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Abstract—High-resolution simulation of global climate physics enables us to model how the
climate may change under a variety of future scenarios. Such simulations produce vast amounts
of information and dense datasets. If interrogated in tandem, these datasets can provide holistic,
vital information on Earth’s many integrated systems by revealing the manifold interrelated
properties of the atmosphere, ocean, and polar ice, framed by real-world terrain in 3D space as
they vary over time. To accomplish this, climate scientists have joined with computer scientists
and an artist to develop techniques enabling scientists to see these relationships. The impact of
ocean water properties on Antarctic ice shelves illustrates the benefit of this analysis in
understanding land ice melt rates and thus sea level rise.

Introduction

As rapid climate change begins to affect the
Earth’s polar regions, scientists are studying the
intricacies of ocean, atmosphere, and polar ice

to understand how increasing temperatures will
affect sea-level rise and coastal communities in
the coming century. One area of particular inter-
est for a team at Los Alamos National Labora-
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Figure 1. This region of Antarctica, south of the Atlantic, contains the Filchner-Ronne Ice Shelf, which extends
to the labelled white line. Properties of the water under the ice shelf are represented by the water masses
described in the text and Figure 4. The ocean floor is colored by temperature; dark blues indicate the cold deep
ocean waters. Yellow-orange streamlines show the currents over the edge of the coastal shelf. On the right is
an oblique detail of the region showing the three-dimensional distribution of the water masses.

tory (LANL), is Antarctica’s Filchner-Ronne Ice
Shelf. Antarctica, a continent larger than the U.S.
and Mexico combined, is covered by an average
2 kilometers thick ice sheet that, if completely
melted, would contribute 60 meters of sea-level
rise. That would take thousands of years, but one
to two meters of potential sea level rise in this
century depends on the dynamics of floating ice
shelves like the Filchner-Ronne. Ice shelves are
the product of accumulated snowfall pushing off
the continent and contribute to sea level rise with
accelerated melting (in contrast, sea ice freezes
and melts seasonally at the ocean’s surface and
does not affect sea level). Scientists believe that
warming ocean waters beneath the ice shelves
will increase their melt rates, which may in turn
speed up the ice streams that feed the shelves.

As polar currents circulate, they push water
masses—a classification oceanographers use to
separate ocean water into specific ranges of tem-
perature and salinity—beneath the ice shelves,
where they become difficult to track. Scientists
must rely on models to understand the complex
dynamics at play, as real-world observations only

come through robotic submersibles or probes
drilled through the ice. This creates a difficult
visualization challenge in terms of providing clar-
ity, detail, and data interrogation capability in
a complex, three-dimensional space. In order to
accomplish this, we gathered an interdisciplinary
team of expert ocean modelers, computer sci-
entists, visualization professionals, and an artist,
who tackled these modeling and design chal-
lenges in a two-step process: a data reduction
phase, in which the specific requirements of the
science drive the transformation of the raw data to
higher-level representations, and a design phase,
in which the use of artistic color theory introduces
clarity within the complex multivariate imagery.

Ocean Modeling
Energy Exascale Earth System Model

Climate modeling is a data-rich endeavor.
Modern climate simulations cover the Earth with
millions of grid cells, run for thousands of simu-
lated years, and can track hundreds of variables.
A grand challenge of data science is the analysis
and interpretation of such large and varied data
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Figure 2. Standard analysis output for the ocean surface temperature (left), salinity (middle) and eastward
velocity (right), for summer months, averaged over years 21-30 of the simulation. The red line on the
temperature plot, left, identifies the location of the slices in Figure 3.

Figure 3. Standard output of cross-sections along a longitude line of 42W, shown in Figure 2 with the
continental shelf on the left. Images show surface temperature (left), salinity (middle) and eastward velocity
(right), with same colorbars as the previous figure.

sets in order to validate models, test scientific
hypotheses, and make projections.

Our ocean simulations used the Model for
Prediction Across Scales-Ocean (MPAS-Ocean)
[1], developed at the LANL (https://github.com/
MPAS-Dev/MPAS-Model). MPAS-Ocean is a
component of our Energy Exascale Earth System
Model (E3SM, https://e3sm.org), recently devel-
oped by the US Department of Energy [2], [3].
E3SM also includes model components of sea ice,
land ice with ice shelves, atmosphere and land.
E3SM is unique in that all components are based
on variable-resolution horizontal meshes [4], so
that compute time may be spent on particular
areas of interest. It was created to investigate
topics at the intersection of climate science and
national security. This includes the changing Arc-
tic, coastal flooding, frequencies of storms and
droughts, and the causes and effects of sea level
rise.

