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Abstract—We present a general framework of designing
efficient dynamic approximate algorithms for optimization
problems on undirected graphs. In particular, we develop
a technique that, given any problem that admits a certain
notion of vertex sparsifiers, gives data structures that maintain
approximate solutions in sub-linear update and query time. We
illustrate the applicability of our paradigm to the following
problems.

(1) A fully-dynamic algorithm that approximates all-pair
maximum-flows/minimum-cuts up to a nearly logarithmic fac-
tor in �̃� (𝑛2/3)1 amortized time against an oblivious adversary,
and �̃� (𝑚3/4) time against an adaptive adversary.

(2) An incremental data structure that maintains 𝑂 (1)-
approximate shortest path in 𝑛𝑜 (1) time per operation, as
well as fully dynamic approximate all-pair shortest path and
transshipment in �̃� (𝑛2/3+𝑜 (1) ) amortized time per operation.

(3) A fully-dynamic algorithm that approximates all-pair
effective resistance up to an (1+𝜖) factor in �̃� (𝑛2/3+𝑜 (1)𝜖−𝑂 (1) )
amortized update time per operation.

The key tool behind result (1) is the dynamic maintenance of
an algorithmic construction due to Madry [FOCS’ 10], which
partitions a graph into a collection of simpler graph structures
(known as 𝑗-trees) and approximately captures the cut-flow
and metric structure of the graph. The 𝑂 (1)-approximation
guarantee of (2) is by adapting the distance oracles by [Thorup-
Zwick JACM ‘05]. Result (3) is obtained by invoking the
random-walk based spectral vertex sparsifier by [Durfee et al.
STOC ‘19] in a hierarchical manner, while carefully keeping
track of the recourse among levels in the hierarchy.

Keywords-dynamic graph algorithms; maximum flow; mini-
mum cut; shortest paths; effective resistances; approximate

See https://arxiv.org/pdf/2005.02368.pdf for the full ver-

sion of this paper.

I. INTRODUCTION

In the study of graph algorithms, there are long-standing

gaps in the performances of static and dynamic algorithms.

A dynamic graph algorithm is a data structure that main-

tains a property of a graph that undergoes edge insertions

and deletions, with the goal of minimizing the time per

update and query operation. Due to the prevalence of large

evolving graph data in practice, dynamic graph algorithms

have natural connections with network science [1], [2], and

databases [3], [4]. However, compared to the wealth of tools

available for static graphs, it has proven to be much more dif-

ficult to develop algorithms for dynamic graphs, especially

fully dynamic ones undergoing both edge insertions and

1The �̃� ( ·) notation is used in this paper to hide poly-logarithmic factors.

deletions. Even maintaining connectivity undirected graphs

has witnessed 35 years of continuous progress [5]–[7]. The

directed version, fully dynamic transitive closure, has seen

even less progress [8]–[10], and is one of the best reflections

of the difficulties of designing dynamic graph algorithms,

especially in practice [11].

Over the past decade, dynamic graph algorithms and their

lower bounds have been studied extensively. These results

led to a significantly improved understanding of maintaining

many basic graph properties such as connectivity, maximal

matching, shortest paths, and transitive closure. However,

for many of these results, there are linear or polynomial

conditional lower bounds for maintaining them exactly [12]–

[15]. This shifted the focus to maintaining approximate
solutions to these problems, and/or restricting the update

operations to only insertions (known as the incremental
setting) or only deletions (known as the decremental setting).

While this approach has led to much recent progress on

shortest path algorithms [16]–[23], there has been compara-

tively little development in the maintenance of flows. Flows

and their associated dual labels, cuts, are widely used in

network analysis due to their ability to track multiple paths

and more global information [24]–[26]. For example, the

𝑠𝑡-maximum flow problem asks for the maximum number

of edge-disjoint paths between a pair of vertices [27], while

electrical flow minimizes a congestion measure related to the

sums of squares of the flow values along edges [28]. This

need to track multiple paths has motivated the development

of new dynamic tools that eschew the tree-like structures

typically associated with problems such as connectivity and

single-source shortest paths [29]. Such tools were recently

used to give the first sublinear time data structures for

maintaining (1+𝜖)-approximate electrical flows and effective

resistances, which raised the optimistic possibility that all

flow-related problems can be maintained with (1 + 𝜖)-
approximation factors in subpolynomial time [30].

Motivated by interest in better understanding these prob-

lems, in this paper we present a general framework for de-

signing efficient dynamic approximate algorithms for graph-

based optimization problems in undirected graphs. In partic-

ular, we develop a technique that reduces these problems to

finding a data-structure notion of vertex sparsifiers. We then

utilize this framework to study dynamic graph algorithms

for flows, distances and effective resistance, with a focus on

obtaining the best approximation ratios possible, but with
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sub-linear time per update/query.

Theorem I.1. Given an undirected, weighted graph 𝐺 =
(𝑉 , 𝐸), there is a fully dynamic randomized algorithm that
maintains for every pair of nodes 𝑢 and 𝑣 , an estimate 𝛿 (𝑢, 𝑣)
that approximates the maximum-flow/minimum-cut between
𝑢 and 𝑣 in 𝐺 up to a factor of �̃� (log𝑛) while supporting
edge insertions/deletions of edges and queries in �̃� (𝑛2/3)
amortized time against an oblivious adversary, and �̃� (𝑚3/4)
amortized time against an adaptive adversary.

This result constitutes the first non-trivial algorithm for the

dynamic all-pair maximum flow problem in general graphs.

We obtain a similar result for fully-dynamic approximate

distance oracles.

Theorem I.2. Given an undirected, weighted graph 𝐺 =
(𝑉 , 𝐸), there is a fully dynamic randomized algorithm that
maintains for every pair of nodes 𝑢 and 𝑣 , an estimate 𝛿 (𝑢, 𝑣)
that approximates the shortest path between 𝑢 and 𝑣 in 𝐺 up
to a factor of �̃� (log𝑛) while supporting insertions/deletions
of edges and queries in �̃� (𝑛2/3+𝑜 (1) ) amortized time against
an oblivious adversary.

Our algorithm extends to the closely-related minimum

transshipment problem, and we defer details about this

extension to the full version of the paper.

If we restrict to the insertions-only setting, we obtain a

deterministic algorithm and improve both the approximation

ratio and the running time.

Theorem I.3. Given an undirected, weighted graph 𝐺 =
(𝑉 , 𝐸) and any two integer parameters 𝑡, 𝑟 ≥ 1, there is an
incremental deterministic algorithm that maintains for every
pair of nodes 𝑢 and 𝑣 , an estimate 𝛿 (𝑢, 𝑣) that approximates
the shortest path between 𝑢 and 𝑣 in 𝐺 up to a factor of
(2𝑟 − 1)𝑡 while supporting insertions of edges and queries
in 𝑂 (𝑚1/(𝑡+1)𝑛𝑡/𝑟 log2𝑡+2 𝑛) worst-case time.

Specifically, when setting 𝑟 := 𝑡2 to be some large con-

stant, we get an approximation ratio of (2𝑡)2𝑡 and roughly

𝑂 (𝑚 1
𝑡2 ) time per operation.

In the last application of our online, dynamic framework,

we achieve a polynomial speed-up over the state-of-the-art

algorithm [30] for the dynamic all-pair effective resistances

problem.

Theorem I.4. Given an undirected, weighted graph 𝐺 =
(𝑉 , 𝐸) and and error parameter 𝜖 > 0, there is an fully
dynamic randomized algorithm that maintains for every pair
of nodes 𝑢 and 𝑣 , an estimate 𝛿 (𝑢, 𝑣) that approximates the
effective resistance between 𝑢 and 𝑣 in 𝐺 up to a factor of
(1 + 𝜖) while supporting insertions/deletions of edges and
queries in �̃� (𝑛2/3+𝑜 (1)𝜖−𝑂 (1) ) amortized time per operation.

In each of the above cases, our obtained approximation

ratios match up to constants the current best known ap-

proximation ratios of oracles versions of these problems

on static graphs, namely tree flow sparsifiers/oblivious rout-

ings [31], distance oracles [32], and static computations

of effective resistances [33]. This focus on approximation

ratio is by choice: we believe just as with static approx-

imation and optimization algorithms, approximation ratios

should be prioritized over running times. However, because

all current efficient construction of edge sparsifiers that

preserve flows/cuts and resistances with constant or better

(1 + 𝜖) approximation are randomized, all above algorithms

except the one in Theorem I.3 are randomized, and their

guarantees are only provable against an oblivious adver-

sary (except the second algorithm in Theorem I.1 and the

one in Theorem I.3), who determines the hidden sequence of

updates/queries beforehand. We believe the design of more

robust variants of our results hinge upon the development of

more robust edge sparsification tools, which are interesting

questions on their own.

