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Abstract

We give the Ąrst closed-form privacy guarantees for the Generalized Gaussian mechanism (the

mechanism that adds noise x to a vector with probability proportional to exp(−(♣♣x♣♣p/σ)p) for

some σ, p), in the setting of answering k counting (i.e. sensitivity-1) queries about a database with

(ϵ, δ)-differential privacy (in particular, with low ℓ∞-error). Just using Generalized Gaussian noise,

we obtain a mechanism such that if the true answers to the queries are the vector d, the mechanism

outputs answers d̃ with the ℓ∞-error guarantee:

E
[

♣♣d̃ − d♣♣∞
]

= O



√

k log log k log(1/δ)

ϵ



.

This matches the error bound of [18], but using a much simpler mechanism. By composing

this mechanism with the sparse vector mechanism (generalizing a technique of [18]), we obtain

a mechanism improving the
√

k log log k dependence on k to
√

k log log log k, Our main technical

contribution is showing that certain powers of Generalized Gaussians, which follow a Generalized

Gamma distribution, are sub-gamma.

In subsequent work, the optimal ℓ∞-error bound of O(
√

k log(1/δ)/ϵ) has been achieved by [4]

and [9] independently. However, the Generalized Gaussian mechanism has some qualitative advant-

ages over the mechanisms used in these papers which may make it of interest to both practitioners

and theoreticians, both in the setting of answering counting queries and more generally.
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1 Introduction

A fundamental question in data analysis is to, given a database, release answers to k numerical

queries about a database d, balancing the goals of preserving the privacy of the individuals

whose data comprises the database and preserving the utility of the answers to the queries.

A standard formal guarantee for privacy is (ϵ, δ)-differential privacy [6, 5]. A mechanism M
that takes database d as input and outputs (a distribution over) answers d̃ to the queries is

(ϵ, δ)-differentially private if for any two databases d, d′ which differ by only one individual

and for any set of outcomes S, we have:
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1:2 Privately Answering Counting Queries with Generalized Gaussian Mechanisms

Pr
d̃∼M(d)

[

d̃ ∈ S
]

≤ eϵ Pr
d̃∼M(d′)

[

d̃ ∈ S
]

+ δ. (1)

When δ = 0, this property is referred to ϵ-differential privacy. Without loss of generality,

we will treat d (resp. d̃) as a k-dimensional vector corresponding to the answers to the queries

(resp. the answers outputted by the mechanism). In this paper, we focus on the setting of

counting queries, i.e. queries for which the presence of each individual in the database affects

the answers by at most 1. In turn, throughout the paper we say a mechanism taking vectors

in R
k as input and outputting distributions over R

k is (ϵ, δ)-differentially private if (1) holds

for any two k-dimensional vectors d, d′ such that ♣♣d− d′♣♣∞ ≤ 1 and any subset S of Rk.

To balance the goals of privacy and utility, we seek a mechanism M that minimizes some

objective function of the (distribution of) additive errors d̃ − d, while satisfying (1). One

natural and well-understood objective function is the ℓ1-error ♣♣d̃− d♣♣1/k, which gives the

average absolute error of the answers to the queries. The well-known and simple Laplace

mechanism [6], which outputs d̃ = d+ x with probability proportional to exp(−♣♣x♣♣1/σ) for

an appropriate value of σ, achieves expected ℓ1-error of O(min¶
√

k log(1/δ), k♢/ϵ). A line of

works on lower bounds [11, 3] culminated in a result of [18] showing this is optimal up to

constants.

A less well-understood objective function is the ℓ∞-error ♣♣d̃ − d♣♣∞, which gives the

maximum absolute error of the answers to the queries. The maximum absolute error is of

course a more strict objective function than the average absolute error; indeed, the Laplace

mechanism only achieves error O(k log k/ϵ) and the Gaussian mechanism (which outputs

d̃ = d + x with probability proportional to exp(−♣♣x♣♣22/σ2) for an appropriate value of σ)

achieves error O(
√

k log k log(1/δ)/ϵ). The Ąrst improvements on ℓ∞-error over the Laplace

and Gaussian mechanisms were given by [18]1. To summarize, the results of that paper

(which prior to this paper were all the best known results) are:

An ϵ-differentially private mechanism satisfying:

Pr
d̃∼M(d)

[

♣♣d̃− d♣♣∞ ≥ O

(

k

ϵ

)

≤ e−Ω(k), (2)

(this matches a lower bound of [10] up to constants).

An (ϵ, δ)-differentially private mechanism satisfying:

Pr
d̃∼M(d)



♣♣d̃− d♣♣∞ ≥ O



√

k log log k log(1/δ)

ϵ

]

≤ e− logΩ(1) k. (3)

The mechanism achieving (3) starts by taking the Gaussian mechanism, and then uses the

sparse vector mechanism to correct the entries of x with large error in a private manner.

A lower bound showing any (ϵ, δ)-differentially private mechanism must satisfy:

Ed̃∼M(d)

[

♣♣d̃− d♣♣∞
]

≥ Ω



√

k log(1/δ)

ϵ



. (4)

1 Their paper considers the problem setting where queries ask what fraction of n individuals satisfy some
property, i.e. queries have sensitivity 1/n instead of 1, and the goal is to Ąnd the minimum n needed to
achieve error at most α. Achieving error ∆ with probability 1 − ρ in our setting is equivalent to needing
n ≥ ∆/α to achieve error α with probability 1 − ρ in their setting.
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The additional
√

log k term in the Gaussian mechanismŠs error bound comes from the

fact that GaussiansŠ largest entries are roughly
√

log k times larger than their average entries.

More generally, if we consider sampling x with probability proportional to exp(−(♣♣x♣♣p/σ)p)

for some σ, p, the largest entry will be roughly log1/p k times larger than the average entry.

We refer to this distribution as the Generalized Gaussian with shape p and scale σ, as is it

referred to in e.g. [17]. This leads to a natural question answered in this paper: What error

bounds can we get by instead using Generalized Gaussian mechanisms?

1.1 Our Results and Techniques

Our Ąrst result is as follows:

▶ Theorem 1. For all 1 ≤ p ≤ log k, ϵ ≤ O(1), δ ∈ [2−O(k/p), 1/k], there exists a (ϵ, δ)-

differentially private mechanism M that takes in a vector d ∈ R
k and outputs a random

d̃ ∈ R
k such that for some sufficiently large constant c, and all t ≥ 0:

Pr
d̃∼Mp

σ(d)



♣♣d̃− d♣♣∞ ≥ ct
√
kp log1/p k

√

log(1/δ)

ϵ

]

≤ e−tp log k

In particular, this implies:

Ed̃∼M(d)[♣♣d̃− d♣♣∞] = O

√
kp log1/p k

√

log(1/δ)

ϵ



.

