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Abstract

The Wu-Wentzcovitch semi-analytical method (SAM) is a concise and predictive formalism to calculate
the high-pressure and high-temperature (high-P7) thermoelastic tensor (Cij) of crystalline materials. This
method has been successfully applied to materials across different crystal systems in conjunction with ab
initio calculations of static elastic coefficients and phonon frequencies. Such results have offered first-hand
insights into the composition and structure of the Earth’s mantle.

Here we introduce the cij package, a Python implementation of the SAM-Cij formalism. It enables a
thermoelasticity calculation to be initiated from a single command and fully configurable from a
calculation settings file to work with solids within any crystalline system. These features allow SAM-Cjj
calculations to work on a personal computer and to be easily integrated as a part of high-throughput
workflows. Here we show the performance of this code for three minerals from different crystal systems at
their relevant PTs: diopside (monoclinic), akimotoite (trigonal), and bridgmanite (orthorhombic).
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PROGRAM SUMMARY

Program title: cij

CPC Library link to program files: https://doi.org/10.17632/b8xf5jh5s8.1
Developer's repository link: https://github.com/MineralsCloud/cij
Licensing provisions: GNU General Public License 3

Programming language: Python 3

Nature of problem: Experimental measurements of full elastic tensor coefficients under
high-pressure and high-temperature conditions are challenging and susceptible to
uncertainties. Computations of thermoelastic coefficients based on the conventional
density functional theory (DFT) plus quasiharmonic approximation (QHA) or ab initio
molecular dynamics (AIMD) methods are computationally extremely demanding,
especially for materials with low symmetries because of the revaluation of free energy for

strained configurations.

Solution method: Based on a semi-analytical method proposed by Wu and Wentzcovitch
[1], we developed a handy code that only needs static-state elastic coefficients and
phonon vibrational density of states for several equilibrium configurations at different
pressure points as input to calculate the thermal elasticity. This method avoids the
reevaluation of free energy for strained configurations and can be applied to all crystal

systems.

Reference:

[1] Z. Wu, R.M. Wentzcovitch, Phys. Rev. B 83 (2011) 184115.



1. Introduction

Elasticity is a fundamental property of solids that characterizes their mechanical response
to external stress. Determination of elastic coefficients, especially at high pressures and
temperatures (P7), has has wide applications in geophysics. However, despite recent
methodological developments, measurement of the full elastic tensor at high P7 has
remained a challenging undertaking and susceptible to uncertainties [1,2]. Although
computational methods are regularly resorted to as alternative, fully numerical ab initio
approaches based on the density functional theory (DFT), such as DFT + QHA
(quasiharmonic approximation) (e.g., Ref. [3,4]) or DFT + MD (molecular dynamics)
(e.g., Ref. [5]), are computationally demanding, considering the numerous strained

configurations involved, especially for crystals with low symmetry [6].

To overcome such a computational challenge, a semi-analytical method (SAM) was
proposed to compute the thermoelastic tensor (Cij) (hereafter SAM-Cij) [7]. Compared to
the traditional QHA approach, SAM-Cij adopts an analytical expression for the thermal
part of Cij to circumvent the reevaluation of vibrational density of states (VDoS) for
slightly strained configurations, which drastically reduces the calculation cost by at least
one order of magnitude. This formalism offers an overall improved agreement with
experimental measurements for high-PT elasticity compared to the fully numerical
approach [7]. Such improvement is possibly a benefit from the imposed isotropic thermal

pressure.

Other formalisms and codes have also been proposed to computationally resolve
thermoelasticity, among which some are under active development [8—11]. One popular
option is a quasi-static approximation (QSA), which assumes that thermal expansion
accounts for the majority of thermal effects, and Cij vs. T can be approximated with Cjj
of the structure at T as predicted by the QHA (e.g., see Refs. [8,10—12]). This
approximation can work sufficiently well up to several hundred K and is helpful to study
organic molecular crystals, organic semiconductors, and metal-organic crystals.
However, in geophysical applications, Cij usually needs to be accurately determined at
several-thousand K, and this approximation has become less predictive [9]. Other

formulations were also developed to calculate the thermoelastic tensor of high-symmetry



materials, which usually have fewer independent Cij components [9]. These formalisms
cannot avoid phonon or MD calculations for strained configurations. A similar approach
[3,4] aimed at geophysical applications is nearly unfeasible for complex low-symmetry
minerals of interest. In contrast, the SAM-Cij formalism has already been extensively
tested for lower mantle minerals at their relevant conditions [13—-20] and recently
extended for low-symmetry crystals such as monoclinic and trigonal [21,22]. This
method remains predictive up to the PT boundary of validity of the QHA (usually up to
1500-2000 K).

