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A unified understanding of the cononsolvency of
polymers in binary solvent mixtures

Xiangyu Zhang, Jing Zong and Dong Meng *

The standard random phase approximation (RPA) model is applied to investigate the cononsolvency of polymers

in mixtures of two good solvents. It is shown that in the RPA framework, the two types of cononsolvency

behaviors reported in previous theoretical studies can be unified under the same concept of mean-field density

correlations. The two types of cononsolvency are distinguished by the solvent composition at which maximum

immiscibility is predicted to occur. The maximum immiscibility occurs with the cosolvent being the minor

solvent if the driving mechanism is the preferential solvation of polymers. For the cononsolvency driven by the

preferential mixing of solvents, the maximum immiscibility is predicted at a symmetric solvent composition. An

interplay of the two driving forces gives rise to a reentrant behavior in which the cononsolvency of the two

types switches from one to the other, through a ‘‘conventional’’ region where the overall solvent quality varies

monotonically with the solvent composition. The RPA model developed in this work provides a unified analytical

framework for understanding the conformational and solubility transition of polymers in multi-solvent mixtures.

Such findings highlight the complex role played by the solvents in polymer solutions, a problem of fundamental

and practical interest in diverse applications of materials science.

I. Introduction

Polymer solutions of mixed solvents are often encountered in
experiments, as a means of tuning miscibility and manipulating
polymer assemblies, or simply as the byproducts of processing
history. The effects of having mixed solvents in polymer solutions
are, however, far from trivial. An exemplary situation is the
so-called cononsolvency, in which polymers dissolved in a mixture
of good solvents show a puzzling reentrant collapse and swelling
transition.1–4 A theoretical understanding of cononsolvency first
arrived from chemistry-specific computer simulations of thermo-
sensitive polymers in solvent mixtures.3,5–8 Later on, Tanaka et al.9

showed that cononsolvency of temperature-sensitive polymers can
be explained based on the competition between the two solvents in
forming hydrogen bonds with the polymers. They found that the
total coverage of the polymer chain by the bound solvent molecules
is not a monotonic function but passes through a minimum at the
composition where the competition is the strongest. However, it
has long been known that polymers with an upper critical
solution temperature (UCST), and even standard polymers, such as
polystyrene,10–12 also display the cononsolvency behavior, pointing
to the possible generic origin of this enigmatic phenomenon.

Computer simulations based on the generic bead–spring model
were performed by Mukherji et al.13 to understand the coil–globule–
coil transition of polymers in mixtures of two good solvents.

They attribute the initial collapse to the formation of bridges that
the cosolvent molecules form by binding two monomers far apart
along the polymer backbone, and the reopening at higher cosolvent
concentrations is due to the increased decoration of the polymer by
cosolvent molecules. Their study shows that chemistry-specific
details are indeed unnecessary for a system to display cononsol-
vency in computer simulations; on the other hand, the discrete
nature of the proposed mechanism—preferential solute–(co)solvent
coordination – implies that Flory–Huggins type mean-field theories
may not be sufficient to describe such a behavior. Simulations using
a similar bead–spring model have also been reported in a number
of other contexts.14–17 In addition to the bead–spring model, Zhang
et al. showed that computer simulations employing the mesoscopic
hybridmodel can also reproduce the cononsolvency behavior.18 The
non-bonded interactions in the hybrid model are templated by
functionals of local order parameters that are similar to free
energies in classical density functional theory. Conceptually differ-
ent from conventional microscopic descriptions, the success of the
mesoscopic hybrid model in capturing the cononsolvency effect
further indicates the universality of this phenomenon.