We also have for all 1 ≤ q ≤ p:

Ed̃∼M(d)

[ ♣♣d̃− d♣♣q
k1/q



= O



√

kp log(1/δ)

ϵ



.

We note that the lower bound on δ in Theorem 1 can easily be removed: if δ is smaller

than 2−O(k/p), we can instead use the mechanism achieving (2), which matches the error

guarantees of Theorem 1 in this range of δ. The mechanism is simply to add noise from a

Generalized Gaussian with shape p and an appropriate scale parameter σ. In our analysis,

we arrive at the bounds c ≤ 2094 and σ ≤ 262 ·
√
kp log(1/δ)

ϵ , although we did not attempt

to optimize the constants in favor of a simpler analysis and presentation. We believe the

multiplicative constants in both bounds can be substantially improved with a more careful

analysis.

Setting p = Θ(log log k), this result matches the asymptotic error bound of (3). However,

this result improves on (3) qualitatively. Although the mechanism achieving (3) is already

not too complex, the Generalized Gaussian mechanism we use is even simpler, just adding

noise from a well-known distribution. Notably, Generalized Gaussian mechanisms retain the

property of the Gaussian mechanism that the noise added to each entry of d is independent

(unlike the mechanism giving (3), which uses dependent noise), and that the noise has a

known closed-form distribution that is easy to sample from2. To the best of our knowledge,

this is the Ąrst analysis giving privacy guarantees for Generalized Gaussian mechanisms

besides that in [14]. Even then, [14] does not give any closed-form bounds on the value of

σ needed for privacy. This analysis may be of independent interest for other applications

where one would normally use the Gaussian mechanism, but may want to use a Generalized

Gaussian mechanism with p > 2 to trade average-case error guarantees for better worst-case

error guarantees.

2 see e.g. https://sccn.ucsd.edu/wiki/Generalized_Gaussian_Probability_Density_Function.

FORC 2021
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We give a summary of our analysis here; the full analysis is given in Section 2. We Ąrst

need to determine what value of σ causes the Generalized Gaussian mechanism to be private.

Viewing the Generalized Gaussian mechanism as an instance of the exponential mechanism

of [15], this reduces to deriving a tail bound on ♣♣x + 1♣♣pp − ♣♣x♣♣pp for x sampled from the

noise distribution. If p is even this is roughly equal to p
∑k
j=1 x

p−1
j . By a Chernoff bound on

the signs of each random variable in the sum, this is roughly tail bounded by the sum of
√

k log(1/δ) of the xp−1
j random variables. These variables are distributed according to a

Generalized Gamma distribution, which we prove is sub-gamma in Section B. This gives us

the desired tail bound, and thus an upper bound on the σ needed to ensure (ϵ, δ)-differential

privacy. To prove the error guarantees, we derive tail bounds on the ℓp-norm of x sampled

from Generalized Gaussian distributions, as well as on the coordinates of points sampled

from unit-radius ℓp-spheres, the latter of which is done by upper bounding the volume of

Şsphere capsŤ of these spheres.

Building on this result, we improve the previous best-known ℓ∞ error for answering

counting queries with (ϵ, δ)-differential privacy:

▶ Theorem 2. For all ϵ ≤ O(1), δ ∈ [2−O(k/ log log log k), 1/k], t ∈ [0, O( log k
log log k )], there exists

a (ϵ, δ)-differentially private mechanism M that takes in a vector d ∈ R
k and outputs a

random d̃ ∈ R
k such that for a sufficiently large constant c:

Pr
d̃∼M(d)



♣♣d̃− d♣♣∞ ≥ ct
√

k log log log k log(1/δ)

ϵ

]

≤ e− logt k.

In particular, if we choose e.g. t = 2 we get:

Ed̃∼M(d)[♣♣d̃− d♣♣∞] = O



√

k log log log k log(1/δ)

ϵ



.

Again, the lower bound on δ can easily be removed using the mechanism achieving (2).

We arrive at this result by improving upon Generalized Gaussian mechanisms in the same

manner [18] improves upon the Gaussian mechanism: After sampling x from a Generalized

Gaussian, we apply the sparse vector mechanism to x to get x̃ which satisĄes ♣♣x− x̃♣♣∞ ≪
♣♣x♣♣∞. We then just output d̃ = d+ x− x̃. The full analysis is given in Section 3. Similarly

to [18], the major technical component is showing that at least k/ logΩ(1) k entries of x are

small with high probability, which we do using the tail bounds derived in Section 2. This is

necessary for the sparse vector mechanism to satisfy that ♣♣x− x̃♣♣∞ is, roughly speaking, the

(k/ logΩ(1) k)-th largest entry of x rather than the largest entry with high probability.

1.2 Subsequent Work and Comparisons

Following our work, [4] and [9] independently gave mechanisms with optimal expected ℓ∞-

error O(
√

k log(1/δ)/ϵ), quantitatively improving our results. Since in practice
√

log log k

is unlikely to be much larger than the constants hidden by the asymptotic notation (e.g.,

using the natural log,
√

log log k = 2 for k ≈ 5 · 1023), the qualitative differences between our

results and these two results make our results still of interest to e.g. practitioners. Theorem 1

is our qualitatively more appealing result, and so we highlight the differences with that result

in particular. Again, we note that while the explicit constant in Theorem 1 is likely too large

to be of practical interest, we believe this constant can be substantially improved with a

more reĄned analysis, hopefully making the mechanism practical.
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The result of [4] remarkably uses a bounded noise distribution, and in turn the maximum

ℓ∞-error rather than just the average ℓ∞-error of their mechanism is bounded, in contrast

with Generalized Gaussian mechanisms whose maximum ℓ∞-error is unbounded. However, a

bounded noise distribution cannot e.g. satisfy group differential privacy for all group sizes

simultaneously, whereas Generalized Gaussian mechanisms can. Also, while both results

simply add noise, Generalized Gaussians are more well-studied than the noise distribution of

[4] and can be sampled by simplying powering and rescaling samples from Gamma random

variables, which should make them easier to implement in practice.

The result of [9] at a high level adds noise and then repeatedly applies the sparse vector

mechanism to correct entries with large noise, in contrast to just adding noise. In addition,

their result uses arguably even simpler sampling primitives than ours (it only needs to

sample Laplace distributions and permutations of lists), but their overall mechanism needs

a somewhat more involved iterative approach rather than a one-shot sample. Finally, as

presented the resulting noise distribution from their overall mechanism does not have e.g. a

closed-form or independent entries which may be desirable.

1.3 Preliminaries

For completeness, we restate the noise distribution of interest here:

▶ Definition 3. The (multivariate) Generalized Gaussian distribution with shape

p and scale σ denoted GGauss(p, σ), is the distribution over x ∈ R
k with probability

distribution function (pdf) proportional to exp(−(♣♣x♣♣p/σ)p).