The ocean, sea ice, and land ice compo-
nents are modeled using the MPAS framework,
where the horizontal meshes are Voronoi Tes-
sellations, and the framework provides unified
tools for multi-core partitioning, massively paral-
lel i/o, mesh generation, and visualization. Here

we describe the first in a series of collaborative
efforts, the visualization of the 3D water masses
and their movements under the Filchner Ronne
Ice Sheet [5]. The global ocean and sea ice
simulations contain 1.4 million horizontal grid
cells that vary in width from 10 to 30 km, and
there are 100 layers in the vertical direction.
Atmospheric winds, precipitation, and radiation
are provided by historical data from 1948 to 2009
[2]. Simulations were run on Theta at Argonne
National Laboratory, a Cray XC40, 11.7 petaflop
system based on the second-generation Intel Xeon
Phi processor. Each simulation used 12,292 cores,
with a throughput of 2.0 simulated years per
wallclock day.

Analysis
In modeling the global ocean, our MPAS team

at the US Department of Energy (DOE) takes
a two-fold approach to data analysis. First, we
run a standard set of automated diagnostics on
every simulation, which produces hundreds of
plots for our perusal. Second, we explore data
interactively with visualization tools and write
new analyses to answer particular questions. Both
of these methods of standard and exploratory
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Figure 4. Shown here are four water masses that circulate below the Filchner-Ronne Ice Shelf and the current
movements on the Continential Shelf. The chart on the lower right illustrates where the six categories of
Southern Ocean water masses fall in salinity [PSU] and temperature [C].

analysis are vital to our evaluation of large data
sets—the first quickly provides a broad overview
of the simulation, while the latter allows for more
detailed, customized investigations. Over time,
the exploratory analysis that gets used most fre-
quently is formalized and ’hardened’ to become
part of the standard analysis. This is part of the
ongoing process of software development we use
for scientific data analysis tools.

Standard analysis
In the typical simulation process, a set of stan-

dard analyses are applied to the output data after
each simulated decade. MPAS-Analysis (https:
//mpas-dev.github.io/MPAS-Analysis) is a Python
package that averages monthly output over sev-
eral decades; interpolates to standard grids; com-
putes secondary statistics and differences with
observational data; and automatically generates
hundreds of plots. Examples of these are shown
in Figures 2 and 3. MPAS-Analysis includes
horizontal and vertical sections of the prognostic
variables (ocean temperature and salinity, veloc-
ity, sea ice extent and thickness), heat content,
surface fluxes, velocity stream functions, melt
rates, and a host of others. Experts in physical

oceanography browse these plots to validate the
results. A common method of scientific inquiry
in climate modeling is to run multiple simula-
tions where only certain parameters are varied.
MPAS-Analysis supports this process with direct
comparison using difference plots of all analyses.

Water Masses and Ice Shelf Interactions
Tracking water masses helps oceanographers

to study how ocean properties evolve over time
as they interact with other parts of the climate.
This includes studying the impacts of changing
ocean currents and their effect on melt rates under
Antarctic ice shelves.

Currently, a cold, dense water mass (called
“high-salinity shelf water”) is found on the con-
tinental shelf near many large ice shelves, such
as the Filchner-Ronne Ice Shelf shown in Figure
5 (upper left). This cold, dense water and the
processes that lead to its formation prevent a
warmer water mass (usually called “circumpolar
deep water”) off the continent from reaching ice
shelves. However, in some E3SM simulations, the
warm water begins to lap onto the continental
shelf and eventually reaches the ice-shelf cavity,
dramatically increasing melting. This is not a

4 IT Professional

https://mpas-dev.github.io/MPAS-Analysis
https://mpas-dev.github.io/MPAS-Analysis


process observed in the real world so far, but
some polar modeling [6] has suggested that such
a process could happen under a changing climate.
Several other water masses also play a role in this
process. LANL scientists felt that visualizing the
evolution of these water masses in time and space
would help us understand the processes that could
lead to such a transformation. For example, what
would the intrusions of warm water look like and
where would they occur first? At what locations
and depths might they occur most frequently?
How will water masses on the continental shelf
have evolved by the point in time that warm water
reaches under ice shelves?

