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Abstract

In this paper, we extend our previous work on the second-order
multiscale discontinuous Galerkin (DG) method for one-dimensional
stationary Schrodinger equations with oscillating solutions [10] to high
order. We propose two types of high-order multiscale finite element
spaces, and prove that the resulting DG methods with these spaces
converge optimally with respect to the mesh size h in L? norm when h
is small enough. Numerically we observe that these two multiscale DG
methods achieve at least the second-order convergence without any
resonance errors when h 2 € and optimal high-order convergence when
h < e, where ¢ is the scale of the wave length. We also demonstrate
their ability to capture highly oscillating solutions of the Schrédinger
equation in the application of the resonant tunneling diode (RTD)
model.
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1 Introduction

We propose, analyze, and numerically test two high-order multiscale dis-
continuous Galerkin (DG) methods for the following one-dimensional second-
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order equation
—e*u” — f(x)u =0, (1.1)

where € > 0 is a small parameter and f(x) is a real-valued smooth func-
tion. This type of equation has the application to the stationary Schrodinger
equation in the modeling of quantum transport in nanoscale semiconductors
5, 14, 18],

{ — L o"(x) — qV(2)p(z) = Ep(z)  on [a,]
he'(a) + ip(a ) p(a) = 2ip(a), e, (b) = ip(b)p(b),

where A is the reduced Plank constant, m is the effective mass (assumed
to be constant), ¢ is the elementary positive charge of the electron, V(x)
is the total electrostatic potential in the device, F is the injection energy,
p(z) = /2m(E + ¢V (x)) is the momentum, and the solution ¢ is a wave

h B qV (x)
= and f(z) =1+ Z

equation (1.2) is in the form of model equation (1.1).

The solution to the model equation (1.1) for positive f is a wave function
with the wave length at the scale of e. When ¢ is very small, the solution
to this equation will be highly oscillating. Standard numerical methods re-
quire very fine meshes to resolve such oscillations, which leads to tremendous
computational cost. So it is an important, yet formidable task to develop
efficient multiscale numerical methods that produce accurate approximations
to the solutions on coarse meshes. Note that when f < 0, the solution is non-
oscillatory. Thus we mainly focus on the challenging case of f(x) > 7 > 0
and 0 <e < 1.

This paper contributes to an ongoing effort to develop multiscale meth-
ods for efficiently solving stationary Schrodinger equations with highly os-
cillatory solutions on coarse meshes; see [15, 16, 5, 4, 14, 18, 3]. In [5],
Ben Abdallah and Pinaud proposed a second-order multiscale continuous
finite element method for the one-dimensional Schrodinger equation with
continuous WKB basis functions from WKB asymptotics [6]. The method
was proved to have the second-order convergence independent of the wave
length in [14]. However, it is difficult to extend the method to higher or-
der or multiple dimensions due to the challenge of enforcing continuity of
the non-polynomial finite element functions across inter-element faces. Un-
like continuous finite element methods, DG methods [2, 9, 8] do not enforce
continuity at element interfaces, which makes them feasible to be extended

(1.2)

function. By defining ¢ = , the Schrédinger



to high-order approximations. Multiscale DG methods with non-polynomial
basis functions have been developed and studied in the literature, including
11,19, 12, 20, 7, 13, 18, 17, 21]. In particular, in [18] Wang and Shu adopted
the DG framework and developed a multiscale local DG method using the
“constant form” of WKB basis functions. Recently, in [10] we developed and
analyzed a second-order multiscale DG method for Eq. (1.1), and showed
that the method uses a smaller finite element space than the multiscale local
DG method in [18] while achieving the same second order of accuracy with
no resonance errors when h 2 e.