1.3.1 Sub-Gamma Random Variables

The following facts about sub-gamma random variables will be useful in our analysis:

▶ Definition 4. A random variable X is sub-gamma to the right with variance v and

scale c if:

∀λ ∈ (0, 1/c) : E[exp(λ(X − E[X]))] ≤ exp

(

λ2v

2(1 − cλ)

)

.

Here, we use the convention 1/c = ∞ if c = 0. We denote the class of such random

variables Γ+(v, c). Similarly, a random variable X is sub-gamma to the left with variance

v and scale c, if −X ∈ Γ+(v, c), i.e.:

∀λ ∈ (0, 1/c) : E[exp(λ(E[X] −X))] ≤ exp

(

λ2v

2(1 − cλ)

)

.

We denote the class of such random variables Γ−(v, c).

We refer the reader to [1] for a textbook reference for this deĄnition and proofs of the

following facts.

▶ Fact 5. If for i ∈ [n] we have a random variable Xi ∈ Γ+(vi, ci), then X =
∑

i∈[n] Xi

satisĄes X ∈ Γ+(
∑

i∈[n] vi,maxi∈[n] ci) (and the same relation holds for Γ−(v, c)).

▶ Lemma 6. If X ∈ Γ+(v, c) then for all t > 0:

Pr[X > E[X] +
√

2vt+ ct] ≤ e−t.

Similarly, if X ∈ Γ−(v, c) then for all t > 0:

Pr[X < E[X] −
√

2vt− ct] ≤ e−t.

FORC 2021
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▶ Fact 7. Let X ∼ Gamma(a), i.e. X has pdf satisfying:

p(x) ∝ xa−1e−x.

Then X satisĄes X ∈ Γ+(a, 1) and X ∈ Γ−(a, 0).

1.3.2 Other Probability Facts

We will use the following standard fact to relate distributions of variables to the distributions

of their powers:

▶ Fact 8 (Change of Variables for Powers). Let X be distributed over (0,∞) with pdf

proportional to f(x). Let Y be the random variable Xc for c > 0. Then Y has pdf

proportional to y
1
c −1f(y

1
c ).

Finally, weŠll use the following standard tail bounds:

▶ Lemma 9 (Laplace Tail Bound). Let X be a Laplace random variable with scale b, Lap(b).

That is, X has pdf proportional to exp(−♣x♣/b). Then we have Pr[♣x♣ ≥ tb] ≤ e−t.

▶ Lemma 10 (Chernoff Bound). Let X1, X2, . . . Xk be independent Bernoulli random variables.

Let µ = E

[

∑

i∈[k] Xi

]

. Then for t ∈ [0, 1], we have:

Pr





∑

i∈[k]

Xi ≥ (1 + t)µ



 ≤ exp

(

− t2µ

3

)

.

2 Generalized Gaussian Mechanisms

In this section, we analyze the Generalized Gaussian mechanism that given database d,

samples x ∼ GGauss(p, σ) and outputs d̃ = d+ x. We denote this mechanism Mp
σ. When

p = 1 this is the Laplace mechanism, and when p = 2 this is the Gaussian mechanism.

2.1 Privacy Guarantees

We Ąrst determine what σ is needed to make this mechanism private. We start with the

following lemma, which gives a tail bound on the change in the ŞutilityŤ function ♣♣d̃− d♣♣pp if

d changes by ∆ ∈ [−1, 1]k:

▶ Lemma 11. Let x ∈ R
k be sampled from GGauss(p, σ). Then for 4 ≤ p ≤ log k that is an

even integer, δ ∈ [2−O(k/p), 1/k], and any ∆ ∈ [−1, 1]k we have with probability 1 − δ:

♣♣x− ∆♣♣pp − ♣♣x♣♣pp ≤ 32pk1/p−1/2
√

p log(1/δ)♣♣x♣♣p−1
p + 2k

p
2 p2.

We remark that the requirement that p be an even integer can be dropped by generalizing

the proofs in this section appropriately. However, we can reduce proving Theorem 1 for

all p to proving it for only even p by rounding p up to the nearest even integer (at the

loss of a multiplicative constant of at most
√

2), and only considering even p simpliĄes the

presentation. So, we stick to considering only even p.

Proof. By symmetry of GGauss(p, σ) we can assume ∆ has all negative entries. Then we

have:
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♣♣x− ∆♣♣pp − ♣♣x♣♣pp =

k
∑

i=1

((xi − ∆i)
p − xpi )

=

k
∑

i=1

∫ xi−∆

xi

pyp−1dy ≤
k
∑

i=1

∫ xi−∆

xi

p(xi−∆i)
p−1dy ≤ p

k
∑

i=1

(xi−∆i)
p−1 ≤ p

k
∑

i=1

(xi+1)p−1.

We want to replace the terms (xi + 1)p−1 with terms xp−1
i since the latterŠs distribution

is more easily analyzed. To do so, we use the following observation:

▶ Fact 12. If p ≤
√
k/2:

If xi >
√
k, then we have (xi + 1)p−1 ≤



1 + 1√
k

)p−1

xp−1
j ≤



1 + 2p√
k

)

xp−1
j .

If ♣xi♣ ≤
√
k, then we have (xi + 1)p−1 − xp−1

i ≤ (
√
k + 1)p−1 −

√
k
p−1 ≤ 2k

p
2 −1p.

If xi < −
√
k, then we have (xi + 1)p−1 ≤



1 − 1√
k

)p−1

xp−1
j ≤



1 − 2p√
k

)

xp−1
j .

Fact 12 gives:

k
∑

i=1

(xi + 1)p−1 ≤
(

1 − 2p√
k

)

∑

i:xi<0

xp−1
i +

(

1 +
2p√
k

)

∑

i:xi≥0

xp−1
i + 2k

p
2 p.

It now suffices to show that:

−
(

1 − 2p√
k

)

∑

i:xi<0

♣xi♣p−1 +

(

1 +
2p√
k

)

∑

i:xi≥0

♣xi♣p−1 ≤ 32k1/p−1/2
√

p log(1/δ)♣♣x♣♣p−1
p , (5)

with probability at least 1 − δ. Note that each xi is sampled independently with probability

proportional to exp(−(♣xi♣/σ)p). Since multiplying x by a constant rescales both sides of

(5) by the same multiplicative factor, it suffices to show (5) when each xi is independently

sampled with probability proportional to exp(−♣xi♣p), i.e. when σ = 1. By change of variables,

yi = ♣xi♣p−1 is sampled from the distribution with pdf proportional to y
1

p−1 −1

i exp(−y
p

p−1

i ).

This is the Generalized Gamma random variable with parameters ( 1
p−1 ,

p
p−1 ), which we

denote GGamma( 1
p−1 ,

p
p−1 ). We show the following property of this random variable in

Appendix B:

▶ Lemma 13. For any p ≥ 4, let Y be the random variable GGamma( 1
p−1 ,

p
p−1 ), let µ = E[Y ].

