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Abstract
Automatic cubatures approximate integrals to user-specified error tolerances. For high-dimensional problems, it is difficult
to adaptively change the sampling pattern, but one can automatically determine the sample size, n, given a reasonable, fixed
sampling pattern. We take this approach here using a Bayesian perspective. We postulate that the integrand is an instance
of a Gaussian stochastic process parameterized by a constant mean and a covariance kernel defined by a scale parameter
times a parameterized function specifying how the integrand values at two different points in the domain are related. These
hyperparameters are inferred or integrated out using integrand values via one of three techniques: empirical Bayes, full Bayes,
or generalized cross-validation. The sample size, n, is increased until the half-width of the credible interval for the Bayesian
posterior mean is no greater than the error tolerance. The process outlined above typically requires a computational cost of
O(Noptn3), where Nopt is the number of optimization steps required to identify the hyperparameters. Our innovation is to pair
low discrepancy nodes with matching covariance kernels to lower the computational cost to O(Noptn log n). This approach
is demonstrated explicitly with rank-1 lattice sequences and shift-invariant kernels. Our algorithm is implemented in the
Guaranteed Automatic Integration Library (GAIL).

Keywords Bayesian cubature · Fast automatic cubature · GAIL · Probabilistic numeric methods

1 Introduction

Cubature is the problem of inferring a numerical value for
an integral, μ := ∫

Rd g(x) dx, where μ has no closed form
analytic expression. Typically, g is accessible as a black-box
algorithm. Cubature is a key component of many problems
in scientific computing, finance, statistical modeling, and
machine learning.

The integral may often be expressed as

μ := E[ f (X)] =
∫

[0,1]d
f (x) dx, (1)
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where f : [0, 1]d → R is the integrand, and X ∼ U[0, 1]d .
The process of transforming the original integral into the
form of (1) is not addressed here. See (Dick et al. 2013,
Section 2.11) for a discussion of variable transformations.
The cubature may be an affine function of integrand values:

μ̂ := w0 +
n∑

i=1

f (xi )wi , (2)

where the weights, w0, and w = (wi )
n
i=1 ∈ R

n , and the
nodes, {xi }n

i=1 ⊂ [0, 1]d , are chosen to make the error,
|μ − μ̂|, small. The integration domain [0, 1]d is convenient
for the low discrepancy node sets (Dick et al. 2013; Sloan
and Joe 1994) that we use. The nodes are assumed to be
deterministic.

Users of cubature algorithms typically want the error to
be no greater than their specified error tolerance, denoted by
ε. That is, they want

|μ − μ̂| ≤ ε. (3)

Some stopping criteria for choosing n are heuristic. Rigor-
ous algorithms satisfying (3) typically require strong a priori
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assumptions about the integrand, such as an upper bound
on its variance (for simple Monte Carlo) or total variation
(for quasi-Monte Carlo). We take a Bayesian approach by
constructing a stopping criterion that is based on a credi-
ble interval. We build upon the work of Diaconis (1988),
O’Hagan (1991), Ritter (2000), Rasmussen and Ghahramani
(2003), Briol et al. (2019), and others. Our algorithm is an
example of probabilistic numerics.

Our primary contribution is to demonstrate how the choice
of a family of covariance kernels that match the low dis-
crepancy sampling nodes facilitates fast computation of
the cubature and the data-driven stopping criterion. Our
Bayesian cubature requires a computational cost of

O(
n$( f ) + Nopt[n$(C) + n log(n)]), (4)

where $( f ) is the cost of one integrand value, $(C) is the
cost of a single covariance kernel value, O(n log(n)) is the
cost of a fast Fourier transform, and Nopt is an upper bound
on the number of optimization steps required to choose the
hyperparameters. If function evaluation is expensive, e.g.,
the output of a computationally intensive simulation, or if
$( f ) = O(d) for large d, then $( f )might be similar in mag-
nitude to Nopt log(n) in practice. Typically, $(C) = O(d).
Note that the O(n log(n)) contribution is d independent.

In contrast to our fast algorithm, the typical computational
cost for Bayesian cubature is

O(
n$( f ) + Nopt[n2$(C) + n3]), (5)

which is explained in Sect. 2.3. Note that aside from eval-
uating the integrand, the computational cost in (5) is much
larger than that in (4).

Hickernell (2018) compares different approaches to cuba-
ture error analysis depending onwhether the rule is determin-
istic or random and whether the integrand is assumed to be
deterministic or random. Error analysis that assumes a deter-
ministic integrand lying in a Banach space leads to an error
bound that is typically impractical for deciding how large n
must be to satisfy (3). The deterministic error bound includes
a (semi-)norm of the integrand, often called the variation,
which is often more complex to compute than the original
integral.

Hickernell and Jiménez Rugama (2016) and Jiménez
Rugama andHickernell (2016) andCools andNuyens (2014)
have developed stopping criteria for cubature rules based on
low discrepancy nodes by tracking the decay of the discrete
Fourier coefficients of the integrand. The algorithm proposed
here also relies on discrete Fourier coefficients, but in a dif-
ferent way. Although we only explore automatic Bayesian
cubature for absolute error tolerances, the recent work by
Hickernell et al. (2018) suggests how one might accom-

modate more general error criteria, such as relative error
tolerances.

Section 2 explains the Bayesian approach to estimat-
ing the posterior cubature error and defines our automatic
Bayesian cubature. Althoughmuch of thismaterial is known,
it is included for completeness. We end Sect. 2 by demon-
strating why Bayesian cubature is typically computationally
expensive. Section 3 introduces the concept of covariance
kernels that match the nodes, which expedites the computa-
tions required by our automatic Bayesian cubature. Section 4
implements this concept for shift-invariant kernels and rank-
1 lattice nodes. This section also describes how to avoid
cancellation error for covariance kernels of product form.
Numerical examples are provided in Sect. 5 to demonstrate
our new algorithm. We conclude with a brief discussion.

2 Bayesian cubature

2.1 Bayesian posterior cubature error

We assume that the integrand, f , is an instance of a Gaus-
sian stochastic process, i.e., f ∼ GP(m, s2Cθ ) (Diaconis
1988; O’Hagan 1991; Ritter 2000; Rasmussen and Ghahra-
mani 2003; Briol et al. 2019). Specifically, f is a real-valued
random functionwith constantmeanm and covariance kernel
s2Cθ :

m = E[ f (x)] ∀x ∈ R
d ,

E{[ f (t) − m][ f (x) − m]} = s2Cθ (t, x) ∀t, x ∈ R
d .

Here s is a positive scale factor, and Cθ : [0, 1]d ×[0, 1]d →
R is a symmetric, positive-definite function and parameter-
ized by the vector θ :

CT
θ = Cθ , aTCθ a > 0, where Cθ = (

Cθ (xi , x j )
)n

i, j=1 ,

∀a �= 0, n ∈ N, distinct x1, . . . , xn ∈ [0, 1]d . (6)

Procedures for estimating or integrating out the hyperparam-
eters m, s, and θ are explained later in this section.

