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a b s t r a c t

Most commonly used adaptive algorithms for univariate real-
valued function approximation and global minimization lack
theoretical guarantees. Our new locally adaptive algorithms are
guaranteed to provide answers that satisfy a user-specified
absolute error tolerance for a cone, C, of non-spiky input functions
in the Sobolev space W 2,∞

[a, b]. Our algorithms automatically
determine where to sample the function—sampling more densely
where the secondderivative is larger. The computational cost of our
algorithm for approximating a univariate function f on a bounded
interval with L∞-error no greater than ε is O


∥f ′′∥ 1

2
/ε


as ε→

0. This is the same order as that of the best function approximation
algorithm for functions in C. The computational cost of our global
minimization algorithm is of the same order and the cost can
be substantially less if f significantly exceeds its minimum over
muchof the domain. OurGuaranteedAutomatic Integration Library
(GAIL) contains these new algorithms. We provide numerical
experiments to illustrate their superior performance.
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1. Introduction

Our goal is to reliably solve univariate function approximation and global minimization problems
by adaptive algorithms. We prescribe a suitable set, C, of continuously differentiable, real-valued
functions defined on a finite interval [a, b]. Then, we construct algorithms A : (C, (0,∞))→ L∞[a, b]
andM : (C, (0,∞))→ R such that for any f ∈ C and any error tolerance ε > 0,

∥f − A(f , ε)∥ ≤ ε, (APP)

0 ≤ M(f , ε)− min
a≤x≤b

f (x) ≤ ε. (MIN)

Here, ∥·∥ denotes the L∞-norm on [a, b], i.e., ∥f ∥ = supx∈[a,b] |f (x)|. Algorithms A and M depend
only on function values.

Our algorithms proceed iteratively until their data-dependent stopping criteria are satisfied. The
input functions are sampled nonuniformly over [a, b], with the sampling density determined by the
function data. We call our algorithms locally adaptive, to distinguish them from globally adaptive
algorithms that have a fixed sampling pattern and only the sample size determined adaptively.

1.1. Key ideas in our algorithms

Our Algorithms A and M are based on a linear spline, S(f , x0:n) defined on [a, b]. Let 0 : n be
shorthand for {0, . . . , n}, and let x0:n be any ordered sequence of n + 1 points that includes the
endpoints of the interval, i.e., a =: x0 < x1 < · · · < xn−1 < xn := b. We call such a sequence a
partition. Then given any x0:n and any i ∈ 1 : n, the linear spline is defined for x ∈ [xi−1, xi] by

S(f , x0:n)(x) :=
x− xi

xi−1 − xi
f (xi−1)+

x− xi−1
xi − xi−1

f (xi). (1)

The error of the linear spline is bounded in terms of the second derivative of the input function as
follows [2, Theorem 3.3]:

∥f − S(f , x0:n)∥[xi−1,xi] ≤
(xi − xi−1)2

f ′′
[xi−1,xi]

8
, i ∈ 1 : n, (2)

where ∥f ∥[α,β] denotes the L∞-norm of f restricted to the interval [α, β] ⊆ [a, b]. This error bound
leads us to focus on input functions in the Sobolev space W 2,∞

:= W 2,∞
[a, b] := {f ∈ C1

[a, b] :f ′′ <∞}.
Algorithms A and M require upper bounds on

f ′′
[xi−1,xi]

, i ∈ 1 : n, to make use of (2). A

nonadaptive algorithm might assume that
f ′′ ≤ σ , for some known σ , and proceed to choose

n =

(b − a)

√
σ/(8ε)


, xi = a + i(b − a)/n, i ∈ 0 : n. Providing an upper bound on

f ′′ is often
impractical, and so we propose adaptive algorithms that do not require such information.

However, one must have some a priori information about f ∈ W 2,∞ to construct successful
algorithms for (APP) or (MIN). Suppose that Algorithm A satisfies (APP) for the zero function f = 0,
and A(0, ε) uses the data sites x0:n ⊂ [a, b]. Then one can construct a nonzero function g ∈ W 2,∞

satisfying g(xi) = 0, i ∈ 0 : n but with ∥g − A(g, ε)∥ = ∥g − A(0, ε)∥ > ε.
Our set C ⊂ W 2,∞ for which A and M succeed includes only those functions whose second

derivatives do not change dramatically over a short distance. The precise definition of C is given in
Section 2. This allows us to use second-order divided differences to construct rigorous upper bounds
on the linear spline error in (2). These data-driven error bounds inform the stopping criteria for
Algorithm A in Section 3.1 and Algorithm M in Section 4.1.

The computational cost of AlgorithmA is analyzed in Section 3.2 and is shown to beO

∥f ′′∥ 1

2
/ε


as ε → 0. Here, ∥·∥ 1

2
denotes the L

1
2 -quasi-norm, a special case of the Lp-quasi-norm, ∥f ∥p := b

a |f |
p dx

1/p, 0 < p < 1. Since
f ′′ 1

2
can be much smaller than

f ′′, locally adaptive
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algorithms can be more efficient than globally adaptive algorithms, whose computational costs are
proportional to


∥f ′′∥ /ε. The computational complexity of (APP) is determined in Section 3.3 to be

O

∥f ′′∥ 1

2
/ε


as well.

The computational cost of our optimization AlgorithmM is analyzed in Section 4.2. A lower bound
on the computational complexity of (MIN) is a subject for future investigation.

Our algorithms are implemented in our MATLAB [22] Guaranteed Automatic Integration Library
(GAIL) [4]. Section 5 provides numerical examples of our algorithms and compares their performances
with MATLAB’s and Chebfun’s algorithms. We note cases where our algorithms are successful in
meeting the error tolerance, and other algorithms are not.

1.2. Related work on adaptive algorithms

Adaptive algorithms relieve the user of having to specify the number of samples required. Only the
desired error tolerance is needed. Existing adaptive numerical algorithms for function approximation,
such as the MATLAB toolbox Chebfun [10], succeed for some functions, but fail for others. No theory
explains for which f Chebfun succeeds. A corresponding situation exists for minimization algorithms,
such as min in Chebfun or MATLAB’s built-in fminbnd [1,9].

Our theoretically justified Algorithms A andM build upon the ideas used to construct the adaptive
algorithms in [7,8,11,12,14,15,23]. In all those cases, a cone, C, of input functions is identified for
which the adaptive algorithms succeed, just as is done here. However, unlike the algorithms in
[7,8,11,23], the definition of C here does not depend on a weaker norm. Also, unlike the globally
adaptive approximation and optimization algorithms in [7,23], the algorithms proposed here are
locally adaptive, sampling the interval [a, b] nonuniformly.

