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Abstract

Robust optimization is a widely studied area in operations research, where the algorithm takes

as input a range of values and outputs a single solution that performs well for the entire range.

Specifically, a robust algorithm aims to minimize regret, defined as the maximum difference between

the solution’s cost and that of an optimal solution in hindsight once the input has been realized. For

graph problems in P, such as shortest path and minimum spanning tree, robust polynomial-time

algorithms that obtain a constant approximation on regret are known. In this paper, we study

robust algorithms for minimizing regret in NP-hard graph optimization problems, and give constant

approximations on regret for the classical traveling salesman and Steiner tree problems.
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1 Introduction

In many graph optimization problems, the inputs are not known precisely and the algorithm is

desired to perform well over a range of inputs. For instance, consider the following situations.

Suppose we are planning the delivery route of a vehicle that must deliver goods to n locations.

Due to varying traffic conditions, the exact travel times between locations are not known

precisely, but a range of possible travel times is available from historical data. Can we design

a tour that is nearly optimal for all travel times in the given ranges? Consider another

situation where we are designing a telecommunication network to connect a set of locations.

We are given cost estimates on connecting every two locations in the network but these

estimates might be off due to unexpected construction problems. Can we design the network

in a way that is nearly optimal for all realized construction costs?

These questions have led to the field of robust graph algorithms. Given a range of weights

[ℓe, ue] for every edge e, the goal is to find a solution that minimizes regret, defined as the

maximum difference between the algorithm’s cost and the optimal cost for any edge weights.
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In other words, the goal is to obtain: minsol maxI(sol(I) − opt(I)), where sol(I) (resp.

opt(I)) denotes the cost of sol (resp. the optimal solution) in instance I, sol ranges over

all feasible solutions, and I ranges over all realizable inputs. We emphasize that sol is a

fixed solution (independent of I) whereas the solution determining opt(I) is dependent on

the input I. The solution that achieves this minimum is called the minimum regret solution

(mrs), and its regret is the minimum regret (mr). In many cases, however, minimizing regret

turns out to be NP-hard, in which case one seeks an approximation guarantee. Namely, a

β-approximation algorithm satisfies, for all input realizations I, sol(I)− opt(I) ≤ β · mr,

i.e., sol(I) ≤ opt(I) + β ·mr.

It is known that minimizing regret is NP-hard for shortest path [34] and minimum

cut [1] problems, and using a general theorem for converting exact algorithms to robust

ones, 2-approximations are known for these problems [12, 23]. In some cases, better results

are known for special classes of graphs, e.g., [24]. Robust minimum spanning tree (mst)

has also been studied, although in the context of making exponential-time exact algorithms

more practical [33]. Moreover, robust optimization has been extensively researched for other

(non-graph) problem domains in the operations research community, and has led to results

in clustering [5, 3, 6, 27], linear programming [21, 28], and other areas [4, 23]. More details

can be found in the book by Kouvelis and Yu [26] and the survey by Aissi et al. [2].

To the best of our knowledge, all previous work in polynomial-time algorithms for

minimizing regret in robust graph optimization focused on problems in P. In this paper,

we study robust graph algorithms for minimizing regret in NP-hard optimization problems.

In particular, we study robust algorithms for the classical traveling salesman (tsp) and

Steiner tree (stt) problems, that model e.g. the two scenarios described at the beginning

of the paper. As a consequence of the NP-hardness, we cannot hope to show guarantees

of the form: sol(I) ≤ opt(I) + β · mr, since for ℓe = ue (i.e., mr = 0), this would imply

an exact algorithm for an NP-hard optimization problem. Instead, we give guarantees:

sol(I) ≤ α·opt(I)+β ·mr, where α is (necessarily) at least as large as the best approximation

guarantee for the optimization problem. We call such an algorithm an (α, β)-robust algorithm.

If both α and β are constants, we call it a constant-approximation to the robust problem. In

this paper, our main results are constant approximation algorithms for the robust traveling

salesman and Steiner tree problems. We hope that our work will lead to further research in

the field of robust approximation algorithms, particularly for other NP-hard optimization

problems in graph algorithms as well as in other domains.

1.1 Problem Definition and Results

We first define the Steiner tree (stt) and traveling salesman problems (tsp). In both

problems, the input is an undirected graph G = (V, E) with non-negative edge costs. In

Steiner tree, we are also given a subset of vertices called terminals and the goal is to obtain a

minimum cost connected subgraph of G that spans all the terminals. In traveling salesman,

the goal is to obtain a minimum cost tour that visits every vertex in V 1. In the robust

versions of these problems, the edge costs are ranges [ℓe, ue] from which any cost may realize.

Our main results are the following:

◮ Theorem 1 (Robust Approximations). There exist constant approximation algorithms for

the robust traveling salesman and Steiner tree problems.

1 There are two common and equivalent assumptions made in the tsp literature in order to achieve
reasonable approximations. In the first assumption, the algorithms can visit vertices multiple times in
the tour, while in the latter, the edges satisfy the metric property. We use the former in this paper.
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◮ Remark. The constants we are able to obtain for the two problems are very different:

(4.5, 3.75) for tsp (in Section 3) and (2755, 64) for stt (in Section 4). While we did not

attempt to optimize the precise constants, obtaining small constants for stt comparable to

the tsp result requires new ideas beyond our work and is an interesting open problem.

We complement our algorithmic results with lower bounds. Note that if ℓe = ue, we have

mr = 0 and thus an (α, β)-robust algorithm gives an α-approximation for precise inputs. So,

hardness of approximation results yield corresponding lower bounds on α. More interestingly,

we show that hardness of approximation results also yield lower bounds on the value of β

(see Section 5 for details):

◮ Theorem 2 (APX-hardness). A hardness of approximation of ρ for tsp (resp., stt) under

P 6= NP implies that it is NP-hard to obtain α ≤ ρ (irrespective of β) and β ≤ ρ (irrespective

of α) for robust tsp (resp., robust stt).