Furthermore, for a Gaussian process, all vectors of linear
functionals of f have a multivariate Gaussian distribution.
For any deterministic sampling scheme with distinct nodes,
{xi }n

i=1, and defining f := ( f (xi ))
n
i=1 as the multivariate

Gaussian vector of function values, it follows from the defi-
nition of a Gaussian process that

f ∼ N (m1, s2Cθ ), where 1 is a vector of all ones,

(7a)

μ ∼ N (m, s2c0θ ), (7b)

where c0θ :=
∫

[0,1]d×[0,1]d
Cθ (t, x) dt dx, and (7c)
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cov( f , μ) =
(∫

[0,1]d
Cθ (t, xi ) dt

)n

i=1
=: cθ . (7d)

Here, c0θ and cθ depend explicitly on θ . We assume that
Cθ is simple enough that the integrals in these definitions
can be computed analytically. We need the following lemma
pertaining to a conditional Gaussian distribution to derive the
distribution of the posterior error of our cubature.

Lemma 1 (Rasmussen andWilliams 2006, (A.6), (A.11–13))
IfY = (Y1,Y2)

T ∼ N (m,Σ), whereY1 andY2 are random
vectors of arbitrary length, and

m =
(
m1

m2

)

=
(
E(Y1)

E(Y2)

)

,

Σ =
(

Σ11 ΣT
21

Σ21 Σ22

)

=
(

var(Y1) cov(Y1,Y2)

cov(Y2,Y1) var(Y2),

)

then

Y1|Y2 ∼ N (
m1 + ΣT

21Σ
−1
22 (Y2−m2),Σ11−ΣT

21Σ
−1
22 Σ21

)
.

Moreover, the inverse of the matrix Σ may be partitioned as

Σ−1 =
(
A11 AT

21
A21 A22

)

,

A11 = (Σ11 − Σ12Σ
−1
22 Σ21)

−1, A21 = −Σ−1
22 Σ21A11,

A22 = Σ−1
22 + Σ−1

22 Σ21A11Σ
T
21Σ

−1
22 .

It follows from Lemma 1 that the conditional distribution
of the integral given observed function values, f = y, is also
Gaussian:

μ|( f = y) ∼ N (
m(1 − cT

θ Cθ
−11) + cT

θ Cθ
−1 y, s2(c0θ

− cT
θ Cθ

−1cθ )
)
. (8)

The natural choice for the cubature is the posterior mean of
the integral, namely,

μ̂|( f = y) = m(1 − cT
θ Cθ

−11) + cT
θ Cθ

−1 y, (9)

which takes the form of (2). Under this definition, the cuba-
ture error has zero mean and a variance depending on the
choice of nodes:

(μ − μ̂)|( f = y) ∼ N
(
0, s2(c0θ − cT

θ Cθ
−1cθ )

)
.

A credible interval for the integral is given by

P f [|μ − μ̂| ≤ errCI] = 99%, (10a)

errCI = 2.58s
√

c0θ − cT
θ Cθ

−1cθ . (10b)

Naturally, 2.58 and 99% can be replaced by other quantiles
and credible levels.

2.2 Hyperparameter estimation

The credible interval in (10) suggests how our automatic
Bayesian cubature proceeds. Integrand data are accumu-
lated until the width of the credible interval, errCI, is no
greater than the error tolerance. As n increases, one expects
c0θ − cT

θ Cθ
−1cθ to decrease for well-chosen nodes, {xi }n

i=1.
Note that errCI has no explicit dependence on the inte-

grand values, even though one would intuitively expect that
a larger integrand should imply a larger errCI. This is because
the hyperparameters, m, s, and θ , have not yet been inferred
from integrand data. After inferring the hyperparameters,
errCI does reflect the size of the integrand values. This section
describes three approaches to hyperparameter estimation.

Theorem 1 There are at least three approaches to estimating
or integrating out the hyperparameters defining the Gaus-
sian process from which the integrand is drawn: empirical
Bayes, full Bayes, and generalized cross-validation. Under
these three approaches, we have the following:

mEB = 1TC−1
θ y

1TC−1
θ 1

, mGCV = 1TC−2
θ y

1TC−2
θ 1

, (11)

s2EB = 1

n
yT

[

C−1
θ − C−1

θ 11TC−1
θ

1TC−1
θ 1

]

y, (12)

σ̂ 2
full = 1

n − 1
yT

[

C−1
θ − C−1

θ 11TC−1
θ

1TC−1
θ 1

]

y

×
[

(1 − cT
θ C

−1
θ 1)2

1TC−1
θ 1

+ (c0θ − cT
θ C

−1
θ cθ )

]

,

s2GCV = yT

[

C−2
θ − C−2

θ 11TC−2
θ

1TC−2
θ 1

]

y
[
trace(C−1

θ )
]−1

,

(13)

θEB = argmin
θ

{

log

(

yT

[

C−1
θ − C−1

θ 11TC−1
θ

1TC−1
θ 1

]

y

)

+ 1

n
log(det(Cθ ))

}

, (14)

θGCV = argmin
θ

{

log

(

yT

[

C−2
θ − C−2

θ 11TC−2
θ

1TC−2
θ 1

]

y

)

− log
(

trace(C−2
θ )

)}

, (15)

μ̂EB = μ̂full =
(

(1 − 1TC−1
θ cθ )1

1TC−1
θ 1

+ cθ

)T

C−1
θ y, (16)

μ̂GCV =
(

(1 − 1TC−1
θ cθ )C

−1
θ 1

1TC−2
θ 1

+ cθ

)T

C−1
θ y. (17)
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The credible intervals widths, errCI, are given by

errx = 2.58sx

√
c0θ − cT

θ C
−1
θ cθ , x ∈ {EB,GCV}, (18)

errfull = tn−1,0.995σ̂full > errEB. (19)

The resulting credible intervals are then

P f [|μ−μ̂x|≤errx]=99%, x∈{EB, full,GCV}. (20)

Here tn−1,0.995 denotes the 99.5 percentile of a standard Stu-
dent’s t-distribution with n − 1 degrees of freedom. In the
formulas above, θ is assumed to take on the values θEB or
θGCV as appropriate.

In the theorem above, note that if the original covariance
kernel, Cθ , is replaced by bCθ for some positive constant b,
the cubature, μ̂, the estimates of θ , and the credible inter-
val half-widths, errx for x ∈ {EB, full,GCV}, all remain
unchanged. The estimates of s2 are multiplied by b−1, as
would be expected.

2.2.1 Proof for empirical Bayes

The empirical Bayes approach estimates the parameters,
m, s, and θ via maximum likelihood estimation. The log-
likelihood function of the parameters given the integrand data
y is:

l(s, m, θ | y) = −1

2
s−2( y − m1)TC−1

θ ( y − m1)

− 1

2
log(det(Cθ )) − n

2
log(s2) + constants.

Maximizing the log-likelihood first with respect to m and
then with respect to s yields the values given in Theorem 1.
To obtain θEB, we substitute mEB and sEB into l(s, m, θ | y),
which leads directly to the optimization problem in (14).

The empirical Bayes estimate of θ balances minimizing
the covariance scale factor, s2EB, against minimizing det(Cθ ).
Under these estimates of the parameters, the cubature (9) and
the credible interval (10) are explicitly written as in Theo-
rem 1. The quantities c0θ , cθ , and Cθ are assumed implicitly
to be based on θ = θEB.