Novak [17] summarizes the settings under which adaption may provide an advantage over
nonadaption. For linear problems, such as (APP), adaption has no advantage if the set of functions
being considered is symmetric and convex [17, Theorem 1], [24, Chapter 4, Theorem 5.2.1], [25]. The
coneC defined for our approximation problem (APP) is symmetric, but not convex. Plaskota et al. [19]
have developed adaptive algorithms for functions with singularities. Our algorithms are not designed
for such functions. Rather they are designed to be efficient when the second derivative is large in a
small part of the domain.

Plaskota [18] has developed an adaptive Simpson’s algorithm for approximating
 b
a f (x) dx

assuming that the fourth derivative f (4)(x) ≥ 0 for all x ∈ [a, b]. His algorithm relies on divided
differences, like ours do. His error is asymptotically proportional to

f (4)
 1

4
, which is analogous to thef ′′ 1

2
that appears in our analysis. Horn [13] has developed an optimization algorithm for Lipschitz

continuous functions that does not require knowledge of the Lipschitz constant.
There is a significant literature on theoretically justified algorithms based on interval arithmetic

[16,20], which are implemented in INTLAB [21]. This approach assumes that functions have interval
inputs and outputs. We focus on the more common situation where functions have point inputs and
outputs.

2. The cone, C, of functions of interest

Linear splines (1) are the foundation for adaptive Algorithms A and M. To bound the error of the
linear spline in (2), our algorithms construct data-based upper bounds on

f ′′
[α,β]

in terms of divided
differences. For these bounds to hold, we must assume that f ′′(x) does not change drastically with
respect to a small change in x. These assumptions define our cone of functions, C, for which our
algorithms ultimately apply.

Let p denote the quadratic Lagrange interpolating polynomial at the nodes {α, (α+β)/2, β}, which
may be written as
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p(x) := f (α)+
(x− α)[f (β)− f (α)]

β − α
+ (x− α)(x− β)D(f , α, β),

D(f , α, β) :=
2f (β)− 4f ((α + β)/2)+ 2f (α)

(β − α)2
. (3)

For any f ∈ W 2,∞, the function f − p has at least three distinct zeros on [α, β], so f ′ − p′ has at least
two distinct zeros on (α, β). Specifically, there exist ξ± with α < ξ− < (α + β)/2 < ξ+ < β with
f ′(ξ±)− p′(ξ±) = 0. Thus,f ′′

−∞,[α,β]
:= inf

α≤η<ζ≤β

 f ′(ζ )− f ′(η)

ζ − η


≤

 f ′(ξ+)− f ′(ξ−)
ξ+ − ξ−

 = p′(ξ+)− p′(ξ−)
ξ+ − ξ−

 = 2 |D(f , α, β)|

≤ sup
α≤η<ζ≤β

 f ′(ζ )− f ′(η)

ζ − η

 =: f ′′[α,β]
. (4)

This inequality tells us that twice the divided difference, 2 |D(f , α, β)|, is a lower bound for
f ′′

[α,β]
,

which by itself is not helpful. But 2 |D(f , α, β)| is an upper bound for
f ′′

−∞,[α,β]
. The cone of

interesting functions, C, will contain those f for which
f ′′

[α,β]
is not drastically greater than the

maximum of
f ′′

−∞,[β−h−,α]
and

f ′′
−∞,[β,α+h+]

, where h± > β − α.
The cone C is defined in terms of two numbers: an integer nninit ≥ 5 and a number C0 ≥ 1. Let

h :=
3(b− a)
nninit − 1

, C(h) :=
C0h

h− h
for 0 < h < h. (5)

For any [α, β] ⊂ [a, b] and any h± satisfying 0 < β − α < h± < h, define

B(f ′′, α, β, h−, h+) :=


max


C(h−)

f ′′
−∞,[β−h−,α]

, C(h+)
f ′′

−∞,[β,α+h+]


,

a ≤ β − h− < α + h+ ≤ b,
C(h−)

f ′′
−∞,[β−h−,α]

, a ≤ β − h− < b < α + h+,
C(h+)

f ′′
−∞,[β,α+h+]

, β − h− < a < α + h+ ≤ b.

(6)

C :=

f ∈ W 2,∞

:
f ′′

[α,β]
≤ B(f ′′, α, β, h−, h+) for all [α, β] ⊂ [a, b]

and h± ∈ (β − α, h)

. (7)

The set C is a cone because f ∈ C =⇒ cf ∈ C for all real c . The integer nninit is the initial number of
subintervals in Algorithms A and M. The parameter C0 is some number no less than one for which

lim
h→0

f ′′
[x−h,x+h] ≤ C0 lim

h→0

f ′′
−∞,[x−h,x+h] , ∀x ∈ (a, b), f ∈ C.

Increasing either nninit or C0 expands the cone to include more functions.
Fig. 1 depicts the second derivative of a typical function inW 2,∞. In this figure

f ′′
−∞,[β−h−,α]

=f ′′(β − h−)
 = 0, which means that the behavior of f ′′ to the left of [α, β] cannot help provide an

upper bound on
f ′′

[α,β]
. However,

f ′′
−∞,[β,α+h+]

=
f ′′(α + h+)

 > 0, so this f may lie in the cone
C provided that C(h+) is large enough. The possibility of points in [a, b]where f ′′ vanishes motivates
the definition of B(f ′′, α, β, h−, h+) to depend on the behavior of f ′′ to both the left and right of [α, β].
One may note that if f ′′ vanishes at two points that are close to each other or at a point that is close to
either a or b, then f will lie outside C. The definition of ‘‘close’’ depends on (b− a)/nninit.

We give an example of a family of functions whose members lie inside C if they are not too spiky.
Consider the following hump-shaped function defined on [−1, 1], whose second derivative has jump
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Fig. 1. For some sample f , a plot of
f ′′(x) (solid),

f ′′
[α,β]

(dashed),
f ′′

−∞,[β−h−,α]
and

f ′′
−∞,[β,α+h+]

(dot-
ted), and 2 |D(f , β − h−, α)| and 2 |D(f , β, α + h+)| (dot-dashed). All figures in this paper are reproducible by
LocallyAdaptivePaperFigs.m in GAIL [4].

