus on the use of 7).
Second, the analysis of the two weight functions is very similar
and leverage much common algorithmic and analytic machinery.
Consequently, considering both barriers demonstrates the versatility
of our sampling-based IPM approach.

Centrality potentials: To measure whether (4) holds (for 7 €
{Tog, TLs }) and design our steps, as with previous IPM advances
[11], [35]-[39] we use the softmax potential function ® : R™ — R
defined for all vectors v by ®(v) < > icn) @(vi) where ¢(vi) =
exp(A(vi —1)) +exp(—A(v; — 1)) for some parameter \. We then

define the centrality measures or potentials as

°(

where 7 € {Tiog, TLs } depending on which weight function is used.
@ intuitively measure how far 2 s is from p®7(z®, @),
i.e. how far ¥ and s are from being centered and having (4)
hold. Observe that ®(v) is small when v = T (thus (Vs =
pO7 (@,) and increases very quickly as v deviates from .

The centrality potential we consider has been leveraged exten-
sively by previous IPM advances. In particular, & with 7 = 7o
was used in [35]-[37], [39] and & with 7 = 71,5 was used in [38].
Where our method differs from prior work is in how we design our
steps for controlling the value of this potential function a discussed
in the next section.

OO
L7 (), s0)

def

B(z®, 5@, 0y &

Improvement Step (Short Step): Given the choice of weight
function 7 € {Tog,TLs} our IPM follows the central path by
taking improvement steps (called short steps) given by 2+ =
z® +nz(5§f), st = () 4 s, and u(“'l) = u(i) + 6,(?. where
Nz, Ns are constants depending on whether we use 7oz Or 7Ls,
and 5&””, 6§i+1>, and 6&”1) are defined next. Informally, these
steps are defined as approximate projected Newton steps of ® in the
appropriate norm. Formally, 5g(f) and 5@ are given by the following
equations

6;“ _ K(’L)g(i)
50 = A@E)ATX VG, ©)

where the variables in (5) and (6) are described below.

923

@ z,59 e R™ are any entry-wise, multiplicative approxima-
tions of (¥, s, and X" = Diag(z"), sW= Diag(5").
an §(Z) € R™: This is an approximate steepest descent direction

of ® with respect to some norm || - ||. Formally, for 5@ € R™
which is an element-wise approximation of #fl)llm) we
choose
§(i) = argmax (V@(E(i)), z) @)
z€R™:||z[| <1
for some norm || - || that depends on whether we use Tiog Or
=0)
am H € R™™ is any matrix such that H ~

R® e R™*™ js a randomly selected PSD diagonal matrix
chosen so that (i) E[lR™] = T, (i) ATX " (§") "ROA ~
ATi(l)(gm)*lA, and (iii) the second moments of ¢, are
bounded. The number of non-zero entries in R is O(n+
v/m) when we use 7oz and O(n + m/+/n) when we use
7rs. Intuitively R randomly samples some rows of the matrix
following it in (5) with overestimates of importance measures
of the row.

(5?) € R™: a “correction vector” which (as discussed more
below), helps control the infeasibility of z*+1). For a param-
eter 7. of value n. ~ 1 (more precisely, 7. = 1 for Tog and

Ne = W for T1g) this is defined as

av)

%)

5O XUE)TAE) AT —b). 8)
Flexibility of variables: Note that there is flexibility in choosing
variables of the form O, i.e. f(i), E(i), g“') and ﬁ(l). Further,
our algorithms have flexibility in the choice of R®, we just need
too sample by overestimates. This flexibility gives us freedom in
how we implement the steps of this method and thereby simplifies
the data-structure problem of maintaining them. As in [38], this
flexibility is key to our obtaining our runtimes.

Setting 5,&””: As we discuss more below, if R®) = I and 68” = 0
in (5), our short steps would be almost the same as those in the
IPMs in [35], [37]-[39]. For such IPMs, it was shown in [35],
[37], [39] (respectively in [38]) that 5&) can be set to be roughly
O(1//m)u™ if we use Tiog (respectively 6(1/\/5);;(’1 if we
use 71g), leading to a method with O(y/m) (respectively O(y/n))
iterations.

In this paper, we can adjust the analyses in [35], [37]-[39]
to show that our IPMs require the same number of iterations.
In particular, we provide a general framework for IPMs of this
type and show that by carefully choosing the distribution for
R® (and restarting when necessary) we can preserve the typical
convergence rates from [35], [37]-[39] for using 7i,¢ and 7.5 while
ensuring that the infeasibility of = is never too large. Provided
R® can be sampled efficiently, our new framework supports
arbitrary crude polylogarithmic multiplicative approximations of
7Y ATi(z)(g(l))AK, in contrast to the high precision
approximations required by [35], [37], [39] and a more complicated
approximation required in [38]

Motivations and comparisons to previous IPMs: The IPM in
[38] and ours share a common feature that they only approximately
solve linear systems in each iteration, i.e. they apply (ﬁ(l))71

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on June 28,2021 at 20:12:16 UTC from IEEE Xplore. Restrictions apply.

to a vector for H'"” ~ ATX(Z)(gm)’lA, While [38] carefully
modified the steps to make them feasible in expectation, here
we provide a new technique of simply sampling from d, to
essentially sparsify the change in x so that we always know the
infeasibility and therefore can better control it. In particular, the
short steps in [38] are almost the same as ours with R® =1 and
6 = 0in (5). This means that we modify the previous short
steps in two ways. First, we sparsify the change in z® using a
sparse random matrix R defined in (IV). Since E[R®] = I,
in expectation the behavior of our IPM is similar to that in
[38]. However, since R(" has O(n + m//n) non-zero entries
(and less for 7og), we can quickly compute ATz b from
ATz® — b by looking at O(n 4 m//n) rows of A. This
information is very useful in fixing the feasibility of =+ so
that ATzC+Y = b in the LP. In particular, while [38] requires
a complicated process to keep 21 feasible, we only need our
second modification: a “correction vector” 5. The idea is that we
choose 6" so that 20D = 2@ 4 50 4 5< would be feasible
if we use H' ATX“)(S(”) LA. Although we will still have
H” ~ ATx" (S<)) LA and so Y will be infeasible, the
addition of 5 fixes some of the previous induced infeasibility.
This allows us to bypass the expensive infeasibility fixing step in
[38] which takes O(mn + n®) time, and improve the running time
to O(mn +n?%), and even less when A is an incidence matrix.