2.2.2 Proof for full Bayes

Rather than use maximum likelihood to determine m and
s, one can treat them as hyperparameters with a non-
informative, conjugate prior, namely ρm,s2(ξ, λ) ∝ 1/λ. We
want to compute ρμ| f (z| y), the conditional posterior density
of μ given the data f = y. This may be expressed as

ρμ| f (z| y) =
∫ ∞

0

∫ ∞

−∞
ρμ|m,s2, f (z|ξ, λ, y)

ρm,s2| f (ξ, λ| y) dξdλ,

where ρm,s2| f is the posterior density of the hyperparame-
ters given the integrand data. Bayes Theorem tells us that
ρm,s2| f ∝ ρ f |m,s2 ρm,s2 , so

ρμ| f (z| y) =
∫ ∞

0

∫ ∞

−∞
ρμ|m,s2, f (z|ξ, λ, y)ρ f |m,s2( y|ξ, λ)

ρm,s2(ξ, λ) dξdλ

∝
(

1 + (z − μ̂EB)2

(n − 1)̂σ 2
full

)−n/2

,

where σ̂ 2
full is given in Theorem 1, and the result above is

derived in “Appendix”.
This means thatμ|( f = y), properly centered and scaled,

has a Student’s t-distribution with n − 1 degrees of freedom.
The estimated integral is the same as in the empirical Bayes
case, μ̂full = μ̂EB, but the credible interval is wider, as stated
in Theorem 1.

Because the shape parameter, θ , enters the definition of the
covariance kernel in a non-trivial way, the only way to treat
it as a hyperparameter and assign a tractable prior would be
for the prior to be discrete. We believe that choosing such a
prior in practice involves too much guesswork, so we choose
to use either θEB or θGCV.

2.2.3 Proof for generalized cross-validation

A third parameter selection technique is leave-one-out cross-
validation (CV). Let ẙi = E[ f (xi )| f−i = y−i ], where the
subscript −i denotes the vector excluding the i th compo-
nent. This is the conditional expectation of f (xi ) given the
parameters m, s, and θ , and all data but the function value
at xi . The cross-validation criterion, which is to be mini-
mized, is the sum of squares of the difference between these
conditional expectations and the observed values:

CV =
n∑

i=1

(yi − ẙi )
2. (21)

Let A = C−1
θ , let ζ = A( y− m1), and partition Cθ , A, and

ζ as

Cθ =
(

cii CT−i,i
C−i,i C−i,−i

)

, A =
(

aii AT−i,i
A−i,i A−i,−i

)

,

ζ =
(

ζi

ζ−i

)

,
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where the subscript i denotes the i th row or column, and
the subscript −i denotes all rows or columns except the i th.
Following this notation, Lemma 1 implies that

ẙi = m + CT−i,iC
−1
−i,−i ( y−i − m1)

ζi = aii (yi − m) + AT−i,i ( y−i − m1)

= aii [(yi − m) − CT−i,iC
−1
−i,−i ( y−i − m1)]

= aii (yi − ẙi ).

Thus, (21) may be rewritten as

CV =
n∑

i=1

(
ζi

aii

)2

, ζ = C−1
θ ( y − m1).

The generalized cross-validation criterion (GCV) replaces
the i th diagonal element of A in the denominator by the aver-
age diagonal element of A (Craven and Wahba 1979; Golub
et al. 1979; Wahba 1990):

GCV =
∑n

i=1 ζ 2
i

( 1
n

∑n
i=1 aii

)2 = ( y − m1)TC−2
θ ( y − m1)

(
1
n trace(C

−1
θ )

)2 .

The loss function GCV depends on m and θ , but not on s.
Minimizing the GCV yields the formulae in Theorem 1 for
mGCV and θGCV. Plugging the value of mGCV into (9) yields
the formulae in Theorem 1 for μ̂GCV.

An estimate for s may be obtained by noting that by
Lemma 1,

var[ f (xi )| f−i = y−i ] = s2a−1
i i .

Thus, we may estimate s using an argument similar to that
used in deriving the GCV and then substituting mGCV for m:

s2 = var[ f (xi )| f−i = y−i ]aii

≈ 1

n

n∑

i=1

(yi − ẙi )
2aii = 1

n

n∑

i=1

ζ 2
i

aii

≈
1
n

∑n
i=1 ζ 2

i
1
n

∑n
i=1 aii

= ( y − m1)TC−2
θ ( y − m1)

trace(C−1
θ )

≈ ( y − mGCV1)TC−2
θGCV

( y − mGCV1)

trace(C−1
θGCV

)
=: s2GCV.

After simplification, s2GCV defined above becomes the for-
mula in Theorem 1.

The credible interval based on GCV corresponds to (10)
with the estimated m, s, and θ . This completes the proof of
Theorem 1.

2.3 The automatic Bayesian cubature algorithm

The previous section presents three credible intervals, (20),
for μ, the desired integral. Each credible interval is based on
different assumptions about the hyperparameters m, s, and
θ . We stress that one must estimate these hyperparameters
or assume a prior distribution on them because the credi-
ble intervals are used as stopping criteria for our cubature
rule. Since a credible interval makes a statement about a typ-
ical function—not an outlier—one must try to ensure that
the integrand is a typical draw from the assumed Gaussian
stochastic process.

Our Bayesian cubature algorithm increases the sample
size until the width of the credible interval is small enough.
This is accomplished through successively doubling the sam-
ple size. The steps are detailed in Algorithm 1.

We recognize that multiple applications of our credible
intervals in one run of the algorithm is not strictly justi-
fied. However, if our integrand comes from the middle of
the sample space and not the extremes, we expect our auto-
matic Bayesian cubature to approximate the integral within
the desired error tolerance with high probability. The exam-
ple in the next subsection and the examples in Sect. 5 support
that expectation. We also believe that an important fac-
tor contributing to the occasional failure of our algorithm
is unreasonable parameterizations of the stochastic process
from which the integrand is hypothesized to be drawn. Over-
coming this latter challenge is a topic for future research.

Algorithm 1 Automatic Bayesian Cubature
Require: a generator for the sequence x1, x2, . . .; a black-box function,

f ; an absolute error tolerance, ε > 0; the positive initial sample size,
n0; the maximum sample size nmax

1: n ← n0, n′ ← 0, errCI ← ∞
2: while errCI > ε and n ≤ nmax do
3: Generate {xi }n

i=n′+1 and sample { f (xi )}n
i=n′+1

4: Compute θ by (14) or (15)
5: Compute errCI according to (18) or (19)
6: n′ ← n, n ← 2n′
7: end while
8: Update sample size to compute μ̂, n ← n′
9: Compute μ̂, the approximate integral, according to (16) or (17)
10: return μ̂, n, and errCI

As described above, the computational cost ofAlgorithm1
is the sum of the following:

– O(
n$( f )

)
for the integrand data, where $( f ) is the com-

putational cost of a single f (x); $( f ) may be large if it
is the result of an expensive simulation; $( f ) is typically
proportional to d;

– O(
Noptn2$(Cθ )

)
for the evaluation of the Gram matrix

Cθ , Nopt is the number of optimization steps required,
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and $(Cθ ) is the computational cost of a single Cθ (t, x);
$(Cθ ) is typically proportional to d; and

– O(
Noptn3

)
for thematrix inversions and determinant cal-

culations; this cost is independent of d.