Here we introduce the cij package, a Python implementation of SAM-Cij. Unlike some
other thermoelasticity calculation methods (such as Ref. [9,23]), this package is
decoupled from a particular DFT software suite. As a standalone package, cij requires
only total static energies, VDoS, and static Cij at a series of volume points as input,
obtainable with most DFT software suites. One can initiate a SAM-Cij calculation from a
single command and configure it within a single settings file to work with materials
across different crystal systems. Since most cij calculations only need a few minutes to
complete on a desktop-level computer, high-performance computing (HPC) setup is not
imperative. Therefore, this package is easy to use on a personal computer and is ready for

integration into high-throughput workflows.

This paper is organized as follows: the next section briefly reviews the SAM-Cij method;
Secs. 3 and 4 describe the structure and usage of cij; Sec. 5 shows its application to
systems of different symmetries: diopside (monoclinic), bridgmanite (orthorhombic), and

akimotoite (trigonal); Sec. 6 summarizes the paper.

2. The SAM-Cij formalism

2.1. Quasiharmonic thermal elasticity

The isothermal elastic tensor elements, or elastic coefficients, ciTjkl, are second-order

strain derivatives of the Helmholtz free energy F [24]
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where wg,, are phonon frequencies of the m-th mode at the g-th wave-number. The first,
second, and third terms on the r.h.s. of Eq. (2) are respectively the static total energy,
USt(e, V), the zero-point energy, E?P™ (e, V), and thermal excitation energy. The
vibrational or phonon energy is
EPh(e,T,V) = E?P™(e,V) + Et(e, T, V).
2
The adiabatic elastic moduli cl-sjkl can be converted from the isothermal one, ciTjkl, as [29]
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SPh(e, T, V) is the phonon entropy at relevant strain state.

where e; i (i,j = 1,2,3) are infinitesimal strains and

2.2. Griineisen parameters

Computing the strain derivatives in Eq. (1) requires knowledge of the variation of mode
frequencies wg, w.r.t. strains e;;, namely strain Griineisen parameters,
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SAM-Cijj avoids the expensive frequency calculations for strained configurations by
deriving analytical relationships between the mode average of y;{n (V) and the mode

average of volume-Griineisen parameters, Y., (V), which can be readily obtained from



phonon calculations under hydrostatic compression. The derivation makes QHA thermal
stresses hydrostatic, which is only an approximation for anisotropic materials but has the
beneficial effect of producing the thermal component of Cij under this desirable stress
condition. The mode-averaged strain-Griineisen parameters necessary for longitudinal

and off-diagonal Cij calculations are given by
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(5)
where the averages are over all gm vibrational modes y = ﬁzqm Yqms €ii (1 = 1,2,3) are

longitudinal lattice strains produced under static hydrostatic compression. They express

the crystal anisotropy ignored in the isotropic approximation. Similarly, their products

and derivatives are given by 1(eqq + gy + €33)° 2 ifi=j
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2.3. Thermal elastic coefficients

The thermoelastic coefficients can be analytically expressed using mode-averaged strain-

Griineisen parameters, their products, and derivatives. The isothermal elastic coefficients
of ]kl V,T) =¢} ],d V) +¢; ]kl(V T) are the sum of static and phonon contributions (Egs.

1-2). ¢ sL1(V) is obtained by straightforward static DFT calculations of stress vs. strain

relations. In the next two sub-sections, we show how SAM-Cij evaluates C&ZZ(V, T) for

longitudinal (c i = 1,2,3), off-diagonal (c i,j =1,2,3,i # j) or shear (cfjﬁl, i #]

iiii> iijj»

or k # [) elastic coefficients.

2.3.1. Longitudinal and off-diagonal elastic coefficients

For longitudinal and off-diagonal terms of the elastic tensor, Eq. (1) reduces to
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The phonon contribution terms are therefore
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where the phonon contribution to the pressure is PP*(V,T) = P(V,T) — PSt(V).