In this paper, we extend the second-order multiscale DG method in [10]
to higher-order methods. The methods use the same weak formulation and
numerical fluxes as in [10], but with higher-order multiscale finite element
spaces. In particular, we consider two types of multiscale finite element
spaces, both of which are extensions of the E' multiscale finite element space
used in [10]. The first type of space is obtained by enriching the E' space
with polynomial functions and the second one is by including more exponen-
tial functions into the E' space. Theoretically we prove that the multiscale
DG methods on these two spaces both converge optimally with respect to
the mesh size h in L? norm when h is small enough. This is obtained by
proving the trace inequality and the approximation properties of the L? pro-
jections for the two multiscale finite element spaces, together with the energy
and duality arguments used in [10]. Numerically we observe that these two
methods can achieve at least the second-order convergence without any reso-
nance errors when h = ¢ and an optimal high-order convergence when h < ¢.
Thus, these high-order multiscale DG methods behave like “hybrid” schemes
where they perform as good as the second-order multiscale DG with E' when
h 2 ¢ and as good as (in fact better than) standard DG with polynomial
basis when h < e. It is especially useful when applying these schemes to the
multiscale problems with different scales of € because they can capture the
micro-scale solutions well in under-resolved mesh and also can maintain high
order accuracy for macro scales.

The paper is organized as follows. In Section 2, we define our multiscale
DG methods with the proposed high-order finite element spaces. In Section
3, we state and prove the error estimates. Numerical results are shown in
Section 4. Finally, we conclude in Section 5.



2 Multiscale DG method: The Methodology

2.1 The DG formulation

The model problem we investigate in this paper is the equation (1.1)
together with open boundary conditions, which is as follows:

—e2u” — f(x)u=0, x € [a,b],
{ o (a) + ik(a) u(a) = 2ik(a), W) —ik(B)u) =0, 2V

where k(z) = ]:C(:U is the wave number.

First we rewrite the problem (2.1) into a system of first order equations

~—

q—eu' =0, —e¢ — f(x)u=0 (2.2a)

with the boundary conditions

q(a) + i/ faula) = 2i\/fo, q(b) — i/ fou(b) =0, (2.2b)

where f, = f(a) and f, = f(b).
Let I; = (xj_%,xﬁ%),j =1,..., N, be a partition of the domain, z; =
%(xj,% + a:j+%), hj = Tjpl =T 1, and h = j:rrl{%;hoj. Let €, := {I; :

j=1,...,N} be the collection of all elements, 0, := {01, : j =1,...,N}
be the collection of the boundaries of all elements, &, 1= {z; +%}§VZO be the

collection of all the element interfaces, and & := {; 11 };V:jl be the collection
of all interior element interfaces.

Next, to define our multiscale DG methods, we need to introduce the
finite element spaces and the weak formulation of the approximate solutions,
as well as the numerical traces that appear in the weak formulation.

Unlike standard DG methods using discontinuous piecewise polynomials
for approximations, our multiscale DG methods look for approximate solu-
tions in finite element spaces that contain non-polynomial functions. These
functions are globally discontinuous and they incorporate the small scales of
the problem so as to better approximate the oscillating solutions on coarse
meshes. We will discuss our multiscale finite element spaces in detail in
Section 2.2.



The weak formulation of our DG methods for Equation (2.2a) is to find
approximate solutions u, and ¢, in a finite element space V}, such that

(qh, ’lU)Qh + (euh, w')Qh — <5ﬂh, ’LU’I’L>th =0 (23&)
(6qh, U/)Qh — <€a\h, U’n>th — (f(x)uh, U)Qh = 0. (23b)

for all test functions vy, w;, € V4. Here, we have used the notation

(¢, v)1, =/ o(x)v(z) dx,

I;

(,wn)or, =tp(x;, 1 )w(x; 1) —d(x;_
(Soav)ﬂh =

)E(I‘jf%)a

Mz

N
((107 ) i <w7wn>8§2h :Z<w7wn>81ja
j=1

7j=1

where ¥ is the complex conjugate of v and m is the unit outward normal
vector. For [; = (xj_f, j+l 1), we assume n(x; é) = —1 and n(z +7) =1.