1.2 Our Techniques

We now give a sketch of our techniques. Before doing so, we note that for problems in P

with linear objectives, it is known that running an exact algorithm using weights ℓe+ue

2

gives a (1, 2)-robust solution [12, 23]. One might hope that a similar result can be obtained

for NP-hard problems by replacing the exact algorithm with an approximation algorithm

in the above framework. Unfortunately, there exists robust tsp instances where using a

2-approximation for tsp with weights ℓe+ue

2 gives a solution that is not (α, β)-robust for any

α = o(n), β = o(n). More generally, a black-box approximation run on a fixed realization

could output a solution including edges that have small weight relative to opt for that

realization (so including these edges does not violate the approximation guarantee), but

these edges could have large weight relative to mr and opt in other realizations, ruining the

robustness guarantee. This establishes a qualitative difference between robust approximations

for problems in P considered earlier and NP-hard problems being considered in this paper,

and demonstrates the need to develop new techniques for the latter class of problems.

LP relaxation. We denote the input graph G = (V, E). For each edge e ∈ E, the input is a

range [ℓe, ue] where the actual edge weight de can realize to any value in this range. The

robust version of a graph optimization problem is is then described by the LP

min{r : x ∈ P ;
∑

e∈E

dexe ≤ opt(d) + r, ∀d},

where P is the standard polytope for the optimization problem, and opt(d) denotes the

cost of an optimal solution when the edge weights are d = {de : e ∈ E}. That is, this is the

standard LP for the problem, but with the additional constraint that the fractional solution

x must have regret at most r for any realization of edge weights. We call the additional

constraints the regret constraint set. Note that setting x to be the indicator vector of mrs

and r to mr gives a feasible solution to the LP; thus, the LP optimum is at most mr.

Solving the LP. We assume that the constraints in P are separable in polynomial time (e.g.,

this is true for most standard optimization problems including stt and tsp). So, designing

the separation oracle comes down to separating the regret constraint set, which requires

checking that:

max
d

[

∑

e∈E

dexe − opt(d)

]

=

max
d

max
sol

[

∑

e∈E

dexe − sol(d)

]

= max
sol

max
d

[

∑

e∈E

dexe − sol(d)

]

≤ r.

ICALP 2020
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Thus, given a fractional solution x, we need to find an integer solution sol and a weight

vector d that maximizes the regret of x given by
∑

e∈E dexe − sol(d). Once sol is fixed,

finding d that maximizes the regret is simple: If sol does not include an edge e, then to

maximize
∑

e∈E dexe − sol(d), we set de = ue; else if sol includes e, we set de = ℓe. Note

that in these two cases, edge e contributes uexe and ℓexe− ℓe respectively to the regret. The

above maximization thus becomes:

max
sol

[

∑

e/∈sol

uexe +
∑

e∈sol

(ℓexe − ℓe)

]

=
∑

e∈E

uexe −min
sol

∑

e∈sol

(uexe − ℓexe + ℓe). (1)

Thus, sol is exactly the optimal solution with edge weights ae := uexe − ℓexe + ℓe. (For

reference, we define the derived instance of the problem as one with edge weights ae.)

Now, if we were solving a problem in P, we would simply need to solve the problem on

the derived instance. Indeed, we will show later that this yields an alternative technique for

obtaining robust algorithms for problems in P, and recover existing results in [23]. However,

we cannot hope to find an optimal solution to an NP-hard problem. Our first compromise is

that we settle for an approximate separation oracle. More precisely, our goal is to show that

there exists some fixed constants α′, β′ ≥ 1 such that if
∑

e dexe > α′ · opt(d) + β′ · r for

some d, then we can find sol, d
′ such that

∑

e d′
exe > sol(d′) + r. Since the LP optimum

is at most mr, we can then obtain an (α′, β′)-robust fractional solution using the standard

ellipsoid algorithm.

For tsp, we show that the above guarantee can be achieved by the classic mst-based

2-approximation on the derived instance. The details appear in Section 3 and the full paper.

Although stt also admits a 2-approximation based on the mst solution, this turns out to be

insufficient for the above guarantee. Instead, we use a different approach here. We note that

the regret of the fractional solution against any fixed solution sol (i.e., the argument over

which Eq. (1) maximizes) can be expressed as the following difference:
∑

e/∈sol

(uexe − ℓexe + ℓe)−
∑

e∈E

(ℓe − ℓexe) =
∑

e/∈sol

ae −
∑

e∈E

be, where be := ℓe − ℓexe.

The first term is the weight of edges in the derived instance that are not in sol. The second

term corresponds to a new stt instance with different edge weights be. It turns out that the

overall problem now reduces to showing the following approximation guarantees on these

two stt instances (c1 and c2 are constants):

(i)
∑

e∈alg\sol

ae ≤ c1 ·
∑

e∈sol\alg

ae and (ii)
∑

e∈alg

be ≤ c2 ·
∑

e∈sol

be.

Note that guarantee (i) on the derived instance is an unusual “difference approximation” that

is stronger than usual approximation guarantees. Moreover, we need these approximation

bounds to simultaneously hold, i.e., hold for the same alg. Obtaining these dual approxima-

tion bounds simultaneously forms the most technically challenging part of our work; a high

level overview is given in Section 4 and technical details are deferred to the full paper.

Rounding the fractional solution. After applying our approximate separation oracles,

we have a fractional solution x such that for all edge weights d, we have
∑

e dexe ≤
α′ · opt(d) + β′ ·mr. Suppose that, ignoring the regret constraint set, the LP we are using

has integrality gap at most δ for precise inputs. Then a natural rounding approach is to

search for an integer solution alg that has minimum regret with respect to the specific

solution δx, i.e., alg satisfies:

alg = argmin
sol

max
d

[

sol(d)− δ
∑

e∈E

dexe

]

. (2)
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Since the integrality gap is at most δ, we have δ ·∑e∈E dexe ≥ opt(d) for any d. This

implies that:

mrs(d)− δ ·
∑

e∈E

dexe ≤ mrs(d)− opt(d) ≤ mr.

Hence, the regret of mrs with respect to δx is at most mr. Since alg has minimum regret

with respect to δx, alg’s regret is also at most mr. Note that δx is a (δα′, δβ′)-robust

solution. Hence, alg is a (δα′, δβ′ + 1)-robust solution.