Combining Egs. (2) and (4), the zero-point term becomes
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averaged values given in Egs. (5-7) (see Ref. [7] for details). The 5 term necessary to
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compute Eq. (3) is given by

e%am
Z qu (qum —1)2 qu
(12)

2.3.2. Shear elastic moduli

For the elastic tensor components that have not been addressed so far, SAM-Cij employs
axis rotations to convert shear strains back to longitudinal or off-diagonal ones discussed

above. To solve for ¢;jy;, this SAM-Cij implementation applies a symmetric strain, nikt,

in a rotated crystal system with components given by

Nag = [1— (1= 61a8p) (1 = 8ja8:5) (1 = SkaBip) (1 — S1aBip) ¢
(13)



For example,

0 0 0 0 ¢ 0 § 0 ¢
n2323(44):[0 0 5],72312(46): &0 §]n1113(15>=[0 0 o].
0 & 0 0 &0 $ 00

It is always possible to find a rotation matrix, T, that diagonalizes the symmetric tensor

1ij, 1.€., a real orthonormal matrix T that gives T~ 1puklT = ni’j’k’l', where ni'j’k’l' is
diagonal. The rotation matrix T here is the matrix of the orthrnomal eigenvectors of n/*!,

and ni' 7K'V has corresponding eigenvalues of of /%! along its diagonal. Under this

rotation, the invariance of strain energy gives:

ijkl_ijkl _ iR iR

Capys Nap Nys = Ca'a' '8 Mol Ngigr
apys a' B’
(14)

where a, B,y,8,a', B = 1,2,3.

We note that the r.h.s. of the Eq. (14) contains longitudinal or off-diagonal terms only,
which can be analytically resolved as is discussed in subsection 2.3.1 with rotated strains
TirieiiTir = ey (i, j,1,j = 1,2,3) containing negligible off-diagonal terms when

€11:€pp:€33 = 1:1:1.
The Lh.s. of Eq. (14), being a little more complicated, will fall into one of two scenarios:

1. For ¢;j;;-like terms (i # j), the only term we have on the Lh.s of Eq. (14) is the

unknown term, so the equation is solvable.

2. For other ¢;jy, the Lh.s. is a combination of ¢;;j-like terms (i # j) (solved in
situation 1), ¢;;;-like terms (solved analytically in subsection 2.3.1), and the

unknown term c¢; ;. So, again, this is solvable.

A recursive algorithm is currently implemented to solve these shear terms.
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3. The cij distribution

3.1. The distribution content

The cij package is written in Python 3. After decompressing the cij.zip zip file, one
sees the Python source code in the cij sub-folder, input for three examples in the
examples sub-folder, documentation in the docs sub-folder, and the installation script
setup.py. The cij package runs on all major platforms supported by the gha package
[27].

The Python code is organized into several modules. A description of essential modules

and scripts are shown in Table 1.

3.2. Installation

The package can be installed with the pip package manager. One can directly install the
package by typing in "pip install cij" or manually install the package by
downloading the zip file "cij.zip" and execute "pip install cij.zip" at the

directory of the downloaded file. The package should be ready for use after installation.

3.3. Program Execution

After preparing the input files (to be discussed in Sec. 4), one can navigate to the
directory that contains the YAML settings file (hereafter settings.yaml) and execute
"cij run settings.yaml" to perform the calculation. This command invokes the
main.py script under the cij/cli directory. The flowchart in Fig. 1 will help understand
the procedure of a SAM-Cij calculation.

3.4. Output files and plotting

A typical thermoelasticity calculation for an orthorhombic crystal with the cij
command-line program finishes in less than one minute on a desktop computer. Each
output variable specified in the output section of settings.yaml will be saved to a
separate file with the same tabular (T, V)- or (T, P)-grid format as in the gha code [27].

The available output variables are listed in Table 2.
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The cij package provides three utilities to inspect calculation results right out-of-the-
box: cij plot converts a data table to a PNG plot; cij extract extracts data from the
original (T, P) table files and prepares data table with multiple variables at specified T or
P for further analysis, e.g., table with ¢;;’s, K, and G vs. P at 300 K; cij extract-

geotherm extracts data and creates a data table along PT of a geotherm.

3.5. Documentation

Detailed documentation of this program will be available online at
https://mineralscloud.github.io/cij/. The source of this documentation is located in the

docs sub-folder and can be built locally with Sphinx.

4. Input files

At the beginning of a calculation, the cij run program reads the settings.yaml file
and two input data files that contain phonon data (hereafter input@1) and static elasticity
data (hereafter elast.dat). Instructions on how to prepare these files are given below

(see Secs. 4.1 to 4.3).