Our techniques also extend to the offline dynamic setting,

where the whole sequence of updates (edge insertions and

deletions) and queries are given in advance. In other words,

the algorithm needs to output information about the graphs

at various points in this given update sequence. We show

that for graph properties that admit efficient constructions

of static vertex sparsifiers, there are offline fully dynamic

approximation algorithms with sub-linear average update

and query time. We achieve the following results.

Theorem I.5. Given an undirected, weighted graph 𝐺 =
(𝑉 , 𝐸) and any parameter 𝑡 ≥ 1, there is an offline fully
dynamic algorithm that maintains for every pair of nodes 𝑢
and 𝑣 , an estimate 𝛿 (𝑢, 𝑣) that approximates the maximum-
flow/minimum-cut between 𝑢 and 𝑣 in 𝐺 up to a factor of
𝑂 (log4𝑡 𝑛) and supports any sequence of 𝑚 operations in
�̃� (𝑚 ·𝑚1/(𝑡+1) ) total time.

Theorem I.6. Given an undirected, weighted graph 𝐺 =
(𝑉 , 𝐸) and any two parameters 𝑟, 𝑡 ≥ 1, there is an offline

fully dynamic algorithm that maintains for every pair of
nodes 𝑢 and 𝑣 , an estimate 𝛿 (𝑢, 𝑣) that approximates the
shortest path between 𝑢 and 𝑣 in 𝐺 up to a factor of
(2𝑟 − 1)𝑡 and supports any sequence of 𝑚 operations in
�̃� (𝑚 ·𝑚1/(𝑡+1)𝑛2/𝑟 ) total time.

Although the offline setting is weaker than the standard

dynamic setting, it is interesting for two reasons. First,

offline algorithms are used to obtain fast static algorithms

(e.g. [34], [35]). Second, many conditional lower bounds

(e.g. [12], [14], [15]) for the standard dynamic setting also

hold for the offline dynamic setting. Thus, giving an efficient

algorithm for the offline dynamic setting shows that no such

conditional lower bound is possible. Moreover, for certain

applications (e.g., computing “sensitivity information” for

specific graph properties) the sequence of updates is also

known in advance.
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A. Related work

Previous work on Dynamic Flows/Cuts and Shortest
Paths. Despite the fact that all pair max-flow/min-cut is one

of the cornerstone problems in combinatorial optimization

and has been extensively studied in the static setting, there

are essentially no fast algorithms in the dynamic setting.

Using previous techniques, it is possible to get dynamic

algorithms with �̃� (1) worst-case update time and �̃� (𝑛) query

time under the assumption that the adversary is oblivi-

ous. Concretely, one can maintain a dynamic cut-sparsifier

(against an oblivious adversary) of size �̃� (𝑛) due to [36] with

�̃� (1) update time, and whenever a query is asked, we execute

the fastest static approximation algorithms on the sparsifier

in �̃� (𝑛) time (for example, [37] for (1+𝜖)-approximate max

flow, [38] for (1 + 𝜖)-approximate multi-commodity con-

current flow, and [39] for 𝑂 (
√

log𝑛)-approximate sparsest

cuts). To the best of our knowledge, there is no previous

algorithm that achieves 𝑜 (𝑛) update and query time, even

when restricting to amortized guarantees on the running

times.

Perhaps the closest work to this paper is the dynamic

algorithm due to Cheung at al. [40] for explicitly maintaining

the values of all-pairs min-cuts in �̃� (𝑚2) update time. For

the 𝑠-𝑡 max flow problem, where 𝑠 and 𝑡 are predetermined,

there is an incremental algorithm with 𝑂 (𝑛) amortized up-

date time [41]. If we restrict to bipartite graphs with a certain

specific structure, there is a (1 + 𝜖)-approximation fully

dynamic algorithm [36] with polylogarithmic worst-case

update time. From the lower bound perspective, Dahlgaard

[15] showed a conditional lower bound of Ω(𝑛1−𝑜 (1) ) on the

amortized update time for maintaining exact incremental 𝑠-𝑡
max flow in weighted undirected graphs. This shows that

approximation is necessary to achieve sub-linear running

times.

The global minimum cut problem has been much better

understood from the perspective of dynamic graphs. This

is closely related to a similar phenomenon in the static

setting, where in contrast to the 𝑠-𝑡 min-cut problem, its

global counterpart admits arguably simpler and easier algo-

rithms. The best-known fully-dynamic algorithm is due to

Thorup [42], who maintains a (1 + 𝑜 (1))-approximation to

the value of global minimum cut using �̃� (√𝑛) update and

query time. When the graph undergoing updates remains

planar, Lacki and Sankowski [43] showed an exact fully-

dynamic algorithm with �̃� (𝑛5/6) update and query time.

Recently, Goranci, Henzinger, and Thorup [44] designed an

exact incremental algorithm with 𝑂 (log3 𝑛 log log2 𝑛) update

time and 𝑂 (1) query time. The update time has been further

improved to 𝑂 (log𝑛) by Ghaffari et al. [45].

The dynamic shortest-path problem is one of the cen-

tral problems in dynamic graph algorithms and has been

extensively studied in the literature. For unweighted, undi-

rected graphs, Abraham, Chechik and Talwar [20] devised

a dynamic algorithm using �̃� (√𝑚𝑛1/𝑘 ) expected amortized

update time, 𝑂 (𝑘2𝜌2) query time while approximating pair-

wise distances up to a factor of 2𝑂 (𝑘𝜌) , where 𝑘 ≥ 2 is an

integer parameter and 𝜌 = 1 + � log𝑛1−1/𝑘

log(𝑚/𝑛1−1/𝑘 ) �. In compari-

son, our algorithm from Theorem I.2 applies to weighted

graphs but achieves worse approximation and running time

guarantees.

Previous Work on Graph Sparsification in the Dynamic
Setting. Many previous works in dynamic graph algorithms

are based on edge sparsification. This usually allows al-

gorithms to assume that an underlying dynamic graph is

always sparse and hence speed up the running time. To

the best of our knowledge, the first paper that applies edge

sparsification in the dynamic setting is by Eppstein et al.

[46]. This work has proven useful for several fundamental

problems including dynamic minimum spanning forest and

different variants of edge/vertex connectivity (e.g. [5]–[7],

[42]). Edge sparsification has also been a key technique

in dynamic shortest paths problems (e.g. [47] maintains

distances on top of spanners, [48], [49] replace “dense parts”

of graphs with sparser graphs). Recently, there are works that

study edge sparsification for matching problems [50]–[52].

In fact, the core component of several dynamic matching

algorithms is only to maintain such sparsifiers [50], [51].

There are also previous developments in dynamic graph

algorithms based on vertex sparsification which allow algo-

rithms to work on graphs with smaller number of vertices.

This usually offers a more significant speed up than edge

sparsification. Earlier works [53]–[55] that utilize vertex

sparsification in the dynamic setting are restricted to pla-

nar graphs and exploit the fact that this class of graphs

admit small separators. Similar techniques are used and

generalized in [56], [57] but none of these works extend to

general graphs. Several previous offline dynamic algorithms

exploit vertex sparsification for maintaining minimum span-

ning forests [58], small edge/vertex connectivity [59], and

effective resistance [60].

Recent Work on Dynamic Vertex Sparsification. Very

recently, Goranci et al. [61] designed a fully dynamic

algorithm for maintaining a tree flow sparsifier based on a

new notion of expander decompositions. One of their appli-

cations is a fully dynamic algorithm for all-pair maximum-

flows/minimum-cuts. Their algorithm is deterministic, has

𝑛𝑜 (1) worst-case update time and 𝑂 (log1/6 𝑛) query time, but

can only guarantee an approximation ratio of 2𝑂 (log5/6 𝑛) =
𝑛𝑜 (1) . Our algorithms from Theorems I.1 guarantees a much

better approximation ratio of �̃� (log𝑛). However, our update

and query times are slower and are randomized.

Concurrent to our work there have also been several recent

developments on utilizing vertex sparsifiers to maintain 𝑐-

edge connectivity for small values of 𝑐 [59], [62]–[64].
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II. TECHNICAL OVERVIEW

A. Incremental Vertex Sparsifiers

We start by discussing an incremental version of our

meta theorem, which is key to our incremental all-pair

shortest path algorithm. The main algorithmic tool behind

our construction is a data-structure version of the well-

studied notion of vertex sparsifier [65]–[70], which we refer

to as incremental vertex sparsifier. To better convey our

intuition, we start with a slightly weaker definition of such a

sparsifier, which already leads to non-trivial guarantees. We

then discuss its generalization and implications.

Let 𝐺 = (𝑉 , 𝐸) be an 𝑛-vertex graph and, for each 𝑢, 𝑣 ∈ 𝑉 ,

let P(𝑢, 𝑣,𝐺) denote a property between 𝑢 and 𝑣 in 𝐺2.