The ch01ces of numerical traces are essentlal for the deﬁmtlon of DG
methods, and different numerical traces will lead to different DG methods
[2]. In our schemes, we use the same numerical traces as in our previous work
[10]. At the interior element interfaces,

(@ )=ty (@)3) — B[] (@), (2.4a)
Gn(w1) =ap (551) + i fun](2500), (2.4b)

where v’(:vﬁ%) and v+($j+%) are the left and right limits of v at 1,
respectively, and [v] = v~ — v' represents the jump across the interface.
We take the penalty parameters § and « to be positive constants, which
makes the DG methods different from the multiscale local DG in [18]. This
allows us to carry out error analysis in a way similar to [11]. Moreover,
our numerical tests show that the nonzero penalty terms are necessary for

reducing resonance errors.
At the two boundary points {a, b}, we define the numerical traces

Tn(a) = (1= 7y)up(a) + % gn(a) + 27, (2.52)
Gn(a) = yau(a) — i(1 — > Faun(a@) +2i (1 =)/ Ta (2.5b)
up(b) = (1 = y)un(b) — @ﬁ qn(D), (2.5¢)
an(b) = vqn(b) + (1 — v)\/ﬁuh( ) (2.5d)



where « can be any real constant in (0,1). It is easy to see that

ah(CL) —|—’L fa a\h(a> =2 fa; Z]\h(b> -1 fa ah<a) = O,

which match the boundary conditions (2.2b) for the exact solutions.

2.2 The high-order multiscale approximation space

Now let us discuss our multiscale DG spaces V}, in more detail.

Our choices of multiscale DG spaces are inspired by the multiscale finite
element spaces in [5, 18, 10]. In [5], Ben Abdallah and Pinaud developed a
continuous finite element method using WKB basis functions that interpolate
the WKB asymptotic[6] of stationary Schrodinger equation,

Aj eiS(x) —iS(z)

B; .
V() " Vk(zx) ’

where the wave number k(z) = ¥ f(z),S(x) = f;‘; k(s)ds, and the constants
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A; and B; are determined by the nodal values at the element boundaries.

Later, Wang and Shu in [18] developed a multiscale local DG method,
the so-called WKB-LDG method, by using the “constant form” of k(z) in
the WKB basis functions. Their finite element space is defined as

ple) =

.Z'e[],

E? = {vy, : vpl1; € span{l,eikj(x_xj),e_ikj(x_’”)}, j=1,--- N},

where k; := k(x;).
Recently, we developed a multiscale DG with a more compact approxi-
mation space E' in [10]

E'={vy: vy, € span{etti (@) e=tkile=z)y i — 9 ... N

We showed that although the E' space is smaller than E?, our DG method
in [10] can achieve the same second order of accuracy with less resonance
errors than the WKB-LDG in [18] when h 2 . On very refined meshes
when h < e, our multiscale DG with E' has the second-order convergence
and the WKB-LDG with E? has the third order.

In this paper, we consider extending the multiscale DG method in [10] to
higher order approximation spaces by enriching the E'! space with additional



basis functions. The first type of higher order spaces is obtained by including
polynomial basis functions:

EPY? = {Uh : Uh|1j S span{eﬂkj(x_xj), Lz, axp}7j =1,-- 7N}

for any p > 0.
The second type of higher order spaces is to add p additional pairs of

exponential basis functions on each element:
:l:lk](I—ZBJ)7 einkj(LB—l'J) :t(p+1)1,k](a:—:vj)}

j=1,N}

7...76 3

T+ = {v), : vy|y, € spanfe

for any p > 0. Note that T = E*.

Remark 1. WKB asymptotic [6] is valid only for f > 0 and will break down
close to turning points where f = 0. For our DG schemes, we require that
f(z;) is not zero so that the basis functions are linearly independent. In
our analysis, we assume that f € Wh*(Q) and f(z) > 7 > 0. When
f is negative, the solution is non-oscillatory and the analysis is easier. In
implementation, we define a threshold 7 > 0. When |f(z)| < 7, we simply
replace it by 7 in the basis functions. Our numerical tests show that the
proposed DG schemes works for any smooth f.