4.1. The calculation settings file (settings.yaml)

The settings.yaml file is home to all calculation settings. One needs to specify
calculation parameters, such as thermal EoS fitting parameters, phonon interpolation
settings, input data location, and output variables to store. The available parameters and

their detailed descriptions are listed in Table 3.

4.2. QHA input data file (inpute1)

The QHA input data file contains the static energies and phonon frequencies at various
volume points. The general structure of this file is identical to the one used by the gha
program as described in Ref. [27], but the number of formula units (nm) and atoms (na)
need to be additionally appended to the end of the fourth line, after the number of
volumes (nv), g-points (nq), and modes (np). The ordering of phonon mode frequencies

should be matched between different volume points according to the mode symmetry to
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ensure proper interpolation, as described in Appendix B. The package also includes a cij

modes utility that plots the interpolated frequencies vs. volume at a given g-point.

4.3. The static elasticity input data (elast.dat)

The static elasticity input data file tabulates the static elastic coefficients (cisjt, i,j =16)
and axial length along three axes in Cartesian coordinates (a;;, I = 1,2,3) at a series of
volume points. This file format is specified in Table 4. The required elastic tensor
components for each crystal system can be found in Ref. [30-32]. To compute aggregate
elastic moduli, i.e., K and G, and acoustic velocities using the Voigt-Reuss-Hill (VRH)
method, unless all non-zero terms are listed, one needs to either specify the crystal system
in settings.yaml or manually preprocess elast.dat with the cij fill utility to
generate a new elast.dat that contains all non-zero terms. Column names in the static
elastic coefficients table are invoked to compute the aggregate moduli and their ordering
does not matter. The three columns of lattice parameters, lattice a, lattice_b, and

lattice_c, are required for all crystal systems and are not implied by the symmetry

option provided in the settings file.

5. Examples

Here we show the high-PT elasticity of three important minerals in geophysics: diopside,
akimotoite, and bridgmanite. These materials' thermoelastic properties have been well-
studied with SAM-Cijj in Ref. [14,15,21,22]. Here, we revisit these minerals using the

new cij package to demonstrate its reliability.

5.1. Diopside

Diopside, the primary host of Ca in the upper mantle, is a rock-forming pyroxene mineral
with a chemical composition of MgCaSi ,0 . Its structure belongs to the monoclinic
crystal system, with a C 2/c space group. The elastic tensor of diopside contains 13
independent terms. Results shown here use the local-density approxiamation (LDA) for

exchange-correlation functional [33]. Details of these DFT calculations are given in

Ref. [22] and Appendix A.
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Isobaric and isothermal equations of state (EoS) for diopside are shown in Figs. 2 (a, b).
LDA + QHA reproduces the EoS measured at high-P [34], high-T [35], and high-PT[36]
with sufficient accuracy. The calculated thermal expansivity a in Fig. 2 (c¢) shows no
obvious superlinear T dependence up to 1500 K at high pressurs. However, at 0 GPa, an
inflection point develops gently at ~1000 K. At higher pressures inflection points develop
at approximately T = 1170 + 37P (T in K, P in GPa). At pressures higher than these,
the validity of the QHA might be questionable.

Fig. 3 shows the PT dependence of individual elastic coefficients of diopside. The nine
elastic coefficients of orthorhombic systems increase with P and decrease with T, while
the other four, c;5, ¢35, €35, and ¢, decrease with P and increase with T. In terms of P-
dependence, our results in Fig. 3 (a—c) are consistent with 300 K measurements from
Ref. [34]. There are somewhat significant discrepancies for off-diagonal and shear Cj;
terms, but after contrasting them with the 2-3% experimental uncertainties and a
significant overestimation of 24% seen in previous MD simulations [37], the
discrepancies are relatively insignificant. The comparison between the calculated and
measure [37] T-dependence of C;; terms made in Fig. 3 (d-f) shows good agreement up
to 1000 K, except that c55 is systematically underestimated by ~10 GPa, and c,3 has
contradictory T-dependence against Ref. [35]. At T > 1000 K, measurements [35]
continue to change linearly with T, while our results start deviating. This is likely caused
by anharmonic effects and this behavior is consistent with that of the inflection point in

the QHA thermal expansion coefficient shown in Fig. 2 (c).