For example, P(𝑢, 𝑣,𝐺) can be thought of as the distance

between 𝑢 and 𝑣 in 𝐺 . Let 𝑇 ⊆ 𝑉 be a set of nodes in

𝐺 called terminals. Given a parameter 𝛼 ≥ 1, an 𝛼-vertex
sparsifier of 𝐺 w.r.t. 𝑇 is a graph 𝐻𝑇 = (𝑉 ′, 𝐸 ′) such that 1)

𝑉 ′ ⊇ 𝑇, |𝑉 ′ | ≈ |𝑇 | and 2) P(𝑢, 𝑣, 𝐻𝑇 ) ≈𝛼 P(𝑢, 𝑣,𝐺) for all

𝑢, 𝑣 ∈ 𝑇 . That is, the number of vertices in 𝐻𝑇 is close to

the size of 𝑇 and 𝐻𝑇 approximately preserves the property

P between pair-wise terminal vertices up to a factor of 𝛼 .

Given a graph 𝐺 = (𝑉 , 𝐸) and terminals 𝑇 ⊆ 𝑉 (𝐺), an 𝛼-

incremental vertex sparsifier (IVS) of 𝐺 is a data structure

that maintains an 𝛼-vertex sparsifier 𝐻𝑇 and supports the

following operations:

• PREPROCESS(𝐺, 𝛼): preprocess the graph 𝐺 ,

• ADDTERMINAL(𝑢): let 𝑇 ′ ← 𝑇 ∪ {𝑢} and update 𝐻𝑇 ′

to an 𝛼-vertex sparsifier of 𝐺 w.r.t. 𝑇 ′.
An efficient (𝛼, 𝑓 (𝑛), 𝑔(𝑛))-IVS of 𝐺 is an 𝛼-IVS of 𝐺 that

supports the preprocessing and terminal addition operations

in 𝑂 ( |𝐸 |𝑓 (𝑛)) and 𝑂 (𝑔(𝑛)) time, respectively.

We now show that such an efficient sparsifier almost

readily leads to a simple two-level incremental algorithm for

maintaining the pair-wise property P. Specifically, given an

initial graph 𝐺 = (𝑉 , 𝐸) and an approximation parameter

𝛼 ≥ 1, assume we want to design an (approximate) in-

cremental algorithm that maintains some property P(𝑠, 𝑡,𝐺)
that can be computed in time 𝑂 ( |𝐸 |ℎ(𝑛)) on a static graph

𝐺 = (𝑉 , 𝐸). To achieve this, our data-structure maintains

(1) an efficient (𝛼, 𝑓 (𝑛), 𝑔(𝑛))-IVS of 𝐺 and (2) a set of

terminals 𝑇 , which is initially set to empty. We initialize our

data-structure using the PREPROCESS(𝐺, 𝛼) operation of the

efficient IVS and rebuild from scratch every 𝛽 operations,

for some parameter 𝛽 ≥ 0. Note that after a rebuild, 𝐻𝑇 is

empty. Next, we describe the implementation of insertions

and queries. Upon insertion of a new edge 𝑒 = (𝑢, 𝑣) in

𝐺 , we invoke ADDTERMINAL(𝑢) and ADDTERMINAL(𝑣),
and add 𝑒 to 𝐻𝑇 . For answering (𝑠, 𝑡) queries, we invoke

ADDTERMINAL(𝑠) and ADDTERMINAL(𝑡), and run a static

algorithm on 𝐻𝑇 that computes property P(𝑠, 𝑡, 𝐻𝑇 ) and

return the result as an answer.

2Our approach also works for graph properties with a number of
parameters that is different from 2.

As 𝐻𝑇 is an 𝛼-vertex sparsifier of the current graph 𝐺
and 𝑇 ⊇ {𝑠, 𝑡} by construction, we have that P(𝑠, 𝑡, 𝐻𝑇 )
approximates property P(𝑠, 𝑡,𝐺) up to an 𝛼 factor. The

update time consists of (1) the cost for rebuilding every 𝛽
operations, which is 𝑂 ( |𝐸 |𝑓 (𝑛)/𝛽) = 𝑂 (𝑚𝑓 (𝑛)/𝛽) and (2)

the cost for adding the endpoints of 𝛽 edges as terminals,

which is 𝑂 (𝛽𝑔(𝑛)). By construction, |𝑇 | = 𝑂 (𝛽) at any time,

resulting in 𝐻𝑇 being of size 𝑂 (𝛽𝑔(𝑛)) (since we start with

an empty 𝐻𝑇 after a rebuild). As the static algorithm on

𝐻𝑇 takes time 𝑂 ( |𝐻𝑇 |ℎ(𝑛)), the query time is bounded by

𝑂 (𝛽𝑔(𝑛)ℎ(𝑛)).
Combining the above bounds on the update and query

time, we obtain the following trade-off

𝑂

((
𝑚

𝛽

)
𝑓 (𝑛) + 𝛽𝑔(𝑛)ℎ(𝑛)

)
,

which bounds both the amortized update time and the worst-

case query time.

One challenge we face to extend the above approach to

a multi-level incremental algorithm is the large flexibility

allowed in the ADDTERMINAL operation. More concretely,

given a sparsifier 𝐻𝑇 w.r.t. 𝑇 , whenever a new terminal is

added to 𝑇 and 𝐻𝑇 is updated to 𝐻𝑇 ′ , the implementation of

this operation could potentially lead to vertices and/or edges

being deleted from or inserted to 𝐻𝑇 . Ideally we would like

that the 𝐻𝑇 ′ is constructed by only adding new vertices/edges

to 𝐻𝑇 , which in turn would allow us to keep the incremental

nature of the problem. We achieve this by modifying the

operation of adding terminals in the definition of 𝛼-IVS as

follows:

• ADDTERMINAL(𝑢): let 𝑇 ′ be 𝑇 ∪ {𝑢} and update 𝐻𝑇

to 𝐻𝑇 ′ such that

– 𝐻𝑇 ′ is an 𝛼-vertex sparsifier of 𝐺 w.r.t. 𝑇 ′.
– 𝐻𝑇 ⊆ 𝐻𝑇 ′ .

An important measure related to this new definition is the

notion of recourse, which can be thought of as the number

of changes needed to construct the new sparsifier 𝐻𝑇 ′ from

the old sparsifier 𝐻𝑇 , i.e., |𝐻𝑇 ′ \𝐻𝑇 |. This naturally leads to

extending the definition of efficient (𝛼, 𝑓 (𝑛), 𝑔(𝑛))-IVS by

incorporating the function 𝑟 (𝑛) such that |𝐻𝑇 ′ \𝐻𝑇 | ≤ 𝑟 (𝑛).
While it is straightforward to bound the recourse by the time

needed to support the addition of terminals, i.e., 𝑟 (𝑛) ≤ 𝑔(𝑛),
there are scenarios where recourse can be much smaller.

Equipped with the new definition of incremental vertex

sparsifier and the notion of recourse, we immediately get a

multi-level hierarchy for designing incremental algorithms,

which is formally stated below.

Theorem II.1. Let 𝐺 = (𝑉 , 𝐸) be a graph, and for any
𝑢, 𝑣 ∈ 𝑉 , let P(𝑢, 𝑣,𝐺) be a graph property between 𝑢 and
𝑣 in 𝐺 . Let 𝑓 (𝑛), 𝑔(𝑛), 𝑟 (𝑛), ℎ(𝑛) ≥ 1 be functions, 𝛼 ≥ 1
be an approximation parameter, 𝑡 ≥ 1 be the depth of
the data structure, and let 𝛾, 𝜇0, 𝜇1, . . . , 𝜇𝑡 with 𝜇0 = 𝑚 be
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parameters associated with the running time. Assume the
following properties are satisfied

1) 𝐺 admits an (𝛼, 𝑓 (𝑛), 𝑔(𝑛), 𝑟 (𝑛))−efficient IVS

2) The property P(𝑢, 𝑣,𝐺) can be computed in 𝑂 (𝑚ℎ(𝑛))
time in a static graph with 𝑚 edges and 𝑛 vertices.

Then there is an incremental (approximate) dynamic algo-
rithm that maintains for every pair of nodes 𝑢 and 𝑣 , an
estimate 𝛿 (𝑢, 𝑣) that approximates P(𝑢, 𝑣,𝐺) up to a factor
of 𝛼𝑡 , with worst-case update time of

𝑢 (𝑛) := 𝑂
���

𝑡∑
𝑖=1

(∑𝑡
𝑗=𝑖 𝜇 𝑗−1 𝑓 (𝜇 𝑗−1)

𝜇𝑖
+ 𝑔(𝜇𝑖−1)

)
𝑖−1∏
𝑗=0

𝑟 (𝜇 𝑗 )𝑐𝑖−1�� ,
and worst-case query time of

𝑂 (𝑡𝑢 (𝑛) + 𝜇𝑡𝑟 (𝜇𝑡 )ℎ(𝜇𝑡 )) ,
where 𝑐 < 3 is an universal constant.