If we are solving a problem in P, finding alg that satisfies Eq. (2) is easy. So, using an

integral LP formulation (i.e., integrality gap of 1), we get a (1, 2)-robust algorithm overall for

these problems. This exactly matches the results in [23], although we are using a different

set of techniques. Of course, for NP-hard problems, finding a solution alg that satisfies

Eq. (2) is NP-hard as well. It turns out, however, that we can design a generic rounding

algorithm that gives the following guarantee:

◮ Theorem 3. There exists a rounding algorithm that takes as input an (α, β)-robust

fractional solution to stt (resp. tsp) and outputs a (γδα, γδβ + γ)-robust integral solution,

where γ and δ are respectively the best approximation factor and integrality gap for (classical)

stt (resp., tsp).

We remark that while we stated this rounding theorem for stt and tsp here, we actually

give a more general version (Theorem 4) in Section 2 that applies to a broader class of

covering problems including set cover, survivable network design, etc. and might be useful in

future research in this domain.

1.3 Related Work

We have already discussed the existing literature in robust optimization for minimizing regret.

Other robust variants of graph optimization have also been studied in the literature. In

the robust combinatorial optimization model proposed by Bertsimas and Sim [7], edge costs

are given as ranges as in this paper, but instead of optimizing for all realizations of costs

within the ranges, the authors consider a model where at most k edge costs can be set to

their maximum value and the remaining are set to their minimum value. The objective is to

minimize the maximum cost over all realizations. In this setting, there is no notion of regret

and an approximation algorithm for the standard problem translates to an approximation

algorithm for the robust problem with the same approximation factor.

In the data-robust model [13], the input includes a polynomial number of explicitly

defined “scenarios” for edge costs, with the goal of finding a solution that is approximately

optimal for all given scenarios. That is, in the input one receives a graph and a polynomial

number of scenarios d
(1), d

(2) . . . d
(k) and the goal is to find alg whose maximum cost across

all scenarios is at most some approximation factor times minsol maxi∈[k]

∑

e∈sol
d

(i)
e . In

contrast, in this paper, we have exponentially many scenarios and look at the maximum of

alg(d)− opt(d) rather than alg(d). A variation of this is the recoverable robust model [9],

where after seeing the chosen scenario, the algorithm is allowed to “recover” by making a

small set of changes to its original solution.

Dhamdhere et al. [13] also studies the demand-robust model, where edge costs are fixed

but the different scenarios specify different connectivity requirements of the problem. The

algorithm now operates in two phases: In the first phase, the algorithm builds a partial

solution T ′ and then one of the scenarios (sets of terminals) Ti is revealed to the algorithm.

In the second phase, the algorithm then adds edges to T ′ to build a solution T , but

ICALP 2020
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must pay a multiplicative cost of σk on edges added in the second phase. The demand-

robust model was inspired by a two-stage stochastic optimization model studied in, e.g.,

[30, 29, 31, 13, 14, 25, 18, 19, 20, 8] where the scenario is chosen according to a distribution

rather than an adversary.

Another related setting to the data-robust model is that of robust network design,

introduced to model uncertainty in the demand matrix of network design problems (see the

survey by Chekuri [10]). This included the well-known VPN conjecture (see, e.g., [17]), which

was eventually settled in [15]. In all these settings, however, the objective is to minimize

the maximum cost over all realizations, whereas in this paper, our goal is to minimize the

maximum regret against the optimal solution.

2 Generalized Rounding Algorithm

We start by giving the rounding algorithm of Theorem 3, which is a corollary of the following,

more general theorem:

◮ Theorem 4. Let P be an optimization problem defined on a set system S ⊆ 2E that seeks

to find the set S ∈ S that minimizes
∑

e∈S de, i.e., the sum of the weights of elements in S.

In the robust version of this optimization problem, we have de ∈ [ℓe, ue] for all e ∈ E.

Consider an LP formulation of P (called P-LP) given by: {min
∑

e∈E dexe : x ∈ X, x ∈
[0, 1]E}, where X is a polytope containing the indicator vector χS of all S ∈ S and not

containing χS for any S /∈ S. The corresponding LP formulation for the robust version

(called Probust-LP) is given by: {min r : x ∈ X, x ∈ [0, 1]E ,
∑

e∈E dexe ≤ opt(d) + r ∀d}.
Now, suppose we have the following properties:

There is a γ-approximation algorithm for P.

The integrality gap of P-LP is at most δ.

There is a feasible solution x∗ to P-LP that satisfies: ∀d :
∑

e∈E dex∗
e ≤ α·opt(d)+β ·mr.

Then, there exists an algorithm that outputs an integer solution sol for P that satisfies:

∀d : sol(d) ≤ (γδα) · opt(d) + (γδβ + γ) ·mr.

Proof. The algorithm is as follows: Construct an instance of P which uses the same set

system S and where element e has weight max{ue(1− δx∗
e), ℓe(1− δx∗

e)}+ δℓex∗
e. Then, use

the γ-approximation algorithm for P on this instance to find an integral solution S, and

output it.

Given a feasible solution S to P, note that:

max
d

[
∑

e∈S

de − δ
∑

e∈E

dex∗
e] =

∑

e∈S

max{ue(1− δx∗
e), ℓe(1− δx∗

e)} −
∑

e/∈S

δℓex∗
e

=
∑

e∈S

[max{ue(1− δx∗
e), ℓe(1− δx∗

e)}+ δℓex∗
e]−

∑

e∈E

δℓex∗
e.

Now, note that since S was output by a γ-approximation algorithm, for any feasible

solution S′:
∑

e∈S

[max{ue(1−δx∗
e), ℓe(1−δx∗

e)}+δℓex∗
e] ≤ γ

∑

e∈S′

[max{ue(1−δx∗
e), ℓe(1−δx∗

e)}+δℓex∗
e] =⇒

∑

e∈S

[max{ue(1− δx∗
e), ℓe(1− δx∗

e)}+ δℓex∗
e]− γ

∑

e∈E

δℓex∗
e
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≤ γ[
∑

e∈S′

[max{ue(1− δx∗
e), ℓe(1− δx∗

e)}+ δℓex∗
e]−

∑

e∈E

δℓex∗
e]

= γ max
d

[
∑

e∈S′

de − δ
∑

e∈E

dex∗
e].