Fig. 4 shows positive P dependence, and negative T dependence of the VRH averaged
adiabatic bulk and shear moduli (K and G) and compressional and shear velocities (v,
and vy). Our results agree well with high-PT ultrasonic measurements on polycrystalline
samples from Ref. [36]. Compared to Ref. [34,35], the similar deviating behavior seen in
Fig. 3, which is likely caused by anharmonicity, is also observed here at T beyond that of

the inflection points in the QHA thermal expansion coefficient shown in Fig. 2 (c).
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5.2. Akimotoite

MgSiO 5 akimotoite is a high-P polymorph of pyroxene and can be stable at transition
zone and uppermost lower mantle conditions in the Earth [38]. It has an ilmenite-like
structure and has an R3 space group with trigonal symmetry. Its strong elastic anisotropy
predicted by static calculations [39] makes akimotoite an outstanding candidate for the
source of large acoustic-wave anisotropy observed at the bottom of the transition zone
[40,41]. A recent study [21] used SAM-Cij to investigate the PT dependence of its
anisotropy. Its elastic properties are fully described by 7 independent elastic tensor

components. DFT details are described in Ref. [21] and Appendix A.

Fig. 5 (a, b) shows the PVT EoS of akimotoite. Our LDA + QHA EoS has compatible PT
dependence compared to measurements at high-P [42] and at high-PT [43]. The
systematic 1% overestimation in volume compared to measurements [42,43] is common
for LDA results and can be easily reconciled with EoS corrections, if necessary [44,45].
The present LDA results are also compared to high-PT generalized gradient
approximation (GGA) [46] + MD EoS results from Ref. [47] after their proposed EoS
correction. The comparatively superior agreement of the LDA + QHA EoS with
measurements (less than 2 GPa difference) over their uncorrected GGA + MD EoS (a
—6.7 GPa shift in P necessary to match experimental data in Ref. [48]) justifies the
choice of LDA to study thermoelasticity. This has been the case since the first elasticity
calculations [3,4]. Fig. 5 (c) shows the T dependence of « at various P’s. The inflection
points in @ vs. T at ~ 1500-2000 K (approximated by T = 22.5P 4+ 1400, T in K, P in
GPa) and the a’s superlinear dependence of T beyond this boundary suggest that the
QHA may be unreliable and anharmonicity might start impacting these results. Beyond

this boundary, results should be treated with caution.

Fig. 6 shows the akimotoite’s elastic coefficients ¢;; as functions of P and T. Here, ¢44,
C12, C13, C33 and ¢4y, increase with P and decrease with T'; ¢y, and c,5 decrease with P
and increase with T. The only major conflict here is the inverted sign of ¢, in Ref. [42],
which, according to Ref. [42] is caused by differences in crystal setting; once inverted,
their results and ours are consistent. Other than that, our results agree well with 300 K

Brillouin spectroscopy measurements in Ref. [42,48]. The smaller c;; and c44, and
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slightly larger c;3 have discrepancies comparable with experimental uncertainties. The
aforementioned EoS correction [44,45], if applied, would increase c;; and c,4, which

mitigates the discrepancies further.

Fig. 7 shows the PT dependence of K, v, G and vs. Compared to Ref. [42], our 300 K
Ks and v, values agree soundly, but G and vy depart downwards from measurements by
~2 % when compressed. A similar feature in the P-dependence exists in a previous LDA
calculation [39], so this is a consistent LDA prediction. The earlier reports of stiffer K
and G, and faster v, and vg measured at high-PT with ultrasound [43] compared to both
our results and Ref. [42], it is likely caused by a partially transformed sample, according
to Ref. [42]. These measurements in Ref. [43] are, thus, deemed unreliable. Nevertheless,
the T-gradient of their Kg and v, are mostly aligned with ours but the that of their G and

v, are slightly larger than to ours.

5.3. Bridgmanite

MgSiO ;-perovskite (Mg-Pv) is the Mg-endmember of bridgmanite, the most abundant
mineral in the Earth's lower mantle. The thermal C;; tensor of Mg-Pv calculated with
SAM-Cij was used as a reference for comparison with its iron-bearing counterparts to
understand the effect of alloying and iron spin-crossover [14,15,49]. Experimental
determination of the thermal Cj; tensor, especially at high-PT, is involved with
substantial certainties [2]. High-PT experimental data for pure Mg-Pv has not been
published yet.

Mg-Pv has a Pbmn space group with orthorhombic symmetry. 9 individual elastic
coefficients are required to describe its elastic properties. Calculations reported here were

carried out with LDA. Calculation details are described in Ref. [14] and Appendix A.