As we see in the example in the next section, this cost
increases quickly as the n required to meet the error tol-
erance increases. This motivates the fast Bayesian cubature
algorithm presented in Sect. 3.

2.4 Example with theMatérn kernel

To demonstrate the automatic Bayesian cubature Algo-
rithm 1, consider a Matérn covariance kernel:

Cθ (x, t) =
d∏

k=1

exp(−θ |xk − tk |)(1 + θ |xk − tk |),

and Sobol’ points as the nodes. (Sobol’ points are a typical
space-filling design.) Also, consider the integration problem
of evaluating multivariate Gaussian probabilities:

μ =
∫

(a,b)

exp
(− 1

2 t
T Σ−1 t

)

√
(2π)d ′ det(Σ)

dt, (22)

where (a, b) is a finite, semi-infinite or infinite box in R
d ′
.

This integral does not have an analytic expression for general
Σ, so cubatures are required.

Genz (1993) introduced a variable transformation to trans-
form (22) into an integral on the unit cube. Not only does
this variable transformation accommodate domains that are
(semi-)infinite, it also tends to smooth out the integrand
better, which expedites the cubature. Let Σ = LLT be the
Cholesky decomposition where L = (l jk)

d
j,k=1 is a lower

triangular matrix. Iteratively define

α1 = Φ(a1), β1 = Φ(b1),

α j (x1, . . . , x j−1)

= Φ

⎛

⎝ 1

l j j

⎛

⎝a j −
j−1∑

k=1

l jkΦ
−1(αk + xk(βk − αk))

⎞

⎠

⎞

⎠ ,

j = 2, . . . , d,

β j (x1, . . . , x j−1)

= Φ

⎛

⎝ 1

l j j

⎛

⎝b j −
j−1∑

k=1

l jkΦ
−1(αk + xk(βk − αk))

⎞

⎠

⎞

⎠ ,

j = 2, . . . , d,

fGenz(x) =
d∏

j=1

[β j (x) − α j (x)], (23)

Fig. 1 The d ′ = 3 multivariate Gaussian probability transformed to
an integral of fGenz of d = 2. This plot can be reproduced using
IntegrandPlots.m in GAIL

where Φ is the univariate cumulative standard Gaussian dis-
tribution function. Then, μ = ∫

[0,1]d′−1 fGenz(x) dx. This
approach transforms a d ′-dimensional integral into a d =
d ′ − 1-dimensional integral (Fig. 1).

We use the following parameter values in the simulation:

d ′ = 3, a =
⎛

⎝
−6
−2
−2

⎞

⎠ , b =
⎛

⎝
5
2
1

⎞

⎠ , L =
⎛

⎝
4 1 1
0 1 0.5
0 0 0.25

⎞

⎠ .

The node sets are randomly scrambled Sobol’ points (Dick
et al. 2013; Dick and Pillichshammer 2010). The results
are for 400 randomly chosen ε in the interval [10−5, 10−2]
as shown in Fig. 2. In each run, the nodes are randomly
scrambled. The empirical Bayes credible intervals are used
for stopping criteria. We observe that the algorithm meets
the error criterion 95% of the time even though we used
99% credible intervals. One possible explanation is that the
matrix inversions in the algorithm are ill-conditioned lead-
ing to numerical inaccuracies. Another possible explanation
is that this Matérn covariance kernel is not a good match for
the integrand.

As shown in Fig. 2, the computation time increases rapidly
with n. The empirical Bayes estimation of θ , which requires
repeated evaluation of the objective function, is themost time
consuming of all. It takes tens of seconds to compute μ̂n with
ε = 10−5. In contrast, this example in Sect. 5 take less than
a hundredth of a second to compute μ̂n with the same ε

using our new algorithm. Not only is the Bayesian cubature
with the Matérn kernel slow, but also Cθ becomes highly ill-
conditioned as n increases. So, Algorithm 1 in its current
form is impractical when n must be large.

3 Fast automatic Bayesian cubature

The generic automatic Bayesian cubature algorithm descri-
bed in the previous section requiresO(

n$( f )+Nopt[n2$(Cθ )

+ n3]) operations to compute the cubature. Now we explain
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Fig. 2 Multivariate Gaussian probability in d = 2 estimated using
Matérn kernel and empirical Bayes stopping criterion. Top: ratio of the
integration error to the error tolerance versus execution time. Bottom:
execution time rapidly increases with increasing n. These figures can
be reproduced using matern_guaranteed_plots.m in GAIL

how to speed up the calculations. A key is to choose covari-
ance kernels that match the nodes, {xi }n

i=1, so that the
vector-matrix operations required by Bayesian cubature can
be accomplished using fast Bayesian transforms at a compu-
tational cost of O(

n$( f ) + Nopt[n$(Cθ ) + n log(n)]).

3.1 Fast Bayesian transform kernel

We make some assumptions about the relationship between
the covariance kernel and the nodes. In Sect. 4 these assump-
tions are shown to hold for rank-1 lattices and shift-invariant
kernels. Although the integrands and covariance kernels are
real, it is convenient to allow related vectors and matrices to
be complex. A relevant example is the fast Fourier transform
(FFT) of a real-valued vector, which is a complex-valued
vector.

We introduce some further notation:

C = Cθ =
(

Cθ (xi , x j )
)n

i, j=1
= (C1, . . . ,Cn)

= 1

n
VΛVH , VH = nV−1,

V = (v1, . . . , vn)T = (V 1, . . . , V n), Cp

= 1

n
VΛpVH , ∀p ∈ Z. (24)

In this and later sections, we drop the θ dependence of var-
ious quantities for simplicity of notation. Here, VH is the
Hermitian of V, C1, . . . ,Cn are columns of C, V 1, . . . , V n

are columns of V, and v1, . . . , vn are rows of V. The nor-
malization of V assumed in (24) conveniently allows the first
eigenvector, V 1, to be the vector of ones in (25b) below. The
columns ofV are eigenvectors ofC, andΛ is a diagonalmatrix
of eigenvalues ofC. For any n×1 vector b, define the notation
b̃ := VH b.

We make three assumptions that facilitate fast computa-
tion:

V may be identified analytically, (25a)

v1 = V 1 = 1, (25b)

VH b requires only O(n log(n)) operations ∀b. (25c)

We call the transformation b �→ VH b a fast Bayesian trans-
form and Cθ a fast Bayesian transform kernel.

Under assumptions (25), the eigenvaluesmay be identified
as the fast Bayesian transform of the first column of C:

λ =
⎛

⎜
⎝

λ1
...

λn

⎞

⎟
⎠ = Λ1 = Λv∗

1 =
(
1

n
VHV

)

︸ ︷︷ ︸
I

Λv∗
1

= VH
(
1

n
VΛv∗

1

)

= VHC1 = C̃1, (26)

where I is the identity matrix and v∗
1 is the complex conjugate

of thefirst rowofV. Also note that the fastBayesian transform
of 1 has a simple form

1̃ = VH1 = VHV 1 = (n, 0, . . . , 0)T .