Fig. 2. (a) The example f1 with−c = δ = 0.2 and its piecewise constant second derivative. (b) The fooling functions±f1 used
to prove (19) (with different choices of c and δ). The case n = 15 is shown.

discontinuities:

f1(x) =


1

2δ2


4δ2
+ (x− c)2 + (x− c − δ) |x− c − δ|

− (x− c + δ) |x− c + δ|

, |x− c| ≤ 2δ,

0, otherwise,

(8)

f ′′1 (x) =


1
δ2
[1+ sign(x− c − δ)− sign(x− c + δ)], |x− c| ≤ 2δ,

0, otherwise.

Here c and δ are parameters satisfying −1 ≤ c − 2δ < c + 2δ ≤ 1. This function and its second
derivative are shown in Fig. 2(a) for−c = δ = 0.2.

If the hump is wide enough, i.e., δ ≥ 2h, then f1 ∈ C for any choice of C0 ≥ 1. For any
[α, β] ⊆ [−1, 1] and h± satisfying the conditions in the definition of C in (7), it follows that

f ′′1 
[α,β]
=

1
δ2
=


f ′′1 

−∞,[β,α+h+]
if α or β ∈ [c − 2δ, c − 1.5δ]
∪[c − δ, c − 0.5δ] ∪ [c + δ, c + 1.5δ],f ′′1 

−∞,[β−h−,α]
if α or β ∈ [c − 1.5δ, c − δ]

∪[c − 0.5δ, c + δ] ∪ [c + 1.5δ, c + 2δ].

Thus, B(f ′′, α, β, h−, h+) ≥
f ′′1 

[α,β]
for β ≥ c − 2δ or α ≤ c + 2δ. For [α, β] ⊂ [−1, c − 2δ) ∪

(c + 2δ, 1], it follows that
f ′′1 

[α,β]
= 0, so B(f ′′, α, β, h−, h+) ≥

f ′′1 
[α,β]

automatically. Thus, the
definition of the cone is satisfied.
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However, if the hump is too narrow, i.e., δ < 2h, the function f1 is too spiky to lie in the cone C
regardless of how C0 is defined. For α, β , and h satisfying

0 < c − 1.5δ − α = β − c + 1.5δ < 0.5δ < c − 1.5δ − β + h < h,

it follows that
β − h < c − 2δ < α < c − 1.5α < β < c − δ < α + h,f ′′1 

−∞,[β−h,α] =
f ′′1 

−∞,[β,α+h] = 0 < δ−2 =
f ′′1 

[α,β]
.

This violates the definition of C. This example illustrates how the choice of nninit, or equivalently h,
influences the width of a spiky function and determines whether it lies in C.

3. The function approximation algorithm, A

3.1. Algorithm A

The idea of AlgorithmA is to use divideddifferences to provideupper bounds on∥f ∥−∞,[β−h−,α] and
∥f ∥−∞[β,α+h+] via (4), which then provide an upper bound on ∥f ∥[α,β] via the definition of the cone,
C, in (7). This in turn yields an upper bound on the spline error via (2). After stating the algorithm, its
effectiveness is proven.

Algorithm A. For some finite interval [a, b], integer nninit ≥ 5, and constant C0 ≥ 1, let h and C(h)
be defined as in (5). Let f : [a, b] → R and ε > 0 be user inputs. Define the number of subintervals,
n = nninit, and the iteration number, l = 0. Define the initial partition of equally spaced points, x0:n,
and an index set of subintervals:

h0 =
b− a
n

, xi = a+ ih0, i ∈ 0 : n, I = 1 : (n− 1).

Step 1. Check for convergence. For all i ∈ I compute

erri =
1
8

C(3hl) |f (xi+1)− 2f (xi)+ f (xi−1)| . (9)

Let I = {i ∈ I : erri > ε} be the index set for those erri that are too large. If I = ∅, return the
linear spline A(f , ε) = S(f , x0:n) and terminate the algorithm. Otherwise, continue to the next
step.

Step 2. Split the subintervals as needed. Update the present partition, x0:n, to include the subinterval
midpoints

xi−2 + xi−1
2

,
xi−1 + xi

2
,

xi + xi+1
2

,
xi+1 + xi+2

2
, i ∈ I.

(The leftmost midpoint is only needed for i ≥ 2, and the rightmost midpoint is only needed
for i ≤ n− 2.) Update the set I to consist of the new indices corresponding to the old points

xi−1,
xi−1 + xi

2
,

xi + xi+1
2

, xi+1, i ∈ I.

(The point xi−1 is only included for i ≥ 2, and the point xi+1 is only included for i ≤ n− 2.) Let
l← l+ 1 and hl = hl−1/2. Return to Step 1.

Theorem 1. Algorithm A defined above satisfies (APP) for functions in the cone C defined in (7).
Proof. For every iteration l and every i ∈ I, the definitions in this algorithm imply that xi − xi−1 =
xi+1 − xi = hl = 2−lh0, and

erri =
1
4

C(3hl)h2
l |D(f , xi−1, xi+1)| by (3) (10)

≥
1
8

C(3hl)h2
l

f ′′
−∞,[xi−1,xi+1]

by (4). (11)

We show that when all erri get small enough, Algorithm A terminates successfully.
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For all x ∈ [a, b], let Ix,l be the closed interval with width hl containing x that might arise at some
stage in Algorithm A as [xil−1, xil ] for some il ∈ 1 : n. (The dependence of n on l is suppressed.)
Specifically this interval is defined for all x ∈ [a, b] and l ∈ N0 as

Ix,l := [a+ jhl, a+ (j+ 1)hl] , j = min


(x− a)
hl


, 2lnninit − 1


. (12)

Let ℓ(x) be defined such that Ix,ℓ(x) is the final subinterval in Algorithm A that contains x when the
algorithm terminates. We need to establish that ∥f − S(f )∥Ix,ℓ(x) ≤ ε for every x ∈ [a, b].