Figs. 8 (a, b) show the PVT EoS of Mg-Pv. LDA + QHA reproduces the EoS obtained
with XRD-DAC measurements at high-P [50-52] and high-PT [51,53,54] faithfully.
Compared to our LDA + QHA EoS, GGA + MD simulations [5] report a roughly less
than 5% overestimated V of P, T, due to GGA’s under-binding. The reliable compression

curves here allow us to proceed to calculate C;; at high-PT. Fig. 8 (¢) plots a as a
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function of T at several P’s. Emperically defined by the non-superlinear dependence of a

0%«
oT? »p

QHA validity [4,55]. The PT validity range generally resembles that of Ref. [55] and

on T, the region outlined by = 0, the black line, corresponds to the PT-range of

small variations on this boundary are caused by numerical errors in high-order T-

derivatives, interpolation, and different choices of PT-grids.

Fig. 9 shows elastic coefficients c;; of Mg-Pv as functions of Pand T. These ¢;;’s
increase almost linearly with P and decrease linearly with T. Our results agree well with
those in Ref. [56] determined at ambient conditions. GGA + MD calculations from

Ref. [5] disagree more with measurements. The scarcity of high-P or high-T
measurements of elastic coefficients on pure Mg-Pv single-crystal does not allow further

comparisons here, which shows why SAM-Cij results are crucial.

Fig. 10 shows the PT dependence of VRH-averaged K, G, as well as vy, and v,,. Derived

from C;;, these properties show uniformly positive P-dependence and negative T'-

ij
dependence. Our results can be verified against 300 K and 2700 K ultrasonic
measurements from Refs. [52,57] up to 100 GPa. Although Refs. [51,53] suggest a
slightly larger PT-gradient within a narrower PT range, i.e., 0-20 GPa, up to 1200 K, the
inconsistencies among these measurements are either comparable or more significant
than their deviation from our results. Compared to the MD simulations in Ref. [5], our

SAM-Cij calculation is not only less time-consuming, but also offer much-improved

consistency with experimental measurements.

6. Conclusion

In summary, this paper presented cij, an easy-to-use Python package that calculates
thermal Cij, elastic moduli, and acoustic velocities for crystalline materials at high-PT
based on the SAM-Cij formalism. The code presented here is tested on three minerals
with different crystal symmetry. Consistency between our high-PT results with

measurements highlights the performances of the code.
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Appendix A. DFT details

All DFT calculations were performed using the Quantum ESPRESSO [58] and the LDA
exchange-correlation functional [33]. Detailed calculation parameters for these three

minerals are described in the next three subsections.

Diopside

Calculations on diopside were performed using norm-conserving pseudopotentials. For
Mg, the pseudopotential was generated using the von Barth—Car’s method [59,60], for Si
and O the Troullier-Martins method [61] was used, for Ca, an ultrasoft pseudopotential
[62] was used. The plane-wave kinetic energy cutoff was 70 Ry. Structural optimizations
at 7 different Ps were performed using variable cell-shape damped molecular dynamics
(VCS-MD) [63,64] with a 2 x 2 x 2 k-point mesh. Dynamical matrices for optimized
structures were obtained using density functional perturbation theory (DFPT) [65] on a 2
x 2 x 2 g-point mesh grid. Force constants obtained from these dynamical matrices were
later interpolated to an 8 x 8 % 8 mesh grid to obtain the VDoS. Strains of +0.5% and

+1% magnitude are applied to obtain static elastic constants at each pressure.

Akimotoite

For akimotoite, the pseudopotential of Mg was generated using the Barth—Car’s method,
and the pseudopotentials of O and Si were generated using Troullier-Martins’ method.
The plane wave cutoff energy was 70 Ry. The structure of akimotoite were optimized
using the VCS-MD. with a 4 x 4 x 4 k-point mesh at 8 different Ps. The dynamical
matrices for akimotoite were calculated using DFPT [65] on a 2 x 2 x 2 g-point mesh and
then extrapolated to a denser 4 x 4 x 4 g-mesh to obtain VDoS. Strains of +0.5% and

+1% magnitude are applied to obtain static elastic constants at each pressure.