Many of the terms that arise in the calculations in Algo-
rithm 1 take the form aTCpb for real a and b, and integer
p. These can be calculated via the transforms ã = VH a and
b̃ = VH b as

aTCpb = 1

n
aTVΛpVH b = 1

n
ãH Λp b̃ = 1

n

n∑

i=1

λ
p
i ã∗

i b̃i .

Note that ã∗ appears on the right side of this equation because
aTV = (VH a)∗ = ã∗. In particular,

1TC−p1 = n

λ
p
1

, 1TC−p y = ỹ1
λ

p
1

,

yTC−p y = 1

n

n∑

i=1

|̃yi |2
λ

p
i

, cTC−11 = c̃1
λ1

,

cTC−1 y = 1

n

n∑

i=1

c̃∗
i ỹi

λi
, cTC−1c = 1

n

n∑

i=1

|̃ci |2
λi

,
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where ỹ = VH y and c̃ = VH c. For any real b, with b̃ = VH b,
it follows that b̃1 is real since the first row of VH is 1.

The covariance kernel used in practice also may satisfy an
additional assumption:

∫

[0,1]d
Cθ (t, x) dt = 1 ∀x ∈ [0, 1]d , (27)

which implies that c0θ = 1 and cθ = 1. Under (27), the
expressions above may be further simplified:

cTC−11 = cTC−1c = n

λ1
.

The assumptions and derivations above lead to the following
theorem.

Theorem 2 Under assumptions (25), the parameters and
credible interval half-widths in Theorem 1 may be expressed
in terms of the fast Bayesian transforms of the integrand data,
the first column of the Gram matrix, and cθ as follows:

mEB = mfull = mGCV = ỹ1
n

= 1

n

n∑

i=1

yi ,

s2EB = 1

n2

n∑

i=2

|̃yi |2
λi

,

σ̂ 2
full = 1

n(n − 1)

n∑

i=2

|̃yi |2
λi

×
[

λ1

n

(

1 − c̃1
λ1

)2

+
(

c0 − 1

n

n∑

i=1

|̃ci |2
λi

)]

,

s2GCV = 1

n

n∑

i=2

|̃yi |2
λ2i

[
n∑

i=1

1

λi

]−1

,

θEB = argmin
θ

[

log

(
n∑

i=2

|̃yi |2
λθ ,i

)

+ 1

n

n∑

i=1

log(λθ,i )

]

,

(28a)

θGCV = argmin
θ

[

log

(
n∑

i=2

|̃yi |2
λ2θ ,i

)

− 2 log

(
n∑

i=1

1

λθ ,i

)]

,

(28b)

μ̂EB = μ̂full = μ̂GCV = ỹ1
n

+ 1

n

n∑

i=2

c̃∗
i ỹi

λi
,

errEB = 2.58

n

√√
√
√

n∑

i=2

|̃yi |2
λi

(

c0 − 1

n

n∑

i=1

|̃ci |2
λi

)

,

errfull = tn−1,0.995σ̂full,

errGCV = 2.58

n

⎧
⎨

⎩

n∑

i=2

|̃yi |2
λ2i

[
1

n

n∑

i=1

1

λi

]−1 (

c0 − 1

n

n∑

i=1

|̃ci |2
λi

)⎫
⎬

⎭

1/2

.

Under the further assumption (27), it follows that

μ̂EB = μ̂full = μ̂GCV = ỹ1
n

= 1

n

n∑

i=1

yi , (29)

and so μ̂ is simply the sample mean. Also, under assumption
(27), the credible interval half-widths simplify to

errEB = 2.58

n

√√
√
√

n∑

i=2

|̃yi |2
λi

(

1 − n

λ1

)

, (30a)

errfull = tn−1,0.995

√√
√
√ 1

n(n − 1)

n∑

i=2

|̃yi |2
λi

(
λ1

n
− 1

)

,

errGCV = 2.58

n

⎧
⎨

⎩

n∑

i=2

|̃yi |2
λ2i

[
1

n

n∑

i=1

1

λi

]−1 (

1 − n

λ1

)
⎫
⎬

⎭

1/2

.

(30b)

In the formulas for the credible interval half-widths, λ

depends on θ , and θ is assumed to take on the values θEB or
θGCV as appropriate.

4 Integration lattices and shift-invariant
kernels

The preceding sections lay out an automatic Bayesian
cubature algorithm whose computational cost is drastically
reduced. However, this algorithm relies on covariance kernel
functions, Cθ and node sets, {xi }n

i=1 that satisfy assumptions
(25). We also want to satisfy assumption (27). To conve-
niently facilitate the fast Bayesian transform, it is assumed
in this section and the next that n is power of 2.

4.1 Extensible integration lattice node sets

We choose a set of nodes defined by a shifted extensible
integration lattice node sequence, which takes the form

xi = hφ(i − 1) + Δ mod 1, i ∈ N. (31)

Here, h is a d-dimensional generating vector of positive inte-
gers, Δ is some point in [0, 1)d , often chosen at random, and
{φ(i)}∞i=0 is the van der Corput sequence, defined by reflect-
ing the binary digits of the integer about the decimal point,
i.e.,

i 0 1 2 3 4 5 6 7 · · ·
i 02 12 102 112 1002 1012 1102 1112 · · ·

φ(i) 2.0 2.1 2.01 2.11 2.001 2.101 2.011 2.111 · · ·
φ(i) 0 0.5 0.25 0.75 0.125 0.625 0.375 0.875 · · ·

(32)
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Fig. 3 Example of a shifted integration lattice node set in d = 2. This
figure can be reproduced using PlotPoints.m in GAIL

Note that

nφ : {0, . . . , n − 1} → {0, . . . , n − 1} is one-to-one, (33)

assuming n is a power of 2.
An example of 64 nodes is given in Fig. 3. The even cov-

erage of the unit cube is ensured by a well-chosen generating
vector, h. The choice of generating vector is typically done
offline by computer search. See Hickernell and Niederreiter
(2003) and Dick et al. (2013) for more on extensible integra-
tion lattices.

4.2 Shift-invariant kernels

The covariance kernelsCθ that match integration lattice node
sets have the form

Cθ (t, x) = Kθ (t − x mod 1). (34a)

This is called a shift-invariant kernel because shifting both
arguments of the covariance kernel by the same amount
leaves the value unchanged. Here, Kθ is periodic and must
be of the form that ensures that Cθ is symmetric and positive
definite, as assumed in (6).

A family of shift-invariant kernels is constructed via even
degree Bernoulli polynomials:

Kθ (x) =
d∏

l=1

[

1 − (−1)rηB2r (xl)

]

,

∀t, x ∈ [0, 1]d , θ = (r , η), r ∈ N, η > 0. (34b)

Symmetric, periodic, positive-definite kernels of this form
appear in Hickernell (1996) and Dick et al. (2013). Bernoulli
polynomials are described in (Olver et al. 2018, Chapter 24).

Larger r implies a greater degree of smoothness of the
covariance kernel. Larger η implies greater fluctuations of
the output with respect to the input. Plots of Cθ (·, 0.3) are
given in Fig. 4 for various θ = (r , η) values.