Since P-LP has integrality gap δ, for any fractional solution x, ∀d : opt(d) ≤ δ
∑

e∈E dexe.

Fixing S′ to be the set of elements used in the minimum regret solution then gives:

max
d

[
∑

e∈S′

de − δ
∑

e∈E

dex∗
e] ≤ max

d

[mrs(d)− opt(d)] = mr.

Combined with the previous inequality, this gives:

∑

e∈S

[max{ue(1− δx∗
e), ℓe(1− δx∗

e)}+ δℓex∗
e]− γ

∑

e∈E

δℓex∗
e ≤ γmr =⇒

∑

e∈S

[max{ue(1− δx∗
e), ℓe(1− δx∗

e)}+ δℓex∗
e]−

∑

e∈E

δℓex∗
e ≤ γmr + (γ − 1)

∑

e∈E

δℓex∗
e =⇒

max
d

[
∑

e∈S

de − δ
∑

e∈E

dex∗
e] ≤ γmr + (γ − 1)

∑

e∈E

δℓex∗
e.

This implies:

∀d : sol(d) =
∑

e∈S

de ≤ δ
∑

e∈E

dex∗
e + γmr + (γ − 1)

∑

e∈E

δℓex∗
e

≤ δ
∑

e∈E

dex∗
e + γmr + (γ − 1)

∑

e∈E

δdex∗
e

= γδ
∑

e∈E

dex∗
e + γmr ≤ γδ[αopt(d) + βmr] + γmr = γδα · opt(d) + (γδβ + γ) ·mr. ◭

3 Algorithm for the Robust Traveling Salesman Problem

In this section, we give a robust algorithm for the traveling salesman problem:

◮ Theorem 5. There exists a (4.5, 3.75)-robust algorithm for the traveling salesman problem.

Recall that we consider the version of the problem where we are allowed to use edges

multiple times in tsp. We present a high level sketch of our ideas here, the details are deferred

to the full paper. We recall that any tsp tour must contain a spanning tree, and an Eulerian

walk on a doubled mst is a 2-approximation algorithm for tsp (known as the “double-tree

algorithm”). One might hope that since we have a (1, 2)-robust algorithm for robust mst,

one could take its output and apply the double-tree algorithm to get a (2, 4)-robust solution

to robust TSP. Unfortunately, this algorithm is not (α, β)-robust for any α = o(n), β = o(n).

Nevertheless, we are able to leverage the connection to mst to arrive at a (4.5, 3.75)-robust

algorithm for tsp.

ICALP 2020
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Minimize r subject to

∀∅ 6= S ⊂ V :
∑

u∈S,v∈V \S yuv ≥ 2

∀u ∈ V :
∑

v 6=u yuv = 2

∀∅ 6= S ⊂ V, u ∈ S, v ∈ V \S :
∑

e∈δ(S) xe,u,v ≥ yuv

∀d :
∑

e∈E dexe ≤ opt(d) + r

∀u, v ∈ V, u 6= v : 0 ≤ yuv ≤ 1

∀e ∈ E, u, v ∈ V, v 6= u : 0 ≤ xe,u,v ≤ 1

∀e ∈ E : xe ≤ 2

(3)

Figure 1 The Robust TSP Polytope.

3.1 Approximate Separation Oracle

We use the LP relaxation of robust traveling salesman in Figure 1. This is the standard

subtour LP (see e.g. [32]), but augmented with variables specifying the edges used to visit

each new vertex, as well as with the regret constraint set. Integrally, yuv is 1 if splitting the

tour into subpaths at each point where a vertex is visited for the first time, there is a subpath

from u to v (or vice-versa). That is, yuv is 1 if between the first time u is visited and the first

time v is visited, the tour only goes through vertices that were already visited before visiting

u. xe,u,v is 1 if on this subpath, the edge e is used. We use xe to denote
∑

u,v∈V xe,u,v for

brevity. A discussion of why the constraints other than the regret constraint set in (3) are

identical to the standard tsp polytope is included in the full paper.

We now describe the separation oracle RRTSP-Oracle used to separate (3). All

constraints except the regret constraint set can be separated in polynomial time by solving a

min-cut problem. Recall that exactly separating the regret constraint set involves finding

an “adversary” sol that maximizes maxd[
∑

e∈E dexe − sol(d)], and seeing if this quantity

exceeds r. However, since TSP is NP-hard, finding this solution in general is NP-hard.

Instead, we will only consider a solution sol if it is a walk on some spanning tree T , and

find the one that maximizes maxd[
∑

e∈E dexe − sol(d)].

Fix any sol that is a walk on some spanning tree T . For any e, if e is not in T , the

regret of x, y against sol is maximized by setting e’s length to ue. If e is in T , then sol is

paying 2de for that edge whereas the fractional solution pays dexe ≤ 2de, so to maximize the

fractional solution’s regret, de should be set to ℓe. This gives that the regret of fractional

solution x against any sol that is a spanning tree walk on T is

∑

e∈T

(ℓexe − 2ℓe) +
∑

e/∈T

uexe =
∑

e∈E

uexe −
∑

e∈T

(uexe − (ℓexe − 2ℓe)).

The quantity
∑

e∈E uexe is fixed with respect to T , so finding the spanning tree T that

maximizes this quantity is equivalent to finding T that minimizes
∑

e∈T (uexe− (ℓexe− 2ℓe)).