3 Error estimates

In this section, we carry out error analysis for the multiscale DG methods
with the finite element spaces EP™2 and T?P*! for the model problem (2.1).
We first show that the trace inequality holds for functions in these two finite
element spaces. Then we prove optimal approximation orders of the L*-
projections onto these spaces when h is sufficiently small. Finally, we get
the error estimates at element interfaces and in the interior of the domain
by using the same energy and duality arguments as those for the multiscale
DG with the E' space in [10].

In the rest of the paper, we use the notation || - ||s p for H*(D)-norm. We
drop the first subindex if s = 0, and the second if D = Q or €.

First we need to prove the following trace inequality for functions in our
high-order multiscale finite element spaces.



Lemma 3.1. For any function v in E* E® or T?,T°, and any I; € Qy, when
h; is small enough, we have

~1/2
[vllor, < Chy 1ol
where C' is a constant independent of h;.

Proof. (i) Let us first prove the trace inequality for any function v € E2.
Suppose that

3
v = chgol(a:) on Il; = (:Ej_%,xﬁé),
=1

where
o = ki@ ) = e

Then we have
0[5, = cAc’, and |v[|], = cBc’,

where ¢ = (cy, ¢, ¢3), ¢! is the conjugate transpose of ¢, and A and B are
3 x 3 matrices whose elements are given by

Al,m = Spl@m(xjf

1
2

)+(pl@m(‘rj+%)a Bl,m :/ Qpl@mdl’, l,m: 17 ’3_
I.

J

After simple calculations, we get

1 cos 20 cosf 1 sinc 260 sinc 6
A=2| cos20 1 cos |, B=h;| sinc20 1 sincf |,
cos@ cosf 1 sincf sincf 1
where § = %kjhj and sincz = Smxﬁ To show that there exists a constant

r > 0 so that [[v[|3;, < r[[v]|7, for any v € E?, we consider the generalized
eigenvalue problem

Ac = \Bc,
which can be written as
B 'Ac = )c.
We can take r to be the upper bound of the eigenvalues A. Since || - ||oy, is a

semi-norm and ||- ||, is a norm on E? and {1, 2, 3} is a basis of E* for any
0 > 0, we have A is semi-positive definite and B is positive definite. Then

8



B! is positive definite and can be written as B~ = B_%B_%, where B2
is a positive-definite matrix. Note that B 2AB7? is semi-positive definite
and B1A = B 2(B 2AB"2)Bz. We get that the eigenvalues of B~1A
are all nonnegative for small § > 0. Both A and B are continuous in 6,
and so are B~'A and its eigenvalues. After some calculations, we get that
the eigenvalues of B~!'A are bounded by 12hj_1 as 8 | 0. So for 8 > 0
small enough, which means h; small enough, the eigenvalues of B~ A satisfy
A< C’h;l. This implies that

lwll5r, < ChyHollz,,

which completes the proof for v € E?.
(ii) Next, we sketch the proof of the trace inequality for any v € T°.
Using the same argument as in (i), we get

o A A _ By B
ame(fa) men( g )

where

1 cos 260 cosf cos30 1 cos 460
A1<C0829 1 )’A2(00839 cos@)’A3(cos40 1 >’

1 sinc 260 sincf sinc 360 1 sinc 460
By = (sinc?@ 1 )’82 (Sinc?)H sinc 0 )’BS (sinc40 1

The limits of eigenvalues of B™1A as 6 | 0 are bounded by 2Ohj_1. So when
h small enough, the inverse inequality holds for v € T°.

For any v in higher order E® and T® spaces, the proofs of the trace
inequality are similar to that in (i). O

Next, we consider the L?-projections onto the finite element spaces EP+2
and T%*!. We let II; be the L2-projection onto EP™2 and II, be the L*-
projection onto 77!, We show that the projections IT; and IT, have the
following approximation properties.