General analytical theories have played an especially important
role in interpreting cononsolvency from a generic perspective.
Using the standard Flory–Huggins theory, Dudowicz et al.19 found
that polymer miscibility patterns in solvent mixtures are largely
controlled by the solvent–(co)solvent interaction energies. In
particular, when the solvent–(co)solvent interaction parameter is
negative and exceeds inmagnitude the polymer–solvent interactions
(for instance, when the solvent and cosolvent molecules contain
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polar groups or form a weak hydrogen bond), cononsolvency arises
with the maximum immiscibility being predicted at an equal
solvent–cosolvent fraction. On the other hand, a Langmuir-like
thermodynamic treatment was devised by Mukherji et al.20 to
account for solvent-mediated bridging and the competitive displace-
ment of different solvent components onto the polymer. In the
model, cosolvent adsorptions are categorized into two different
modes: bridge-forming and non-bridge-forming, and a free energy
density is prescribed to account for the difference. Collapse and
swelling transitions result from changes in the relative fraction of
the two adsorption modes that minimizes the free energy density.
In the same vein, Sommers21,22 proposed the adsorption-attraction
model, which simplifies the free energy model in ref. 20 by
introducing a free energy term to account for the mean-field
attraction between monomers due to the ‘‘bridging effect’’
mediated by adsorbed cosolvents. In contrast to ref. 19, the driving
force of polymer cononsolvency in ref. 20 and 21 is the difference
in the affinity between the polymer and the two solvents, with
solvents and cosolvents forming ideal mixtures with each other
with zero enthalpy/entropy of mixing. Furthermore, ref. 20 and 21
predict that polymers possess the most collapsed conformations
when the cosolvent (the better solvent for the polymers) is the
minor solvent as opposed to the equal fraction predicted in ref. 19.

In this study, we aim to explore the common generic cause
underlying the two types of cononsolvency behaviors reported in
the literature.13,18–21 By calculating the partial structure factors of
ternary polymer solutions using the random phase approximation
(RPA) approach, we show that both types of polymer cononsol-
vency can be rationalized through the lens of mean-field density
correlations, without the need to introduce ad hoc topological
correlations (such as solvent-mediated bridging) and the corres-
ponding energetic parameters. The manuscript is organized as
follows: the RPA model of ternary polymer solutions is briefly
discussed in Section II. Two special cases are then employed for
illustrating two different mechanisms that lead to polymer con-
onsolvency in ternary solutions. In Section III, calculations are
carried out to quantitatively describe the dependence of overall
solvent quality and the phase behavior of polymer solutions on the
solvent composition under the two types of cononsolvency effects.
In Section IV, discussions are extended to general situations where
cononsolvency behavior is controlled by the interplay/interference
of the two identified mechanisms.

II. Random phase approximation
model of ternary polymer solutions

The ternary RPA model is applied here to the mixture of homo-
polymer P and two solvents—solvent S and cosolvent C.23–25 In
particular, the polymer–polymer partial structure factor is given by

1

SPPðqÞ
¼ 1

S0
PPðqÞ

þ 1� 2wPSfS � 2wPCfC

c� 2wSCfSfC½ �

�
fSfC wPS � wPCð Þ2 þ wSC

2 � 2wSC wPS þ wPCð Þ
h i

c� 2wSCfSfC½ �

(1)

where S0PP(q) is the non-interacting single chain structure factor,
the total solvent volume fraction c� fS + fC = 1� fP with fi being
the volume fraction of component i, and wij is the Flory–Huggins
immiscibility parameter between components i and j. In eqn (1),
for simplicity, the specific volumes of all components have been
assumed to be identical and unity. A systematic study on the
effects of asymmetric specific volumes on polymer cononsolvency
behavior will be reported in future work. For a single-solvent
system (fC = 0), the above equation reduces to the known result:

1

SPPðqÞ
¼ 1

S0
PPðqÞ

þ 1

fS

� 2wPS: (2)

The last two terms,
1

fS

� 2wPS, determine the solvent quality

for polymers in a single-solvent polymer solution.
1

fS

� 2wPS 4 0

and o0 distinguish the good and bad solvent conditions, respec-

tively, and
1

fS

� 2wPS ¼ 0 defines the y-solvent condition at which

the excluded volume and immiscibility effects offset each other.
For binary-solvent polymer solutions, we restrict our attention

to solutions with the two solvents being perfectly miscible, i.e.,
wSC r 0, and, without losing generality, we designate cosolvent C
as the better solvent for polymers, i.e., wPC r wPS. In analogy to
eqn (2), the overall solvent quality can be defined as

G ¼ 1� 2wPSfS � 2wPCfC

c� 2wSCfSfC½ �

�
fSfC wPS � wPCð Þ2þwSC

2 � 2wSC wPS þ wPCð Þ
h i

c� 2wSCfSfC½ �

¼ 1� wSC
2fSfC

c0
� 2

1� xC
0 þ xS

0� �
2

wPS

"