Lattice cubature rules are known to have convergence rates
that depend on the smoothness of the integrands, but that

Fig. 4 Shift-invariant kernel in 1Dshifted by0.3 to show the discontinu-
ity. This figure can be reproduced usingplot_fourier_kernel.m
in GAIL

are rather independent of the choice of the integration lat-
tice (Dick et al. 2013). Thus, we expect integration lattice
node sets to perform well regardless of the smoothness of
the covariance kernel. The bigger concern is whether the
derivatives of the integrand are as smooth as the covariance
kernel implies. This topic is touched upon again in Sect. 5.1.

4.3 The Grammatrix as the permutation of a
circulant matrix

For general shift-invariant covariance kernels, the Gram
matrix takes the form of a permutation of the rows and
columns of a circulant matrix. By the properties of φ in (33),
it follows that

P = (
δnφ(i−1), j−1

)n
i, j=1 (35)

is a permutation matrix, where δ·,· is the Kronecker delta
function. Then,

Cθ = (
Cθ (xi , x j )

)n
i, j=1

=
(

Kθ

(
h(φ(i − 1) − φ( j − 1)

)
mod 1)

)n

i, j=1
by (31) and (34a)

=
( n∑

i ′, j ′=1

δnφ(i−1),i ′−1 Kθ

(
h(i ′− j ′)/n mod 1

)
δ j ′−1,nφ( j−1)

)n

i, j=1

= PKθP
T , (36)

where

Kθ = (
Kθ

(
h(i − j)/n mod 1

))n
i, j=1. (37)

Because Kθ is circulant, we know the form of its
eigenvector–eigenvalue decomposition:

Kθ = 1

n
WΛθW

H , W =
(
e2π

√−1(i−1)( j−1)/n
)n

i, j=1
. (38)
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By (36) we then have the eigenvector–eigenvalue decompo-
sition for Cθ assumed in (24), namely

Cθ = 1

n
VΛθV

H , V = PW, (39)

where the eigenvalues of Cθ and Kθ are identical.
Fast Bayesian transform assumptions (25a) and (25b) can

be verified by (35), (38), and (39). Assumption (25c) is sat-
isfied because VH b = WHPT b is just the discrete Fourier
transform of a vector whose rows have been permuted. This
can be performed in O(n log(n)) operations by the FFT. A
proper scaling of the kernel Kθ , such as the one given by
(34b), ensures that assumption (27) is satisfied.

4.4 Overcoming cancellation error

For the covariance kernels used in our computation, it may
happen that n/λ1 is close to 1. Thus, the term 1−n/λ1, which
appears in the credible interval half-widths, errEB, errfull, and
errGCV, may suffer from cancellation error and even become
negative. We have observed this phenomenon. We can avoid
this cancellation error by modifying how we compute the
Gram matrix and its eigenvalues.

Any shift-invariant covariance kernel satisfying (27) can
be written as Cθ = 1+ C̊θ , where C̊θ is also symmetric and
positive definite. The associated Gram matrix for C̊θ is then
C̊θ = Cθ − 11T , and the eigenvalues of C̊θ are λ̊1 = λ1 −
n, λ2, . . . , λn ,which followsbecause1 is thefirst eigenvector
of both Cθ and C̊θ . Then,

1 − n

λ1
= λ1 − n

λ1
= λ̊1

λ̊1 + n
,

where now the right-hand side is free of cancellation error.
The covariance kernels that we use are of product form,

namely,

Cθ (t, x) =
d∏

�=1

[
1 + C̊θ ,�(t�, x�)

]
, C̊θ ,� : [0, 1]2 → R.

Direct computation of C̊θ (t, x) = Cθ (t, x) − 1 introduces
cancellation error if the C̊θ ,� are small. So, we employ the
iteration

C̊ (1)
θ (t, x) = C̊θ ,1(t1, x1),

C̊ (�)
θ (t, x) = C̊ (�−1)

θ (t, x)[1 + C̊θ ,�(t�, x�)] + C̊θ ,�(t�, x�),

� = 2, . . . , d,

C̊θ (t, x) = C̊ (d)
θ (t, x).

In this way, the Gram matrix C̊θ , whose i, j-element is
C̊θ (xi , x j ) can be constructed in a way that avoids signif-
icant cancellation error.

Computing the eigenvalues of C̊ via the procedure given
in (26) yields λ̊1 = λ1 − n, λ2, . . . , λn . The widths of the
credible intervals in (30) become

errEB = 2.58

n

√√
√
√ λ̊1

λ1

n∑

i=2

|̃yi |2
λi

, (40a)

errfull = tn−1,0.995

n

√√
√
√ λ̊1

n − 1

n∑

i=2

|̃yi |2
λi

, (40b)

errGCV = 2.58

n

√√
√
√ λ̊1

λ1

n∑

i=2

|̃yi |2
λ2i

[
1

n

n∑

i=1

1

λi

]−1

. (40c)

For large n, λ1 ∼ n and it follows that λ̊1/λ1 ≈ λ̊1/(n −1) is
small. Moreover, for large n, the credible intervals via empir-
ical Bayes and full Bayes are similar, since tn−1,0.995 ≈ 2.58.
The computational steps for the improved, faster, automatic
Bayesian cubature are detailed in Algorithm 2.

Algorithm 2 Fast Automatic Bayesian Cubature
Require: a generator for the rank-1 Lattice sequence x1, x2, . . .; a

shift-invariant kernel, Cθ ; a black-box function, f ; an absolute error
tolerance, ε > 0; the positive initial sample size, n0, that is a power
of 2; the maximum sample size nmax

1: n ← n0, n′ ← 0, errCI ← ∞
2: while errCI > ε and n ≤ nmax do
3: Generate {xi }n

i=n′+1 and sample { f (xi )}n
i=n′+1

4: Compute θ by (28a) or (28b)
5: Compute errCI according to (40a), (40b), or (40c)
6: n′ ← n, n ← 2n′
7: end while
8: Update sample size to compute μ̂, n ← n′
9: Compute μ̂, the approximate integral, according to (29)
10: return μ̂, n and errCI

We summarize the results of this section and the previous
one in the theorem below. In comparison with Algorithm 1,
the second and third components of the computational cost
of Algorithm 2 are substantially reduced.

Theorem 3 Let Cθ be any symmetric, positive-definite, shift-
invariant covariance kernel of the form (34a), where Kθ has
period one in every variable. Furthermore, let Kθ be scaled
to satisfy (27). When matched with rank-1 lattice data sites,
Cθ must satisfy fast Bayesian transform assumptions (25).
The cubature, μ̂, is just the sample mean. The fast Fourier
transform (FFT) can be used to expedite the estimates of
θ in (28) and the credible interval half-widths (40) so that
Algorithm 2 has a computational cost which is the sum of the
following:
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– O(
n$( f )

)
for the integrand data, where $( f ) is the com-

putational cost of a single f (x);
– O(

Noptn$(Cθ )
)

for the evaluations of the vector C1,
where Nopt is the number of optimization steps required,
and $(Cθ ) is the computational cost of a single Cθ (t, x);
and

– O(
Noptn log(n)

)
for the FFT calculations; there is no d

dependence in these calculations.