Then µ ∈ [1/p, 1.2/p), Y ∈ Γ+(µ, 1), and Y ∈ Γ−(µ, 3/2).

Let k′ be the number of positive coordinates in x. A Chernoff bound gives that k′ ≤
k
2 + 3

√

k log 1
δ with probability 1 − δ/3. By Lemma 13 and Fact 5

∑

i:xi<0 ♣xi♣p−1 is in

Γ−((k − k′)µ, 3/2) and
∑

i:xi≥0 ♣xi♣p−1 is in Γ+(k′µ, 1) for µ as deĄned in Lemma 13. We

now apply Lemma 6 with t = log(6/δ) to each sum. Since δ ≥ 2−O(k/
√
p), log(6/δ) =

O(
√

k log(1/δ)/p), i.e. we are still in the range of δ for which the square-root term in the

tail bound of Lemma 6 is the linear term ct. So Lemma 6 gives that:

Pr



∑

i:xi<0

♣xi♣p−1 < (k − k′)µ− 2
√

2kµ log(1/δ)

]

≤ δ/6,

Pr





∑

i:xi≥0

♣xi♣p−1 > k′µ+ 2
√

2kµ log(1/δ)



 ≤ δ/6.

FORC 2021
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Combined with the Chernoff bound, this gives that with probability 1 − 2δ/3:

−
(

1 − 2p√
k

)

∑

i:xi<0

♣xi♣p−1 +

(

1 +
2p√
k

)

∑

i:xi≥0

♣xi♣p−1

≤ −
(

1 − 2p√
k

)



(k − k′)µ− (2
√

2)
√

kµ log(1/δ)
)

(6)

+

(

1 +
2p√
k

)



k′µ+ (2
√

2)
√

kµ log(1/δ)
)

≤(2k′ − k)µ+ (2
√
kp)µ+ (4

√
2)
√

kµ log(1/δ)

≤6µ
√

k log(1/δ) + (2
√
kp)µ+ (5

√
2)µ
√

kp log(1/δ)

≤16kµ ·
√

p log(1/δ)√
k

. (7)

In the last step, we use that p ≤ log k ≤ log(1/δ) for the range of p, δ we consider. On

the other hand, by Fact 5
∑

i∈[k] ♣xi♣p−1 = ♣♣x♣♣p−1
p−1 is sampled from a random variable in

Γ−(kµ, 3/2) and thus by Lemma 13 and Lemma 6 is at least kµ/2 with probability at least

1 − δ/3, i.e. kµ ≤ 2♣♣x♣♣p−1
p−1 with probability at least 1 − δ/3. Combined with (7) by a union

bound we get with probability 1 − δ:

−
(

1 − 2p√
k

)

∑

i:xi<0

♣xi♣p−1 +

(

1 +
2p√
k

)

∑

i:xi≥0

♣xi♣p−1 ≤ 32

√

p log(1/δ)√
k

· ♣♣x♣♣p−1
p−1

Finally, by the Cauchy-Schwarz inequality for any a ≤ b and k-dimensional x we have

♣♣x♣♣a ≤ k1/a−1/b♣♣x♣♣b. So, ♣♣x♣♣p−1
p−1 ≤ k1/p♣♣x♣♣p−1

p , giving (5) with probability 1 − δ as

desired. ◀

Given Lemma 11, determining the value of σ that makes Mp
σ private is fairly straightfor-

ward:

▶ Lemma 14. Let Mp
σ be the mechanism such that Mp

σ(d) samples x ∈ R
k from x ∼

GGauss(p, σ) and outputs d̃ = d+ x. For 4 ≤ p ≤ log k that is an even integer, ϵ ≤ O(1),

δ ∈ [2−O(k/p), 1/k], and

σ = Θ



√

kp log(1/δ)

ϵ



,

Mp
σ is (ϵ, δ)-differentially private.

Proof. It suffices to show that for any vector ∆ in [−1, 1]k:

Pr
d̃∼Mp

σ(d)

[

log

(

Pr[Mp
σ(d) = d̃]

Pr[Mp
σ(d+ ∆) = d̃]

)

≤ ϵ



= Pr
d̃∼Mp

σ(d)

[ ♣♣x− ∆♣♣pp − ♣♣x♣♣pp
σp

≤ ϵ



≥ 1 − δ.

Here, we abuse notation by letting Pr also denote a likelihood function. By Lemma 11

we now have with probability 1 − δ/2 for a sufficiently large constant c:

♣♣x− ∆♣♣pp − ♣♣x♣♣pp ≤ 64pk1/p−1/2
√

p log(1/δ)♣♣x♣♣p−1
p + 2p2k

p
2 .

The pdf of the rescaled norm r = ♣♣x♣♣p/σ is proportional to rk−1 exp(−rp) over (0,∞)

(the rk−1 appears because the (k− 1)-dimensional surface area of the ℓp-sphere of radius r is

proportional to rk−1). Letting R denote rp, the pdf of R is proportional to R
k
p −1 exp(−R)
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by change of variables, i.e. R is the random variable Gamma(kp ). Then by the Gamma tail

bound, with probability at least 1 − e−.001k/p > 1 − δ/2, R is contained in [ k2p ,
2k
p ], so ♣♣x♣♣p

is contained in [σ


k
2p

)1/p

, σ


2k
p

)1/p

]. Then by a union bound, with probability 1 − δ:

♣♣x− ∆♣♣pp − ♣♣x♣♣pp
σp

≤ 128p1/p
√

kp log(1/δ)

σ
+

4p2k
p
2

σp
.

Noting that n1/n is contained within [1, e1/e] for all n ≥ 1, letting

σ = 185 ·
√

kp log(1/δ)

ϵ
,

we get that
♣♣x−∆♣♣p

p−♣♣x♣♣p
p

σp ≤ ϵ with probability 1 − δ as desired. ◀

2.2 Error Guarantees

In this section, we analyze the ℓ∞ error of Mp
σ, for a given choice of δ in the range speciĄed

in Lemma 14. We give an expected error bound, and also a tail bound on the error. The error

analysis follows almost immediately from the following lemma, which bounds the fraction of

a sphere capŠs volume with a large Ąrst coordinate:

▶ Lemma 15. Let x be chosen uniformly at random from a k-dimensional ℓp-sphere with

arbitrary radius, i.e. the set of points with ♣♣x♣♣p = R for some R, for p ≥ 1. Then we have:

Pr[♣x1♣ ≥ r♣♣x♣♣p] ≤ (1 − rp)
(k−1)/p ≤ exp

(

− (k − 1)rp

p

)

.

This lemma or one providing a similar bound likely already exists in the literature, but

we are unaware of a reference for it. So, for completeness we give the full proof at the end of

the section.

▶ Corollary 16. Let x be chosen uniformly at random from a k-dimensional ℓp-sphere with

arbitrary radius for p ≥ 1. Then we have:

Pr[♣♣x♣♣∞ ≥ r♣♣x♣♣p] ≤ k · exp

(

− (k − 1)rp

p

)

.