We demonstrate the applicability of the above theorem

to the incremental all-pair shortest path problem (see Theo-

rem I.3) by showing that an efficient IVS can be constructed

using a deterministic variant of the distance oracle due

to Thorup and Zwick [32]. At a high level, the oracle

preprocessing works as follows: (i) it constructs a hierarchy

of carefully chosen centers and (ii) for each vertex 𝑢 ∈ 𝑉 , it

finds the closest center to 𝑢 at every level of the hierarchy

and defines the bunch 𝐵(𝑢) to be the union over these

centers. Our key observation is that this construction leads

to an efficient IVS with bounded recourse: (1) we preprocess

the graph using the oracle preprocessing, and (2) implement

the terminal addition of a vertex 𝑢 by simply adding its

bunch 𝐵(𝑢) to the current vertex sparsifier maintained by

the data structure. This construction implies an efficient

(2𝑟 − 1, �̃� (𝑛1/𝑟 ), �̃� (𝑛1/𝑟 ), �̃� (𝑛1/𝑟 ))-IVS for 𝐺 , where 𝑟 ≥ 1.

The correctness of our data-structure crucially exploits the

fact that ∪𝑢∈𝑇𝐵(𝑢) is an 𝛼-vertex (distance) sparsifier of 𝐺
w.r.t. 𝑇 .

B. Fully Dynamic Vertex Sparsifiers

To extend our algorithmic framework to fully dynamic

graphs, we start by modifying the definition of IVS as

follows: i) invoke the old ADDTERMINAL operation, where

we did not require that 𝐻𝑇 ′ ⊇ 𝐻𝑇 (as now we can support

both insertions and deletions of edges), and ii) augment the

data-structure with an operation that allows deleting edges

from the maintained vertex sparsifier:

• DELETE(𝑒): delete 𝑒 from 𝐺 and update 𝐻𝑇 to be an

𝛼-vertex sparsifier of 𝐺 with respect to 𝑇 .

We call this extended data-structure notion an 𝛼-fully
dynamic vertex sparsifier (DVS) of 𝐺 . Similarly to the

above, we can define an efficient version of this definition

which incorporates the recourse, i.e., the number of edge

insertions or deletions to the old sparsifier for obtaining the

one. Performing recursive invocations of the 𝛼-DVS leads

to a generic meta theorem similar to Theorem II.1 for fully

dynamic algorithms, which is deferred to the full version of

the paper.

Our notion of 𝛼-DVS is inspired by the work of Durfee

et al. [30], where an approximate Schur complement (which

can be viewed an effective resistance vertex sparsifier) is

maintained while supporting the addition of vertices to the

set of terminals. However, their work ignored the notion

of recourse, which in turn limited their algorithm to only a

two-level hierarchy. As we will shortly discuss, the bound on

recourse will play a critical role in improving the dynamic

algorithm for maintaining effective resistances.

In the following, we start by discussing the application

of our framework to dynamic (approximate) maximum-

flows/minimum-cuts and shortest paths, both of which em-

ploy only a two-level hierarchical scheme due to the large

recourse incurred by the implementation of their 𝛼-DVS

operations.

C. Fully Dynamic Maximum-Flows/Minimum-Cuts

In the static setting, Madry [71] presented a general

method for designing fast approximation algorithms for

cut-based graph optimization problems. His work built on

the cut-based graph decomposition of Räcke [31], which

was developed in the context of constructing competitive

oblivious routing schemes. The novel ingredient in Madry’s

construction was the notion of 𝑗-trees: a connected graph

𝐻 = (𝑉𝐻 , 𝐸𝐻 ) is a 𝑗-tree if it is a union of (i) a subgraph

𝐻 ′ (referred to as the core) of 𝐻 induced by a vertex set

𝑉 ′
𝐻 ⊆ 𝑉𝐻 with |𝑉 ′

𝐻 | ≤ 𝑗 and (ii) a forest 𝐹 (referred to as

the envelope) whose each connected component has exactly

one vertex in 𝑉 ′
𝐻 , where 𝑗 ≥ 1. These graphs can be thought

of as generalizations of trees (e.g., a 1-tree is a tree) and

the main observation is that the core of a 𝑗-tree is a smaller

graph than 𝐻 itself and at the same time captures the non-

trivial cut structure of the graph 𝐻 . Madry’s framework

employed the multiplicative weights update (MWU) method

to embed any general graph 𝐺 into a convex combination

of 𝑗-trees and achieved a significant speedup in the running-

time over Räcke’s tree-based embedding while still being

able to approximate the cut structure of graph up to a poly-

logarithmic factor.

The main technical contribution behind our dynamic

maximum-flows/minimum-cuts result (Theorem I.1) is an

algorithm for maintaining a 𝑗-tree-based embedding of a

graph under the operation of adding vertices to the core of

the 𝑗-trees. An important observation towards designing such

an algorithm is that such an embedding can, in some sense,

be viewed as a generalized version of the vertex sparsifier

notion; instead of being a single graph, the decomposition is

a small collection of vertex sparsifiers, where vertices in the

cores correspond to the terminal vertices, that together ap-

proximate the cut-structure of a graph. Here, it is important

to note that while 𝑗-trees are large graphs, it suffices to only
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look for cuts in their cores whose size is much smaller by

definition. In this way, our algorithmic task can be thought

of as designing an efficient 𝛼-DVS.

At a high level, our dynamic 𝑗-tree based decomposition

proceeds as follows. First, we construct such a decom-

position following Madry’s framework and then sample a

logarithmic number of 𝑗-trees from it. The construction

of a single 𝑗-tree 𝐻 essentially follows the same idea

from previous works: i) construct a low-stretch spanning

tree 𝑇 of 𝐺 , ii) remove the tree edges that experienced

a large congestion when embedding 𝐺 to 𝑇 and declare

their endpoints to be terminals/core vertices, and (iii) re-

route the impacted tree and non-tree edges. One crucial

difference is that we add more vertices to the core of 𝐻
so that every vertex that does not belong to a core can

reach a core vertex within 𝑂 (𝑛/ 𝑗) steps. This does not affect

the embedding quality of 𝐻 and plays a pivotal role for

obtaining an efficient implementation of the ADDTERMINAL

operation. Second, we maintain a dynamic cut sparsifier [36]

for every core in the decomposition, which is critical for

obtaining a faster query time. Finally, to declare a vertex a

terminal, i.e., move a non-core vertex 𝑢 to the core of 𝐻 , we

need to maintain an efficient representation of the tree paths

used for embedding 𝐺 into 𝐻 . This is due to the fact that

paths which contain 𝑢 must now be shortcut at 𝑢, which

in turn leads to re-routing many edges in the embedding.

We achieve this by employing dynamic tree data structures,

carefully bounding the number of changes incurred by this

operation and amortizing the latter over a certain number of

operations. Further implementation details can be found in

Section III.

We remark that the edge updates and queries reduce

to the ADDTERMINAL operation. Specifically, upon inser-

tion/deletion of an edge 𝑒 = (𝑢, 𝑣), we declare both of the

endpoints terminals, move them to the core of each 𝐻 , and

then directly insert/delete the edge from the core. Similarly,

when a query is asked about the maximum-flow/minimum-

cut between any vertex pair (𝑠, 𝑡), we declare them terminals

in each 𝐻 , compute the minimum cut from scratch in the

core of each 𝐻 and report the minimum one among these

cuts.

D. Fully Dynamic Shortest Paths

Our fully dynamic (approximate) shortest path algo-

rithm (Theorem I.2) proceeds almost identically to the one

involving flows. Inspired by Madry’s framework, we start

by introducing metric 𝑗-tree based decompositions; given

a graph 𝐺 , this decomposition is a convex combination

{(𝜆𝑖 , 𝐻𝑖 )}𝑖 of 𝑗-trees such that (i) the distances in 𝐻𝑖 domi-

nate the ones in 𝐺 and (ii) the expected distances in 𝐻 , where

𝐻 is sampled from the corresponding distribution, is within

some factor from the distances in 𝐺 . To construct a single

metric 𝑗-tree, we find a low-stretch spanning tree of 𝐺 [72],

determine non-tree edges whose stretch in 𝑇 is large, add

these edges to 𝑇 and declare their endpoints to be the core

vertices. Similar to Madry’s framework, we can then apply

the MWU method to efficiently construct the decomposition.

The dynamic part of our data-structure remains almost

the same, except that we maintain dynamic spanners [73]

instead of dynamic cut sparsifiers in the core of each 𝑗-tree.

Further details are deferred to the full version of this paper.