Although the third part of the computational cost has the
largest dependence on n, in practice it need not be the largest
contributor to the computational cost. If function values are
the result of an expensive simulation, then the first part may
consume most of the computation time.

We have implemented the fast adaptive Bayesian cuba-
ture algorithm in MATLAB as part of the Guaranteed
Adaptive Integration Library (GAIL) (Choi et al. 2019) as
cubBayesLattice_g. This algorithm uses the covari-
ance kernel defined in (34) with r = 1 and 2, and the
periodizing variable transforms in Sect. 5.1. The rank-
1 lattice node generator is taken from Nuyens (2017)
(exod2_base2_m20).

5 Numerical experiments

5.1 Periodizing variable transformations

The shift-invariant covariance kernels underlying our Bay-
esian cubature assume that the integrand has a degree of
periodicity, with the smoothness assumed depending on
the smoothness of the covariance kernel. While integrands
arising in practice may be smooth, they might not be
periodic. Variable transformations can be used to ensure
periodicity.

Suppose that the original integral has been expressed as

μ :=
∫

[0,1]d
g(t) dt,

where g has sufficient smoothness, but lacks periodicity.
The goal is to transform the integral above to the form of
(1), where the integrand f —and perhaps its derivatives—
are periodic.

The baker’s transform, also called the tent transform,

Ψ : x �→ (Ψ (x1), . . . , Ψ (xd)), Ψ (x) = 1 − 2 |x − 1/2| ,
(41)

allows us to write μ in the form of (1), where f (x) =
g(Ψ (x)). Since Ψ ′(x) is not continuous, f does not have
continuous derivatives.

A family of variable transforms that can also preserve
continuity of the derivatives from the original integrand g
takes the form

Ψ : x �→ (Ψ (x1), . . . , Ψ (xd)), Ψ : [0, 1] �→ [0, 1].

This allows us to write μ in the form of (1) with

f (x) = g(Ψ (x))

d∏

�=1

Ψ ′(xl).

For r ∈ N0, if the following hold:

– Ψ ∈ Cr+1[0, 1],
– limx↓0 x−r−1Ψ ′(x) = limx↑1(1 − x)−r−1Ψ ′(x) = 0,
and

– g ∈ C (r ,...,r)[0, 1]d ,

then f has continuous, periodic mixed partial derivatives of
up to order r in each direction. Examples of this kind of
transform include (Sidi 2008):

Sidi’s C1 : Ψ (x) = x − sin(2πx)

2π
,

Ψ ′(x) = 1 − cos(2πx),

Sidi’s C2 : Ψ (x) = 8 − 9 cos(πx) + cos(3πx)

16
,

Ψ ′(x) = 3π [3 sin(πx) − sin(3πx)]
16

.

Periodizing variable transforms are used in the numerical
examples below. In some cases, they can speed the conver-
gence of the Bayesian cubature because they allow one to
take advantage of smoother covariance kernels. However,
there is a trade-off. Smoother periodizing transformations
tend to give integrands f with larger inferred s values and
thus wider credible intervals.

5.2 Test results and observations

Three integrals were evaluated using the GAIL algorithm
cubBayesLattice_g: a multivariate Gaussian proba-
bility, Keister’s example, and an option pricing example.
These three integrands are defined below. The sequences
{xi }∞i=1 are the randomly shifted lattice node sequences
supplied by GAIL. For each integral and each of our stop-
ping criteria—empirical Bayes, full Bayes, and generalized
cross-validation—our algorithm was run for 400 different
randomly chosen error tolerances. The error tolerances were
chosen randomly in an interval depending on the diffi-
culty of the problem. In each run, the nodes were also
randomly shifted with U[0, 1] shifts independent of each
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other and the error tolerances. The accuracy of the algo-
rithm depends mildly on the shift; there is no universally
optimal shift. For each test, the execution times are plotted
against |μ − μ̂| /ε. We expect |μ − μ̂| /ε to be no greater
than one, but hopefully not too much smaller than one,
which would indicate a stopping criterion that is too con-
servative. Figures 5 to 13 can be reproduced using the
script cubBayesLattice_guaranteed_plots.m in
GAIL.

Ideally, wewould optimize both r and η simultaneously in
the definition of our Cθ in (34). However, in these examples
we fix r and optimize η only. This is a technical challenge,
not a limitation of our theory.

MultivariateGaussianprobability This examplewas already
introduced in Sect. 2.4, wherewe used theMatérn covariance
kernel. Here we apply Sidi’s C2 periodization to fGenz (23)
and choose d ′ = 3, d = 2, and r = 2. The simulation results
for this example are summarized in Figs. 5, 6, and 7. In all
cases, theBayesian cubature returns an approximationwithin
the prescribed error tolerance. We used the same setting as
before with generic slow Bayesian cubature in Sect. 2.4 for
comparison. For error tolerance ε = 10−5 with the empirical
Bayes stopping criterion, our fast algorithm takes just under

Fig. 5 Multivariate Gaussian probability example using the empirical
Bayes stopping criterion

Fig. 6 Multivariate Gaussian probability example using the full Bayes
stopping criterion

Fig. 7 Multivariate Gaussian probability example using the GCV stop-
ping criterion

0.01 s as shown in Fig. 5, whereas the generic algorithm takes
over 20 s as shown in Fig. 2.

Among the three stopping criteria, GCV achieves the
desired tolerance faster than the others. One can also observe
from the figures, the credible intervals are in general much
wider than the true error. This could be due to the periodized
integrand being smoother than the r = 2 covariance kernel
assumes. Perhaps one should consider smoother covariance
kernels.

Keister’s example This multidimensional integral function
comes fromKeister (1996) and is inspired by a physics appli-
cation:

μ =
∫

Rd
cos(‖t‖) exp(−‖t‖2) dt =

∫

[0,1]d
fKeister(x) dx,

where fKeister(x) = πd/2 cos
(∥∥
∥Φ−1(x)/2

∥
∥
∥
)

,

and again Φ is the standard Gaussian distribution. The true
value of μ can be calculated iteratively in terms of a quadra-
ture as follows:

μ = 2πd/2 Ic(d)

Γ (d/2)
, d = 1, 2, . . .

where Γ denotes the gamma function, and

Ic(1) =
√

π

2 exp(1/4)
,

Is(1) =
∫ ∞

x=0
exp(−xT x) sin(x) dx

= 0.4244363835020225,

Ic(2) = 1 − Is(1)

2
, Is(2) = Ic(1)

2

Ic( j) = ( j − 2)Ic( j − 2) − Is( j − 1)

2
, j = 3, 4, . . .

Is( j) = ( j − 2)Is( j − 2) − Ic( j − 1)

2
, j = 3, 4, . . . .
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Fig. 8 Keister’s example using the empirical Bayes stopping criterion

Fig. 9 Keister’s example using the full Bayes stopping criterion

Fig. 10 Keister’s example using the GCV stopping criterion

Figures 8, 9, and 10 summarize the numerical tests for
this integral. We used Sidi’s C1 periodization, dimension
d = 4, and r = 2. As we can see, the GCV stopping criterion
achieves results faster than the other stopping criteria, simi-
lar to the multivariate Gaussian case. The credible intervals
are narrower than the multivariate Gaussian case since the
covariance kernel is smoother than the periodization trans-
form used.