Showing these categories of water masses
concurrently is difficult for traditional visualiza-
tion methods; opaque boundary surfaces obscure
one another while translucent methods (both sur-
face and volumetric) result in ambiguous color
combinations. Here we sample the water masses
to produce a set of well-distributed points in each
water mass, then render these as small spheres.
This visualization shows the movement of three
water masses through time clearly and without
ambiguous color mixing.

When ocean water flows away from Antarc-
tica, it is substantially altered from its interactions
with the continent. These altered properties influ-
ence the density and current patterns of water far
into the Southern Ocean.

Technical Challenges
There are technical challenges in extracting

the water masses from the volumetric data. The
water masses are, in effect, a segmentation of
the computational space into subsets based on the
relationships of temperature, salinity and depth as
shown in Figure 4. While these segments are non-
overlapping and together fill the computational
domain, each is a complex shape consisting of
multiple disconnected parts, each with a convo-
luted boundary. Further, since the data is changing
over time, this is actually a four-dimensional
problem. Visualizing such data in a movie is
problematic. We have three dimensions to utilize
to visualize this data: the two-dimensional image
plane, and a third dimension of time. Typically,
we sequentially slice the 4D space along the axis
of time to produce 3D time-step datasets, project
each onto the image plane, then play the projec-

Figure 5. The distribution of four categories of ocean
water masses are illustrated here - Ice Shelf Water
(ISW), Cold Deep Water (CDW), Antarctic Surface
Water (AASW) and Modified Circumpolar DeepWater
(MCDW). The yellow-orange streamlines follow the
current along the continental shelf. Small spheres are
used to show the mixing of different water masses.

tions back. However, this leaves us with a single
2D projection of the 3D timestep data to convey
the shape of the segments. Simply rendering the
boundaries of the segments as opaque surfaces
lead to issues of occlusion: the resulting image
only reflects the nearest surface to the viewer. In-
tegrative methods, including rendering translucent
surfaces or volume rendering the classified vol-
ume lead to problems of ambiguity - overlaying
different colored surfaces (or volumes) produce
colors that do not clearly reflect the data along
the viewing ray. Instead, we choose to represent
the water masses by producing a set of samples
of each, then positioning colored glyphs at the
sample points. We arrive at this solution because
the science requires understanding the general
ebb and flow of the masses rather than their pre-
cise boundaries. We can therefore reduce the data
statistically to a set of pseudo-randomly placed
sample points and place a colored spherical glyph
at each. We can then control the occlusion prob-
lem by varying the sampling density and radius of
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the glyphs. Glyphs for nearby water masses will
predominate over those of father away masses,
but statistically not occlude them. Further, we
can rely on perspective to give additional in-
formation about distance; glyphs from distant
water masses will appear smaller than those from
nearby masses.

Segmenting the Data The first step of this
process - the segmentation of the computational
space among the different water masses - is done
at the level of the computational grid. Our input
data consists of a volume represented by a large
set of vertices in 3-space connected into space-
filling cells. Values of salinity and temperature are
assigned to each vertex by the simulation. Given
these and the coordinate location of the vertex, we
can evaluate the relationships of Figure 2, bottom
right, to create 6 derived scalar variables, one for
each water mass, which are 1 for the vertices that
lie inside the water mass and 0 for those outside
the water mass. These derived scalar variables
allow us to create 6 probability density functions,
one for each water mass. For a particular water
mass, we determine a sampling probability by
averaging the value of each vertex of the cell,
then multiplying the result by the ratio of the
volume of the cell to the overall volume of the
computational space. This produces a result that,
for each cell, reflects the likelihood that a random
sample will occur in the corresponding cell.

Sampling the Segmented Data Given this
probability function, we can choose cells for
sampling. We do so by using a binary interval
search tree based on the running sum of the cell
probabilities: the likelihood of a random sample
falling in the ith cell is the probability of the
sample falling into the [i,i+1] interval of the
number line. This results in a sampling algorithm
that takes O(n) time to generate the running sum
table (for n the number of cells), followed by
O(log n) time to insert each sample. Once we
choose a cell for sampling, we simply choose a
random point inside the cell and add it to the
output sample list. We note that this is imperfect
in cells that only partially intersect a water mass;
samples should tend toward the vertices of the
cells that lie within the mass and away from those
outside the mass. However, since the number of

cells is far larger than the number of samples, the
error introduced has not justified the additional
cost of more accurate methods.