To conclude, we advance the state-of-the-art for IPMs by pro-
viding new methods which can tolerate crude approximate linear
system solvers and gracefully handle the resulting loss of infeasi-
bility. Provided certain sampling can be performed efficiently, our
methods improve and simplifying aspects of [38]. This new IPM
framework, together with our new dg}a structures (discussed next),
allow Tiog to be used to obtain an O(n+/m)-time matching algo-
rithm and 715 to be used to obtain our O(m+n'-?)-time matching
algorithm. We believe that this framework is of independent interest
and may find further applications.

B. A Graph-Algorithmic Perspective on our IPM

Here we provide an overview of the IPM discussed in Sec-
tion III-A, specialized to the graph problems we consider, such as
matching and min-cost flow. This subsection is intended to provide
further intuition on both our IPM and the data structures we develop
for implementing the IPM efficiently. For simplicity, we focus on
our IPM with 7 in this subsection. In the case of graph problems,
typically the natural choice of A in the linear programming
formulations is the incidence matrix A € {—1,0,1}"*V of a
graph (see Section II). The structure of this matrix ultimately
enables our methods to have the graph interpretation given in this
section and allows us to achieve more efficient data structures (as
compared to the case of general linear programs). This interpre-
tation is discussed here and the data structures are discussed in
Sections III-C and III-D.

Note that incidence matrices are degenerate; the all-ones vector
is always in the kernel and therefore A is not full column rank
(and ATA is not invertible). Consequently, the algorithms in
Section III-A do not immediately apply. This can be fixed by
standard techniques (e.g. [28]). In this paper we fix this issue by
appending an identity block at the bottom of A (which can be
interpreted as adding self-loops to the input graph). For simplicity,
we ignore this issue in this subsection.

924

Min-cost flow: We focus on the uncapacited min-cost flow
(ak.a. transshipment) problem, where the goal is the find the flow
satisfying nodes’ demands. Other graph problems can be solved
by reducing to this problem (see full version). For simplicity, we
focus on computing 69 as in (5) and assume that n, = ns = 1.
Below, entries of any n-dimensional (respectively m-dimensional)
vectors are associated with vertices (respectively edges). After ¢
iterations of our IPM, we have

« aflow ¥ € R™ that is an approximation of a flow =¥ (we
do not explicitly maintain 29 but it is useful for the analysis),

« an approximated slack variable 5 e R™, and

e« ATz —p e R" called infeasibility (a reason for this will
be clear later).

We would like to improve the cost of z® by augmenting it
with flow E(i)g(i’) € R™, for some “gradient” vector §(i). This
corresponds to the first term in (5) and gives us an intermediate
m-dimensional flow vector (D ' (@ 4 zWGD | Let us
oversimplify the situation by assumlng that g has O() non-
zero entries, so that computing = Hg@ is not a bottleneck in our
runtime. We will come back to this issue later.

Infeasibility: ~ The main problem of #0+D s that it might be
infeasible, i.e. ATtV £ b. The infeasibility A& — b is
due to (i) the infeasibility of z® (i.e. ATz —b), and (ii) the ex-
—=(1)=(% : s ~ @) _(i —(z

cess flow of ZWG®, whichis (ATX g, = Y uvcE 7 g0 —
> vucE z4) gfﬂj on each vertex v. This infeasibility would be fixed
if we subtract &0t with some “correction” flow f(l) that satisfies,
for every vertex v, the demand vector d¥ € R™ where

dD 9 AT D) = ATX g0 4 (AT -

b). ©)

Note that given sparse g“') (as assumed above) and ATz — b,

we can compute the demand vector d¥ in O(n) time.

Electrical flow: A standard candidate for fé‘ is an electrlcal
flow on the input graph G with resistance r{” = 50 /z("
on each edge e. In a close form, such electrical flow is f(l) =
XS TAMED) 14D, where H® is the Laplacian of G,
(Note that (H®)~! does not exist. This issue can be easily fixed
(see full version), so we ignore it for now.) Observe that fc(i) is
exactly the second term of (5) (also see (8)) with R® =1 and
HO = 7. Such f(l) can be computed in a(m) time in every
iteration via fast Laplacian solvers (Lemma H.l),3 Since known
IPMs require Q(y/n) iterations, this leads to O(m+/n) total time
at best. This is too slow for our purpose. The main contribution of
this paper is a combination of new IPM and data structures that
reduces the time per iteration to 6(71)

Spectral sparsifier: A natural approach to avoid 6(m) time
per iteration is to approx1mate fc(R using a spectral approximation
of H®, denoted by H”. I particular, consider a new inter-
mediate flow #(+D < @) 4 zhgH _ ?U) where f<> et
XS AMEY)1dD. Note that the definition of f.”

exactly the second term of (5) with R @ = I, and it dlffere
from f{ only in H". Given d € R", computing (H(Yy ld €

3We use a (1 + €)-approximation Laplacian solver. Its runtime depends
logarithmically on e, so we can treat it essentially as an exact algorithm.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on June 28,2021 at 20:12:16 UTC from IEEE Xplore. Restrictions apply.

R™ is straightforward: a spectral sparsifier H” with (14 e)-

approx1mation ratio and O(n/€®) edges can be maintained in
O(n/€®) time per iteration (under the change of resistances), either
using the leverage scores [38] or the dynamic sparsifier algorithm
of [43]. We then run a fast Laplacian solver on top of such sparsifier
to compute (H'")~"'d. This requires only O(n) time per iteration.

Difficulties:
the above idea:

There are at least two difficulties in implementing

1) Infeasibility: An approximate electrical flow ?) might not
satisfy demand d(¥, thus does not fix the infeasibility of z(¥).

2) Time: Computing f € R™ explicitly requires 2(m) time
even just to output the result.