Option pricing The price of financial derivatives can often
be modeled by high-dimensional integrals. If the underlying
asset is described in terms of a discretized geometric Brow-
nian motion, then the fair price of the option is:

Fig. 11 Option pricing using the empirical Bayes stopping criterion

μ =
∫

Rd
payoff(z)

exp( 12 z
T Σ−1z)

√
(2π)d det(Σ)

dz =
∫

[0,1]d
f (x) dx,

where payoff(·) defines the discounted payoff of the
option,

Σ = (T /d)
(
min( j, k)

)d
j,k=1 = LLT ,

f (x) = payoff

⎛

⎜
⎝L

⎛

⎜
⎝

Φ−1(x1)
...

Φ−1(xd)

⎞

⎟
⎠

⎞

⎟
⎠ .

The Asian arithmetic mean call option has a payoff of the
form

payoff(z) = max

⎛

⎝ 1

d

d∑

j=1

S j (z) − K , 0

⎞

⎠ e−RT ,

where S j (z) = S0 exp
(
(R − σ 2/2) j(T /d) + σ

√
(T /d)z j

)
.

Here, T denotes the time to maturity of the option, d the
number of time steps, S0 the initial price of the stock, R the
interest rate, σ the volatility, and K the strike price.

Figures 11, 12, and 13 summarize the numerical results
for this example using T = 1/4, d = 13, S0 = 100, R =
0.05, σ = 0.5, K = 100. Moreover, L is chosen to be
the matrix of eigenvectors of Σ times the square root of the
diagonal matrix of eigenvalues of Σ. Because the integrand
has a kink caused by the max function, it does not help to use
a periodizing transform that is very smooth. We choose the
baker’s transform (41) and r = 1.

In summary, the Bayesian cubature algorithm computes
the integral within the user-specified tolerance in nearly all
of the test cases. The rare exceptions occurred in the option
pricing example for ε ≤ 10−4. Our algorithm used the maxi-
mum allowed sample size and still did not reach the stopping
criterion errCI ≤ ε, due to the complexity and high dimen-
sion of the integrand. Those cases are shown as hollow stars
in Figs. 11, 12, and 13.
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Fig. 12 Option pricing using the full Bayes stopping criterion

Fig. 13 Option pricing using the GCV stopping criterion

Onemay questionwhether an integrandwith non-negative
values is well represented by a Gaussian process. Since we
allow a nonzero mean, this assumption is somewhat more
palatable. Bayesian algorithms assuming non-Gaussian pro-
cesses are more difficult to execute, but this is an area for
further research.

A noticeable observation from the plots in all three exam-
ples is how the ratio of the true error to the error tolerance
varies from nearly one all the way down to 10−7. Since the
credible interval half-widths are not much smaller than ε,
this means that the credible intervals are quite conservative in
manycases. For optionpricing example, this is less of an issue
than for the multivariate Gaussian and Keister’s examples.
The reason that the credible intervals widely overestimate the
true error for the multivariate Gaussian and Keister’s exam-
ples may be that these integrands are significantly smoother
than the assumed covariance kernel. This is a matter for fur-
ther investigation.

6 Discussion and further work

We have developed a fast, automatic Bayesian cubature
that estimates a multidimensional definite integral within
a user defined error tolerance. The stopping criteria arise
from assuming the integrand to be an instance of a Gaussian
process. There are three approaches: empirical Bayes, full
Bayes, and generalized cross-validation. The computational

cost of the automatic Bayesian cubature can be dramatically
reduced if the covariance kernel matches the nodes. One such
match in practice is rank-1 lattice nodes and shift-invariant
kernels. The matrix-vector multiplications can be accom-
plished using the fast Fourier Transform. The performance
of our automatic Bayesian cubature is illustrated using three
integration problems.

Digital sequences and digital shift and/or scramble invari-
ant kernels have the potential of being another match that
satisfies the conditions in Sect. 3. The fast Bayesian trans-
form would correspond to a fast Walsh transform.

One should be able to adapt our Bayesian cubature to
control variates, i.e., assuming

f = GP
(
β0 + β1g1 + · · · + βpgp, s2Cθ

)
,

for some choice of g1, . . . , gp whose integrals are known,
and some parameters β0, . . . , βp in addition to s and Cθ .
The efficacy of this approach has not yet been explored.
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Appendix: Details of the full Bayes posterior
density for �

To simplify, we drop the dependence of c0θ , cθ , and Cθ on
θ in the notation below. Starting from the Bayesian formula
for the posterior density for μ at the beginning of Sect. 2.2.2
with the non-informative prior, it follows that

ρμ| f (z| y) ∝
∫ ∞

0

∫ ∞

−∞
ρμ|m,s2, f (z|ξ, λ, y)

ρ f |m,s2( y|ξ, λ) ρm,s2(ξ, λ) dξdλ

∝
∫ ∞

0

1

λ(n+3)/2

∫ ∞

−∞
exp

(

− 1

2λ

{ [z − ξ(1 − cTC−11) − cTC−1 y]2
c0 − cTC−1c

+ ( y − ξ1)TC−1( y − ξ1)
})

dξdλ

by (7), (8) and ρm,s2(ξ, λ) ∝ 1/λ

∝
∫ ∞

0

1

λ(n+3)/2

∫ ∞

−∞
exp

(

− αξ2 − 2βξ + γ

2λ(c0 − cTC−1c)

)

dξdλ,

where

α = (1 − cTC−11)2 + 1TC−11(c0 − cTC−1c),

β = (1 − cTC−11)(z − cTC−1 y)
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+ 1TC−1 y(c0 − cTC−1c),

γ = (z − cTC−1 y)2 + yTC−1 y(c0 − cTC−1c).

In the derivation above and below, factors that are indepen-
dent of ξ , λ, or z can be discarded since we only need to
preserve the proportion. But, factors that depend on ξ , λ, or
z must be kept. Completing the square, αξ2 − 2βξ + γ =
α(ξ −β/α)2−(β2/α)+γ, allows us to evaluate the integrals
with respect to ξ and λ:

ρμ| f (z| y) ∝
∫ ∞

0

1

λ(n+3)/2
exp

(

− γ − β2/α

2λ(c0 − cTC−1c)

)

×
∫ ∞

−∞
exp

(

− α(ξ − β/α)2

2λ(c0 − cTC−1c)

)

dξdλ

∝
∫ ∞

0

1

λ(n+2)/2
exp

(

− γ − β2/α

2λ(c0 − cTC−1c)

)

dλ

∝
(

γ − β2

α

)−n/2

∝
(
αγ − β2

)−n/2
.

Finally, we simplify the key term via straightforward calcu-
lations to the following:

αγ − β2 ∝ 1 + (z − μ̂EB)2

(n − 1)s2full
,

where

σ̂ 2
full := 1

n − 1
yT

[

C−1 − C−111TC−1

1TC−11

]

y

[
(1 − cTC−11)2

1TC−11
+ (c0 − cTC−1c)

]

.

This completes the derivation of (13).
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