þ
1� xS

0 þ xC
0� �

2
wPC þ c0

2
xS

0
xC

0
Dw2

#
;

(3)

where Dw � (wPS � wPC) 4 0 and c0 � c � 2wSCfSfC, and xC
0 � fS

c0

and xS
0 � fC

c0
are the effective solvent volume fraction and solvent

compositional fraction, respectively. The first term in eqn (3)
accounts for the effective excluded volume effect that takes into
consideration the less extent of mixing between polymers and
solvent molecules due to the preferential mixing by the two solvents.
The three terms inside the square brackets represent the overall
immiscibility between the polymer and the solvent mixture. The first
two terms correspond to a mixing rule by a weighted average. The

term
c0

2
xS

0
xC

0
Dw2 4 0 (if wPS and wPC are different) always contributes

to reducing the overall solvent quality. The effects of varying solvent
composition (i.e., varying fS and fC at constant fP) on G can be
better illustrated by considering two special cases: (1) the ideal-
mixing binary solvent mixture, i.e., wSC = 0; and (2) the equal-quality
binary solvent mixture, i.e., Dw = 0. In the following, we will discuss
the two cases separately to elucidate the respective mechanisms that
are responsible for the polymer cononsolvency behavior.
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II.1 Ideal-mixing binary solvent mixture (vSC = 0)

With wSC = 0, c0 = c, and xS
0 ¼ fS

c
� xS and xC

0 ¼ fC

c
� xC

recover the physical meaning of the true solvent compositional
fractions of S and C, respectively. Eqn (3) becomes

G ¼ 1

c
� 2 xSwPS þ xCwPCð Þ þ c

2
xSxCDw2

h i
: (4)

In this case, the excluded volume effect,
1

c
¼ 1

1� fP

; is the

same as that in the single-solvent system due to the ideal
mixing of the two solvents. The mixing rule contributes a linear

change to G with xC being varied, while the term
c

2
xSxCDw2

possesses a maximum at xS = xC = 0.5 that gives rise to
a minimum in G. The location of the minimum can be

determined by solving
dG
dxC

����
xC¼xC

�
¼ 0 that gives

xC
� ¼ 1

2
� 1

cDw
: (5)

The condition for the minimum Gmin to occur between
0 o xC* o 1 is then given by

Dw4
2

c
� Dwconon: (6)

The presence of a minimum in G implies that the overall
solvent quality for polymers deteriorates upon the addition of
cosolvents of a better quality, which serves as the definition
of cononsolvency in this study. Eqn (6) suggests that conon-
solvency is a generic effect that is expected to occur for many
polymers as long as one of the solvents is significantly better
than the other. Moreover, Gmin is predicted to occur at a non-
equal fraction, i.e., 0 o xC* o 0.5, a net outcome under the

combined effect of the mixing rule and the term
c

2
xSxCDw2: The

critical value of Dw for the ternary polymer solution falling
into the bad-solution condition can be determined from the
equation Gmin(Dw = Dwy) = 0, i.e.,

�cxS*xC*Dw
2 + 1/c � 2(xS*wPS + xC*wPC) = 0, (7)

where Dwy is the positive root. The critical value of Dw for the
ternary polymer solution to undergo a phase transition can be
determined from the spinodal instability criterion by requiring

1

SPPð0Þ
¼ 1

S0
PPð0Þ

þ Gmin Dw ¼ Dwdemix
� �

¼ 0 that gives

Dwdemix ¼ 1

cxC�xS�S0
PPð0Þ

þ 1

c2xC�xS�
� 2

c

wPS
xC�

þ wPC
xS�

� �� �1
2

(8)

II.2 Equal-quality binary solvent mixture (Dv = 0)

On the other hand, with Dw = 0, eqn (3) becomes

G ¼ 1� wSC
2fSfC

c� 2wSCfSfC

� 2wPS: (9)

In this case, the effect of polymer–solvent immiscibility is
identical to that in a single-solvent system, as expected since

the two solvents behave identically from the perspective of the
polymers. At a given polymer volume fraction fP, the effective
excluded volume effect exhibits a minimum at xS = xC = 0.5,
giving rise to a minimum in G at the same solvent composition.
Note that the presence of a minimum in G occurs as long as
wSC o 0 and is independent of wPS or wPC. On the other hand,
the exact value of the minimum, Gmin, depends on c, wSC, and
wPS. Similar to the ‘‘ideal-mixing’’ case, the critical value of wSC
for the ternary solution being in the bad-solution condition can
be solved using the equation Gmin(wSC = wySC) = 0:

1� wy
2

SC

4

c� wySC
2

� 2wPS ¼ 0; (10)

and the critical value of wSC for the ternary solution to undergo

a phase transition can be solved using the equation
1

S0
PPð0Þ

þ

Gmin wSC ¼ wdemix
SC

� �
¼ 0:

1

SPPð0Þ
¼ 1

S0
PPð0Þ

þ
1� wdemix2

SC

4

c� wdemix
SC

2

� 2wPS ¼ 0 (11)

III. RPA calculations

In this section, calculations based on the RPA model are carried
out to quantitatively describe the effect of varying solvent
composition on the overall solvent quality and the phase
behavior of ternary polymer solutions. For simplicity, we
set wPS = 0 and adopt the continuum Gaussian chain model
for the non-interacting single chain structure factor, i.e.,
S0PP(q) = NfPgD(x), where N is the degree of polymerization,

fP is the polymer volume fraction, and gD x � N

6
ðbqÞ2

� �
is the

Debye function with b and q being the statistical segment
length and the magnitude of the wave vector, respectively.

III.1 Ideal-mixing binary solvent mixture (vSC = 0).

Fig. 1(a) shows the overall solvent quality G as a function of the

cosolvent fraction xC at fP = 0.1. With Dwo
2

1� fP

� 2:2; the

overall solvent quality monotonically improves with increasing
xC. Beyond this value, a minimum in G starts to develop with
larger Dw values producing greater reductions in G. As xC
further increases, the overall solvent quality starts to recover,
and the rate of recovery is faster with a greater Dw. For Dw\ 4.4,
G becomes negative in a certain range of xC, indicating that the
solution falls into the bad-solvent condition. For a given Dw
(Dw = 5), Fig. 1(b) shows that the cononsolvency effect becomes
abated with increasing polymer concentration. Both the range
of xC in which G decreases and the degree of reduction shrink

at higher fP. With fP 4 1� 2

Dw
¼ 0:6, the curves become strictly

monotonic, with G increasing gradually with increasing xC.
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It is worth mentioning that the predicted dependence of G
on xC does not depend on the form of S0PP assumed by the
RPA model.

At Dw = 5, Fig. 2(a) and (b) show the evolution of the partial
structure factor SPP(q) with solvent composition xC at fP =
0.1 and fP = 0.3, respectively. At fP = 0.1, Fig. 2(a) shows a
diverging trend for SPP(q = 0) as xC approaches 0.4152 (from
above) and 0.1403 (from below), signaling phase instability in
this range of solvent composition. At a higher polymer concen-
tration of fP = 0.3, SPP(q = 0) stays finite for all solvent
compositions with SPP(q) obtained at xC = 0.2143 lying above
all other curves. In the meantime, the corresponding behaviors
of SPC and SPS shown in Fig. 3(c) and (d) indicate the relative
enrichment of cosolvents and depletion of solvents around
polymers. At an even higher polymer concentration of fP =
0.7, the cononsolvency effect is no longer observable and SPP(q)
flattens gradually with increasing xC (data not shown).

Fig. 3(a) shows the dependence of the critical values Dwconon,
Dwy and Dwdemix on the polymer concentration. While Dwconon

and Dwy monotonically increase with fP, Dwdemix shows an
increase approaching the dilute limit due to the enhanced
translational entropy. The effect of chain length on Dwdemix is
only appreciable at low polymer concentrations. Furthermore,
at a given fP and Dw, the respective range of xC within
which cononsolvency, the bad-solution condition, and phase
instability occur can be determined using eqn (6)–(8). Fig. 3(b)
and (c) show such phase diagrams for two polymer con-
centrations, fP = 0.01 and 0.1, respectively. When Dwconon o
Dw o Dwy, the ternary solution exhibits a deterioration in the
overall solvent quality as xC increases and then recovers, but it
remains in the good-solution condition (i.e., G 4 0) for all
xC values. When Dwy o Dw, the solution will fall into the
bad-solution condition with increasing xC. Fig. 3(b) suggests
that the polymers may undergo a reentrant coil–globule–coil

Fig. 1 Overall solvent quality G as a function of cosolvent composition xC calculated withN = 50 at (a) varying Dw and fP = 0.1; and (b) varying fP and Dw = 5.