Bounding infeasibility and random correction: For the first
issue, it turns out that while we cannot keep each z(*) feasible,
we can prove that the infeasibility remains small throughout. As
a result, we can bound the number of iterations as if every @
is feasible (e.g. O(y/m) iterations using Tlog). To get around the
second issue, we apply the correction flow ?(Hl) only on 5()
carefully sampled and rescaled edges i.e. our new (final) flow is

PG ORI OF (O —~R()fc , for some random diagonal
matrix R(“ e Rmx™ with O(n) non-zero entries; in other words,
2T = gl 4 7050 R(J)e(??))e for every edge e. Observe
that this is equlvalent to how we define 2" in our IPM ((5)
and (6)). Since R® has O(n) non-zero entries*, we can compute
R =RU)f in O(n) time’

Our sampled edges basically form an enhanced spectral spar-
sifier, ATR™A. For each edge e, let pff) be a probability
that is proportional to the effective reqistance of e and (f)e-
With probabillty De () we set Rgfe =1/ pe and zero otherwise.
Without (f, f)e influencing the probability, this graph would be a
standard spectral sparsifier. Our enhanced spectral sparsifier can be
constructed in O(n) time using our new data structure based on
the dynamic expander decomposition data structure, called heavy
hitter (discussed in Section III-D and Section 5 of the full version).
Compared to a standard spectral sparsifier, it provides some new
properties (e.g. ||Rfc|| is small in some sense and some moments
are bounded) that allow us to bound the number of iterations to be
the same as when we do not have R(¥)_ In other words, introducing
R ™ does not create additional issues (though it does change the
analysis and make the guarantees probabilistic), and helps speeding
up the overall runtime.

Computing 0+, 504D and ATz0H) —p: Above, we show
how to compute ac“*l) in O(n) time under an oversimplifying
assumption that g is sparse. In reality, g*) may be dense and
we cannot afford to compute PG explicitly. A more realistic
assumption (although still simplified) is that we can guarantee that

4If we use 71, the number of edges becomes O(m,/+/m).

5Given d(¥) € R™, we can compute (H(9)~1d(?) € R™ using spectral
sparsifiers and Laplacian solvers as discussed earlier. We can then compute
ROF) 0y = RE, 00 @0 50) (1) -
that Ryv,uv # 0

th >) for every edge uv such

925

the number of non-zero entries in g — g~ is O(y/m).* In
this case we cannot explicitly compute Vg, and thus z*+1).
Instead, we explicitly maintain Z(*) such that for each edge e,

S*) is within a constant factor of xe”l). This means that, for
any edge e, if £ () is the last iteration before iteration ¢ that we set
gl @) = gt and |1 . ()get)\ = Q(1), then we have to
setzt) = 2 . Using the fact that g () is a unit vector, we can show
that we do not have to do thls often; i.e. there are O(m) pairs of
(i, e) such that | 37 _ 0e(0) 7| = Q(1). By exploiting the fact that

7 — g contains O(f) non-zero entries, we can efficiently
detect entries of Z(*) that need to be changed from a:(l D, Also
by the same fact, we can maintain d, thus R¢)f), in O()
time per iteration. This implies that we can computed z0D jn

O(n + /m) = O(n) amortized time per iteration.

We are now left with computing ¢t and ATz0+) — p,
Observe that 69 (Eq. (6)) appear as part of 5? in (5); so,
intuitively, 5@ can be computed in a similar way to zW. Note
that although R® does not appear in (6), we can use our
heavy hitter data structure (mentioned earlier and discussed in
Section III-D and Section 5 of the full version) to also detect
edges e where 3% s no longer a good approximation of st
That is, when j was the last iteration when we set s() = s()
then we can use the heavy hitter data structure to detect when
s — *<i>| = \s@ — 5| grows too large, because the difference

s — s\ can be interpreted as some flow again. Finally, note that
AT+ _p = (AT (4) b)+ATX(1)—(i ATR(i)f(’L)
first term is given to us. The last term can be computed quickly due
to the sparsity of ROTF f . The middle term can be maintained in
O(y/m) time by exploiting the fact that there are O(1/m7) non-zero
entries in g — gt~

C. Data Structures

As noted earlier, our IPMs are analyzed assuming that the
constraint matrix A of the linear program is non-degenerate (i.e.
the matrix (AT A)~! exists). If A is an incidence matrix, then this
is not satisfied. We fix this by appending an identity block at the
bottom of A. For proving and discussing the data structures we
will, however, assume that A is just an incidence matrix without
this appended identity block, as it results in a simpler analysis.

Ultimately we would like to compute 2® in the final iteration ¢
of the IPM. However, we do not compute z or s in iterations
i < £ because it would take to much time. Instead, we implement
efficient data structures to maintain the following information about
(5) and (6) in every iteration.

i Primal and Gradient Maintenance Maintain vectors g'*,

ATX(UE(” and Z) € R™.
ii Dual Vectors Maintenance: Maintain vector 3) € R™,

The actual situations are slightly more complicated. If we use Tlogs We
can guarantee that we know some ¢(*) € R, for all 4, such that > ||§(i) —
tOgE=D o = O(m); ie. we can obtain 3 by rescaling g(*~1) and
change the values of amortized O(/m) non-zero entries. We will stick with
the simplified version in this subsection. Note further that if we use 71,5,
we can guarantee that entries of each §(i> can be divided into polylog(n)
buckets where entries in the same bucket are of the same value. For every
i, we can describe the bucketing of g(*) by describing polylog(n) entries
in the buckets of g(¢=1) that move to different buckets in the bucketing of
("), Additionally, each bucket of g(¥) may take different values than its
§<i*1) counterpart.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on June 28,2021 at 20:12:16 UTC from IEEE Xplore. Restrictions apply.

iii Row (edge) sampling: Maintain RO,

Inverse Mamtenance Maintain (implicitly) (H()) 1. Given
w € R", return (H)_1

Leverage Scores Maintenance (7zs(z(”,s(”)): When us-
ing the faster O(y/n)-iteration IPM with potential s,
we must maintain an approximation 7rg(z(?,s) of
TLs(tT(i),S(i))‘ = o(z™,s) + n/m, so we can maintain
(RN % which is needed for g (in (7)).
Infeasiﬁility "Maintenance: Maintain the n-dimensional vec-
tor (ATz® —p).