But this is just an instance of the minimum spanning tree problem where edge e has

weight uexe − (ℓexe − 2ℓe), and thus we can find T in polynomial time. After finding this

spanning tree, RRTSP-Oracle checks if the regret of x, y against the walk on T is at

least r, and if so outputs this as a violated inequality. If there is some sol, d such that
∑

e∈E dexe > 2 · sol(d) + r, then the regret of the fractional solution against a walk on a

spanning tree contained in sol (which has cost at most 2 · sol(d) in realization d) must be

at least r, and thus its regret against T must also be at least r. This gives the following

lemma:
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Minimize r subject to

∀S ⊂ V such that ∅ ⊂ S ∩ T ⊂ T :
∑

e∈δ(S) xe ≥ 1 (4)

∀d such that de ∈ [ℓe, ue] :
∑

e∈E dexe ≤ opt(d) + r (5)

∀e ∈ E : xe ∈ [0, 1] (6)

Figure 2 The Robust Steiner Tree Polytope.

◮ Lemma 6. For any instance of robust traveling salesman there exists an algorithm RRTSP-

Oracle that given a solution (x, y, r) to (3) either:

Outputs a separating hyperplane for (3), or

Outputs “Feasible”, in which case (x, y) is feasible for the (non-robust) TSP LP and

∀d :
∑

e∈E dexe ≤ 2 · opt(d) + r.

The formal description of RRTSP-Oracle and the proof of Lemma 6 are given in the

full paper. By using the ellipsoid method with separation oracle RRTSP-Oracle and the

fact that (3) has optimum at most mr, we get a (2, 1)-robust fractional solution. Applying

Theorem 3 as well as the fact that the TSP polytope has integrality gap 3/2 (see e.g. [32])

and the TSP problem has a 3/2-approximation gives Theorem 5.

4 Algorithm for the Robust Steiner Tree Problem

In this section, our goal is to find a fractional solution to the LP in Fig. 2 for robust Steiner

tree. By Theorem 3 and known approximation/integrality gap results for Steiner Tree, this

gives the following theorem:

◮ Theorem 7. There exists a (2755, 64)-robust algorithm for the Steiner tree problem.

It is well-known that the standard Steiner tree polytope admits an exact separation oracle

(by solving the s, t-min-cut problem using edge weights xe for all s, t ∈ T ) so it is sufficient

to find an approximate separation oracle for the regret constraint set. Unlike tsp, we do

not know how to leverage the approximation for stt via solving an instance of mst, since

this approximation uses information about shortest paths in the stt distance which are not

well-defined when the weights are unknown. In turn, a more nuanced separation oracle and

analysis is required. We present the main ideas of the separation oracle here, and defer the

details to the full paper.

First, we create the derived instance of the Steiner tree problem which is a copy G′ of the

input graph G with edge weights uexe + ℓe − ℓexe. As noted earlier, the optimal Steiner tree

T ∗ on the derived instance maximizes the regret of the fractional solution x. However, since

Steiner tree is NP-hard, we cannot hope to exactly find T ∗. We need a Steiner tree T̂ such

that the regret caused by it can be bounded against that caused by T ∗. The difficulty is

that the regret corresponds to the total weight of edges not in the Steiner tree (plus an offset

that we will address later), whereas standard Steiner tree approximations give guarantees

in terms of the total weight of edges in the Steiner tree. We overcome this difficulty by

requiring a stricter notion of “difference approximation” – that the weight of edges T̂ \ T ∗

be bounded against those in T ∗ \ T̂ . Note that this condition ensures that not only is the

weight of edges in T̂ bounded against those in T ∗, but also that the weight of edges not in

T̂ is bounded against that of edges not in T ∗. We show the following lemma to obtain the

difference approximation:
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◮ Lemma 8. For any ǫ > 0, there exists a polynomial-time algorithm for the Steiner tree

problem such that if opt denotes the set of edges in the optimal solution and c(S) denotes

the total weight of edges in S, then for any input instance of Steiner tree, the output solution

alg satisfies c(alg \ opt) ≤ (4 + ǫ) · c(opt \ alg).

The algorithm proving Lemma 8 is a local search procedure proposed by [16] (who

considered the more general Steiner forest) that considers local moves of the following form:

For the current solution alg, a local move consists of adding any path f whose endpoints

are vertices in alg and whose intermediate vertices are not in alg, and then deleting from

alg a subpath a in the resulting cycle such that alg∪ f \ a remains feasible. We extend the

results in [16] by showing that such an algorithm is 4-approximate for Steiner tree. We can

further extend this argument to show that such an algorithm, in fact, satisfies the stricter

difference approximation requirement in Lemma 8 (see the full paper for details).

Recall that the regret caused by T is not exactly the weight of edges not in T , but

includes a fixed offset of
∑

e∈E(ℓe − ℓexe). If ℓe = 0 for all edges, i.e., the offset is 0, then

we can recover a robust algorithm from Lemma 8 alone with much better constants than

in Theorem 7 (we defer the discussion/proof of this result to the full paper). In general

though, the approximation guarantee given in Lemma 8 alone does not suffice because of

the offset. We instead rely on a stronger notion of approximation formalized in the next

lemma that provides simultaneous approximation guarantees on two sets of edge weights:

ce = uexe − ℓexe + ℓe and c′
e = ℓe − ℓexe. The guarantee on ℓe − ℓexe can then be used to

handle the offset.

◮ Lemma 9. Let G be a graph with terminals T and two sets of edge weights c and c′.

Let sol be any Steiner tree connecting T . Let Γ′ > 1, κ > 0, and 0 < ǫ < 4
35 be fixed

constants. Then there exists a constant Γ (depending on Γ′, κ, ǫ) and an algorithm that

obtains a collection of Steiner trees alg, at least one of which (let us call it algi) satisfies:

c(algi \ sol) ≤ 4Γ · c(sol \ algi), and

c′(algi) ≤ (4Γ′ + κ + 1 + ǫ) · c′(sol).

The fact that Lemma 9 generates multiple solutions (but only polynomially many) is

fine because as long as we can show that one of these solutions causes sufficient regret, our

separation oracle can just iterate over all solutions until it finds one that causes sufficient

regret.