Fix x ∈ [a+ h, b− h]. The proof for x ∈ [a, a+ h) ∪ (b− h, b] is similar. By (11) there exists some
l− ≤ ℓ(x) for which Ix,l− = [xil−−1, xil− ] and

1
8

C(3hl−)h
2
l− ∥f ∥−∞,[xil−−3

,xil−−1
] ≤ erril−−2 ≤ ε. (13a)

There also exists an l+ ≤ ℓ(x) such that Ix,l+ = [xil+−1, xil+ ] and

1
8

C(3hl+)h
2
l+ ∥f ∥−∞,[xil+

,xil++2
] ≤ erril++1 ≤ ε. (13b)

Noting that xil±−1 ≤ xiℓ(x)−1 < xiℓ(x) ≤ xil± , we may conclude that

∥f − S(f )∥Ix,ℓ(x) ≤
1
8
h2

ℓ(x)

f ′′Ix,ℓ(x)
by (2)

≤
1
8
h2

ℓ(x)B(f , xiℓ(x)−1 , xiℓ(x) , xiℓ(x) − xil−−3, xil++2 − xiℓ(x)−1) by (7)

≤
1
8
h2

ℓ(x) max

C(xiℓ(x) − xil−−3)

f ′′
−∞,[xil−−3

,xiℓ(x)−1 ]
,

C(xil++2 − xiℓ(x)−1)
f ′′

−∞,[xiℓ(x) ,xil++2
]


by the definition of B in (6)

≤ max
h2

l−

8
C(3hl−)

f ′′
−∞,[xil−−3

,xil−−1
]
,
h2
l+

8
C(3hl+)

f ′′
−∞,[xil+

,xil++2
]


because hℓ(x) ≤ hl± and C is non-decreasing
≤ ε by (13).

This concludes the proof. �

Fig. 3(a) displays the function−f1 defined in (8) for a certain choice of parameters, along with the
data used to compute the linear spline approximation A(−f1, 0.02) by the algorithm described above.
Note that−f1 is sampled less densely where it is flat.

3.2. The computational cost of A

In this section, we investigate the computational cost of our locally adaptive algorithm. Recall the
definitions of hl, Ix,l, and ℓ(x) from the previous subsection. Let Īx,l be a similar interval with generally
five times the width of Ix,l:

Īx,l =

a+max(0, j− 3)hl, a+min(j+ 2, 2lnninit)hl


⊃ Ix,l, (14)

with the same j as in (12) above. Let

L(x) = min

l ∈ N0 :

1
8

C (3hl) h2
l

f ′′Īx,l
≤ ε


. (15)

Note that L(x) does depend on f and ε, although this dependence is suppressed in the notation.
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Fig. 3. (a) The nonuniform sampling density of Algorithm A for input function−f1 defined by δ = 0.3 and c = −0.2. A total of
3 iterations and 65 points are used to meet the error tolerance of 0.02. We have chosen nninit = 20 and C0 = 10. (b) The same
situation as in (a), but now with Algorithm M. Still 3 iterations but only 43 nonuniform sampling points are needed to obtain
the minimum of−f1 .

We now show that ℓ(x) ≤ L(x). At each iteration of Algorithm A, x lies in Ix,l for some l, and by the
time Algorithm A terminates, all values of l = 0, . . . , ℓ(x) are realized. If ℓ(x) > L(x), then at iteration
L(x), the interval Ix,L(x) must be split in Step 2 of A. So, Ix,L(x) haswidth hL(x) and corresponds to [xi−1, xi]
for some i. We assume that i ∈ 3 : n − 2; the other cases have a similar proof. According to Step 2
of Algorithm A, the only way for [xi−1, xi] to be split is if erri−2, erri−1, erri, or erri+1 is larger than ε.
However, in the proof of Theorem 1 it is noted that for k ∈ {−2,−1, 0, 1},

erri+k =
1
4

C(3hL(x))h2
L(x) |D(f , xi−1+k, xi+1+k)| by (10)

≤
1
8

C(3hL(x))h2
L(x)

f ′′
[xi−1+k,xi+1+k]

by (4)

≤
1
8

C(3hL(x))h2
L(x)

f ′′Īx,L(x)
≤ ε by (14) and (15). (16)

This is a contradiction, so in fact, ℓ(x) ≤ L(x), which is used to prove an upper bound on the
computational cost of Algorithm A.

Theorem 2. Let cost(A, f , ε) denote the number of functional evaluations required by A(f , ε). This
computational cost has the following upper bound:

cost(A, f , ε) ≤
1
h0

 b

a
2L(x) dx+ 1 =

 b

a

1
hL(x)

dx+ 1,

where L(x) is defined in (15).

Proof. Let x0:n be the final partition when A(f , ε) successfully terminates. Note that 2ℓ(x) is constant
for x ∈ Ixi−1,ℓ(xi−1) = [xi−1, xi] for i ∈ 1 : n. Furthermore

 xi
xi−1

2ℓ(x) dx = h0. Then the number of
function values required is

n+ 1 = 1+
n

i=1

1 = 1+
n

i=1

1
h0

 xi

xi−1
2ℓ(x) dx = 1+

1
h0

 b

a
2ℓ(x) dx.

Noting that ℓ(x) ≤ L(x) establishes the formula for cost(A, f , ε). �

From the definition of L(x) in (15), we know that

1
hL(x)
=

2
hL(x)−1

< 2


C


3hL(x)−1


∥f ′′∥Īx,L(x)−1

8ε
=


C


6hL(x)


∥f ′′∥Īx,L(x)−1
2ε

.
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As ε → 0, L(x) → ∞, hL(x) → 0, and
f ′′Īx,L(x)−1

approaches |f ′′(x)|. Thus, the small ε asymptotic
upper bound on computational cost is

cost(A, f , ε) .

 b

a


C (0) |f ′′(x)|

2ε
dx+ 1 =


C0 ∥f ′′∥ 1

2

2ε
+ 1

≤ (b− a)


C0 ∥f ′′∥

2ε
+ 1 by (17a) below.

For functions in the cone C, the (quasi-)seminorms
f ′′ and

f ′′ 1
2

are equivalent, but for

functions inW 2,∞ they are not, as shown in the following proposition.