Fig. 2 Evolution of the partial structure factors with changing cosolvent composition xC calculated with N = 50 at (a) fP = 0.1 and (b)–(d) fP = 0.3.
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transition without experiencing phase instability, consistent
with findings from ref. 20 that polymer conformational
changes under the cononsolvency effect may not correspond
to a phase transition. However, such behavior may no longer be
possible at higher polymer concentrations or higher molecular
weights, as the boundaries for the bad-solution condition and
phase instability almost overlap with each other (Fig. 3(c)).

III.2 Equal-quality binary solvent mixture (Dv = 0).

Fig. 4(a) and (b) show the overall solvent quality as a function of
xC at fP = 0.1 and wSC = �4, respectively. The minimum in G is
always observed at xC = 0.5 as long as wSC o 0, with smaller wSC
and fP values producing greater drops in G. The dependences
of the critical values wcononSC , wySC and wdemix

SC on polymer concen-
tration are shown in Fig. 5(a), and Fig. 5(b) and (c) show the

phase diagrams of the ternary solution at two polymer con-
centrations, fP = 0.01 and 0.1, respectively. Similar to the ideal-
mixing case, at low polymer concentrations, the polymers
may undergo a reentrant coil–globule–coil transition without
demixing. In contrast to the ideal-mixing system, the overall
solvent quality and the phase diagrams of equal-quality mixing
systems are symmetric about xC = 0.5, as suggested by eqn (9),
which agrees with the findings from ref. 19 that the ternary

solution behaves identically with
xC

xS
¼ r or

xS

xC
¼ r.

IV. Discussion

The results in Sections II and III describe the two situations
where cononsolvency of polymers in ternary solutions is driven

Fig. 3 (a) Critical values Dwcon, Dwy, and Dwdemix as a function of fP. (b and c) Boundaries of cononsolvency, bad-solution condition, and phase instability
in the Dw–xC plane for fP = 0.01 and 0.1.

Fig. 4 The overall solvent quality G as a function of solvent composition xC calculated with N = 50 at (a) varying wSC and fP = 0.1; and (b) varying fP and
wSC = �4.
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by the preferential solvation of polymers (when wSC = 0 and
Dw 4 0) and the preferential mixing of solvents (when wSC o 0
and Dw = 0), respectively. In general situations where Dw Z 0
and wSC r 0, it is expected that both effects play a part in
affecting the conformational and phase-behavior changes with
varying solvent composition. Generally, with DwZ 0 and wSC r 0,
@G
@fC

¼ 0 becomes a quadratic equation in terms of (2xC � 1):

�wSCDw 2xC � 1ð Þ2þ Dw2 þ wSC
2 � 2wSC

c

� �
2xC � 1ð Þ

þDw
2

c
� wSC

� �
¼ 0

(12)

that gives two roots

r1;2 ¼
� Dw2 þ wSC

2 � 2wSC
c

� �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dw2 � wSC2 þ 2wSC

c

� �2
s

�2wSCDw

:

(13)

The physical constraint �1 r r1 o r2 r 1 determines the
conditions under which an extremity in G can be observed. It
can be proved that the two roots have the same sign. Also,

r1 þ r2 ¼
Dw2 þ wSC

2 � 2wSC
c

� �
wSCDw

4
�2wSCDw�

2wSC
c

� �
wSCDw

¼ � 2� 2

cDw
o � 2

(14)

which implies that it is only possible for the larger root r2
(at which G is at its minimum) to satisfy the constraint �1 o
r2 o 1. For this to be the case, the following conditions need to
be satisfied:

Dwþ wSCð Þ � 2

c
; when Dw2 � wSC

2 þ 2wSC


c4 0

(Dw + wSC) r 0, when Dw2 � wSC
2 + 2wSC/c o 0.