Lemma 3.2. For any ¢ € H*™(Q) and I; € Q, if h; is small enough, we
have on EP™2 p=0,1

min{s,p+2}+1

¢ — Ll lellst1,1;

in{s,p+2}+3
lo — Mpllor, <C BT 2 o),

)



and on T?"* p=1,2

<C h?lin{s’ZpH}H @] s41,1;

||90—H2<P||1j
min{s,2p+1}+1
lp = Magpllor, <C B2 g

s+1,1;5
where C' is independent of h but dependent on €.

Proof. We first consider the E? space. By Taylor expansion, we get

¥1 1
wy | = AD T — +bk?(x—$j)3+0(k?(x—xj)4)
¥3 (z — %‘)2

(—i/6,i/6,0)T, and

1 i —1/2
A= 1 —i —1/2
1 0 0

Since k; # 0, we have AD is invertible. Using Proposition 3.2 in [19], we
immediately get that for any v € H*T(Q),

min{s,2}+1
Ty — )y, < CRF™ S fu g (3.1)

Next we estimate ||[IT;u — u||sz,. By Proposition 3.1 and the proof in Propo-
sition 3.2 in [19], there exists v, € E?|;, such that
lon = ullor, SCRT™ 22 ul|yp g, (3.2a)
lon — wlls, <CH™ 2 |y, (3.2b)
Using Triangle inequality and Lemma 3.1, we have
ML — ullor, <[[TLu —vpllor, + [lvn — ullos,
<Ch; || Tyu = vl|1, + llon = ullor,
<Ch; V2 (|Myu — ully, + llu — vall) + lvw — ullar,
SCh?ain{s,z}ﬂ/z lullysns,
The last inequality above is by (3.1) and (3.2). For the L2-projections onto

other spaces EP™2 and T?*!, the proofs are similar. O
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Now let us state our main results. We first estimate the projections of
the errors at the element interfaces.

Theorem 3.3. Suppose (u,q) is the exact solution of the problem (2.2), and
(un, qn) and (Gp, Gn) are the solutions of the multiscale DG methods defined
by (2.3)-(2.5) on EP™? with p = 0,1 and T**! with p = 1,2, respectively.
Assume that o and B are positive constants and 0 < v < 1. When h is small
enough, we have

i 1

1w = wn]lls, + [1[Tg = gl lls, <C R P22 ((lul g+ [lalls),
~ ~ min{s 1

1Mo — @], + [[[T2g — Gallls, <C A2 2([|ul|gh1 + flgllss),

where C' is independent of h.

For the projections of errors in the interior of the domain, we have the
following optimal convergence result.

Theorem 3.4. Under the assumption of Theorem 3.3, we have
T — | < CR™EP2H ([ in + [lgllor),

Ty — || < C R 2B (]l 0+ (|l o),
where C' is independent of h.

The proofs of Theorem 3.3 and Theorem 3.4 are almost the same as
those of Theorem 3.3 and 3.4 for the E! space in [10]; the estimate of the
projections of errors at element boundaries is obtained by using an energy
argument and the error estimate in the interior of the domain is proved by
using a duality argument. Lemma 4.4, Lemma 4.5 and Lemma 4.7 in [10]
still hold for our multiscale DG methods. The only difference in the proofs
is that we need to use Lemma 3.1 and Lemma 3.2 above instead of Lemma
4.3 and Theorem 3.1 in [10] for the trace inequality and the errors of the
L2-projections. To avoid repetition and redundancy, we refer the readers to
[10] for details of the proofs.

Using Lemma 3.2 and Theorem 3.4 and by triangle inequality, we now
have optimal error estimates for the actual errors.

Theorem 3.5. Under the assumption of Theorem 3.3, we have
lu = un|| < C PP (11 + [lglfo0),

lu — a@n]| < ORI (((fuflgpr + [lgllss),

where C' s independent of h.