Proposition 3. The quantities
f ′′ and

f ′′ 1
2
bound each other as follows:

(b− a)2
f ′′

−∞,[α,β]
≤

f ′′ 1
2 ,[α,β]

≤ (b− a)2
f ′′

[α,β]
∀f ∈ W 2,∞, (17a)

4h2

27C0

f ′′ ≤ f ′′ 1
2
∀f ∈ C, (17b)

sup
f∈W2,∞:∥f ′′∥ 1

2
≤1

f ′′ = ∞. (17c)

Proof. The first inequality follows from the definitions of the (quasi-)norms:

(β − α)2
f ′′

−∞,[α,β]
=


∥f ′′∥−∞,[α,β]

 β

α

dx
2

≤

 β

α


|f ′′(x)| dx

2

=
f ′′ 1

2 ,[α,β]
≤


∥f ′′∥[α,β]

 β

α

dx
2

≤ (β − α)2
f ′′

[α,β]
. (18)

The second inequality comes from the cone definition. Since
f ′′ = f ′′

[α,β]
for some interval

[α, β]whose width can be made arbitrarily small, we havef ′′
[α,β]
≤ inf


B(f , α, β, h, h) : h ∈ (β − α, h)


by (7)

≤ inf

C(h)max

f ′′
−∞,[β−h,α] ,

f ′′
−∞,[β,α+h]


: h ∈ (β − α, h)


≤ inf

β−α<h<h

C(h)
(h− β + α)2

f ′′ 1
2

by (18), and since
f ′′ 1

2 ,[α,β]
≤

f ′′ 1
2
∀[α, β] ⊆ [a, b]

≤ inf
0<h<h

C(h)
h2

f ′′ 1
2

since β − α may be made arbitrarily small

=
27C0

4h2

f ′′ 1
2

by (5).

When h is small, it is possible for
f ′′ 1

2
to be quite small in comparison to

f ′′. This occurs when f ′′

is rather spiky.
The hump function f1 in (8) satisfies

f ′′1  /
f ′′1  1

2
= δ−2/16. By making δ small enough, we may

make this ratio arbitrarily large, thus proving (17c). However, since f1 ∉ C for δ < 2h, this does not
violate (17b). �
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3.3. Lower complexity bound

The upper bound on the computational cost of Algorithm A provides an upper bound on the
complexity of problem (APP). We now construct lower bounds on the complexity of the problem,
i.e., the computational cost of the best algorithm. We then observe that these lower bounds have the
same asymptotic behavior as the computational cost of Algorithm A. Our lower complexity bounds
are derived for subsets of functions in the balls, B2,p

σ = {f ∈ W 1,∞
:
f ′′p ≤ σ }, for p = 1/2,∞.

Theorem 4. Let σ be any positive number, and C be defined as in (7).

i. If A∗ solves (APP) for all f ∈ B
2, 12
σ and all 0 < ε < σ/16, then

cost(A∗, f , ε) = ∞. (19a)
ii. If A∗ solves (APP) for all f ∈ B2,∞

σ and all ε > 0, then

cost(A∗, f , ε) ≥
(b− a)

4


σ

ε
− 1. (19b)

iii. If A∗ satisfies (APP) for all f ∈ C ∩B
2, 12
σ and all ε > 0, then

cost(A∗, f , ε) ≥


(C0 − 1)σ
16(C0 + 1)ε

− 1. (20a)

iv. If A∗ satisfies (APP) for all f ∈ C ∩B2,∞
σ and all ε > 0, then

cost(A∗, f , ε) ≥ (b− a)


(C0 − 1)σ
16(C0 + 1)ε

− 1. (20b)

Note by comparing (19a) and (20a) that the lower complexity bound is significantly altered by

restricting the set of input functions from the whole ball of B
2, 12
σ to the intersection of that ball with

the cone C. Also note that the lower bounds above assume that the radius of the ball, σ , is known
a priori, whereas for our Algorithm A, no bound on a norm of f ′′ is provided as input. However, the
computational cost of Algorithm A is asymptotically the same as the computational cost of the best
possible algorithm, A∗ in (20), as ε→ 0.
Proof. The lower bounds are proved by constructing fooling functions for which Algorithm A
succeeds, and then showing that at least a certain number of samples must be used. The proofs of
(19) are simpler, so we start with them.

Let A∗ be a successful algorithm for all f ∈ W 2,∞, and consider the partition x0:n+1, where x1:n
are the data sites used to compute A∗(0, ε). We now allow the possibility of a = x0 = x1 and
xn = xn+1 = b. Choose any j = 1, . . . , n + 1 with xj − xj−1 ≥ (b − a)/(n + 1). Let f1 be defined
as in (8) with c = (xj + xj−1)/2, and δ = (b− a)/[4(n+ 1)].

For any real γ , it follows that γ f1(xi) = 0 for i = 0, . . . , n + 1. Fig. 2(b) illustrates this
situation. Since 0 and ±γ f1 share the same values at the data sites, then they must share the same
approximation: A∗(±γ f1, ε) = A∗(0, ε). Moreover, cost(A∗, 0, ε) = cost(A∗,±γ f1, ε) = n. Since the
approximations of 0,−γ f1, and γ f1 are identical, this implies that γ must be no greater than ε:

ε ≥ max
γ f1 − A∗(γ f1, ε)

 ,
−γ f1 − A∗(−γ f1, ε)


= max

γ f1 − A∗(0, ε)
 ,

−γ f1 − A∗(0, ε)


≥
1
2

γ f1 − A∗(0, ε)
 + −γ f1 − A∗(0, ε)


≥

1
2
∥γ f1 − (−γ f1)∥ = ∥γ f1∥ = γ =


γ f ′′1

 1
2
/16,

δ2
γ f ′′1

 = (b− a)2
γ f ′′1


16(n+ 1)2

,
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since
f ′′1  = δ−2, and

f ′′1  1
2
= 16. The top inequality cannot be satisfied unless σ =

γ f ′′1
 1

2
is

small enough, which establishes (19a). Solving the bottom inequality for n in terms of σ =
γ f ′′1


establishes (19b).

Now, we prove the lower complexity bounds (20), assuming that A∗ is a successful algorithm for
all f ∈ C. Let f0 be defined as follows

f0(x) =
x2

2
, f ′′0 (x) = 1, x ∈ [a, b];

f ′′0  1
2
= (b− a)2,

f ′′0  = 1.

Since f ′′0 is constant, it follows that f0 ∈ C, and A∗ successfully approximates γ f0 for any γ ≥ 0.
Consider the partition x0:n+1, where x1:n are the data sites used to compute A∗(γ f0, ε), and we

again allow the possibility of a = x0 = x1 and xn = xn+1 = b. Again choose any j = 1, . . . , n + 1
with xj − xj−1 ≥ (b − a)/(n + 1), and let f1 be defined as in (8) with c = (xj + xj−1)/2, and
δ = (b− a)/[4(n+ 1)]. We construct two fooling functions:

f± = f0 ±γ f1, γ = C0 − 1
C0 + 1

δ2,
f ′′
±

 = 1+
γ
δ2
=

2C0

C0 + 1
,

f ′′
±


−∞,[α,β]

≥ 1−
γ
δ2
=

2
C0 + 1

=

f ′′
±


C0

∀[α, β] ⊆ [a, b].