This set of conditions gives rise to two separate regions in
which cononsolvency will occur in the Dw�wSC plane (the
shaded area in Fig. 6(a)). In the lower region (Dw r �wSC),
cononsolvency is driven by the preferential mixing of the two
solvents and is therefore independent of polymer volume

fraction. In the upper region Dw � 2

c
� wSC

� �
, cononsolvency

is driven by the preferential solvation of polymers. In between,
cononsolvency is suppressed by the counter-action of the
two effects (i.e., the effect of c0 a c is felt by both the
excluded volume and immiscibility terms in eqn (3)). By
setting wPS = 0 (for simplicity), Fig. 6(b) and (c) depict such
‘‘reentrant’’ behavior of cononsolvency, with G(xC) exhibiting
nonmonotonic variations by either increasing or decreasing
Dw and wSC, respectively, suggesting the two effects switching
their roles as the driving force behind the cononsolvency
behavior.

Another aspect of generalizing the current RPA analysis
concerns the specific volumes. Although in the current RPA
calculations, the specific volume of each component is assumed to
be identical, an extension to the treatment of asymmetric specific

Fig. 5 (a) wcononSC = 0, wySC and wdemix
SC as functions of fP, calculated using eqn (10) and (11) with N = 10, 50, and 100. (b and c) Boundaries of cononsolvency,

bad-solution condition, and phase instability in the wSC–xC plane for fP = 0.01 and 0.1.
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volumes in the RPA framework should be straightforward.
The effects of asymmetric specific volumes between the solvent
and cosolvent on the RPA predictions can, nevertheless, be
estimated based on the consideration of mixing entropy. In
general, asymmetry in the specific volumes will lead to a lower
degree of mixing between the solvents and cosolvents. For
the cononsolvency driven by the ‘‘preferential solvation of
polymers’’, this will promote the mixing between polymers
and cosolvents. As a result, the predicted values of Dwconon,
Dwy and Dwdemix will be smaller and Gmin will move to smaller
xC values. For the cononsolvency driven by the ‘‘preferential
mixing of solvents’’, asymmetry in the specific volumes will
move the maximum mixing away from xC = 0.5 and render the
phase diagrams shown in Fig. 5 asymmetric about xC = 0.5.

In accounting for the cononsolvency effect due to the pre-
ferential solvation of polymers, previous theoretical studies20,21

often rely on introducing the concept of ‘‘mediated bridging’’
between monomers. In the meantime, the fundamental role
played by the mean-field density correlations in the conon-
solvency effect has been largely overlooked. To the best of our
knowledge, the RPA model of ternary polymer solutions applied
in this study represents the first attempt to highlight this
point. In the RPA framework, the two types of cononsolvency
effects can be unified under the same concept of mean-field
density correlations (polymer–cosolvent and solvent–cosolvent
correlations, respectively). On the other hand, the current RPA
model predicts unusually large values of Dw for the polymer
cononsolvency to occur. From a mean-field point of view,

large values of the Flory–Huggins parameter often indicate
the presence of strong associative interactions (such as polymer
solutions with hydrogen bonding). It is also possible that Dw
has been overestimated in the current RPA calculations. One
reason may come from assuming the continuum Gaussian
chain model for the single-chain structure factor, S0PP(q).
A more rigorous treatment would be to calculate it in a
self-consistent manner. Another plausible cause for the over-
estimation of Dw is the mean-field nature of the RPA approach,
in which the possibly strong topological correlations between
the polymer segments (such as the ‘‘mediated bridging’’ effect)
are not accounted for.22 Further studies will be required to
allow the clarification of the source of the overestimate.

In summary, the RPA model offers a clear picture of the
generic origin(s) of polymer cononsolvency in solvent mixtures.
The study reveals the complex roles played by solvents in
determining the conformational and solubility transitions of
polymers in multi-solvent mixtures. Theoretical understandings
as such offer rational guidelines for the potential use of solvent
composition as an extra degree of freedom for controlling and
modulating polymer self-assemblies in solutions (e.g. polymer
brushes and micellar solutions, etc.). Studies along this line are
underway.
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Fig. 6 (a) The parameter region in the Dw–wSC plane where cononsolvency will (the shaded area) and will not (the blank area) occur with fP = 0.1. The
overall solvent quality G as a function of solvent composition xc calculated (by setting wPS = 0) at (b) varying Dw with fP = 0.1 and wSC = �3; and (c) varying
wSC with fP = 0.1 and Dw = 4.
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