11



Table 4.1: Example 4.1: L%-errors by multiscale DG for e = 0.01 and f(z) =
10.

N E! E? E3 T3 T°
10 6.93E-13 7.05E-13 6.38E-13 6.82E-13 6.69E-13
100 5.92E-13 5.67E-13 5.62E-13 5.74E-13  5.63E-13

4 Numerical results

In this section, we will perform several numerical tests for the proposed
high-order multiscale DG methods with finite element spaces EP™2 and TP,
The first example is to show the good approximation property of the multi-
scale finite element spaces. The basis functions in these finite element spaces
approximate the solution exactly when f(x) is constant. The next example is
to show the convergence of the multiscale DG with these spaces for € ranging
from 0.1 to 0.001. In the last example, we apply the proposed schemes to the
application of Schrodinger equation in the modeling of resonant tunneling
diode (RTD).

For all the numerical tests, we use « = § = 1 and v = 0.5 for the
numerical fluxes in the mutiscale DG schemes. For other positive values of
a,f and 0 < v < 1, the numerical results are similar and thus we do not
show them here.

4.1 Constant f

Ezample 4.1. In the first example, we consider the simple case with constant
function f(z). When f(z) is a constant, the exact solution of (2.1) is in
the proposed high-order finite element spaces EP*? and T2?"*!. Thus the
multiscale DG method with these spaces can compute the solution exactly
with only round-off errors. The L2-errors of the multiscale DG with E*!,
E?, E3, T3 and T® for the case f(z) = 10 with ¢ = 0.01 are shown in
Tables 4.1. It is clear to see the round-off errors in double precision. For
different values of e, the results are similar and thus not listed here. The
only noticeable difference is that numerical integration of the exponential
functions may accumulate round-off errors for small €.

12



4.2 Accuracy test

Ezample 4.2. In this example, we consider a smooth function f(x) = sin z+2.
Tables 4.2, 4.3 and 4.4 list the L2-errors and orders of accuracy by the mul-
tiscale DG scheme with different EP™2 spaces for e = 0.1,0.01 and 0.001 sep-
arately. And the results by spaces T?*! for different e are listed in Tables
4.5, 4.6 and 4.7. The reference solutions are computed by polynomial-based
MD-LDG P? method [8] with N = 500, 000. Note that we stop refining the
mesh when the errors are smaller than 1078, We can see the approximate
solutions in EP™2 and T?*! can all achieve at least the second-order conver-
gence when h 2> ¢ without any resonance errors. Although E?, E3, T° and
T5 can not get higher order approximations than E' when h 2> e, they do
have a smaller magnitude of errors than E'. When h < ¢, all of them can
obtain the optimal order of accuracy, i.e. EP™ has a (p + 3)th order and
T?+1 has a (2p + 2)th order. In particular, we observe the 3rd order for E?,
the 4th order for £3 and 7%, and the 6th order for 7°.

We also compare our high-order multiscale DG with the MD-LDG using
polynomials for ¢ = 0.01 in Table 4.8. Standard DG methods using poly-
nomials do not have any order of convergence until the mesh is refined to
h < e. For example, MD-LDG starts to converge from N = 160 for P! and
N = 80 for P2.

When ¢ becomes even smaller, a very refined mesh is needed for the
standard polynomial DG to converge. There is no doubt that multiscale
DG methods perform better than standard DG when h 2 . Even when
h < e, they also approximate the solutions much more accurately than the
standard DG though they all have the same convergence order. For example,
when ¢ = 0.01 and N = 80, the error is O(107?) for MD-LDG using P? and
O(107°) for multiscale DG using E? or T3.

Overall, the proposed high-order multiscale DG methods are able to ap-
proximate the solution well when h 2 ¢ and to maintain the optimal order
of convergence when h < e. Thus, they are more efficient and accurate
than standard DG methods for solving the stationary Schrodinger equation
especially when involving different scales of ¢.