The above calculations show that γ f± ∈ C for all real γ . Moreover, the definition of f± ensures that
A∗(γ f0) = A∗(γ f±), and cost(A∗, γ f0) = cost(A∗, γ f±) = n.

Analogously to the argument above, we show that γγ must be no larger than ε:

ε ≥ max

∥γ f+ − A(γ f+, ε)∥ , ∥γ f− − A(γ f−, ε)∥


≥

1
2


∥γ f+ − A(γ f+, ε)∥ + ∥γ f− − A(γ f−, ε)∥


=

1
2


∥γ f+ − A(γ f0, ε)∥ + ∥γ f− − A(γ f0, ε)∥


≥

1
2
∥γ f+ − γ f−∥ = ∥γγ f1∥ = γγ

=


γ f ′′0

 1
2

(b− a)2γ f ′′0


 · C0 − 1
C0 + 1

δ2
=

 γ f ′′0
 1

2
(b− a)2

γ f ′′0


·

C0 − 1
16(C0 + 1)(n+ 1)2

.

Substituting
γ f ′′0

 1
2
= σ in the top inequality and

γ f ′′0
 = σ in the bottom inequality, and then

solving for n yield the two bounds in (20). �

4. The minimization algorithm,M

4.1. Algorithm M

Our minimization Algorithm M relies on the derivations in the previous sections. The main
departure from Algorithm A is the stopping criterion. It is unnecessary to approximate f accurately
everywhere, only where f is small.

AlgorithmM. For some finite interval [a, b], integer nninit ≥ 5, and constant C0 ≥ 1, let h and C(h)
be defined as in (5). Let f : [a, b] → R and ε > 0 be user inputs. Let n = nninit, and define the initial
partition of equally spaced points, x0:n, and certain index sets of subintervals:

xi = a+ i
b− a
n

, i ∈ 0 : n, I+ = 2 : (n− 1), I− = 1 : (n− 2).
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Compute M = mini∈0:n f (xi). For s ∈ {+,−} do the following.

Step 1. Check for convergence. Compute erri for all i ∈ I± according to (9). Let Is = {i ∈ Is : erri > ε}.
Next computeerri,s := erri + M −min


f (xi−s2), f (xi−s1)


∀i ∈ Is,Is =


i ∈ Is : erri,s > ε or


i− s3 ∈ I−s & erri−s3,−s > ε


.

If I+ ∪I− = ∅, return M(f , ε) = M and terminate the algorithm. Otherwise, continue to the
next step.

Step 2. Split the subintervals as needed. Update the present partition, x0:n, to include the subinterval
midpoints

xi−s2 + xi−s1
2

,
xi−s1 + xi

2
∀i ∈ Is.

(The point (xi−2 + xi−1)/2 is only included for i ≥ 2, and the point (xi+1 + xi+2)/2 is only
included for i ≤ n− 2.) Update the sets I± to consist of the new indices corresponding to the
old points

xi−s1,
xi−s1 + xi

2
for i ∈ Is.

(The point xi−1 is only included for i ≥ 2, and the point xi+1 is only included for i ≤ n − 2.)
Return to Step 1.

Theorem 5. AlgorithmM defined above satisfies (MIN) for functions in the cone C defined in (7).

Proof. The proof of success of Algorithm M is similar to that for Algorithm A. Here we give the
highlights. We use the notation of Ix,l introduced in (12) and analogously define ℓ̃(x) such that Ix,ℓ̃(x) is
the final subinterval in AlgorithmM containing xwhen the algorithm terminates. For a fixed x ∈ [a, b]
we argue as in the proof of Theorem 1 that there exist l± ≤ l∗ ≤ ℓ(x) such that Ix,l∗ = [xil∗−1, xil∗ ],
xil±−1 ≤ xil∗−1 ≤ xil∗ ≤ xil± , and

1
8

C(3hl−)h
2
l− ∥f ∥−∞,[xil−−3

,xil−−1
] +

Ml∗ −min

f (xil∗−1), f (xil∗ )


≤ ε,

1
8

C(3hl+)h
2
l+ ∥f ∥−∞,[xil+

,xil++2
] +

Ml∗ −min

f (xil∗−1), f (xil∗ )


≤ ε,

where Ml denotes the value of M at iteration l ∈ N0. By the definition ofC in (7), this then implies that

Ml∗ − min
xil∗−1≤x≤xil∗

f (x) ≤ Ml∗ −min(f (xi−1), f (xi))+
1
8
h2
l∗ ∥f ∥[xil∗−1,xil∗ ]

≤ ε. (21)

Further iterations of the algorithm can onlymake Ml possibly closer to the solution,mina≤x≤b f (x). �

Fig. 3(b) displays the same function−f1 as in Fig. 3(a), but this time with the sampling points used
for minimization. HereM(−f1, 0.02) uses only 43 points, whereas A(−f1, 0.02) uses 65 points. This is
because−f1 does not need to be approximated accurately when its value is far from the minimum.

4.2. The computational cost of M

The derivation of an upper bound on the cost of AlgorithmM proceeds in a similar manner as that
for AlgorithmA. There are essentially two reasons that a subinterval [xi−1, xi] need not be split further.
The first reason is the same as that for Algorithm A: the function being minimized is approximated on
[xi−1, xi] with an error no more than the tolerance ε. This is reflected in the definition of I± in Step
1 of Algorithm M. The second reason is that, although the spline approximation error on [xi−1, xi] is
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larger than ε, the function values on that subinterval are significantly larger than the minimum of the
function over [a, b]. This is reflected in the definition of I± in Step 1 of Algorithm M.

Our definition ofL(x) reflects these two reasons. Let x∗ be some place where the minimum of f is
obtained, i.e., f (x∗) = mina≤x≤b f (x). LetL(x) = min


L(x),L(x), x ∈ [a, b], (22)

where L(x) is defined above in (15),

L(x) = min

l ∈ N0 :


1
8

C (3hl)+ 2
 f ′′Ĩx,l

+
1
8

f ′′Ix∗,l


h2
l

+ 2
f ′(x) hl + [f (x∗)− f (x)] ≤ 0


, (23)

and Ĩx,l is similar to Ix,l, but with generally seven times the width:

Ĩx,l =

a+max(0, j− 4)hl, a+min(j+ 3, 2lnninit)hl


⊃ Ix,l,

with the same j as in (12) above.
Note thatL(x) does not depend on ε, whereas L(x) does. As is the case with L(x), bothL(x) andL(x)

depend on f , although this dependence is suppressed in the notation.