E. Fully Dynamic Effective Resistances

The dynamic effective resistances algorithm of Durfee et

al. [30] is based on maintaining dynamic spectral vertex

sparsifiers (also known as approximate Schur complements)

under the addition of terminals. The crux of their approach

was the observation that spectral vertex sparsifiers can be

approximated by a collection of random walks. This was

then further extended by carefully choosing the set of

terminal so that the length of these walks is sub-linear in

the size of the graph, which in turn allowed for both faster

preprocessing and update time.

In this paper, we essentially take the same approach, with

the main difference being that we also record vertices that

appear in a large number of random walks and add them as

terminals during the preprocessing. This ensures that non-

terminal vertices appear in a much smaller number of walks,

so their potential future addition to the terminal set does

not affect much the collection of random walks. The latter

gives that the recourse is small and thus allows us to use the

recursive invocations of the fully dynamic meta theorem to

improve their running time by a polynomial factor, as stated

in Theorem I.4.

In each of the above applications, the approximation

ratios obtained by our data structures match the current best

bounds of static variants of these problems, which are them-

selves well-studied. Specifically, our approximation ratios

for these three problems are identical to those of sublinear

time query oracles for answering (multi source/sink) min-cut

queries3, distances, and effective resistances in static graphs.

As a result, we believe our results represent natural starting

points for more efficient versions of these data structures,

and hope they will motivate further work on the static query

versions of flows/cuts and shortest paths.

III. FULLY DYNAMIC ALL-PAIR MAXIMUM

FLOWS/MINIMUM CUTS

In this section, we show a dynamic algorithm that allows

querying an estimate of the 𝑠𝑡-max flow for any pair 𝑠, 𝑡 .
In what follows, we will omit several proofs due to space

constraints and refer the read to the full version of the paper.

Theorem III.1. Given a graph 𝐺 = (𝑉 , 𝐸, 𝑐) with polyno-
mial bounded weights, there is a dynamic data structure
maintaining 𝐺 subject to the following operations:

3The Gomory-Hu tree on the other hand provides a much more efficient
query oracle for answering 𝑠-𝑡 min-cut queries, but we are not aware of
generalizations of it to small sets of source/sink vertices
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1) INSERT(𝑢, 𝑣, 𝑐): Insert the edge (𝑢, 𝑣) to 𝐺 in amortized
𝑂 (𝑚2/3 log7 𝑛)-time.

2) DELETE(𝑒): Delete the edge 𝑒 from 𝐺 in amortized
𝑂 (𝑚2/3 log7 𝑛)-time.

3) MINCUT(𝑠, 𝑡): Output a �̃� (log𝑛)-approximation to the
𝑠−𝑡 maximum flow/minimum cut value of 𝐺 in �̃� (𝑚2/3)-
time w.h.p.. If requested, return 𝑆 in 𝑂 ( |𝑆 |) time.

We can replace 𝑚 by 𝑛 in the update and query time

by running the algorithm on top of a dynamic sparsifier

(see Lemma III.14), which in turn implies the algorithm that

works against an oblivious adversary in Theorem I.1. The

algorithm against an adaptive adversary is included in the

full version of the paper.

A. Some Known Tools

In this section, we present known concepts and tools that

we will exploit in our dynamic algorithms.

1) Cut, Flow, and Embedding: First, we recall notions of

cuts and (multicommodity) flow.

Definition III.2. Given a graph 𝐺 = (𝑉 , 𝐸, 𝑐), a cut 𝐶 is
any proper subset of 𝑉 , i.e., ∅ ≠ 𝐶 ⊂ 𝑉 . Define 𝐸 (𝐶) �
𝐸 (𝐶,𝑉 \𝐶) and 𝑐 (𝐶) � ∑

𝑒∈𝐸 (𝐶) 𝑐 (𝑒).
Definition III.3. [71] Given a graph 𝐺 = (𝑉 , 𝐸, 𝑐), 𝑓 =
(𝑓 1, . . . , 𝑓 𝑘 ) ∈ R𝐸×𝑘 is a multicommodity flow if 𝑓 𝑖 is an 𝑠𝑖𝑡𝑖 -
flow. Define |𝑓 (𝑒) | � ∑𝑘

𝑖=1 |𝑓 𝑖 (𝑒) | as the total flow crossing
the edge 𝑒 ∈ 𝐸. A multicommodity flow 𝑓 is feasible if for
every edge 𝑒, we have |𝑓 (𝑒) | ≤ 𝑐 (𝑒). A single-commodity

flow 𝑓 is a multicommodity flow with 𝑘 = 1.

Next, we recall the notion of graph embeddings.

Definition III.4. [71] Let 𝐺 = (𝑉 , 𝐸, 𝑐) and 𝐻 = (𝑉 , 𝐸𝐻 , 𝑐𝐻 )
be two graphs sharing the same vertex set. For every edge
𝑒 = (𝑢, 𝑣) ∈ 𝐸, let 𝑓 𝑒 be the flow that routes 𝑐 (𝑒) amount of
flow from 𝑢 to 𝑣 in 𝐻 . Then 𝑓 � (𝑓 𝑒 | 𝑒 ∈ 𝐸) ∈ R𝐸𝐻×𝐸 , the
collection of 𝑓 𝑒 for every edge 𝑒 ∈ 𝐸, is an embedding of 𝐺
into 𝐻 .

Using the notion of embedding, we can define embed-

dability between graphs over the same vertex set.

Definition III.5. [71] Let 𝐺 = (𝑉 , 𝐸, 𝑐) and 𝐻 = (𝑉 , 𝐸𝐻 , 𝑐𝐻 )
be graphs over the same vertex set and let 𝑡 ≥ 1. We say
𝐺 is 𝑡-embeddable into 𝐻 , denoted by 𝐺 �𝑡 𝐻 , if there is
an embedding 𝑓 of 𝐺 into 𝐻 such that for every 𝑒𝐻 ∈ 𝐸𝐻 ,
|𝑓 (𝑒𝐻 ) | ≤ 𝑡𝑐𝐻 (𝑒𝐻 ). When 𝑡 = 1, we ignore the subscript and
say that 𝐺 is embeddable into 𝐻 , i.e., 𝐺 � 𝐻 .

We now define the notion cut sparsifiers.

Definition III.6. Given a graph 𝐺 = (𝑉 , 𝐸, 𝑐) and 𝜖 ∈ (0, 1),
we say a graph 𝐻 = (𝑉 , 𝐸𝐻 ⊆ 𝐸, 𝑐𝐻 ) is a (1+𝜖)-cut-sparsifier

of 𝐺 (abbr. 𝐻 ≈𝜖 𝐺) if for every 𝑆 ⊆ 𝑉 ,

(1 − 𝜖)𝑐 (𝑆) ≤ 𝑐𝐻 (𝑆) ≤ (1 + 𝜖)𝑐 (𝑆).

We also present some structural results about the value of

maximum flow/minimum cut between mutually embeddable

graphs.

Corollary III.7. For a given 𝑡 ≥ 1, let 𝐺 = (𝑉 , 𝐸, 𝑐) and
𝐻 = (𝑉 , 𝐸𝐻 , 𝑐𝐻 ) be two graphs defined on the same vertex
set such that 𝐺 � 𝐻 and 𝐻 �𝑡 𝐺 . For any cut 𝑆 ⊆ 𝑉 , we
have

𝑐 (𝑆) ≤ 𝑐𝐻 (𝑆) ≤ 𝑡𝑐 (𝐶).
2) 𝐽 -trees as Vertex Sparsifiers: We start by recall the

notion of 𝑗-trees introduced by Madry [71].

Definition III.8. [71] Given 𝑗 ≥ 1, a graph 𝐻 =
(𝑉𝐻 , 𝐸𝐻 , 𝑐𝐻 ) is a 𝑗-tree if it is a connected graph being a
union of a core 𝐶 (𝐻 ) which is a subgraph of 𝐻 induced by
some vertex set 𝐶 ⊆ 𝑉𝐻 with |𝐶 | ≤ 𝑗; and of an envelope
𝐹 (𝐻 ) which is a forest on 𝐻 with each component having
exactly one vertex in the core 𝐶 (𝐻 ). For any core vertex
𝑢 ∈ 𝐶, define 𝐹 (𝑢) to be the vertex set of the component
containing 𝑢 in the envelope. For 𝑆 ⊆ 𝐶, let 𝐹 (𝑆) be the
union of 𝐹 (𝑢) for all 𝑢 in 𝑆 .

Note that 𝑗 trees are much simpler objects than general

graphs because all but 𝑗 vertices are contained in a forest,

and the computing graph properties on forests is usually less

challenging.

Next, we define the notion of (𝑘, 𝜌, 𝑗)-decomposition for

a given graph 𝐺 . Roughly speaking, it can be thought of

as a 𝑘-sized family of 𝑗-trees that approximate the cut/flow

structure of 𝐺 .