The above values, except for g (i) and (ﬁu))’1 (iv), are
computed explicitly, meaning that their values are maintained in the
working memory in every iteration. The vector 7 is maintained
in an implicit form, and for (ﬁm)’l, we maintain a data structure

iv

=

\%

that, given w € R™, can quickly return (ﬁm)_lw

Implementing the IPM via i-vi: Below, we repeat (5), (6) and
(8) to summarize how we use our data structures to maintain the
information in these equations.

59(:) _ X(i)g(i) _R® X(i) (§(i))—1 A (ﬁ(i))—1 ATXU)g(i)
H,—/ v(_»_) v(_) R/_/ H,—/%,—/
@) i 1 (ii) (iv) @)
+ R(”éﬁi),
——
below
59 = A @) ATX WG (10)
R e

(iv) ()
R(i)(géi) =1 R® i(i) (g(i))—l A (ﬁ(i))—1
(iii) v

(AT:ﬂ(i) -

(vi)

b).

o (ii) (i)
Here we see, that all information required to compute 0, and Js

is provided by the data structures i-iv.

Constructing the data structures: Next, we explain how to
implement these data structures efficiently. Our main contribution
with respect to the data structures are for i, ii, and iii (primal, dual
and gradient maintenance and row sampling). These data structures
are outlined in Section III-D.

When A is an incidence matrix, maintaining the inverse implic-
itly (iv) can be done by maintaining a sparse spectral approximation
H" of the Laplacian ATXM(g(Z))"'A and then running an
existing approximate Lap1a01an system solver [46], [64]-[72]. The
spectral approximation H" can be maintained using existing tools
such as the dynamic spectral sparsifer data structure from [43] or
sampling from the leverage scores upper bounds.

Maintaining the leverage scores (v) is done via a data structure
from [38] which reduces leverage scores maintenance to dual slack
maintenance (ii) with some overhead.

To maintain Az — b (vi), observe that ATz —p =
AT 206D —b+AT(5§f71). Here A" 20~ —p is known from the
previous iteration and

Ara(z 1) _ ATX(l l)g(z 1) ATR(ifl)[X(ifl)(g(ifl))f
A(ﬁ(%D)71AT§(1’71)§(¢71) + 5?'71)]
can be computed efficiently because of the sg)arsuy of R~V and

the fact that we know the vector AT X
maintenance (i).

g from gradient

926

Time complexities: The total time to maintain the data struc-
tures i, ii, iv, and vi over £ iterations is O(m + nf) when using
the slower \/m-iteration IPM, and O(m + (n 4+ m/+/n)f) when
using the faster y/n-iteration IPM. The exception is for the leverage
scores 7rs (V) s) (v) which is only needed for the \/n-iteration
IPM, where we need O(m + nl + (*m/n) time. So, in total
these data structures take O(ny/m) time when we use Tlog and
O(m + n4/n) time using 7rs.

D. Primal, Dual, and Gradient Maintenance and Sampling

We first describe how to maintain the approximation QIO
i.e. the data structure of ii. Via a small modification we then obtain
a data structure for iii. Finally, we describe a data structure for i
which allows us to maintain the gradient g and the primal solution
T.

Approximation of s (See Section 5 and 6 of the full version):
In order to maintain an approximation 59 ~ s (ie. a data
structure for ii), we design a data structures for the following two
problems:
(D1): Maintain the exact vector s € R™ implicitly, such that any
entry can be queried in O(1) time.
(D2): Detect all indices j € [m] for which the current 51@ is no
longer a valid approximation of sgi).
Task (D1) can be solved easily and we explain further below how to
do it. Solving task (D2) efficiently is one of our main contributions
and proven in Section 5 of the full version, though we also given
an outline in this section further below. Once we solve both tasks
(D1) and (D2), we can combine these data structures to maintain a
valid approximation of s@ as follows (details in Section 6 of the
full version): Whenever some entry ng) changed a lot so that §§.Z) is
no longer a valid approximation, (which is detected by (D2)) then
we simply query the exact value via (D1) and update E;»Z) +— s,
To construct these data structure, observe that by (10), we have

S — () +A(ﬁ(i))*1 ATY(i)ym — @ L AR®,
N’

N——
(iv)

()

Here the vector b € R™ can be computed efficiently, thanks to

iv and i. So we are left with the problem of maintaining 5 (+1)
s+ = slmit) L A 5™ h(*) Here we can maintain 3" _ A%

in O(n) time per iteration by simply adding the new k(") to the

sum in each iteration. For any j one can then compute s(Hl)

O(1) time so we have a data structure that solves (D1).

To get some intuition for (D2), assume we have some 54 with
5% ~ s, Now if an entry (6§i>)]- is small enough, then we have
§§-i) ~ st 4 (5@)]‘ = sg-i“). This motivates why we want to
detect a set J C [m] containing all j where |(6{"),] is large, and
then update 5 to sV by setting s(l+) 55“'1) for j € J.
So for simplicity we start with the snnple case where we only
need to detect entries of s®*1) that changed by a lot within a
single iteration of the IPM. That is, we want to find every index
J such that |(5§1)) i| = |S<Z+1> <2)| > esy) for some € € (0, 1);
equivalently, |(AR®);| > esg.’)A We assume that in each iteration
we are given the vector h(). Since A is an incidence matrix, index
j corresponds to some edge (u,v) and thus finding large entries
is equivalent to finding edges with |n{) — h(i)\ > es'Y | where

(u,v)
(0 <(i=1)

Suw) -]> Assume by induction s; ~ s§~i71) for all j,

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on June 28,2021 at 20:12:16 UTC from IEEE Xplore. Restrictions apply.

so then finding all j’s where s; is changed by a lot in iteration
(i41) reduces to the problem of finding all edges (u,v) such that
(b — Sy /s /*(u | > € for some ¢ = O(e).