Bridgmanite

Calculations on Mg-Pv were performed on a 40-atom supercell. Ultrasoft [61]
pseudopotentials were used for Al, Fe, Si, and O. A norm-conserving pseudopotential
generated with von Barth-Car’s method was used for Mg. The electronic states were

sampled on a 2 X 2 x 2 k-point grid with a plane-wave kinetic energy cutoff of 40 Ry,
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respectively. The Mg-Pv structure was optimized at 10—12 relevant P points with VCS-
MD. Dynamical matrices were calculated using DFPT on a 2 % 2 x 2 g-point grid for
these structures and then interpolated to an 8 x 8 x 8 g-point grid to obtain VDoS. Strains

of £1% magnitude are applied to obtain static elastic constants at each pressure.
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Appendix B. Matching phonon modes for different pressure
points

In order to calculate numerically mode-Griineisen parameters, y,,, with the expression
Ygm = —0ln wgy, /0 InV, we need to interpolate wgy, vs. V. Accurate determination of
this numerical derivative for each mode would require us to identify the “same” mode at
different volume points and order them accordingly in the input files. Because in outputs
of DFT software, such as Quantum ESPRESSO, the mode frequencies for each volume
and at each g-point are usually ordered by their magnitude, we will have to sort the
phonon modes to align them to establish continuity between volume points. It would be
impractical to sort these modes manually for complex crystals and calculations with
many g-points, so we provide an automatic solution. There has been some effort to
address the mode frequency continuity between volume points [66]. Between different g-
points within the Brillouin zone [67], a popular, practical, and most straightforward way
is to sort the phonon modes based on the eigenvectors, which is also how we implement

in our code.

Assume there is no degeneracy. At reciprocal coordinate q, w2, and eqm are the m-th

eigenvalue and eigenvector of the dynamical matrix D(q) [68],

D(Q)eqm = wémeqm
(B.1)

The orthonormality of the set of normal modes e, is given by

edm(V)eqm(V +dV) = 8y
(B.2)

Here egpm, €4, as well as their product A = e;rm (Vegm:(V + dV) are all 3N x 3N

matrices, and &y, iS @ unitary matrix.

For crystal under two close compression states V and V + dV, it is sufficient to say the

eigenvectors are “nearly orthonormal”, a condition that can be expressed as
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edm(Vegm (V +dV) = s + 0(dV)
(B.3)

where 0(dV)a 3N X 3N matrix with elements is sufficiently small.

Our code includes a function cij.misc.evec_sort to match phonon modes at close-by
volumes. The function takes an array of 3N frequencies a),(,? (m = 13N) for volume
point V@ their orthonormal eigenvectors (3N x 3N matrix, e,(,?) in corresponding order,

and orthonormal eigenvectors (3N X 3N matrix, er(,{)) from another volume V). The
algorithm first calculates absolute inner product A = | |. Then it identifies row index m
and column index m’ of the element with maximum values in A (i.e., mm' =
argmax(A)) to match w,, with w,,7. The algorithm then sets the entire m-th row and
m’'-th column to zero and looks for other pairs of corresponding modes. This process is
looped for 3N times until all modes are matched for the g-th g-point in volume points

V® and v,

The algorithm works well with phonons calculated with primitive cells, where there are
no or very few degenerate modes but might not be as work well in non-primitive cells
and with large degeneracies [67]. We also note that Ref. [69] has proposed an alternative
way to obtain Griineisen parameters, but their method requires calculations to be
performed on large supercells, this might not go well with DFT calculations, which is

usually how we prepare input for this software.

In the three examples we enclosed with this code, we found that the ordering of mode

frequencies does not affect the final result significantly. This is probably because the

average Y, ﬁ, and Vdy/dV are used in the calculation, and not many phonon crossings
occur in these examples. But this function is included in the case calculations are carried
out for materials with phonon modes with abnormal volume dependence, which results in

more crossings between modes.

Another function cij.misc.evec_load is also supplied to help users parse and load

eigenvectors from Quantum ESPRESSO’s matdyn. x output.
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Tables
Table 1. List of modules and command-line utilities in the cij distribution
Module Description
cij.core | Core functionalities
* calculator — The calculator that controls the workflow.
* mode_gamma — Interpolate phonon frequencies and calculate
mode Griineisen parameters.
+ phonon_contribution — Calculate cl.pjh.
e full_modulus — Interpolate cl-sjt vs. V, and calculate cl-sj and CZ;
* tasks — Handles the ordering of cipjh calculation.
cij.util | Methods used in the main program
* voigt — Convert between Voigt (c;;) and regular (c;jy,;) notations
of elastic coefficients.
* units — Handle unit conversion.
cij.io Input output functions and classes.
cij.plot | Plotting functionalities.
cij.cli | Command-line programs
* ¢ij run (main.py)— Perform a SAM-Cij calculation.
* ¢ij run-static (static.py)— Calculate static elastic
properties.
* cij extract (extract.py)— Extract calculation results for a
specific T or P to a table.
* cij extract-geotherm(geotherm.py)— Extract calculation
results along geotherm PT (given as input) to a table.
* c¢ij plot (plot.py)— Convert output data table to PNG plot.
* c¢ij modes (modes.py)— Plot phonon frequency interpolation
results.
 c¢ij fill (fill.py) — Fill all the non-zero terms for elastic
coefficients given the constraint of a crystal system.
cij.data | Data distributed with the program, e.g., the relationship between c;;’s for
different crystal systems, the naming scheme for output files, etc.
cij.misc | Miscellaneous functionalities that are not used in the main program, e.g.,
methods that facilitate the preparation of input files.
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Table 2. Relavent keywords and their options in settings.yaml.