Proof. This follows from Lemma 15 and a union bound over all k coordinates (which have

identical marginal distributions). ◀

Combining this corollary with Lemma 14, it is fairly straightforward to prove our Ąrst

main result:

▶ Theorem 17. Let Mp
σ be the mechanism such that Mp

σ(d) samples x ∈ R
k from GGauss(p,

σ) and outputs d̃ = d + x. For 4 ≤ p ≤ log k that is an even integer, For ϵ ≤ O(1),

δ ∈ [2−O(k/p), 1/k], and

σ = 185 ·
√

kp log(1/δ)

ϵ
,

Mp
σ is (ϵ, δ)-differentially private and for some sufficiently large constant c, and all t ≥ 0:

Pr
d̃∼Mp

σ(d)



♣♣d̃− d♣♣∞ ≥ 1480t ·
√
kp log1/p k

√

log(1/δ)

ϵ

]

≤ e−tp log k + e−.001k/p

FORC 2021
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Proof. The privacy guarantee follows from Lemma 14.

For the tail bound, if ♣♣d̃ − d♣♣∞ > 1480t ·
√
k log1/p k

√
p log(1/δ)

ϵ we have either ♣♣x♣♣p ≥
370 · k

1/2+1/p
√
p log(1/δ)

ϵ or ♣♣x♣♣∞ > 4t log1/p k
k1/p ♣♣x♣♣p. Recall that (♣♣x♣♣p/σ)p is distributed

according to a Gamma(kp ) random variable, and thus by a Gamma tail bound exceeds 2k/p

with probability at most e−.001k/p. In turn, ♣♣x♣♣p ≥ 370 · k
1/2+1/p

√
p log(1/δ)

ϵ ≥


2k
p

)1/p

σ with

at most this probability. Then it follows by setting r = 4t log1/p k
k1/p in Corollary 16 and a union

bound that:

Pr



♣♣d̃− d♣♣∞ ≥ 1480t ·
√
k log1/p k

√

p log(1/δ)

ϵ

]

≤ Pr



♣♣x♣♣∞ ≥ 4t log1/p k

k1/p
♣♣x♣♣p

]

+e−.001k/p ≤ exp

(

− (k − 1)4ptp log k

kp

)

+ e−.001k/p ≤ e−tp log k + e−.001k/p. ◀

This proves Theorem 1, up to some details which we defer to Section A.

2.3 Proof of Lemma 15

To prove this lemma weŠll need the following lemma about convex bodies.

▶ Lemma 18. Let A ⊆ B ⊂ R
k be two compact convex bodies with A contained in B, and

A′, B′ be their respective boundaries. Then Volk−1(A′) ≤ Volk−1(B′), where Volk−1 denotes

the (k − 1)-dimensional volume.

Proof. For any compact convex body S and its boundary S′, the (k− 1)-dimensional volume

of S′ satisĄes:

Volk−1(S′) ∝
∫

Sk

Volk−1(πθ⊤S)dθ,

Where S
k is the k-dimensional unit sphere and πθ⊤S is the orthogonal projection of S

onto the subspace of R
k orthogonal to θ (see e.g. Section 5.5 of [13] for a proof of this

fact). Since A ⊆ B it follows that for all θ we have Volk−1(πθ⊤A) ≤ Volk−1(πθ⊤B) and so

Volk−1(A′) ≤ Volk−1(B′). ◀

The idea behind the proof of Lemma 15 is to show that the region of the ℓp-ball with large

positive Ąrst coordinate is contained within a smaller ℓp-ball, and then apply Lemma 18:

Proof of Lemma 15. By rescaling, we can assume ♣♣x♣♣p = 1 and instead show:

Pr[♣x1♣ ≥ r] ≤ (1 − rp)
(k−1)/p

Pr[♣x1♣ ≥ r] =
Volk−1 (¶x : ♣x1♣ ≥ r, ♣♣x♣♣p = 1♢)

Volk−1 (x : ♣♣x♣♣p = 1)
=

Volk−1 (¶x : x1 ≥ r, ♣♣x♣♣p = 1♢)

Volk−1 (¶x : x1 ≥ 0, ♣♣x♣♣p = 1♢)
,

Where Volk−1 denotes the (k − 1)-dimensional volume. To bound this ratio, let v be the

vector (r, 0, 0, . . . , 0), and consider the (compact, convex) body B1 = ¶x : x1 ≥ r, ♣♣x− v♣♣p ≤
(1 − rp)1/p♢. We have rp + (v − r)p ≤ vp for 0 ≤ r ≤ v, so B1 contains the (also compact,

convex) body B2 = ¶x : x1 ≥ r, ♣♣x♣♣p ≤ 1♢. Then by Lemma 18 the (k − 1)-dimensional

surface area of B1 is larger than that of B2. The boundary of B1 is the union of the bodies

B1,a := ¶x : x1 = r, ♣♣x− v♣♣p ≤ (1 − rp)1/p♢ and B1,b := ¶x : x1 ≥ r, ♣♣x− v♣♣p = (1 − rp)1/p♢,

whose intersection has (k − 1)-dimensional volume 0. Similarly, the boundary of B2 is the
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Figure 1 A picture of the bodies in the proof of Lemma 15 for p = 2, k = 2. B2 has stripes that

are the same color as B1 \ B2 to emphasize that B1 contains B2.

union of the bodies B2,a := ¶x : x1 = r, ♣♣x♣♣p ≤ 1♢ and B2,b := ¶x : x1 ≥ r, ♣♣x♣♣p = 1♢, whose

intersection has (k − 1)-dimensional volume 0. See Figure 1 for an example of a picture of

all of these bodies.

Nothing that B1,a = B2,a, we conclude that Volk−1(B1,b) ≥ Volk−1(B2,b). Now we have:

Volk−1 (¶x : x1 ≥ r, ♣♣x♣♣p = 1♢)

Volk−1 (¶x : x1 ≥ 0, ♣♣x♣♣p = 1♢)
≤ Volk−1(¶x : x1 ≥ r, ♣♣x− v♣♣p = (1 − rp)1/p♢)

Volk−1 (¶x : x1 ≥ 0, ♣♣x♣♣p = 1♢)
.

The body in the numerator of the Ąnal expression is the body in the denominator, but

shifted by v and rescaled by (1 − rp)1/p in every dimension. So, the Ąnal ratio is at most

(1 − rp)(k−1)/p. ◀

3 Composition with Sparse Vector

In this section, we generalize the mechanism of [18], which is a composition of the Gaussian

mechanism and sparse vector mechanism of [7], by analyzing a composition of Mp
σ and the

sparse vector mechanism instead3. The guarantees given by sparse vector can be given in

the following form that we will use:

▶ Theorem 19 (Sparse Vector). For every k ≥ 1, cSV ≤ k, ϵSV , δSV , βSV > 0, and

αSV ≥ O



√

cSV log(1/δSV ) log(k/βSV )

ϵSV



,

there exists a mechanism SV that takes as input d ∈ R
k and outputs d̃ ∈ R

k such that:

SV is (ϵSV , δSV )-differentially private.