To get the intuition of why we can efficiently find all such edges,
start with the simplified case when the edges have uniform weights
(i.e. 59 = f). Since we only care about the differences between
entries in the vector h, we can shift h by any constant vector c - T
in O(n) time to make h_Ld, where d is the vector of degrees of the
nodes in the graph. For any edge j = (u, v) to have |h, —hy| > €/,
at least one of |h,| and |h,| has to be at least €' /2. Thus, it suffices
to check the adjacent edges of a node u only when |h,| is large,
or equivalently hZ%e'~? is at least 1/4. Since checking the adjacent
edges of any u takes time deg(u), the time over all such nodes is
bounded by O(3",, deg(u)hZe?), which is O(h " Dhe™?) where
D is the diagonal degree matrix. If the graph G has conductance
at least ¢ (i.e., G is a ¢-expander), we can exploit the classic
spectral graph theory result of Cheeger’s inequality to bound the
running time by O(h" Lh¢g2e™2), where L = AT A is the graph
Laplacian. Here ' Lh = ||Ah)||% will be small due to properties of
our IPM, and thus this already gives us an efficient implementation
if our graph has large conductance ¢ = 1/ polylog(n).

To extend the above approach to the real setting where 5 is
non-uniform and the graph is not an expander, we only need
to partition the edges of GG so that these two properties hold in
each induced subgraph. For the non-uniform s part, we bucket
the edges by their weights in 5 into edge sets E,ii) = {(u,v) |
59 (u,v) € [2F,28+1)}, so edges in each bucket have roughly uni-
form s weights. To get the large conductance condition, we further
partition each E into expander subgraphs, i.e., E,(;)U E,glw ce
each inducing an (1/ polylog(n))-expander. Note that edges move
between buckets over the iterations as 5" changes, so we need to
maintain the expander decompositions in a dynamic setting. For
this we employ the algorithm of [43] (building on tools developed
for dynamic minimum spanning tree [40]-[42], [44], [45], espe-
cially [40]). Their dynamic algorithm can maintain our expander
decomposition efficiently (in polylog(n) time per weight update).
With the dynamic expander decomposition, we can essentially
implement the method discussed above in each expander as follows.
For each expander subgraph, we constrain the vector h to the nodes
of the expander. Then, we translate h by the all-one vector so that
h is orthogonal to the degree vector of the nodes in the expander.
To perform the translation on all expanders, we need the total
size (in terms of nodes) of the induced expanders to be small for
the computation to be efficient. We indeed get this property as
the dynamlc expander decomposition algorithm in [43] guarantees
2 |V(E](cZ o)| = O(nlogn). In total this will bound the running
time in the 5*" iteration of the IPM to be

O((€)2I(S™) " ARD |2 + nlog W),

where W is a bound on the ratio of largest to smallest entry in 5.
By properties of the IPM, which bound thg above norm, the total
running time of our data structure over all O(y/n) iterations of the
IPM becomes O(m + n'®), or O(y/mn) when using the slower
O(y/m) iteration IPM.

In the above we only consider detecting entries of s* undergo-
ing large changes in a single iteration. In order to maintain 59, we
also need to detect entries of s that change slowly every iteration,
but accumulate enough change across multiple iterations so our

927

approximation is no longer accurate enough. This can be handled
via a reduction similar to the one performed in [38], where we
employ lazy update and batched iteration tracking. In particular, for
every k = 0,1,...,[(logn)/2], we use a copy of (D2) to check
every 2 iterations of the IPM, if some entry changes large enough
over the past 2 iterations. This reduction only incurs a polylog(n)
factor overhead in running time comparing to the method that only
detects large single iteration changes, so the total running time is
the same up to polylog factors.

Row Sampling (See Section 5 in the full version): An-
other task is to solve data structure problem iii which is
about constructing the random matrix R(¥. The desired dis-
tribution of R(® is as follows. For some large enough con-
stant C > 0 let ¢ € R™ with ¢; > \/ﬁ((éﬁl))i/H&rH%
1/m)+ C - U((X(_”)I/Q(gm?_lpA)j polylogn where 6"
g(” + 69) then we have R;’; =
(min(gi, 1)) ™" with probability min(g;, 1) and 0 otherwise.

This sampling task can be reduced to the two tasks of (i)
sampling according to /m((6-)7/||6-||3 and (ii) sampling ac-
cording to C - o((X)1/2(S")=1/2A) polylog n. The latter can
be implemented easily as we have approximate leverage scores
via data structure v. The former is implemented in a similar
way as data structure (D2) of the prev10us paragraph. Instead of
finding large entries of some vector (S) YAR®, we now want

+

to sample the entries proportional to x" >(Sw) AR where
B — (ﬁ(l))—l(Ai(z)g(i) +ATZO b).

This sampling can be constructed via a simple modification of
the previous (D2) data structure. Where (D2) tries to find edges
(u,v) with large |((§(l))_1Ah(i))(w,)| by looking for nodes v
with large |,
to (Xm (§<1))_1Ah/<i))2u_’v) by sampling for each node v incident
edges proportional to (hqf))Q.

Gradient Maintenance and Approximation of = (Section 7 in
the full version): For the primal solution x, again we aim
to maintain a good enough approximation = through our IPM
algorithm. Consider the update to @ in (5),

20D — O +i(i)y(i)

the last two terms Wi“ be sparse due to the sparse diagonal
sampling matrix R, so we can afford to compute that part
of the updates explicitly. For the part of X g(l where g =

argmax (V®([@Y),z) (see (7)) we will show that g admlts
zeR™:||z||<1
a low dimensional representation. Here by low dimensionality of

g € R™ we mean that the m indices in the vector can be put

into O(1) buckets, where indices 7, j' in the same bucket share the
common value g; = g,,. This allows us to represent the values of

gasa 6(1) dimensional vector so we can efficiently represent and

do computations with g in a very compact way.

For simplicity consider the case where we use || - |2 as the
norm for the maximization problem that defines g %) (this norm
is used by the /m-iteration IPM, while the +/n-iteration IPM
uses a slightly more complicated norm). In that case §<i> =

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on June 28,2021 at 20:12:16 UTC from IEEE Xplore. Restrictions apply.

Vo (@) /||[Ve([©™)||2 and the way we construct the O(1) di-
mensional approximation is fairly straightforward. We essentially
discretize 7¥) by rounding each entry down to the nearest multiple
of some appropriate granularity to make it low dimensional. Once
7 is made to be O(1) dimensional, it is simple to see from
the definition of the potential function ®(-) that Vo @) will
also be in O(1) dimension. For the faster /n iteration IPM
where a different norm || - || is used, we can show that the low
dimensionality of V®(7?) also translates to the maximizer being
in low dimensional.