Definition III.9. [71] A family of graphs {𝐺𝑖 }𝑘𝑖=1 is a
(𝑘, 𝜌, 𝑗)-decomposition of a graph 𝐺 = (𝑉 , 𝐸, 𝑐) if

1) 𝐺𝑖 is a 𝑗-tree, for all 𝑖 = 1, . . . , 𝑘 .
2) 𝐺 � 𝐺𝑖 , for all 𝑖 = 1, . . . , 𝑘 ,
3)

∑
𝑖 𝐺𝑖 �𝑘 ·𝜌 𝐺 .

Madry designed an algorithm that efficiently computes

(𝑘, 𝜌, 𝑗)-decomposition for 𝐺 . We summarize his result in

the following lemma.

Lemma III.10. [71] Given any graph 𝐺 = (𝑉 , 𝐸, 𝑐) with
polynomially bounded weights and a parameter 𝑘 ≥ 1, there
is an 𝑂 (𝑘𝑚 log4 𝑛)-time algorithm that computes a(

𝑘, �̃� (log𝑛),𝑂
(
𝑚 log3 𝑛

𝑘

))
-decomposition of 𝐺.

If {𝐺𝑖 }𝑘𝑖=1 is the family of graphs corresponding to this
decomposition, then the weight ratio of each 𝐺𝑖 is 𝑂 (𝑚𝑈 ),
where 𝑈 denotes the weight ratio of 𝐺 . Moreover, if we
sample 𝐺𝑖 with probability 1/𝑘 , for any fixed cut 𝑆 , then the
size of this cut in 𝐺𝑖 is at most 2𝜌 times the size of the cut
in 𝐺 with probability at least 1

2 .

Unfortunately, we can not afford to maintain this many

𝑗-trees. To address this, we make use of the lemma below,
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which shows that it is sufficient to maintain only a logarith-

mic number of such graphs.

Lemma III.11. [71] Let 𝐺 = (𝑉 , 𝐸, 𝑐) be a graph with
polynomially bounded weights, 𝑘 = Ω(log𝑛) and {𝐺𝑖 }𝑘𝑖=1 be
a (𝑘, 𝜌, 𝑗)-decomposition of 𝐺 . By sampling 𝑂 (log𝑛) graphs
from {𝐺𝑖 }𝑘𝑖=1, every minimum cut between any two vertices
is preserved up to a 2𝜌-factor with high probability.

Lemma III.11 implies that optimal pairwise minimum cuts

can be preserved using 𝑂 (log𝑛)-many 𝑗-trees up to a 𝑂 (𝜌)-
factor with high probability. In our application, we compute

cuts only in the core instead of the entire 𝑗-tree. Cuts in

the core are then projected back to the 𝑗-tree. To prove the

correctness of this approach, we define the concept of a core
cut.

Definition III.12. Let 𝑗 ≥ 1 and 𝐻 = (𝑉 , 𝐸𝐻 , 𝑐𝐻 ) be some
𝑗-tree. Let 𝐶 (𝐻 ) = (𝐶 ⊆ 𝑉 , 𝐸𝐶 , 𝑐𝐶 ) be the core of 𝐻 . Given
any cut 𝑆 ⊆ 𝐶 of 𝐶 (𝐻 ), the core cut of 𝑆 with respect to 𝐶
in 𝐻 is

ext(𝑆) �
⋃
𝑢∈𝑆

𝐹 (𝑢).

In other words, we extend the cut 𝑆 by including trees in

the envelope rooted at vertex in 𝑆 . The next lemma shows

that it suffices to compute the minimum cuts in the core.

Lemma III.13. Let 𝑗 ≥ 1 and 𝐻 = (𝑉 , 𝐸𝐻 , 𝑐𝐻 ) be some
𝑗-tree. Let 𝐶 (𝐻 ) = (𝐶 ⊆ 𝑉 , 𝐸𝐶 , 𝑐𝐶 ) be the core of 𝐻 . For
any cut 𝑆 ⊆ 𝑉 of 𝐻 , we have

𝑐𝐻 (ext(𝑆 ∩𝐶)) ≤ 𝑐𝐻 (𝑆).
In other words, to find a minimum cut separating core

vertices in 𝐻 , it suffice to check only cuts in the core and

then construct the core cut. To make this dynamic, we just

need to support the operation of adding terminals as defined

in the local sparsifiers paper [74], and in Chapter 6 of [29].
We next review algorithms for dynamically maintaining

cut sparsifiers and approximating minimum cuts.

Lemma III.14. [36] Given a graph 𝐺 = (𝑉 , 𝐸, 𝑐) with
polynomially bounded weights, there is an algorithm that
maintains a (1+𝜖)-cut sparsifier 𝐻 of 𝐺 w.h.p. while support
insertions/deletions of edges in 𝑂 (log6 𝑛/𝜖2) amortized up-
date time. The weight ratio of 𝐻 is 𝑂 (𝑛𝑈 ), where 𝑈 denotes
the weight ratio of 𝐺 . Moreover, we maintain a partition
of 𝐻 into 𝑘 = 𝑂 (log3 𝑛𝜖−2 log𝑈 ) disjoint forests 𝑇1, . . . ,𝑇𝑘
where each vertex keeps the set of its neighbors in each
forest 𝑇𝑖 . After each edge insertion/deletion in 𝐺 , at most
one edge change occurs in each forest 𝑇𝑖 .

Lemma III.15. [37] (rephrased) Given a graph
𝐺 = (𝑉 , 𝐸, 𝑐) with polynomially bounded weights, and a
source/sink pair (𝑠, 𝑡) with 𝑠, 𝑡 ∈ 𝑉 , there is an algorithm
�̃� (𝑚) that approximates the minimum cut between 𝑠 and
𝑡 up to a factor of 2. The algorithm can also report the
corresponding cut with linear overhead in its size.

B. The Main Lemma: Dynamic 𝑗-trees

In this section, we give details in building a dynamic

data structure for approximately computing minimum 𝑠𝑡-
cuts in a dynamic graph. The high-level idea is to build

(𝑘, 𝜌, 𝑗 � 𝑂 (𝑚2/3))-decomposition of the original graph and

dynamically maintain them. By lemma III.11, we maintain

only 𝑂 (log𝑛) of these 𝑗-trees instead of 𝑘 . For every 𝑠𝑡-cut

query, we ran the algorithm from lemma III.15 [37] on these

𝑂 (log𝑛) core graphs.

To dynamically maintain these core graphs, dynamic cut

sparsifiers from lemma III.14 are used. In addition to that,

we also present a data structure for maintaining 𝑗-tree under

the operation of adding a vertex to the core.

To prove the theorem, we need a dynamic data structure

for maintaining 𝑗-trees. The tools are formalized in the

following lemma.

Lemma III.16. Let 𝑗 ≥ 1 and 𝐺 = (𝑉 , 𝐸, 𝑐) be a graph with
polynomially bounded weights and a 𝑗-tree 𝐻 of 𝐺 such
that 𝐻 � 𝐺 �𝛼 𝐻 . Let 𝑛 = |𝑉 |,𝑚 = |𝐸 |. We can dynamically
maintain a 𝑂 ( 𝑗)-tree �̃� such that �̃� � 𝐺 �𝑂 (𝛼) �̃� while
supporting up to 𝑗 operations of the following form:

1) INITIALIZE(𝐺): Build the data structure for maintain-
ing 𝐻 in 𝑂 (𝑚𝑛

𝑗 log𝑛)-time.
2) ADDTERMINAL(𝑢): Move vertex 𝑢 to the core of 𝐻 in

𝑂 (𝑚𝑛
𝑗2

log6 𝑛) amortized time.
3) INSERT(𝑢, 𝑣, 𝑐): Insert the edge (𝑢, 𝑣) to 𝐺 in

𝑂 (𝑚𝑛
𝑗2

log6 𝑛) amortized time.

4) DELETE(𝑒): Delete the edge 𝑒 from 𝐺 in 𝑂 (𝑚𝑛
𝑗2

log6 𝑛)
amortized time.

The total number of edge change in the core is 𝑂 (𝑚𝑛
𝑗 ).

Hence the amortized number of edge changes per operation
is 𝑂 (𝑚𝑛

𝑗2
). Also, at any time, the core 𝐶 (H̃) is sparse, i.e., it

has 𝑂 ( 𝑗 log4 𝑗) edges.

The rest of this section is for proving III.16.

1) Tree-terminal path and edge moving: To prove

Lemma III.16, we have to open the black box of 𝑗-tree

construction. It creates a graph by first select a specific

spanning tree/forest and then routes off-tree edges by tree

paths and set of edges restricted on a small subset of vertices.