4.3 Applications to Schrodinger equation

Example 4.3. In this example, we apply our proposed high-order multiscale
DG methods to solve the Schrodinger equation in the simulation of the res-

13



Table 4.2: Example 4.2: L?-errors and orders of accuracy by multiscale DG
with EPT2 for € = 0.1.

E! E? E3
N error order error order error order
10 2.37E-03 - 7.76E-04 - 1.22E-04 -

20 4.42BE-04 242 1.71E-04 218 5.62E-06 4.44
30 1.85E-04 2.15 6.28E-05 2.48 1.05E-06 4.13
40 1.02E-04 2.08 292E-05 2.67 3.28E-07 4.06
50 6.45E-05 2.05 1.57E-05 2.77 1.35E-07 3.97
60 4.45E-05 2.03 9.37E-06 2.84 6.88E-08 3.70

Table 4.3: Example 4.2: L?-errors and orders of accuracy by multiscale DG
with EP™2 for ¢ = 0.01.

E! E? E3
N error order error order error order
10  2.56E-02 - 2.54E-02 - 2.22E-02 -

20 T7.08E-03 1.85 3.49E-03 1.92 2.56E-03 3.12
40 2.50E-03 1.50 6.19E-04 3.44 6.28E-04 2.03
80 4.37E-04 252 1.22E-04 235 3.71E-05 4.08
160 7.17E-05 2.61 2.90E-05 2.07 1.45E-06 4.67
320 1.60E-05 2.17 5.43E-06 2.42
640 3.89E-06 2.04 8.35E-07 2.70
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Table 4.4: Example 4.2: L?-errors and orders of accuracy by multiscale DG
with EP2 for ¢ = 0.001.

E! E? E?
N error order error order error order
10  247E-01 - 2.47E-01 - 2.46E-01 -

20 6.27E-02 1.98 6.27E-02 1.98 6.25E-02 1.98
40 1.58E-02 1.98 1.58E-02 1.99 1.56E-02 2.00
80 4.03E-03 1.97 3.93E-03 2.01 3.84E-03 2.02
160 1.09E-03 1.88 1.09E-03 1.85 8.47E-04 2.18
320 3.06E-04 1.83 1.37E-04 299 8.13E-05 3.38
640 8.52E-05 1.84 1.04E-05 3.23

Table 4.5: Example 4.2: L?-errors and orders of accuracy by multiscale DG
with T%*! for e = 0.1.

TS T5
N error order error order
5 1.99E-03 - 4.29E-04 -

10 6.92E-05 4.84 3.92E-06 6.77
20 3.45E-06 4.33 5.46E-08 6.17
30 6.49E-07 4.12

Table 4.6: Example 4.2: L2-errors and orders of accuracy by multiscale DG
with T?%*! for ¢ = 0.01.

3 >
N error order error order
10  2.53E-02 - 2.52E-02 -

20 7.05E-03 1.84 7.14E-03 1.82
40 1.03E-03 277 2.95E-04 4.60
60 7.74E-05 6.39 1.36E-05 7.58
80 2.02E-05 4.67 1.86E-06 6.94
100 7.13E-06 4.67
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Table 4.7: Example 4.2: L?-errors and orders of accuracy by multiscale DG
with T2+ for e = 0.001.

3 T°
N error order error order
10 2.47E-01 - 2.47E-01 -

20 6.27E-02 1.98 6.27E-02 1.98
40  1.58E-02 1.99 1.58E-02 1.99
80 3.95E-03 2.00 3.94E-03 2.00
160 1.03E-03 1.94 1.03E-03 1.94
320 2.76E-04 190 2.17E-04 224
640 5.79E-06 5.57 8.79E-07 7.95

Table 4.8: Example 4.2: L?-errors and orders of accuracy by MD-LDG with
polynomials for ¢ = 0.01.