Once we compute the low dimensional updates, we still need
to track accumulated changes of fu)?(i) over multiple iterations.
Because of properties of the IPM, we have that on average any
index j switches its bucket (of the low dimensional representation
of) only some polylog(n) times. Likewise, the value of any entry
Xy) changes only some polylog(n) number of times. Thus the
rate in which 22:1 X§k)§;k) changes, stays the same for many

iterations. This allows us to (A) predict when fﬁ-” is no longer

a valid approximation of x§l> and (B) the low dimensionality
allows us to easily compute any ccg-l). In the same way as 5"
was maintained via (D1) and (D2), we can now combine (A) and

(B) to maintain TV,

ACKNOWLEDGMENT

We thank Yang Liu for helpful conversations, feedback on earlier
drafts of the paper, and technical suggestions. This project has
received funding from the European Research Council (ERC) under
the European Unions Horizon 2020 research and innovation pro-
gramme under grant agreement No 715672. Danupon Nanongkai
is also partially supported by the Swedish Research Council (Reg.
No. 2015-04659 and 2019-05622). Aaron Sidford is supported by
NSF CAREER Award CCF-1844855 and a PayPal research gift.
Yin Tat Lee is supported by NSF awards CCF-1749609, CCF-
1740551, DMS-1839116, Microsoft Research Faculty Fellowship,
a Sloan Research Fellowship. Di Wang did part of this work while
at Georgia Tech, and was partially supported by NSF grant CCF-
1718533. Richard Peng was partially supported by NSF grants
CCF-1718533 and CCF-1846218. Zhao Song was partially sup-
ported by Ma Huateng Foundation, Schmidt Foundation, Simons
Foundation, NSF, DARPA/SRC, Google and Amazon.

REFERENCES

[1] J. v. d. Brand, Y. T. Lee, D. Nanongkai, R. Peng, T. Saranu-
rak, A. Sidford, Z. Song, and D. Wang, “Bipartite matching
in nearly-linear time on moderately dense graphs,” CoRR, vol.
abs/2009.01802, 2020.

J. E. Hopcroft and R. M. Karp, “An n®/2 algorithm for maximum
matchings in bipartite graphs,” SIAM J. Comput., vol. 2, no. 4,
pp- 225-231, 1973, announced at FOCS’71.

E. A. Dinic, “Algorithm for solution of a problem of maximum
flow in networks with power estimation,” in Soviet Math. Dok-
lady, vol. 11, 1970, pp. 1277-1280.

A. V. Karzanov, “On finding maximum flows in networks with
special structure and some applications,” Matematicheskie Vo-
prosy Upravleniya Proizvodstvom, vol. 5, pp. 81-94, 1973.

2

—

[3]

(4]

O. H. Ibarra and S. Moran, “Deterministic and probabilistic
algorithms for maximum bipartite matching via fast matrix mul-
tiplication,” Inf. Process. Lett., vol. 13, no. 1, pp. 12-15, 1981.

928

[6] F. L. Gall, “Powers of tensors and fast matrix multiplication,” in
ISSAC. ACM, 2014, pp. 296-303.

V. V. Williams, “Multiplying matrices faster than coppersmith-
winograd,” in STOC. ACM, 2012, pp. 887-898.

A. Schrijver, Combinatorial optimization: polyhedra and effi-
ciency. Springer Science & Business Media, 2003, vol. 24.

(71
(8]
[9] A. Madry, “Navigating central path with electrical flows: From
flows to matchings, and back,” in FOCS. IEEE Computer
Society, 2013, pp. 253-262.

——, “Computing maximum flow with augmenting electrical
flows,” in 2016 IEEE 57th Annual Symposium on Foundations
of Computer Science (FOCS). 1EEE, 2016, pp. 593-602.

Y. T. Lee and A. Sidford, “Solving linear programs with v rank

linear system solves,” in arXiv preprint. https://arxiv.org/pdf/
1910.08033.pdf, 2019.

M. B. Cohen, A. Madry, P. Sankowski, and A. Vladu, “Negative-
weight shortest paths and unit capacity minimum cost flow in
O(m1%/Tlog W) time,” in Proceedings of the Twenty-Eighth
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA).
SIAM, 2017, pp. 752-771.

Y. P. Liu and A. Sidford, “Faster energy maximization for faster
maximum flow,” in STOC. https://arxiv.org/pdf/1910.14276.pdf,
2020.

K. Axiotis, A. Madry, and A. Vladu, “Circulation control for
faster minimum cost flow in unit-capacity graphs,” in arXiv
preprint. https//arxiv.org/pdf/2003.04863.pdf, 2020.

Y. P. Liu and A. Sidford, “Faster divergence maximization for
faster maximum flow,” in arXiv preprint. https://arxiv.org/pdf/
2003.08929.pdf, 2020.

Y. T. Lee and A. Sidford, “Path finding methods for lin-
ear programming: Solving linear programs in O(Vrank) iter-
ations and faster algorithms for maximum flow,” in 55th An-
nual IEEE Symposium on Foundations of Computer Science
(FOCS). https://arxiv.org/pdf/1312.6677.pdf, https://arxiv.org/
pdf/1312.6713.pdf, 2014, pp. 424-433.

J. H. Blanchet, A. Jambulapati, C. Kent, and A. Sidford, “To-
wards optimal running times for optimal transport,” CoRR, vol.
abs/1810.07717, 2018.

K. Quanrud, “Approximating optimal transport with linear pro-
grams,” in SOSA, 2019.

T. Lin, N. Ho, and M. L. Jordan, “On efficient optimal transport:
An analysis of greedy and accelerated mirror descent algorithms,”
in ICML, ser. Proceedings of Machine Learning Research, vol. 97.
PMLR, 2019, pp. 3982-3991.

J. Altschuler, J. Weed, and P. Rigollet, “Near-linear time approx-
imation algorithms for optimal transport via sinkhorn iteration,”
in NIPS, 2017, pp. 1964-1974.