To better understand and formalize the construction, we

introduce some notations about spanning forests and trees.

Definition III.17. Let 𝐹 be a forest and let 𝐶 ⊆ 𝑉 (𝐹 ) be
a subset of vertices. Consider the following steps: i) add at
most |𝐶 | vertices to 𝐶 so that every pairwise lowest common
ancestor is in 𝐶, ii) iteratively remove degree-1 vertices from
𝑉 (𝐹 ) \𝐶 until no such vertices remain, and iii) for each path
with endpoints in 𝐶 and no internal vertices in 𝐶, replace the
whole path with a single edge. We call the resulting forest
the skeleton tree of 𝐹 with respect to 𝐶, and denote it by
𝑆 (𝐹,𝐶).
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Definition III.18. Given a forest 𝐹 , define 𝐹 [𝑢, 𝑣] as the
unique 𝑢𝑣-path in 𝐹 if they are connected. Given any edge
𝑒 = 𝑢𝑣 , we use 𝐹𝑒 to denote the path 𝐹 [𝑢, 𝑣].
Definition III.19. Given a forest 𝑇 and a subset of vertices
𝐶, a subset of edges 𝐹 ⊆ 𝑇 is a tree partition of𝑇 with respect
to 𝐶 if every component of 𝑇 \ 𝐹 has exactly one vertex in
𝐶. For every vertex 𝑢 in 𝑇 , we define 𝑢’s representative with
respect to a tree partition 𝐹 and 𝐶, denoted by 𝑇𝐶,𝐹 (𝑢), as
the only vertex of 𝐶 in the component containing 𝑢 in 𝑇 \ 𝐹 .

For any edge 𝑒 = 𝑢𝑣 ∈ 𝑇 , we define 𝑒’s tree-representative

moving as

Repr𝑇,𝐶,𝐹 (𝑒 = 𝑢𝑣) �
{
𝑒, for 𝑒 ∈ 𝑇 \ 𝐹
𝑇𝐶,𝐹 (𝑢)𝑇𝐶,𝐹 (𝑣), for 𝑒 ∈ 𝐹

.

We also define 𝑒’s tree-representative path as

𝑄𝑇,𝐶,𝐹 (𝑒 = 𝑢𝑣) �{
𝑒, for 𝑒 ∈ 𝑇 \ 𝐹
𝑇 [𝑢,𝑇𝐶,𝐹 (𝑢)] + Repr𝑇,𝐶,𝐹 (𝑒) +𝑇 [𝑇𝐶,𝐹 (𝑣), 𝑣], for 𝑒 ∈ 𝐹 .

Next we review some notation from [75], which defined

the so-called tree-portal paths. Portals are terminals in our

terminology.

Definition III.20. Let 𝐺 = (𝑉 , 𝐸) be a graph, 𝑇 be a
spanning forest of 𝐺 and 𝐶 be a subset of vertices called
terminals. For any two vertices 𝑢, 𝑣 ∈ 𝑉 , define 𝑇𝐶 (𝑢, 𝑣) to
be the vertex in 𝐶 closest to 𝑢 in 𝑇 [𝑢, 𝑣]. If no such vertex
exists, 𝑇𝐶 (𝑢, 𝑣) �⊥.

For any edge 𝑒 = 𝑢𝑣 ∈ 𝐸\𝑇 , first, we can orient arbitrarily.
Then 𝑒’s tree-terminal edge moving can be defined as

Move𝑇,𝐶 (𝑒 = 𝑢𝑣) �
{
𝑣𝑣, for 𝑇𝐶 (𝑢, 𝑣) =⊥
𝑇𝐶 (𝑢, 𝑣)𝑇𝐶 (𝑣,𝑢), otherwise.

We also define 𝑒’s tree-terminal path as

𝑃𝑇,𝐶 (𝑒 = 𝑢𝑣) �{
𝑇 [𝑢, 𝑣] +Move𝑇,𝐶 (𝑒), if 𝑇𝐶 (𝑢, 𝑣) =⊥
𝑇 [𝑢,𝑇𝐶 (𝑢, 𝑣)] +Move𝑇,𝐶 (𝑒) +𝑇 [𝑇𝐶 (𝑣,𝑢), 𝑣], otherwise.

2) Initializing a 𝑗-Tree: In this subsection, we review the

static construction of a 𝑗-tree. To be able to exploit such

a construction in the dynamic setting, we slightly modify

the construction from [71]. Formal details about these

modifications are presented in the full version of the paper.

At a high level, the procedure first computes (1) 𝑇 , some

spanning tree of 𝐺 , (2) 𝐶, an 𝑂 ( 𝑗)-sized subset of vertices,

and (3) 𝐹 , a subset of edges in 𝑇 . Then a 𝑂 ( 𝑗)-tree, 𝐻 , is

constructed by moving endpoints into 𝐶 for edges not in

forest 𝑇 \𝐹 . Hence, it is easy to see that the core graph of 𝐻
is 𝐻 [𝐶], the subgraph induced by 𝐶. Such moving is defined

using either Repr𝑇,𝐶,𝐹 (𝑒) for 𝐹 or Move𝑇,𝐶 (𝑒) otherwise.

Such edge moving corresponds to an embedding of 𝐺 into

𝐻 . Each edge of 𝐺 is routed in 𝐻 using either one tree path

or two tree paths concatenated by an edge in the core.

The sets 𝑇 , 𝐶 and 𝐹 are computed as follows. First, we try

to embed 𝐺 into some spanning tree 𝑇 of 𝐺 by routing each

edge 𝑒 of 𝐺 using the unique tree path 𝑇𝑒 . Heuristically,

to minimize the congestion incurred in each tree edge, a

low stretch spanning tree (LSST) [76] is used as 𝑇 . LSST

guarantees low ”total” congestion on tree edges.

But to ensure low congestion on ”every edge”, we remove

tree edges with the highest congestion (relative to its capac-

ity) and route impacted edges alternatively. The removed

tree edges are collected as set 𝐹 and endpoints of them are

collected as set 𝐶. Ideally, we move every edge not in 𝑇
using Move𝑇,𝐶 (𝑒). And for data structural purposes, we add

𝑂 ( 𝑗) more vertices to 𝐶 to make sure we route each edge

using a short tree path, i.e., of size 𝑂 (𝑛/ 𝑗). As discussed in

[71], such edge moving does not guarantee a 𝑗-tree.

Identical to [71], we add vertices in 𝑆 (𝑇,𝐶), skeleton tree

of 𝐶, to 𝐶. And add 𝑂 ( |𝐶 |) more edges to 𝐹 so that 𝐹 is a

tree partition of 𝑇 with respect to the new 𝐶.

The main difference from [71] is that we add more

terminal vertices (𝐶) and route off-tree edges after we

determine 𝐶. An argument from [77] shows that the more

terminal we add, the better the congestion approximation.

3) Structural arguments for 𝑗-tree maintenance: To prove

Lemma III.16, one has to make sure adding terminals does

not increase the congestion. The argument is formalized as

the following lemma.

Lemma III.21. Let 𝐺 = (𝑉 , 𝐸, 𝑐) be a graph, 𝑇 be a
spanning forest of 𝐺 , 𝐶 be a subset of vertices and 𝐹 be a
tree partition of 𝑇 with respect to 𝐶. For any vertex 𝑢 ∈ 𝑉 \𝐶,
there is an edge 𝑒𝑢 ∈ 𝑇 \𝐹 such that 𝐹∪𝑒𝑢 is tree partition of
𝑇 with respect to 𝐶 ∪𝑢, i.e., every component of 𝑇 \ (𝐹 ∪𝑒𝑢)
has exactly one vertex in 𝐶.

Furthermore, let 𝐻 � ROUTE(𝐺,𝑇 ,𝐶, 𝐹 ). If 𝐻 �𝛼 𝐺 , then
the graph 𝐻 � ROUTE(𝐺,𝑇 ,𝐶 ∪ 𝑢, 𝐹 ∪ 𝑒𝑢) �𝛼 𝐺 .

To maintain the 𝑂 ( 𝑗)-tree 𝐻 under dynamic edge updates

in 𝐺 , we first add both endpoints of the updating edge to the

terminal and then perform the edge update in 𝐶 (𝐻 ), core of

𝐻 , directly. One has to make sure such behavior does not

increase the congestion when routing 𝐺 in 𝐻 . The following

lemma gives such promise:

Lemma III.22. Let 𝐺 = (𝑉 , 𝐸, 𝑐) be a graph, 𝑇 be a
spanning forest of𝐺 ,𝐶 be a subset of vertices and 𝐹 be a tree
partition of 𝑇 with respect to 𝐶. Let 𝐻 � ROUTE(𝐺,𝑇 ,𝐶, 𝐹 ),
and 𝑒 = 𝑢𝑣 be any edge with 𝑢, 𝑣 ∈ 𝐶 (𝑒 might not be in 𝐺)
with capacity 𝑐𝑒 . First note that 𝐺 [𝐶] ⊆ 𝐻 [𝐶].