We give a high level sketch of the proof of Lemma 9 here, and defer details to the full

paper. The algorithm uses the idea of alternate minimization, alternating between a “forward

phase” and a “backward phase”. The goal of each forward phase/backward phase pair is to

keep c′(alg) approximately fixed while obtaining a net decrease in c(alg). In the forward

phase, the algorithm greedily uses local search, choosing swaps that decrease c and increase

c′ at the best “rate of exchange” between the two costs (i.e., the maximum ratio of decrease

in c to increase in c′), until c′(alg) has increased past some upper threshold. Then, in the

backward phase, the algorithm greedily chooses swaps that decrease c′ while increasing c

at the best rate of exchange, until c′(alg) reaches some lower threshold, at which point we

start a new forward phase.

We guess the value of c′(sol) (we can run many instances of this algorithm and generate

different solutions based on different guesses for this purpose) and set the upper threshold

for c′(alg) appropriately so that we satisfy the approximation guarantee for c′. For c we

show that as long as alg is not a 4Γ-difference approximation with respect to c then a

forward/backward phase pair reduces c(alg) by a non-negligible amount (of course, if alg is

a 4Γ-difference approximation then we are done). This implies that after enough iterations,



A. Ganesh, B. M. Maggs, and D. Panigrahi 54:11

alg must be a 4Γ-difference approximation as c(alg) can only decrease by a bounded

amount. To show this, we claim that while alg is not a 4Γ-difference approximation, for

sufficiently large Γ the following bounds on rates of exchange hold:

For each swap in the forward phase, the ratio of decrease in c(alg) to increase in c′(alg)

is at least some constant k1 times c(alg\sol)
c′(sol\alg) .

For each swap in the backward phase, the ratio of increase in c(alg) to decrease in

c′(alg) is at most some constant k2 times c(sol\alg)
c′(alg\sol) .

Before we discuss how to prove this claim, let us see why this claim implies that a forward

phase/backward phase pair results in a net decrease in c(alg). If this claim holds, suppose we

set the lower threshold for c′(alg) to be, say, 101c′(sol). That is, throughout the backward

phase, we have c′(alg) > 101c′(sol). This lower threshold lets us rewrite our upper bound

on the rate of exchange in the backward phase in terms of the lower bound on rate of

exchange for the forward phase:

k2
c(sol \ alg)

c′(alg \ sol)
≤ k2

c(sol \ alg)

c′(alg)− c′(sol)
≤ k2

c(sol \ alg)

100c′(sol)
≤ k2

c(sol \ alg)

100c′(sol \ alg)

≤ k2
1

4Γ

c(alg \ sol)

100c′(sol \ alg)
=

k2

400Γk1
· k1

c(alg \ sol)

c′(sol \ alg)
.

In other words, the bound in the claim for the rate of exchange in the forward phase

is larger than the bound for the backward phase by a multiplicative factor of Ω(1) · Γ.

While these bounds depend on alg and thus will change with every swap, let us make the

simplifying assumption that through one forward phase/backward phase pair these bounds

remain constant. Then, the change in c(alg) in one phase is just the rate of exchange for

that phase times the change in c′(alg), which by definition of the algorithm is roughly equal

in absolute value for the forward and backward phase. So this implies that the decrease in

c(alg) in the forward phase is Ω(1) · Γ times the increase in c(alg) in the backward phase,

i.e., the net change across the phases is a non-negligible decrease in c(alg) if Γ is sufficiently

large. Without the simplifying assumption, we can still show that the decrease in c(alg)

in the forward phase is larger than the increase in c(alg) in the backward phase for large

enough Γ using a much more technical analysis. In particular, our analysis will show there is

a net decrease as long as:

min

{

4Γ− 1

8Γ
,

(4Γ− 1)(
√

Γ− 1)(
√

Γ− 1− ǫ)κ

16(1 + ǫ)Γ2

}

− (eζ′(4Γ′+κ+1+ǫ) − 1) > 0, (7)

where

ζ ′ =
4(1 + ǫ)Γ′

(
√

Γ′ − 1)(
√

Γ′ − 1− ǫ)(4Γ′ − 1)(4Γ− 1)
.

Note that for any positive ǫ, κ, Γ′, there exists a sufficiently large value of Γ for (7) to hold,

since as Γ→∞, we have ζ ′ → 0, so that

(eζ′(4Γ′+κ+1+ǫ) − 1)→ 0 and

min

{

4Γ− 1

8Γ
,

(4Γ− 1)(
√

Γ− 1)(
√

Γ− 1− ǫ)κ

16(1 + ǫ)Γ2

}

→ min{1/2, κ/(4 + 4ǫ)}.

So, the same intuition holds: as long as we are willing to lose a large enough Γ value, we can

make the increase in c(alg) due to the backward phase negligible compared to the decrease

in the forward phase, giving us a net decrease.
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It remains to argue that the claimed bounds on rates of exchange hold. Let us argue the

claim for Γ = 4, although the ideas easily generalize to other choices of Γ. We do this by

generalizing the analysis of the local search algorithm. This analysis shows that if alg is a

locally optimal solution, then

c(alg \ sol) ≤ 4 · c(sol \ alg),

i.e., alg is a 4-difference approximation of sol. The contrapositive of this statement is that

if alg is not a 4-difference approximation, then there is at least one swap that will improve it

by some amount. We modify the approach of [16] by weakening the notion of locally optimal.

In particular, suppose we define a solution alg to be “approximately” locally optimal if at

least half of the (weighted) swaps between paths a in alg \ sol and paths f in sol \ alg

satisfy c(a) ≤ 2c(f) (as opposed to c(a) ≤ c(f) in a locally optimal solution; the choice of

2 for both constants here implies Γ = 4). Then a modification of the analysis of the local

search algorithm, losing an additional factor of 4, shows that if alg is approximately locally

optimal, then

c(alg \ sol) ≤ 16 · c(sol \ alg).

The contrapositive of this statement, however, has a stronger consequence than before: if alg

is not a 16-difference approximation, then a weighted half of the swaps satisfy c(a) > 2c(f),

i.e. reduce c(alg) by at least

c(a)− c(f) > c(a)− c(a)/2 = c(a)/2.

The decrease in c(alg) due to all of these swaps together is at least c(alg \ sol) times some

constant. In addition, since a swap between a and f increases c′(alg) by at most c′(f), the

total increase in c′ due to these swaps is at most c′(sol \ alg) times some other constant.