H. N. Gabow and R. E. Tarjan, “Faster scaling algorithms for
network problems,” SIAM J. Comput., vol. 18, no. 5, pp. 1013—
1036, 1989.

——, “Faster scaling algorithms for general graph-matching
problems,” J. ACM, vol. 38, no. 4, pp. 815-853, 1991.

R. Duan and S. Pettie, “Linear-time approximation for maximum
weight matching,” J. ACM, vol. 61, no. 1, pp. 1:1-1:23, 2014.
[24] J. Sherman, “Generalized preconditioning and undirected
minimum-cost flow,” in SODA. SIAM, 2017, pp. 772-780.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[25] A. Andoni, C. Stein, and P. Zhong, “Parallel approximate undi-
rected shortest paths via low hop emulators,” STOC, vol. https:
/larxiv.org/pdf/1911.01956.pdf, 2020.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on June 28,2021 at 20:12:16 UTC from IEEE Xplore. Restrictions apply.

[26]

[27]

(28]

[29]

[30]

(31]

[32]

[33]

[34]

(35]

[36]

[37]

(38]

[39]

(40]

[41]

[42]

[43]

[44]

[45]

J. Li, “Faster parallel algorithm for approximate shortest path,”
in STOC. https://arxiv.org/pdf/1911.01626.pdf, 2020.

J. Edmonds and R. M. Karp, “Theoretical improvements in algo-
rithmic efficiency for network flow problems,” J. ACM, vol. 19,
no. 2, pp. 248-264, 1972.

S. L. Daitch and D. A. Spielman, “Faster approximate lossy
generalized flow via interior point algorithms,” in Proceedings
of the fortieth annual ACM symposium on Theory of computing
(STOC), 2008, pp. 451-460.

N. Karmarkar, “A new polynomial-time algorithm for linear
programming,” Combinatorica, vol. 4, no. 4, pp. 373-396, 1984,
announced at STOC’84.

J. Renegar, “A polynomial-time algorithm, based on newton’s
method, for linear programming,” Math. Program., vol. 40, no.
1-3, pp. 59-93, 1988.

P. M. Vaidya, “An algorithm for linear programming which
requires O(((m+n)n2+ (m+n)-5n)L) arithmetic operations,”
in STOC. ACM, 1987, pp. 29-38.

P. M. Vaidya and D. S. Atkinson, “A technique for bounding the
number of iterations in path following algorithms,” in Complexity
in Numerical Optimization. World Scientific, 1993, pp. 462—-489.

K. M. Anstreicher, “Volumetric path following algorithms for
linear programming,” Math. Program., vol. 76, pp. 245-263,
1996.

Y. E. Nesterov and M. J. Todd, “Self-scaled barriers and interior-
point methods for convex programming,” Math. Oper. Res.,
vol. 22, no. 1, pp. 1-42, 1997.

M. B. Cohen, Y. T. Lee, and Z. Song, “Solving linear programs
in the current matrix multiplication time,” in STOC, 2019, https:
/larxiv.org/pdf/1810.07896.

Y. T. Lee, Z. Song, and Q. Zhang, “Solving empirical risk
minimization in the current matrix multiplication time,” in COLT.
https://arxiv.org/pdf/1905.04447, 2019.

J. v. d. Brand, “A deterministic linear program solver in current
matrix multiplication time,” in SODA. SIAM, 2020, pp. 259-278.
J. v. d. Brand, Y. T. Lee, A. Sidford, and Z. Song, “Solving tall
dense linear programs in nearly linear time,” in STOC. https:
/larxiv.org/pdf/2002.02304.pdf, 2020.

S. Jiang, Z. Song, O. Weinstein, and H. Zhang, “Faster dynamic
matrix inverse for faster lps,” CoRR, vol. abs/2004.07470, 2020.
T. Saranurak and D. Wang, “Expander decomposition and prun-
ing: Faster, stronger, and simpler,” in SODA. SIAM, 2019, pp.
2616-2635.

D. Nanongkai, T. Saranurak, and C. Wulff-Nilsen, “Dynamic
minimum spanning forest with subpolynomial worst-case update
time,” in FOCS. IEEE Computer Society, 2017, pp. 950-961.
J. Chuzhoy, Y. Gao, J. Li, D. Nanongkai, R. Peng, and T. Saranu-
rak, “A deterministic algorithm for balanced cut with applications
to dynamic connectivity, flows, and beyond,” in FOCS, 2020,
https://arxiv.org/pdf/1910.08025.pdf.

A. Bernstein, J. v. d. Brand, M. P. Gutenberg, D. Nanongkai,
T. Saranurak, A. Sidford, and H. Sun, “Fully-dynamic graph spar-
sifiers against an adaptive adversary,” CoRR, vol. abs/2004.08432,
2020.

D. Nanongkai and T. Saranurak, “Dynamic spanning forest with
worst-case update time: adaptive, las vegas, and O(nl/2~¢)-
time,” in Proceedings of the 49th Annual ACM SIGACT Sym-
posium on Theory of Computing (STOC), 2017, pp. 1122-1129.

C. Wulft-Nilsen, “Fully-dynamic minimum spanning forest with

929

[46]

[47]

(48]

(49]

[50]

(51]

[52]

(53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

improved worst-case update time,” in Proceedings of the 49th An-
nual ACM SIGACT Symposium on Theory of Computing (STOC),
2017, pp. 1130-1143.

D. A. Spielman and S. Teng, “Nearly-linear time algorithms
for graph partitioning, graph sparsification, and solving linear
systems,” in STOC’04: Proceedings of the 36th Annual ACM
Symposium on the Theory of Computing. ACM, 2004, pp. 81-90.
P. M. Vaidya, “Speeding-up linear programming using fast matrix
multiplication (extended abstract),” in FOCS. IEEE Computer
Society, 1989, pp. 332-337.

P. Sankowski, “Dynamic transitive closure via dynamic matrix
inverse (extended abstract),” in FOCS. IEEE Computer Society,
2004, pp. 509-517.

J. v. d. Brand, D. Nanongkai, and T. Saranurak, “Dynamic matrix
inverse: Improved algorithms and matching conditional lower
bounds,” in FOCS. IEEE Computer Society, 2019, pp. 456—
480.