If 𝐻 �𝛼 𝐺 holds via the canonical 𝑗-tree embedding, then
both (𝐻 ∪ 𝑒) �𝛼 (𝐺 ∪ 𝑒) and (𝐻 \ 𝑒) �𝛼 (𝐺 \ 𝑒) holds.

4) Proof sketch of Lemma III.16: Here, we only sketch

the argument (see the full version of the paper for the full
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proof). Intuitively, we maintain the 𝑗-tree 𝐻 by mimicking

the static procedure. To make the resulting graph sparse, a

dynamic cut sparsifier is used for the core. Worth noticing,

we maintain both the whole 𝑗-tree 𝐻 and the one with

sparsified core, H̃. The reason for not applying sparsifier

to the whole graph is because edges not in the core form a

forest. And by Lemma III.13, we only care cuts in the core

graph.

The most important part of our data structure is to support

the ADDTERMINAL operation. Initially, the 𝑗-tree 𝐻 is

constructed by ROUTE(𝐺,𝑇 ,𝐶, 𝐹 ). When adding some vertex

𝑢 to 𝐶, we have to (1) find the edge 𝑒𝑢 in 𝑇 \𝐹 and (2) update

𝐻 as ROUTE(𝐺,𝑇 ,𝐶 ∪ 𝑢, 𝐹 ∪ 𝑒𝑢).
Thus, we maintain the following data structures:

1) A dynamic 2-cut sparsifier C̃(𝐻 ) from Lemma III.14

for maintaining a sparsified core graph.

2) A dynamic tree data structure 𝐷 (𝑇 ) (see the full version

of the paper for the detailed guarantee) for finding

such 𝑒𝑢 . 𝐷 (𝑇 ) is also used to find REPR𝑇,𝐶,𝐹 (𝑒𝑢), the

corresponding edge of 𝑒𝑢 in the core.

3) For every off-tree edge 𝑒 = 𝑢𝑣 , maintain both

𝑇 [𝑢,𝑇𝑢𝑣 (𝐶)] and 𝑇 [𝑇𝑣𝑢 (𝐶), 𝑣] walks using doubly

linked list. Maintain W as a collection of all such

walks.

4) For every 𝑥 ∈ 𝐶, maintain a set 𝑃 (𝑥) consisting of

walks in W ending up at 𝑥 .

5) For every vertex 𝑢 ∈ 𝑉 , maintain a set RI(𝑢) consisting

of walks in W containing 𝑢.

The last three data structure is for maintaining

MOVE𝑇,𝐶 (𝑒), 𝑒 ∉ 𝑇 with 𝐶 increasing.

C. Put everything together

Given the key lemma, Lemma III.16, we can now proof

the main theorem, Theorem III.1.

Proof of Theorem III.1: Let 𝑗 be some parameter

determined later and 𝑘 = Θ(𝑚 log𝑈 log2 𝑛
𝑗 ). Initialization of

Algorithm 1: INITIALIZE(𝐺)
1 𝑛 � |𝑉 (𝐺) |, 𝑚 � |𝐸 (𝐺) |, 𝑗 � 𝑚2/3,

𝑘 � Θ(𝑚 log𝑈 log2 𝑛
𝑗 ), 𝑡 � Θ(log𝑛).

2 Let {𝐺𝑖 }𝑘𝑖=1 be a (𝑘, �̃� (log𝑛),Θ( 𝑗))-decomposition of

𝐺 by Lemma III.10.

3 Sample 𝑡 graphs with repetition from G, say, {𝐺𝑖 }𝑡𝑖=1.

4 for 𝑖 = 1, . . . , 𝑡 do
5 𝐷𝑖 � Initialize(𝐺,𝐺𝑖 ) by Lemma III.16.

6 return {𝐷𝑖 }𝑡𝑖=1

the data structure is summarized as Algorithm 1. First apply

Lemma III.10 to acquire a (𝑘, �̃� (log𝑛),Θ( 𝑗))-decomposition

of 𝐺 , say {𝐺𝑖 }𝑘𝑖=1. Then we apply Lemma III.11 to sample

𝑡 = 𝑂 (log𝑛) of them, say {𝐺𝑖 }𝑡𝑖=1. For each of 𝐺𝑖 , we

incur Lemma III.16 to build data structures for dynamical

operations. Let {𝐷𝑖 }𝑡𝑖=1 be the data structures for each

of {𝐷𝑖 }𝑡𝑖=1. 2-approximated dynamic cut sparsifers from

Lemma III.14 is also built for the cores of {𝐷𝑖 }𝑡𝑖=1. Note

that each 𝐷𝑖 supports up to 𝑗 operations, we rebuild {𝐺𝑖 }𝑘𝑖=1
and {𝐺𝑖 }𝑡𝑖=1 every 𝑗 operations. To deal with the query

mincut(𝑠, 𝑡), we run the algorithm from Lemma III.15

on each sparsified core of {𝐷𝑖 }𝑡𝑖=1. The running time is

�̃� (𝑡 𝑗) = �̃� ( 𝑗). Among results, the one with the smallest cut

value is returned. The correctness comes from Lemma III.11

and Lemma III.13 with high probability. The quality of the

result is within �̃� (log𝑛)-factor with the optimal solution. For

edge updates, we propagate them to {𝐷𝑖 }𝑡𝑖=1 in amortized

time 𝑂 (𝑡 · 𝑚𝑛
𝑗2

log6 𝑛) = 𝑂 (𝑚𝑛
𝑗2

log7 𝑛). As guaranteed by

Lemma III.16, each operation corresponds to 𝑂 (𝑚𝑛
𝑗2
) changes

to the core. Each of the edge change is handled by the cut

sparsifier in 𝑂 (log6 𝑛)-time. So the update time is

𝑂

(
𝑚𝑛

𝑗2
log2 𝑛 + 𝑡 · 𝑚𝑛

𝑗2
log6 𝑛

)
= 𝑂

(
𝑚𝑛

𝑗2
log7 𝑛

)
.

The cost for rebuild consists of 2 parts, 𝑂 (𝑘𝑚 log𝑚)-time

for building decomposition of 𝐺 and 𝑂 (𝑡𝑚 log6 𝑛)-time for

initializing {𝐺𝑖 }𝑡𝑖=1 and cut sparsifiers for cores. By charging

the cost among 𝑗 operations, the runtime cost charged with

each operation is

𝑂

(
𝑘𝑚 log𝑛 + 𝑡𝑚 log6 𝑛

𝑗

)
=𝑂

(
𝑚 log𝑈 log2 𝑛 ·𝑚 log𝑛

𝑗2

)
=𝑂

(
𝑚2

𝑗2
log4 𝑛

)
.

To balance the query cost and update cost, 𝑗 is set to 𝑚2/3.

So time complexity per operation is now �̃� (𝑚2/3).
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[61] G. Goranci, H. Räcke, T. Saranurak, and Z. Tan, “The
expander hierarchy and its applications to dynamic graph
algorithms,” 2020. 3

[62] P. Chalermsook, S. Das, B. Laekhanukit, and D. Vaz, “Mim-
icking networks parameterized by connectivity,” CoRR, vol.
abs/1910.10665, 2019. 3

[63] Y. P. Liu, R. Peng, and M. Sellke, “Vertex sparsifiers for c-
edge connectivity,” CoRR, vol. abs/1910.10359, 2019. 3

[64] W. Jin and X. Sun, “Fully dynamic 𝑐-edge connectivity in
subpolynomial time,” CoRR, vol. abs/2004.07650, 2020. 3

[65] A. Moitra, “Approximation algorithms for multicommodity-
type problems with guarantees independent of the graph size,”
in Symposium on Foundations of Computer Science (FOCS),
2009, pp. 3–12. 4

[66] F. T. Leighton and A. Moitra, “Extensions and limits to
vertex sparsification,” in Symposium on Theory of Computing
(STOC), 2010, pp. 47–56. 4

[67] M. Charikar, T. Leighton, S. Li, and A. Moitra, “Vertex
sparsifiers and abstract rounding algorithms,” in Symposium
on Foundations of Computer Science (FOCS), 2010, pp. 265–
274. 4

[68] J. Chuzhoy, “On vertex sparsifiers with steiner nodes,” in
Symposium on Theory of Computing (STOC), 2012, pp. 673–
688. 4

[69] K. Makarychev and Y. Makarychev, “Metric extension oper-
ators, vertex sparsifiers and lipschitz extendability,” in Sym-
posium on Foundations of Computer Science (FOCS), 2010,
pp. 255–264. 4

[70] M. Englert, A. Gupta, R. Krauthgamer, H. Räcke, I. Talgam-
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