Under "qgha.settings"

DELTA_P_SAMPLE number | Pressure-sampling interval, used for output.
The default value is 1 GPa.

DELTA_P number | The interval between two nearest pressures
on the grid, in GPa. The default value is 0
GPa.

P_MIN number | The minimum pressure in GPa.

NTV integer | Number of volumes (or equivalently,
pressures) on the grid.

T_MIN number | The minimum temperature, in Kelvin. The
default value is 0 K.

DT number | The interval between two nearest
temperatures on the grid, in Kelvin.

NT integer | The number of temperatures on the grid.
The default value is 16.

Under "elast.settings"

symmetry.system string | The crystal system used, one of:
triclinic, monoclinic, hexagonal,
trigonal6, trigonal7, orthorhombic,
tetragonale6, tetragonal?, cubic, the
default value is trigonal.

mode_gamma.interpolator | string | The method to interpolate phonon
frequencies vs. volume, one of: spline,
1sq poly, lagrange, krogh, pchip,
hermite, akima. The default value is
1sq_poly.

mode_gamma.order integer | The order of phonon frequencies spline
interpolation. The default value is 3.

Under "gha" and "elast"

input string | The location of the input files. The default

value is elast.dat.
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Table 3. The output variable, their keyword in settings output section, default output unit,

and their output file naming conventions.

Property Keyword | Unit | Output file naming convention (i, j =1
to 6; base = tp or tv)
Adiabatic elastic | cij_s GPa | c{ij}s_{base}_gpa.txt
modulus
Isothermal elastic | cij_t GPa | c{ij}t_{base}_gpa.txt
modulus
Voigt average of bulk | bm_V GPa | bm_V_{base}_gpa.txt
modulus
Reuss average of bulk | bm_R GPa | bm_R_{base} gpa.txt
modulus
Voigt-Reuss-Hill | bm_VRH GPa | bm_VRH_{base}_gpa.txt
average of bulk modulus
Voigt average of shear | G_V GPa | G_V_{base}_gpa.txt
modulus
Reuss average of shear | G_R GPa | G_R_{base}_gpa.txt
modulus
Voigt-Reuss-Hill | G_VRH GPa | G_VRH_{base}_gpa.txt
average of shear
modulus
Shear acoustic wave | V_S km/s | v_s_{base}_km_s.txt
velocities
Compressive acoustic | V_p km/s | v_p_{base}_km_s.txt
wave velocities
Pressure vs. volume | p GPa | v_tp_gpa.txt
Volume vs. pressure and | V A3 | p_tv_ang3.txt

temperature
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Table 4. The structure of static elastic coefficients input data file (elast.dat)

Structure of input data

Description

# comment line

Vo N meell

The calibration volume V, for static elastic moduli
interpolation; the number of volumes included in this data
file N; total cell mass, mecel, in amu for calculation of
acoustic wave velocities calculations.

“v c11 c22 ¢33 .7

Column names of the input data. The output elastic moduli
are named after this list, the ordering of columns does not
matter.

Viciu[Vi] c22[ V1] ...

The first volume and elastic moduli at this volume; the
order corresponds to the column names specified above.

Vacii[Va] c22[ V2] ...

Similarly organized data for subsequent volumes.

VN c11[VN] c22[ VN] ...

“lattice_a lattice b
lattice c”

Column names for the axial lengths table.

a1[Vi] a[Vi1] as3[ V1]

The axial length along three axes of Cartesian coordinates
for the first volume.

a11[Vz] a2[ V2] as3[ V2]

The axial length for subsequent volumes.

a11[Vn] a22[ VN] a33[VN]
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