Continuity Over Time The above algorithm
can be computed independently for each timestep,
but doing so can produce a sparkling effect
over time: even if the underlying data changes
only very slightly from timestep to timestep,
the samples chosen will be completely differ-
ent. When there are a relatively few samples
chosen, this becomes a distracting scintillation.
We address this problem by retaining samples
from timestep to timestep, re-evaluating the prob-
ability of their inclusion in the new timestep, be-
fore choosing new samples for the new timestep.
A sample from the prior timestep will only be
retained in the subsequent timestep if it remains
a likely choice in the new timestep. Thus, samples
will change relatively smoothly from timestep to
timestep. Since the above algorithm samples with
re-placement, this retention distorts the sampling;
areas of overlap between successive timesteps
will be oversampled, and new areas will tend to
be undersampled. This led us to consider alter-
native sampling algorithms which have produced
good preliminary results. The timestep sequence
shown in Figure 6 illustrate the ability to follow
the changes in location and density of the water
masses over time

The Role of Design Principles
Figures 2 and 3 illustrate the traditional format

for visualizing the temperature, salinity and water
masses as charts. Figures 4 and 5 in contrast
illustrate the four water masses - intersections of
temperature and salinity categorized to facilitate
the science, as they sit in relation to the terrain
and ocean floor depth. Our sampling approach
enables us to render the four masses in one
image, providing a clear representation of their
interrelationships. Figure 6 documents the further
value of this method, showing a time sequence
of the simulation that enables scientists to track
the changes and interactions of the water masses
over time. Visualization often faces trade-offs
between clarity and complexity. By employing
Artistic Color Theory and design principles [7],
we can enable clear differentiation between the
water masses as they move and mingle over the
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Figure 6. Three timesteps showing three water masses - ISW, CDW, LSSW and the currents on the continental
shelf over the course of a year.

time-varying sequence. Color theory and design
principles are central to clarity within multivariate
visualization.

Our attention and ability to distinguish be-
tween the variables are determined not only by
the hues and shapes selected but also by the
interaction between these visual elements [8].
As the number of elements in a visualization
increases, so does the need to minimize unnec-
essary contrast; we therefore pay close attention
to the relative contrast between the color-encoded
variables. Balancing the ability to distinguish
between variables while maintaining visual har-
mony and congruency with the science questions
is a delicate balance and a difficult challenge.

Color contrast theory describes the seven
types of color contrast, which we employed in
this visualization [7]. In Figure 4, seeking to
balance the hue selection, need for discrimina-
tion, and desire for semantic color association,
we selected cool hues to represent the water
masses and saturated them for ease of location
and distinction. By limiting our hue selection
to the cool range of the color wheel for both
the water masses and the ocean floor depth, the
principal of analogous color contrast enables clear
contrast and minimizes the simultaneity effect, a
contrast principle defined by the visual vibration
that occurs when saturated hues abut one another.
We applied a colormap spanning warm hues
to the streamlines representing the flow along
the continental shelf to provide a clear contrast
between the thin streamlines and the water rep-
resentations. Even the background hue interacts
with the color palette of the variables. We applied
a warm gray to contrast with the primarily cool
light hues encoding the data. Employing Artistic
Color Contrast Theory, developed by artists over
centuries, to visualization color selection provides

guidance toward creating clear and harmonious
visualizations, inviting a quiet and easy data ex-
ploration.

Discussion
By comparing the standard diagnostics in Fig-

ures 2 and 3 to the later figures, we see two differ-
ent visualization methods. The first is a horizontal
or vertical slice of a single variable, averaged
in time. The full output includes hundreds of
such plots, spanning variables, time, depth, and
location. In contrast, Figures 5 and 6 provide
a more integrated view of this high-dimensional
space. In order to address the science questions
asked of the data, we showed the water masses
in three-dimensional space, their movement over
the course of the year, their interactions with
the ocean floor, and mixing caused by the tur-
bulent flows. Visualization researchers bring new
ideas and advanced techniques from the visual
arts community, which are often missing from
standard visualizations. This artistic focus adds
valuable engagement and the design and clarity
capable of enabling comprehension and commu-
nication of these complex scientific concepts both
within and outside of the scientific community.

CONCLUSION
Scientific data is growing on size and com-

plexity. Addressing the needs of the scientific
community will require new multidisciplinary ap-
proaches to visualization. Here we have demon-
strated an example of one set of solutions that
arose from a close collaboration between the
scientists, the modelers, the visualization team
and an artist. While the scientific visualizations
discussed here were designed to address our spe-
cific need, our research team believes our overall
direction rests on fundamentals applicable across
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multiple scientific domains.
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