If at most cSV entries of d have absolute value strictly greater than αSV /2, then:

Pr
d̃∼SV (d)

[

♣♣d̃− d♣♣∞ ≥ αSV
]

≤ βSV .

Regardless of the value of d we have for all t ≥ 0:

Pr
d̃∼SV (d)

[♣♣d̃− d♣♣ ≥ max¶♣♣d♣♣∞, t
√

k log(1/δSV )/ϵSV )] ≤ ke−Ω(t).

3 Unlike its preprint, the journal version of [18] uses a slightly different mechanism based on the exponential
mechanism in place of the sparse vector mechanism. A similar change can likely be made to the mechanism
given in this section; we stick to using the sparse vector mechanism for a slightly simpler proof.

FORC 2021
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The proof is deferred to Section A. We now prove Theorem 20, from which Theorem 2

follows up to some minor details (see Section A):

▶ Theorem 20. For any 4 ≤ p ≤ log k that is an even integer, ϵ ≤ O(1), δ ∈ [2−O(k/p), 1/k],

and t ∈ [0, O( log k
log log k )], there exists a (ϵ, δ)-differentially private mechanism M that takes in

a vector d ∈ R
k and outputs a random d̃ ∈ R

k such that for a sufficiently large constant c :

Pr
d̃∼M(d)



♣♣d̃− d♣♣∞ ≥ ct
√

kp log(1/δ)(log log k)1/p

ϵ

]

≤ e− logt k.

Proof. The mechanism is as follows: We sample x ∼ GGauss(p, σ) for

σ = Θ



√

kp log(1/δ)

ϵ



,

If ♣♣x♣♣pp > 2kσp/p, we output d. Otherwise, we instantiate SV from Theorem 19 with

parameters:

αSV = 12t(log log k)1/pσ ≤ ct
√

kp log(1/δ)(log log k)1/p

ϵ
, cSV = 4k/ log2+2t k,

ϵSV = ϵ/2, δSV = δ/3, βSV = exp(− logt k)/2.

We input x to SV to sample x̂, and then output d̃ = d+ x− x̂.

First, note that:

√

cSV log(1/δSV ) log(k/βSV )

ϵSV
≤

√

16k
log2+2t k

log(1/δ)(log k + logt k)

ϵ
≤ 4

√

k log(1/δ)

ϵ
,

i.e. α satisĄes the requirements of Theorem 19 as long as the constant hidden in the Θ(·)
notation in the choice of σ is sufficiently large.

To analyze the privacy guarantee, this is the composition of:

The mechanism of Theorem 17, which if the constant hidden in the Θ(·) in the expression

for σ is sufficiently large, is (ϵ/2, δ/3)-differentially private.

The SV mechanism of Theorem 19, with parameters set so it is (ϵ/2, δ/3)-differentially

private.

The event that ♣♣x♣♣pp > 2kσp/p, causing us to release the database, which we recall from

the Proof of Theorem 17 happens with probability at most 2−Ω(k/p) ≤ δ/3.

By composition, we get that the mechanism is (ϵ, δ)-differentially private as desired.

To show the tail bound on ℓ∞-error: If ♣♣x♣♣pp > 2kσp/p, then we have d̃ = d, so trivially

the tail bound is satisĄed. So, it suffices to show that conditional on ♣♣x♣♣pp ≤ 2kσp/p

occurring, we have the tail bound. By a union bound, the guarantees of Theorem 19 give

that ♣♣d̃− d♣♣∞ = ♣♣x− x̂♣♣∞ ≤ αSV (i.e the tail bound is satisĄed) if at most 4k/ log2+2t k

entries of x have absolute value greater than αSV /2 with probability less than, say, e−2 logt k.

Using r = 3t (log log k)1/p

k1/p in Lemma 15 and a union bound with the 1 − δ/3 probability event

that ♣♣x♣♣p ≤ (2k/p)1/pσ, for each coordinate xi of x we have:

♣xi♣ ≥ αSV /2 = 6t(log log k)1/pσ = 2rk1/pσ ≥ r♣♣x♣♣p,

with probability at most 1
log2+2t k

+2−Ω(k/p) ≤ 2
log2+2t k

. Since we sample x with probability

proportional to exp(−∑i∈[k] ♣xi♣p/σp), each coordinateŠs distribution is independent, so

using a Chernoff bound we conclude that with probability e−Ω(k/ log2+2t k) ≤ e−2 logt k at most

4k/ log2+2t k coordinates have absolute value greater than αSV as desired. ◀
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4 Future Directions

As mentioned before, we did not attempt to optimize the constant multiplier in Theorem 1,

and our resulting constant is likely too large to be practical. Since the Generalized Gaussian

generalizes the Laplace and Gaussian mechanisms, which have good multiplicative constants

in practice, we expect that a more careful analysis of the Generalized Gaussian will also lead

to a error bound that is practical.

Another question concerns stronger measures of privacy than (ϵ, δ)-DP, including Rényi-

DP [16] and zero-concentrated-DP [2]. To show the Generalized Gaussian mechanism satisĄes

these notions of privacy requires one to bound a moment generating function of the privacy

loss
♣♣x−∆♣♣p

p−♣♣x♣♣p
p

σp , which in some sense requires the privacy loss to be subexponential.

Roughly speaking, our analysis shows with probability at least 1 − δ, the privacy loss lies

in an interval in which it behaves as a subgaussian random variable. However, past this

interval, our analysis fails to show it even behaves subexponentially. This is because our use

of the gamma tail bound of Lemma 6 weakens at two points in the regime where δ < 2−k/p.
The Ąrst is that the Ąnal expression in (7) has a dependence on δ of log(1/δ) instead of
√

log(1/δ) when δ < 2−k/p, since the linear term ct in Lemma 6 begins to dominate the

error. The second is that, roughly speaking, we use the gamma tail bound to show that ♣♣x♣♣pp
deviates from its expectation of k/p by at most

√

k log(1/δ)/p with probability 1 − δ. When

δ ≥ 2−k/p, this lets us treat ♣♣x♣♣pp as always being within a constant factor of its expectation

in our analysis. However, when δ is small enough, the term
√

k log(1/δ)/p becomes much

larger than the term k/p, and so we can only bound ♣♣x♣♣ppŠs deviation from its expectation

by an expression with
√

log(1/δ) dependence on δ.

Our Ąnal tail bound on the privacy loss is effectively a product of the tail bound of

Lemma 11 and the tail bound on ♣♣x♣♣p−1
p , and so it shows concentration that is worse than

sub-exponential in the small δ regime, which is insufficient for proving these stronger notions

of privacy. We believe this is a function of our analysis rather than of the Generalized

Gaussian mechanism, but do not know of an alternate analysis that conĄrms this belief.