P! P? P3
N error order error order error order
10  9.53E-01 — 9.47E-01 - 9.48E-01 -

20 9.60E-01 -0.01 9.55E-01 -0.01 1.63E+00 -0.78
40 9.51E-01 0.01 4.46E-01 1.10 7.45E-02 4.45
80 1.17E-00 -0.29 3.92E-02 3.51 4.23E-03 4.14
160 7.88E-02 3.89 4.42E-03 3.15 2.67E-04 3.98
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Table 4.9: Example 4.3 : L?-errors by multiscale DG for solving Schrédinger
equation in the RTD model.

N E! E? E3 T3 T°
54 1.54E-05 5.44E-07 2.28E-07 4.63E-06 3.36E-07

onant tunneling diode (RTD) model. RTD model is used to collect the elec-
trons which have an energy extremely close to the resonant energy. We
consider the RTD model (see [5]) on the interval [0, 135nm]. Its conduction
band profile consists of two barriers of height —0.3v located at [60, 65| and
[70,75]. A bias energy Av = 0.08 is applied between the source and the
collector regions.

The wave function of the electrons injected at x = 0 with an energy £ > 0
satisfies the stationary Schrodinger equation with open boundary conditions,
(1.2), with m = 0.067m,.. These numerical tests were also performed in
5, 18, 10].

We compute in the case of a very high energy £ = 1.11eV and the
solution will be highly oscillating. The reference solution was obtained by
the polynomial-based MD-LDG P? method of 13,500 cells. Figure 4.1 to
4.5 show the wave function modulus computed by the multiscale DG with 54
uniform cells with B!, E%, E3, T® and T° separately. In each cell, the solution
is plotted as a function using 27 points. On the right of each sets of figures
is the zoomed in figure in the double barrier region. We can see although
the solution is highly oscillating, all proposed schemes match the reference
solution very well. In the zoomed in figures, we can see slightly oscillations
in the results by E! (Figure 4.1) and T2 (Figure 4.4 ) in [75nm, 80nm|. The
L2-errors are listed in Table 4.9, which shows that the higher order the space
is, the smaller error the approximation has. The standard polynomial-based
DG methods cannot well approximate the solution unless the mesh is very
refined.

5 Concluding remarks

In this paper, we have extended the second-order multiscale discontinu-
ous Galerkin method for one-dimensional stationary Schrodinger equations
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Figure 4.1: Wavefunction modulus by the multiscale DG for a high energy
E =1.11eV. Solid line: exact solution; dashed line: numerical solution. Left
. B!, right: zoomed in.
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Figure 4.2: Wavefunction modulus by the multiscale DG for a high energy
E =1.11eV. Solid line: exact solution; dashed line: numerical solution. Left
. B2, right: zoomed in.
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Figure 4.3: Wavefunction modulus by the multiscale DG for a high energy
E =1.11eV. Solid line: exact solution; dashed line: numerical solution. Left
. B3, right: zoomed in.
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Figure 4.4: Wavefunction modulus by the multiscale DG for a high energy
E =1.11eV. Solid line: exact solution; dashed line: numerical solution. Left
. T3, right: zoomed in.
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Figure 4.5: Wavefunction modulus by the multiscale DG for a high energy
E =1.11eV. Solid line: exact solution; dashed line: numerical solution. Left
: T, right: zoomed in.

in our previous work to higher orders. Two types of high-order finite element
spaces are proposed. The error estimates show that the high-order multiscale
DG with these spaces converge optimally with respect to the mesh size h in
L? norm when h < e. Numerical experiments shows the second-order conver-
gent rate for h 2 ¢ without any resonance errors and the optimal high-order
convergence for h < . Furthermore, the schemes also demonstrate excel-
lent accuracy on very coarse meshes when applied to Schrodinger equations.
Thus, these schemes are desirable when applying to the multiscale problems
with different scales of € because they can capture the micro-scale solutions
well on underresolved meshes and also can maintain high-order accuracy for
macro scales. In future work, we will investigate the multiscale DG higher
than second order when h 2 . We would also like to generalize our multi-
scale DG methods to two-dimensional Schrodinger equations.
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