Y. T. Lee and A. Sidford, “Efficient inverse maintenance and faster
algorithms for linear programming,” in FOCS. 1EEE Computer
Society, 2015, pp. 230-249.

D. Adil, R. Kyng, R. Peng, and S. Sachdeva, “Iterative refinement
for £p-norm regression,” in Proceedings of the Thirtieth Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), SIAM.
https://arxiv.org/pdf/1901.06764.pdf, 2019, pp. 1405-1424.

A. C. Gilbert, Y. Li, E. Porat, and M. J. Strauss, “Approximate
sparse recovery: optimizing time and measurements,” SIAM Jour-
nal on Computing 2012 (A preliminary version of this paper
appears in STOC 2010), vol. 41, no. 2, pp. 436-453, 2010.

D. M. Kane, J. Nelson, E. Porat, and D. P. Woodruff, “Fast mo-
ment estimation in data streams in optimal space,” in Proceedings
of the forty-third annual ACM symposium on Theory of computing
(STOC), 2011, pp. 745-754.

H. Hassanieh, P. Indyk, D. Katabi, and E. Price, “Nearly optimal
sparse Fourier transform,” in Proceedings of the forty-fourth
annual ACM symposium on Theory of computing (STOC), ACM.
https://arxiv.org/pdf/1201.2501.pdf, 2012, pp. 563-578.

R. Pagh, “Compressed matrix multiplication,” ACM Transactions
on Computation Theory (TOCT), vol. 5, no. 3, pp. 1-17, 2013.

K. G. Larsen, J. Nelson, H. L. Nguyen, and M. Thorup, “Heavy
hitters via cluster-preserving clustering,” in 57th Annual Sym-
posium on Foundations of Computer Science (FOCS), 1EEE.
https://arxiv.org/pdf/1604.01357, 2016, pp. 61-70.

M. Kapralov, “Sample efficient estimation and recovery in sparse
FFT via isolation on average,” in 58th Annual IEEE Symposium
on Foundations of Computer Science (FOCS). https://arxiv.org/
pdf/1708.04544, 2017.

V. Nakos and Z. Song, “Stronger 12/12 compressed sensing;
without iterating,” in STOC. https://arxiv.org/pdf/1903.02742,
2019.

V. Nakos, Z. Song, and Z. Wang, “(Nearly) Sample-optimal sparse
Fourier transform in any dimension; RIPless and Filterless,” in
FOCS. https://arxiv.org/pdf/1909.11123.pdf, 2019.

A. Bernstein, M. P. Gutenberg, and T. Saranurak, “Deterministic
decremental reachability, scc, and shortest paths via directed ex-
panders and congestion balancing,” 2020, to appear at FOCS’20.
G. Goranci, H. Ricke, T. Saranurak, and Z. Tan, “The expander
hierarchy and its applications to dynamic graph algorithms,”
CoRR, vol. abs/2005.02369, 2020. [Online]. Available: https:
//arxiv.org/abs/2005.02369

R. Kyng, R. Peng, S. Sachdeva, and D. Wang, “Flows in almost

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on June 28,2021 at 20:12:16 UTC from IEEE Xplore. Restrictions apply.

linear time via adaptive preconditioning,” in Proceedings of the
51st Annual ACM SIGACT Symposium on Theory of Computing
(STOC). https://arxiv.org/pdf/1906.10340.pdf, 2019, pp. 902—
913.

[63] D. Adil and S. Sachdeva, “Faster p-norm minimizing flows, via
smoothed g-norm problems,” in SODA. SIAM, 2020, pp. 892—
910.

[64] P. M. Vaidya, “Solving linear equations with symmetric diag-
onally dominant matrices by constructing good precondition-
ers,” Unpublished manuscript, UIUC 1990. A talk based on the
manuscript was presented at the IMA Workshop on Graph Theory
and Sparse Matrix Computation Mineapolis, Tech. Rep., October
1991.

[65] D. A. Spielman and S.-H. Teng, “Solving sparse,” in FOCS’03:
Proceedings of the 44th Annual IEEE Symposium on Foundations
of Computer Science. diagonally-dominant linear systems in time
O(m*31). In: symmetric, 2003, pp. 416-427.

[66] I. Koutis, G. L. Miller, and R. Peng, “Approaching optimality for
solving SDD systems,” in Proceedings of the 51st Annual IEEE
Symposium on Foundations of Computer Science (FOCS), 2010,
pp. 235-244.

[67] ——, “A nearly m log n-time solver for SDD linear systems,” in
Proceedings of the 52nd Annual IEEE Symposium on Foundations
of Computer Science (FOCS), 2011, pp. 590-598.

[68] J. A. Kelner, L. Orecchia, A. Sidford, and Z. A. Zhu, “A simple,”
in STOC’13: Proceedings of the 45th Annual ACM Symposium on
the Theory of Computing. combinatorial algorithm for solving
SDD systems in nearly-linear time. In, 2013, pp. 911-920.

[69] Y.T. Lee and A. Sidford, “Efficient accelerated coordinate descent
methods and faster algorithms for solving linear systems,” in
2013 IEEE 54th Annual Symposium on Foundations of Computer
Science. 1EEE, 2013, pp. 147-156.

[70] M. B. Cohen, R. Kyng, G. L. Miller, J. W. Pachocki, R. Peng,
A. B. Rao, and S. C. Xu., “Solving sdd linear systems in
nearly m log!/2 n time,” in Proceedings of the 46th Annual ACM
Symposium on Theory of Computing (STOC), 2014, pp. 343-352.

[71] R. Kyng, Y. T. Lee, R. Peng, S. Sachdeva, and D. A. Spiel-
man, “Sparsified cholesky and multigrid solvers for connection
laplacians,” in STOC’16: Proceedings of the 48th Annual ACM
Symposium on Theory of Computing, 2016.

[72] R. Kyng and S. Sachdeva, “Approximate gaussian elimination for
laplacians - fast, sparse, and simple,” in FOCS. IEEE Computer
Society, 2016, pp. 573-582.

930

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on June 28,2021 at 20:12:16 UTC from IEEE Xplore. Restrictions apply.