Determining whether Generalized Gaussian mechanisms can satisfy stronger notions of

privacy for larger values of p is an interesting open direction.
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A.2 Proof of Theorem 1

We Ąrst need the following corollary of Lemma 15:

▶ Corollary 21. Let x be chosen uniformly at random from a k-dimensional ℓp-sphere with

arbitrary radius for p ≥ 1. Then we have:

E[♣♣x♣♣∞] ≤ 5 log1/p k

k1/p
♣♣x♣♣p

Proof. Since ♣♣x♣♣∞/♣♣x♣♣p takes values in [0, 1], by Lemma 15 we have:

E[♣♣x♣♣∞/♣♣x♣♣p] =

∫ 1

0

Pr[♣♣x♣♣∞/♣♣x♣♣p ≥ r]dr

≤
∫

21+1/p log1/p k

k1/p

0

1dr +

∫ 1

21+1/p log1/p k

k1/p

k · exp

(

− (k − 1)rp

p

)

dr

≤ 21+1/p log1/p k

k1/p
+

∫ 1

21+1/p log1/p k

k1/p

k · exp

(

− (k − 1)2p+1 log k

kp

)

dr

≤ 21+1/p log1/p k

k1/p
+

∫ 1

21+1/p log1/p k

k1/p

k · exp (−2 log k) dr

≤ 21+1/p log1/p k

k1/p
+

1

k

≤ 5 log1/p k

k1/p
.

Here we use that 2p ≥ p for all p ≥ 1 and that (1 − c
x )x ≤ e−c for all c ≥ 0. ◀

Proof of Theorem 1. We use Theorem 17 after rounding p up to the nearest even integer

(this loses at most a multiplicative constant in the resulting error bounds). If the constant

hidden in Θ(log log k) is a sufficiently large function of c1, this gives the desired tail bound,

up to the additive e−.001k/p in the probability bound (which may be larger than the e−tp log k

term for large values of p). To remove the additive e−.001k/p: if the less than e−.001k/p ≤ δ

probability event that (♣♣x♣♣p/σ)p exceeds 2k/p occurs, we can instead just output d̃ = d, i.e.

instead set x = 0. This gives an (ϵ, 2δ)-private mechanism that always satisĄes (♣♣x♣♣p/σ)p ≤
2k/p, and then we can rescale our choice of δ appropriately. The tail bound can now be

derived as in the proof of Theorem 17. Similarly, since we always have (♣♣x♣♣p/σ)p ≤ 2k/p,

the expectation of ♣♣x♣♣∞ follows from Corollary 21. Finally, the expectation of ♣♣x♣♣q for

1 ≤ q ≤ p follows by using JensenŠs inequality twice and the unconditional upper bound

on ♣♣x♣♣pp:

E[♣♣x♣♣q] ≤ E[♣♣x♣♣qq]1/q = k1/q
E[♣x1♣q]1/q ≤ k1/q

E[♣x1♣p]1/p = k1/q−1/p
E[♣♣x♣♣pp]

≤ k1/q−1/p · (2k/p)1/pσ = O(k1/qσ). ◀

A.3 Proof of Theorem 2

Proof of Theorem 2. The tail bound in Theorem 2 follows immediately from Theorem 20

by choosing p to be an even integer satisfying p = Θ(log log log k).

FORC 2021



1:16 Privately Answering Counting Queries with Generalized Gaussian Mechanisms

For the expectation, we use the tail bound of Theorem 2. We have:

Ed̃∼M(d)

[

♣♣d̃− d♣♣∞
]

=

∫ ∞

0

Pr[♣♣d̃− d♣♣∞ ≥ s]ds

=

∫ a

0

Pr[♣♣d̃− d♣♣∞ ≥ s]ds+

∫ b

a

Pr[♣♣d̃− d♣♣∞ ≥ s]ds+

∫ ∞

b

Pr[♣♣d̃− d♣♣∞ ≥ s]ds.

We choose a =
2c

√
k log log log k log(1/δ)

ϵ , b =
k
√

log(1/δ)

ϵ . The integral over [0, a] is of course

bounded by a. By Theorem 20, the integral over [a, b] is bounded by b·e− log2 k ≤
√

log(1/δ)

ϵ ≤ a.

Finally, to bound the third term, recall that the mechanism of Theorem 20 outputs d (i.e.

effectively chooses x, x̂ = 0 instead) if ♣♣x♣♣p is too large. So, unconditionally we have:

♣♣x♣♣∞ ≤ ♣♣x♣♣p ≤ (2k/p)1/pσ ≤ 2c
√

k log log log k log(1/δ)

ϵ
≤ b.

So by the third property in Theorem 19 we have for s ∈ [b,∞):

Pr
d̃∼M(d)

[♣♣d̃− d♣♣∞ ≥ s] = Pr
x,x̂

[♣♣x− x̂♣♣∞ ≥ s] ≤ ke−Ω(s/(
√
k log(1/δ)/ϵ)).

And so by change of variables, with s′ = s/(
√

k log(1/δ)/ϵ):

∫ ∞

b

Pr[♣♣d̃− d♣♣∞ ≥ s]ds ≤
√

k log(1/δ)

ϵ

∫ ∞

√
k

ke−Ω(s′)ds′ ≤ k1.5
√

log(1/δ)

ϵ
· e−Ω(

√
k) ≤ a.

So we conclude

Ed̃∼M(d)

[

♣♣d̃− d♣♣∞
]

≤ 3a = O



√

k log log log k log(1/δ)

ϵ



,

as desired. ◀

B Concentration of Generalized Gammas

In this section we consider the Generalized Gamma random variable GGamma(a, b) para-

meterized by a, b with pdf:

p(x) =
bxa−1e−xb

Γ(a/b)
, x ∈ (0,∞).

Where the Gamma function Γ(x) is deĄned over the positive reals as

Γ(z) =

∫ ∞

0

xz−1e−xdx.

We recall that Γ(z) is a continuous analog of the factorial in that it satisĄes Γ(x+ 1) =

x · Γ(x). When b = 1, GGamma(a, b) is exactly the Gamma random variable Gamma(a)

(we will use Gamma to denote the random variable and Γ to denote the function to avoid

ambiguous notation).

We want to show that sums of GGamma( 1
p−1 ,

p
p−1 ) random variables concentrate nicely.

To do this, we will show that they are sub-gamma:

To show that GGamma( 1
p−1 ,

p
p−1 ) are sub-gamma, we will relate the moment-generating

function of GGamma( 1
p−1 ,

p
p−1 ) to that of the Gamma random variable with the same mean

using the following facts:
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▶ Fact 22. For a Generalized Gamma random variable X ∼ GGamma(a, b) the moments

are E[Xr] = Γ((a+r)/b)
Γ(a/b) . In particular, for a Gamma random variable X ∼ Gamma(a) the

moments are E[Xr] = Γ(a+r)
Γ(a) .