Theorem 6. Denote by cost(M, f , ε) the number of functional evaluations required by M(f , ε). This
computational cost is bounded as follows:

cost(M, f , ε) ≤
1
h0

 b

a
2L(x) dx+ 1,

whereL(x) is defined in (22).

Proof. Using the same argument as for Theorem 2, we only need to show that ℓ̃(x) ≤ L(x) for
all x ∈ [a, b]. At each iteration of Algorithm M, the index sets I± are both subsets of I for the
corresponding iteration of Algorithm A. Thus ℓ̃(x) ≤ L(x) by the same argument as used to prove
Theorem 2. We only need to show that ℓ̃(x) ≤L(x).

We will show thatL(x) < ℓ̃(x) ≤ L(x) for any fixed x leads to a contradiction. IfL(x) < ℓ̃(x),
then at theL(x)th iteration, Ix,L(x) = [xi−1, xi] for some i must be split in Step 2 of M , where xi − xi−1
= hL(x) = h02−

L(x). This means that one or more of the following must exceed ε:erri+2,+, erri+1,+, erri,+, erri−1,−, erri−2,−, erri−3,−.
We prove that erri+2,+ > ε is impossible. The arguments for the other cases are similar.

If [xi−1, xi] must be split because erri+2,+ > ε, then it is also the case that i − 1 ∈ I−, and so
erri−1 > ε. In this case

xj − xj−1 = hL(x) for j = (i− 1) : (i+ 3).

This means that [xi−2, xi+3] ∈ Ĩx,l. By the same argument used in (16) it can be shown that

erri+2 ≤
1
8

C(3hL(x))h2L(x) f ′′Ĩx,L(x) . (24)

The quantity erri+2 is the first term in the definition of erri+2,+ in Step 1 of Algorithm M.
Next, we boundmin


f (xi), f (xi+1)


, which also appears in the definition of erri+2,+. As was argued

earlier, [xi−1, xi+1] ∈ Ĩx,L(x). Then a Taylor expansion about the arbitrary x ∈ [xi−1, xi] under
consideration establishes that

min

f (xi), f (xi+1)


≥ f (x)− 2hL(x) f ′(x)− h2L(x) f ′′Ĩx,L(x) (25)

since |xi − x| ≤ |xi+1 − x| ≤ 2hL(x).
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Finally, we bound ML(x). Let x∗ be a point where f attains its minimum, and let Ix∗,l∗ = [xi∗−1, xi∗ ]
be the subinterval in the present partition containing x∗, where l∗ ≤L(x). By (2) it follows that

f (x∗) ≥ min(f (xi∗−1), f (xi∗))−
1
8
h2
l∗

f ′′Ix∗,l∗
. (26)

There are two possibilities regarding l∗. If l∗ < L(x), then by the argument in (21) used to prove
Theorem 5,

ML(x) ≤ Ml∗ ≤ min(f (xi∗−1), f (xi∗))−
1
8
h2
l∗

f ′′
[xi∗−1,xi∗ ]

+ ε

≤ f (x∗)+ ε by (26).

Otherwise, if l∗ =L(x), then
ML(x) ≤ min(f (xi∗−1), f (xi∗)) ≤ f (x∗)+

1
8
h2L(x) f ′′Ix∗,L(x) by (26).

Thus, in either case we have

ML(x) ≤ f (x∗)+
1
8
h2L(x) f ′′Ix∗,L(x) + ε. (27)

Combining the three inequalities (24), (25), and (27) yields the inequality that allows us to
contradict the assumption that ℓ̃(x) >L(x):

ε < erri+2,+ by assumption

= erri+2 + ML(x) −min

f (xi), f (xi+1)


by Step 1 of Algorithm M

=
1
8

C(3hL(x))h2L(x) f ′′Ĩx,L(x) + f (x∗)+
1
8
h2L(x) f ′′Ix∗,L(x) + ε

− f (x)+ 2hL(x) f ′(x)+ 2h2L(x) f ′′Ĩx,L(x) by (24), (25), and (27)

≤ ε +


1
8

C

3hL(x)+ 2

 f ′′Ĩx,L(x) +
1
8

f ′′Ix∗,L(x)

h2L(x) + 2

f ′(x) hL(x) + [f (x∗)− f (x)]

≤ ε by (23).

This gives a contradiction and completes the proof. �

If f (x) is close to the minimum function value, f (x∗), for x in much of [a, b], thenL(x) may be quite
large, and L(x) determines the computational cost of AlgorithmM. In this case, the computational cost
for minimization is similar to that for function approximation. However, if f attains its minimum at
only a finite number of points, then for vanishing ε,L(x) =L(x) for nearly all x, and the computational
cost for minimization is significantly smaller than that for function approximation.

The minimization problem (MIN) for functions in the whole Sobolev space W 2,∞ has a similar
lower complexity bound as (19) for the function approximation problem by a similar proof. However,
for functions only in the cone C, we have not yet derived a lower bound on the complexity of the
minimization problem (MIN) for functions in C.

5. Numerical examples

Together with our collaborators, we have developed the Guaranteed Automatic Integration Library
(GAIL) [4]. This MATLAB software library implements algorithms that provide answers to univariate
and multivariate integration problems, as well as (APP) and (MIN), by automatically determining
the sampling needed to satisfy a user-provided error tolerance. GAIL is under active development.
It implements our best adaptive algorithms and upholds the principles of reproducible and reliable
computational science as elucidated in Choi et al. [3,6]. We have adopted practices including input



S.-C.T. Choi et al. / Journal of Complexity 40 (2017) 17–33 31

Fig. 4. (a) The approximation errors for f1(x), x ∈ [−1, 1], with −c = 0.2 = δ using Chebfun with an error tolerance of
10−12 . (b) An empirical distribution function of performance ratios based on 1000 simulations for each test function in (28):
funappx_g time/Chebfun time (solid), funappx_g # of samples/Chebfun # of samples (dashed). The data for this figure is
conditionally reproducible by funappx_g_test.m and LocallyAdaptivePaperFigs.m in GAIL.

parsing, extensive testing, code comments, a user guide [5], and case studies. Algorithms A and
M described here are implemented as GAIL functions funappx_g and funmin_g, respectively in
GAIL version 2.2. The following examples showcase the merits and drawbacks of our algorithms. We
compare them to the performance of algorithms in MATLAB and the Chebfun toolbox.