An averaging argument then gives the rate of exchange bound for the forward phase in the

claim, as desired. The rate of exchange bound for the backward phase follows analogously.

This completes the algorithm and proof summary, although more detail is needed to

formalize these arguments. Moreover, we also need to show that the algorithm runs in

polynomial time. These details are given in the full paper.

We now formally define our separation oracle RRST-Oracle in Fig. 3 and prove that it

is an approximate separation oracle in the lemma below:

◮ Lemma 10. Fix any Γ′ > 1, κ > 0, 0 < ǫ < 4/35 and let Γ be the constant given in

Lemma 9. Let α = (4Γ′ + κ + 2 + ǫ)4Γ + 1 and β = 4Γ. Then there exists an algorithm

RRST-Oracle that given a solution (x, r) to the LP in Fig. 2 either:

Outputs a separating hyperplane for the LP in Fig. 2, or

Outputs “Feasible”, in which case x is feasible for the (non-robust) Steiner tree LP and

∀d :
∑

e∈E

dexe ≤ α · opt(d) + β · r.

Proof. It suffices to show that if there exists d, sol such that
∑

e∈E

dexe > α · sol(d) + β · r, i.e.,
∑

e∈E

dexe − α · sol(d) > β · r

then RRST-Oracle outputs a violated inequality on line 6, i.e., the algorithm finds a

Steiner tree T ′ such that
∑

e/∈T ′

uexe +
∑

e∈T ′

ℓexe −
∑

e∈T ′

ℓe > r.
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RRST-Oracle(G(V, E), {[ℓe, ue]}e∈E , (x, r))

Data: Undirected graph G(V, E), lower and upper bounds on edge lengths

{[ℓe, ue]}e∈E , solution (x = {xe}e∈E , r) to the LP in Fig. 2

1 Check all constraints of the LP in Fig. 2 except regret constraint set, return any

violated constraint that is found;

2 G′ ← copy of G where ce = uexe − ℓexe + ℓe, c′
e = ℓe − ℓexe;

3 alg← output of algorithm from Lemma 9 on G′;

4 for algi ∈ alg do

5 if
∑

e/∈algi
uexe +

∑

e∈algi
ℓexe −

∑

e∈algi
ℓe > r then

6 return
∑

e/∈algi
uexe +

∑

e∈algi
ℓexe −

∑

e∈algi
ℓe ≤ r;

7 end

8 end

9 return “Feasible”;

Figure 3 Separation Oracle for LP in Fig. 2.

Notice that in the inequality

∑

e∈E

dexe − α · sol(d) > β · r,

replacing d with d
′ where d′

e = ℓe when e ∈ sol and d′
e = ue when e /∈ sol can only increase

the left hand side. So replacing d with d
′ and rearranging terms, we have

∑

e∈sol

ℓexe +
∑

e/∈sol

uexe > α
∑

e∈sol

ℓe + β · r =
∑

e∈sol

ℓe +

[

(α− 1)
∑

e∈sol

ℓe + β · r
]

.

In particular, the regret of the fractional solution against sol is at least (α−1)
∑

e∈sol
ℓe+β ·r.

Let T ′ be the Steiner tree satisfying the conditions of Lemma 9 with ce = uexe− ℓexe + ℓe

and c′
e = ℓe − ℓexe. Let E0 = E \ (sol ∪ T ′), ES = sol \ T ′, and ET = T ′ \ sol. Let c(E′)

for E′ = E0, ES , ET denote
∑

e∈E′(uexe− ℓexe + ℓe), i.e., the total weight of the edges E′ in

G′. Now, note that the regret of the fractional solution against a solution using edges E′ is:

∑

e/∈E′

uexe +
∑

e∈E′

ℓexe −
∑

e∈E′

ℓe =
∑

e/∈E′

(uexe − ℓexe + ℓe)−
∑

e∈E

(ℓe − ℓexe)

= c(E \ E′)−
∑

e∈E

(ℓe − ℓexe).

Plugging in E′ = sol, we then get that:

c(E0) + c(ET )−
∑

e∈E

(ℓe − ℓexe) > (α− 1)
∑

e∈sol

ℓe + β · r.

Isolating c(ET ) then gives:

c(ET ) > (α− 1)
∑

e∈sol

ℓe + β · r −
∑

e∈E0

(uexe − ℓexe + ℓe) +
∑

e∈E

(ℓe − ℓexe)

= (α− 1)
∑

e∈sol

ℓe + β · r −
∑

e∈E0

uexe +
∑

e/∈E0

(ℓe − ℓexe).
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Since β = 4Γ, Lemma 9 along with an appropriate choice of ǫ gives that c(ET ) ≤ βc(ES),

and thus:

c(ES) >
1

β



(α− 1)
∑

e∈sol

ℓe + β · r −
∑

e∈E0

uexe +
∑

e/∈E0

(ℓe − ℓexe)



 .

Recall that our goal is to show that c(E0) + c(ES)−∑

e∈E(ℓe − ℓexe) > r, i.e., that the

regret of the fractional solution against T ′ is at least r. Adding c(E0)−∑

e∈E(ℓe − ℓexe) to

both sides of the previous inequality, we can lower bound c(E0) + c(ES)−∑

e∈E(ℓe − ℓexe)

as follows:

c(E0) + c(ES)−
∑

e∈E

(ℓe − ℓexe)

>
1

β



(α− 1)
∑

e∈sol

ℓe + β · r −
∑

e∈E0

uexe +
∑

e/∈E0

(ℓe − ℓexe)





+
∑

e∈E0

(uexe − ℓexe + ℓe)−
∑

e∈E

(ℓe − ℓexe)

= r +
α− 1

β

∑

e∈sol

ℓe +
1

β

∑

e/∈E0

(ℓe − ℓexe) +
β − 1

β

∑

e∈E0

uexe −
∑

e/∈E0

(ℓe − ℓexe)

≥ r +
α− 1− β

β

∑

e∈sol

ℓe +
1

β

∑

e/∈E0

(ℓe − ℓexe) +
β − 1

β

∑

e∈E0

uexe −
∑

e∈ET

(ℓe − ℓexe) ≥ r.