See e.g. Section 17.8.7 of [12] for a derivation of this fact. Note here that GGamma( 1
p−1 ,

p
p−1 ) has mean µ = 1/Γ(1/p). To relate the moments of Generalized Gamma random

variables to Gamma random variablesŠ we note the following about µ:

▶ Fact 23. For all p ≥ 2, we have 1
p ≤ 1

Γ(1/p) ≤ 1.2
p .

Putting it all together, we get the following lemmas, which combined with Fact 23 give

us Lemma 13:

▶ Lemma 24. Let Y = GGamma( 1
p−1 ,

p
p−1 ) for p ≥ 2. Then, for µ = E[Y ] = 1

Γ(1/p) , we

have Y ∈ Γ+(µ, 1).

Proof. We compare the moment-generating function of (the centered version of) Y to that

of X = Gamma(µ) where µ = E[Y ]. X is in Γ(µ, 1) so it suffices to show Y Šs moment

generating function is smaller than XŠs. First, looking at the moment generating function of

Y , we have:

E[eλY ] = 1 + λµ+

∞
∑

r=2

[

λr

r!
E[Y r]



= 1 + λµ+

∞
∑

r=2



λr

r!

Γ( 1
p + r(p−1)

p )

Γ( 1
p )

]

(a)

≤ 1 + λµ+

∞
∑

r=2



λr

r!

Γ( 1
p + r)

Γ( 1
p )

]

(b)

≤ 1 + λµ+

∞
∑

r=2

[

λr

r!

Γ(µ+ r)

Γ(µ)



= E[eλX ].

(a) follows because the Gamma function is monotonically increasing in the range [1.5,∞).

(b) follows because µ = 1
Γ(1/p) ≥ 1/p for p ≥ 1, and because for positive integers r, Γ(x+r)

Γ(x) =
∏r−1
i=0 (x+ i) is monotonically increasing in x. Since X ∈ Γ+(µ, 1) and X,Y have the same

mean, we have that Y ∈ Γ+(µ, 1) as well. ◀

▶ Lemma 25. Let Y = GGamma( 1
p−1 ,

p
p−1 ) for p ≥ 3. Then, for µ = E[Y ] = 1

Γ(1/p) , we

have Y ∈ Γ−(µ, 3/2).

Proof. Similarly to the previous lemma, we have for all 0 ≤ λ ≤ 2/3:

E[e−λY ]

= 1 − λµ+
∞
∑

r=2



(−λ)r

r!

Γ( 1
p + r(p−1)

p )

Γ( 1
p )

]

= 1 − λµ+

∞
∑

r=1



λ2r

(2r)!
·

Γ( 1
p + 2r p−1

p )

Γ( 1
p )



1 − λ

2r + 1
·

Γ( 1
p + (2r + 1)p−1

p )

Γ( 1
p + 2r p−1

p )

]

= 1 − λµ+

∞
∑

r=1



λ2r

(2r)!
·

Γ( 1
p + 2r)

Γ( 1
p )



Γ( 1
p + 2r p−1

p )

Γ( 1
p + 2r)

− λ

2r + 1
·

Γ( 1
p + (2r + 1)p−1

p )

Γ( 1
p + 2r)

]
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. . .
(c)

≤ 1 − λµ+

∞
∑

r=1



λ2r

(2r)!
·

Γ( 1
p + 2r)

Γ( 1
p )



1 − λ

2r + 1
·

Γ( 1
p + 2r + 1)

Γ( 1
p + 2r)

]

(d)

≤ 1 − λµ+
∞
∑

r=1

[

λ2r

(2r)!
· Γ(µ+ 2r)

Γ(µ)

(

1 − λ

2r + 1
· Γ(µ+ 2r + 1)

Γ(µ+ 2r)

)

= 1 − λµ+
∞
∑

r=2

[

(−λ)r

r!
· Γ(µ+ r)

Γ(µ)



= E[e−λX ].

Which, up to proving (c), (d) hold, shows that Y ∈ Γ−(µ, 3/2) since X and Y have the

same mean and X ∈ Γ−(µ, 0) ⊂ Γ−(µ, 3/2). (c) follows because the change in each term in

the sum is

λ2r

(2r)!

1

Γ


1
p

) ·

[

Γ

(

1

p
+ 2r

)

− Γ

(

1

p
+ 2r

p− 1

p

)

− λ

2r + 1

(

Γ

(

1

p
+ 2r + 1

)

− Γ

(

1

p
+ (2r + 1)

p− 1

p

))

.

To show this expression is non-negative, it suffices to show that just the term in the
brackets is positive, or equivalently, for all r ≥ 2, p ≥ 3:

Γ

(

1

p
+ 2r

)



1 −
Γ
(

1
p

+ 2r (p−1)
p

)

Γ
(

1
p

+ 2r
)



≥ λ

2r + 1
Γ

(

1

p
+ 2r + 1

)



1 −
Γ
(

1
p

+ (2r + 1) p−1
p

)

Γ
(

1
p

+ 2r + 1
)



.

Since we have Γ


1
p + 2r + 1

)

= ( 1
p + 2r)Γ



1
p + 2r

)

≤ (2r+ 1)( 1
p + 2r), it further suffices

to just show:

f(r, p) :=

(

1 − Γ( 1
p +2r

(p−1)
p )

Γ( 1
p +2r)

)

(

1 − Γ( 1
p +(2r+1) p−1

p )

Γ( 1
p +2r+1)

) ≥ λ.

For any Ąxed r ≥ 2, one can verify analytically that f(r, p) is monotonically decreasing

in p over p ∈ [1,∞) and the limit as p goes to inĄnity is g(r) := 2rψ(2r)
(2r+1)ψ(2r+1) where ψ is the

digamma function ψ(x) =
d

dx Γ(x)

Γ(x) . One can also verify analytically that g(r) is monotonically

increasing, and g(2) ≈ .6672. So, for all r ≥ 2, p ≥ 3 we have f(r, p) > 2/3 and thus for

λ ∈ [0, 2/3], the inequality (c) is satisĄed.

(d) follows by looking at the function

z(x) =
Γ(x+ r)

Γ(x)

(

1 − λ

r + 1
· Γ(x+ r + 1)

Γ(x+ r)

)

=

(

1 − λ(x+ r)

r + 1

) r−1
∏

i=0

(x+ i).

For r ≥ 2, λ ≤ 1, one can verify analytically that z(x) is monotonically increasing in

the interval (0, 1/2] ⊇ (0, 1.2
p ] ⊇ (0, µ]. Since µ ≥ 1

p , this gives that each term in the

right-hand-side of (d) is larger than the corresponding term on the left-hand-side. ◀
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