Chebfun [10] is aMATLAB toolbox that approximates functions in terms of a Chebyshev polynomial
basis, in principle to machine precision (≈10−15) by default. In this example, we show that it fails to
reach its intended error tolerance for the function f1 defined in (8) with −c = 0.2 = δ. Fig. 4(a)
shows the absolute errors of Chebfun’s approximation to f1 with an input error tolerance 10−12, and
the ‘‘splitting’’ option turned on to allow Chebfun to construct a piecewise polynomial interpolant if
derivative discontinuities are detected. However, Chebfun produces some pointwise errors computed
at a partition of [−1, 1]with even subinterval length 10−5 to be greater than 10−5.

In contrast, the pointwise errors of the piecewise linear interpolant produced by funappx_g are
uniformly below the error tolerance. Unfortunately, the time taken by funappx_g is about 30 times
as long as the time required by Chebfun.

Next, we compare our adaptive algorithms with Chebfun for random samples from the following
families of test functions defined on [−1, 1]:

f1(x) defined in (8), δ = 0.2, c ∼ U[0, 0.6], (28a)

f2(x) = x4 sin(d/x), d ∼ U[0, 2], (28b)

f3(x) = 10x2 + f2(x), (28c)

where U[a, b] represents a uniform distribution over [a, b]. We set nninit = 250, C(h) = 10h/(h− h),
and ε = 10−6. Our new algorithm funappx_g and Chebfun are used to approximate 1000 random
test functions from each family. For Chebfun we override the default tolerance to 10−6, and switch on
the splitting feature to allow piecewise Chebyshev polynomials for approximation. Success is deter-
mined by whether a discrete approximation to the L∞ error is no greater than the error tolerance.

We see in Table 1 that funappx_g obtains the correct answer in all cases, even for f2, which is
outside the cone C. Since it is a higher order algorithm, Chebfun generally uses substantially fewer
samples than funappx_g, but its run time is longer than funappx_g for a significant proportion of
the cases; see Fig. 4(b). Moreover, Chebfun rarely approximates the test functions satisfactorily.

Similar simulation tests have been run to compare our funmin_g, MATLAB’s fminbnd, and
Chebfun’s min, but this time nninit = 20 for funmin_g. The results are summarized in the lower half
of Table 1. Our funmin_g achieves 100% success for all families of test functions with substantially
fewer sampling points and run time than funappx_g. This is because funmin_g does not sample
densely where the function is not close to its minimum value. Although MATLAB’s fminbnd uses far
fewer function values than funmin_g, it cannot locate the global minimum (at the left boundary) for
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Table 1
Comparison of number of sample points, computational time, and success rates of funappx_g and Chebfun in upper table;
funmin_g, fminbnd, and Chebfun’s min in lower table. This table is conditionally reproducible by funappx_g_test.m and
funmin_g_test.m in GAIL.

Mean # samples Mean time used Success (%)

funappx_g Chebfun funappx_g Chebfun funappx_g Chebfun

f1 6557 116 0.0029 0.0205 100 0
f2 5017 43 0.0031 0.0051 100 3
f3 15698 22 0.0049 0.0036 100 3

funmin_g fminbnd min funmin_g fminbnd min funmin_g fminbnd min

−f1 111 8 116 0.0029 0.0006 0.0256 100 100 14
f2 48 22 43 0.0028 0.0007 0.0063 100 27 60
f3 108 9 22 0.0028 0.0007 0.0037 100 100 35

about 70% of the f2 test cases. Chebfun’s min uses fewer points than funmin_g, but Chebfun is slower
and less accurate than funmin_g for these tests.

6. Discussion

Adaptive and automatic algorithms are popular because they require only a (black-box) function
and an error tolerance. Such algorithms exist in a variety of software packages. We have highlighted
those found in MATLAB and Chebfun because they are among the best. However, as we have shown
by numerical examples, these algorithms may fail. Moreover, there is no theory to provide necessary
conditions for failure, or equivalently, sufficient conditions for success.

Our Algorithms A (funappx_g) and M (funmin_g) are locally adaptive and have sufficient
conditions for success. Although it may be difficult to verify those conditions in practice, the theory
behind these algorithms provides several advantages:

• The cone, C, is intuitively explained as a set of functions whose second derivatives do not change
drastically over a small interval. This intuition can guide the user in setting the parameters
defining C, if desired.
• The norms of f and its derivatives appearing in the upper bounds of computational cost in

Theorems 2 and 6 may be unknown, but these theorems explain how the norms influence the
time required by our algorithms.
• Our Algorithm A has been shown to be asymptotically optimal for the complexity of the function

approximation problem (APP).

The minimum horizontal scale of functions in C is roughly 1/nninit. The computational cost of
our algorithms is at least nninit, but nninit is not a multiplicative factor. Increasing nninit makes our
new algorithms more robust, and it may increase the minimum number of sample points and
computational cost, if any, only mildly.

Asmentioned in the introduction, there are general theorems providing sufficient conditions under
which adaption provides no advantage. Our setting fails to satisfy those conditions because C is not
convex. One may average two mildly spiky functions in C – whose spikes have opposite signs and
partially overlap – to obtain a very spiky function outside C.

Nonadaptive algorithms are unable to solve (APP) or (MIN)using a finite number of function values
if the set of interesting functions, C, is a cone, unless there exist nonadaptive algorithms that solve
these problems exactly. Suppose that some nonadaptive, Algorithm A satisfies (APP) for some coneC,
and that for an error tolerance ε, this Algorithm A requires n function values. For any positive c , define
A∗(f , ε) = A(cf , ε)/c for all f ∈ C. Then ∥f − A∗(f , ε)∥ = ∥cf − A(cf , ε)∥ /c ≤ ε/c for all f ∈ C
since cf is also inC. Thus, A∗ satisfies (APP) for error tolerance ε/c , using the same number of function
values as A. Making c arbitrarily large establishes the existence of a nonadaptive algorithm that solves
(APP) exactly.
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Our algorithms do not take advantage of higher orders of smoothness that the input function may
have. We view the present work as a stepping stone to developing higher order algorithms. Nonlinear
splines or higher degree polynomials, such as those used in Chebfun, are potential candidates.
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