Here, the last inequality holds because by our setting of α, we have

α− 1− β

β
= 4Γ′ + κ + 1 + ǫ,

and thus Lemma 9 gives that

∑

e∈ET

(ℓe − ℓexe) ≤ α− 1− β

β

∑

e∈sol

(ℓe − ℓexe) ≤ α− 1− β

β

∑

e∈sol

ℓe. ◭

By using Lemma 10 with the ellipsoid method and the fact that the LP optimum is

at most mr, we get an (α, β)-robust fractional solution. Then, Theorem 3 and known

approximation/integrality gap results give us the following theorem, which with appropriate

choice of constants gives Theorem 7:

◮ Theorem 11. Fix any Γ′ > 1, κ > 0, 0 < ǫ < 4/35 and let Γ be the constant given in

Lemma 9. Let α = (4Γ′ + κ + 2 + ǫ)4Γ + 1 and β = 4Γ. Then there exists a polynomial-time

(2α ln 4 + ǫ, 2β ln 4 + ln 4 + ǫ)-robust algorithm for the Steiner tree problem.

5 Lower Bounds

To contextualize our approximation guarantees, we give the following generalized hardness

result for a family of problems which includes many graph optimization problems:

◮ Theorem 12. Let P be any robust covering problem whose input includes a weighted graph

G where the lengths de of the edges are given as ranges [ℓe, ue] and for which the non-robust

version of the problem, P ′, has the following properties:
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A solution to an instance of P ′ can be written as a (multi-)set S of edges in G, and has

cost
∑

e∈S de.

Given an input including G to P ′, there is a polynomial-time approximation-preserving

reduction from solving P ′ on this input to solving P ′ on some input including G′, where

G′ is the graph formed by taking G, adding a new vertex v∗, and adding a single edge

from v∗ to some v ∈ V of weight 0.

For any input including G to P ′, given any spanning tree T of G, there exists a feasible

solution only including edges from T .

Then, if there exists a polynomial time (α, β)-robust algorithm for P, there exists a

polynomial-time β-approximation algorithm for P.

Before proving Theorem 12, we note that robust traveling salesman and robust Steiner

tree are examples of problems that Theorem 12 implicitly gives lower bounds for. For both

problems, the first property clearly holds.

For traveling salesman, given any input G, any solution to the problem on input G′

as described in Theorem 12 can be turned into a solution of the same cost on input G by

removing the new vertex v∗ (since v∗ was distance 0 from v, removing v∗ does not affect the

length of any tour), giving the second property. For any spanning tree of G, a walk on the

spanning tree gives a valid TSP tour, giving the third property.

For Steiner tree, for the input with graph G′ and the same terminal set, for any solution

containing the edge (v, v∗) we can remove this edge and get a solution for the input with

graph G that is feasible and of the same cost. Otherwise, the solution is already a solution

for the input with graph G that is feasible and of the same cost, so the second property

holds. Any spanning tree is a feasible Steiner tree, giving the third property.

We now give the proof of Theorem 12.

Proof of Theorem 12. Suppose there exists a polynomial time (α, β)-robust algorithm A

for P. The β-approximation algorithm for P ′ is as follows:

1. From the input instance I of P where the graph is G, use the approximation-preserving

reduction (that must exist by the second property of the theorem) to construct instance

I ′ of P ′ where the graph is G′.

2. Construct an instance I ′′ of P from I ′ as follows: For all edges in G′, their length is fixed

to their length in I ′. In addition, we add a “special” edge from v∗ to all vertices besides

v with length range [0,∞]2.

3. Run A on I ′′ to get a solution sol. Treat this solution as a solution to I ′ (we will show it

only uses edges that appear in I). Use the approximation-preserving reduction to convert

sol into a solution for I and output this solution.

Let O denote the cost of the optimal solution to I ′. Then, mr ≤ O. To see why, note

that the optimal solution to I ′ has cost O in all realizations of demands since it only uses

edges of fixed cost, and thus its regret is at most O. This also implies that for all d, opt(d)

is finite. Then for all d, sol(d) ≤ α · opt(d) + β ·mr, i.e. sol(d) is finite in all realizations

of demands, so sol does not include any special edges, as any solution with a special edge

has infinite cost in some realization of demands.

Now consider the realization of demands d where all special edges have length 0. The

special edges and the edge (v, v∗) span G′, so by the third property of P ′ in the theorem

statement there is a solution using only cost 0 edges in this realization, i.e. opt(d) = 0.

2 We use ∞ to simplify the proof, but it can be replaced with a sufficiently large finite number. For
example, the total weight of all edges in G suffices and has small bit complexity.
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Then in this realization, sol(d) ≤ α · opt(d) + β · mr ≤ β · O. But since sol does not

include any special edges, and all edges besides special edges have fixed cost and their cost

is the same in I ′′ as in I ′, sol(d) also is the cost of sol in instance I ′, i.e. sol(d) is a

β-approximation for I ′. Since the reduction from I to I ′ is approximation-preserving, we

also get a β-approximation for I. ◭

From [11, 22] we then get the following hardness results:

◮ Corollary 13. Finding an (α, β)-robust solution for Steiner tree where β < 96/95 is

NP-hard.

◮ Corollary 14. Finding an (α, β)-robust solution for TSP where β < 121/120 is NP-hard.

6 Conclusion

In this paper, we designed constant approximation algorithms for the robust Steiner tree

and traveling salesman problems. To the best of our knowledge, this is the first instance of

robust polynomial-time algorithms being developed for NP-complete graph problems. While

our approximation bounds for tsp are small constants, that for stt are very large constants.

A natural question is whether these constants can be made smaller, e.g. of the same scale

as classic approximation bounds for stt. While we did not seek to optimize our constants,

obtaining truly small constants for stt appears to be beyond our techniques, and is an

interesting open question. More generally, robust algorithms are a key component in the

area of optimization under uncertainty that is of much practical and theoretical significance.

We hope that our work will lead to more research in robust algorithms for other fundamental

problems in combinatorial optimization, particularly in graph algorithms.
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